
Construction and Refinement of Preference
Ordered Decision Classes

Hoang Nhat Dau1, Salem Chakhar2,3, Djamila Ouelhadj1,3 and
Ahmed M. Abubahia4

1 Department of Mathematics, Faculty of Technology, University of Portsmouth, UK
nhat.dau@myport.ac.uk, djamila.ouelhadj@port.ac.uk

2 Portsmouth Business School, University of Portsmouth, UK
salem.chakhar@port.ac.uk

3 Centre for Operational Research & Logistics, University of Portsmouth, UK
4 School of Computing, Faculty of Technology, University of Portsmouth, UK

ahmed.abubahia@port.ac.uk

Abstract. Preference learning methods are commonly used in multicri-
teria analysis. The working principle of these methods is similar to classi-
cal machine learning techniques. A common issue to both machine learn-
ing and preference learning methods is the difficulty of the definition of
decision classes and the assignment of objects to these classes, especially
for large datasets. This paper proposes two procedures permitting to au-
tomatize the construction of decision classes. It also proposes two simple
refinement procedures, that rely on the 80-20 principle, permitting to
map the output of the construction procedures into a manageable set of
decision classes. The proposed construction procedures rely on the most
elementary preference relation, namely dominance relation, which avoids
the need for additional information or distance/(di)similarity functions,
as with most of existing clustering methods. Furthermore, the simplic-
ity of the 80-20 principle on which the refinement procedures are based,
make them very adequate to large datasets. Proposed procedures are
illustrated and validated using real-world datasets.

Keywords: Clustering, Preference learning, Classification, Classes con-
struction

1 Introduction

Preference learning methods [3][12] are commonly used in multicriteria analysis.
These methods are often used to build a preference model based on a sample
of past decisions for further prescriptive decision purposes. Preference learning
methods have been inspired by knowledge discovery techniques and preference
modeling methods. The working principle of preference learning methods is sim-
ilar to classical machine learning methods [10]: they use a subset of data, called
learning set, to extract some knowledge permitting to classify unseen objects. In
contrary to machine learning approaches, preference learning methods assume
that both attributes and decision classes are preference-ordered.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/224683526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 H.N. Dau et al.

The definition of the learning set is a crucial step in the application of ma-
chine and preference learning methods [1][11]. It involves two operations: (i) the
selection of a representative subset of objects, and (ii) their assignment into dif-
ferent pre-defined decision classes. A common issue to both to machine learning
and preference learning methods is the difficulty of defining the decision classes.
The situation is further complicated especially for large datasets.

One possible solution to define the learning set is to use one of existing mul-
ticriteria ordered clustering methods e.g. [2][4][5][6][7][14]. However, these meth-
ods are very demanding in terms of additional information (such as preference
parameters) and require the specification of a distance/(di)similarity functions.

In this paper, we propose two procedures automatizing the construction of
decision classes. These procedures permit to reduce the cognitive effort required
from the decision maker and then extend the application domain of preference
learning methods. We also propose two simple 80-20 principle-based refinement
procedures that permit to map the output of the construction procedures into a
manageable set of decision classes.

The rest of the paper goes as follows. Section 2 provides the background.
Sections 3 and 4 present the construction and refinement procedures, and Section
5 illustrates them using a real-world dataset. Section 6 concludes the paper.

2 Background

2.1 Problem Description

Let U be a non-empty finite set of objects and Q is a non-empty finite set
of attributes such that q : U → Vq for every q ∈ Q. The Vq is the domain of
attribute q, V =

⋃
q∈Q Vq, and f : U×Q→ V is the information function defined

such that f(x, q) ∈ Vq for each attribute q and object x ∈ U . The value f(x, q)
corresponds to the evaluation of object x on attribute q ∈ Q. The domains of
condition attributes are supposed to be ordered according to a decreasing or
increasing preference. Such attributes are often called criteria.

The objective is to partition U into a finite number of preference-ordered
decision classes Cl = {Clt, t ∈ T}, T = {1, · · · , n}, such that each x ∈ U belongs
to one and only one class.

2.2 Dominance Relation and Graph

The dominance relation ∆ is defined for each pair of objects x and y as follows:

x∆y ⇔ f(x, q) ≥ f(y, q),∀q ∈ Q. (1)

This definition applies for gain-type (i.e. benefit) criteria. For cost-type cri-
teria, the symbol ‘≥’ should be replaced with ‘≤’. Equation (1) implements the
weak version of the dominance relation since all the inequality are large. Clearly,
this version of dominance relation is reflexive (i.e. x∆x, x ∈ U) and transitive
(i.e. if x∆y and y∆z, then x∆z, ∀x, y, z ∈ U) (but in general not complete).

Construction and Refinement of Preference Ordered Decision Classes 3

Consequently, it defines a partial preorder on U . The strict version of the dom-
inance relation ∆s requires at least one strict inequality in Equation (1). The
strict dominance relation is no longer reflexive but still transitive. It is easy to
see that ∆s ⊆ ∆ (i.e. x∆sy ⇒ x∆y, ∀x, y ∈ U).

The dominance relations on U ×U can be summarized through a dominance
matrix M [xij]h× h where h = |U |, i.e. the number of objects in U and

xij =

{
1, If xi∆xj ,
0, Otherwise.

(2)

The dominance relation defines a partial preorder on the objects set U . Any
preorder can be represented by a directed graph, with elements of the set cor-
responding to vertices, and the order relation between pairs of elements cor-
responding to the directed edges between vertices. Therefore, the dominance
relation can be represented as directed graph G = (U,E) with elements U cor-
responding to vertices, and the dominance relation between pairs of elements
corresponding to the directed edges E between vertices, defined as E = {(x, y) ∈
U × U : x∆y}. The graph G is constructed using a top-to-bottom order. This
means that if a node x dominates a node y, x appears above y in the graph.

2.3 Running Example

Table 1 is an extract from dataset used in Section 5. It provides the description
of 10 objects with respect to a set Q = {A1, A2, A3, A4} of four criteria, which
are introduced later in Section 5. At this level, we just mention that all the
criteria are to be maximized and that the first and fourth criteria are ordinal
while the second and third are continuous.

Table 1. Information Table

A1 A2 A3 A4

1 2 1312.5 26.25 2
2 2 1365 27.30 2
3 1 347.76 19.32 1
4 1 74.8 7.48 1
5 1 1117.98 62.11 2
6 1 1289.88 71.66 2
7 3 193.55 38.71 1
8 4 1313 13.13 2
9 3 326 3.26 1
10 3 2268 126.00 1

Table 2 is the dominance matrix associated with the dataset in Table 1.
The corresponding dominance graph is shown in Figure 1. We note that the self
dominance relationships are omitted for simplicity.

3 Construction Procedures

The construction procedures are based on the dominance relation, which is the
most elementary preference information. Let Cl(x) be the target class of decision

4 H.N. Dau et al.

Table 2. The dominance Matrix

1 2 3 4 5 6 7 8 9 10
1 1 0 1 1 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0
5 0 0 1 1 1 0 0 0 0 0
6 0 0 1 1 1 1 0 0 0 0
7 0 0 0 1 0 0 1 0 0 0
8 0 0 0 1 0 0 0 1 1 0
9 0 0 0 0 0 0 0 0 1 0
10 0 0 1 1 0 0 1 0 1 1

Fig. 1. Dominance Graph

object x ∈ U . Then, the assignment of objects to decision classes relies on the
following construction rules:

x∆y ⇔ Cl(x) ≥ Cl(y),∀x, y ∈ U. (3)

x∆sy ⇔ Cl(x) > Cl(y),∀x, y ∈ U. (4)

Based on these rules, we designed two basic procedures: Top-Down and
Bottom-Up. These procedures are introduced in the rest of this section.

3.1 Top-Down Procedure

The set of decision classes can be induced from the directed graph G = (U,E)
using the following idea. First, we identify a minimal subset N ⊆ U such that:
(i) any decision object that is not in N is dominated by at least one decision
object from N ; and (ii) the objects in set N are incomparable (i.e. they do not
dominate each other, except of the self dominance). The set N is called the kernel
of graph G, the dominant subset or also the external stability. The elements of N
are assigned to the most preferred decision class Cln. Then, the same procedure is
used to identify the kernel N ′ of the sub-graph G′ = (U \N,E′) and the elements
of set N ′ are then assigned to the second most preferred decision class Cln−1.
The same procedure is repeated until all the objects are assigned. This idea is
formalized in Algorithm 1. The procedure Kernel in this algorithm permits to
compute the kernel of the graph given as parameter. Different procedures for

Construction and Refinement of Preference Ordered Decision Classes 5

computing a Kernel of graph are available in the literature [8][9]. Algorithm 1
runs in O(β|U |) where β is the complexity of computing the kernel.

Algorithm 1: TopDown Procedure
Input : S = 〈U,Q, V, f〉, // information table.
Output: Cl, // equivalence classes.

1 n←− |U |;
2 Z ←− ∅;
3 while (Z 6= U) do
4 E ←− {(x, y) : x, y ∈ U \ Z and x∆y};
5 G←− (U \ Z,E);
6 Cln ←− Kernel(G);
7 Z ←− Z ∪ Cln;
8 n←− n− 1;

9 re-label decision classes Cl|U|, · · · , Cln+1 as Cl|U|−n, · · · , Cl1;

10 Cl←− {Cl1, · · · , Cln};
11 return Cl;

Figure 2 illustrates the application of the Top-Down procedure on the dom-
inance graph of Figure 1. The nodes with bold boundary constitute the kernel.
The procedure leads to four classes: Cl1 = {4}, Cl2 = {3}, Cl3 = {1, 5, 7, 9} and
Cl4 = {2, 6, 8, 10}, where Cl4 is the most preferred class.

Fig. 2. Illustration of Top-Down Procedure

6 H.N. Dau et al.

3.2 Bottom-Up Procedure

The set of decision classes can also be induced by examining the directed graph
G = (U,E) from bottom to up. First, we identify a minimal subset M ⊆ U such
that: (i) any decision object that is not in M dominates at least one decision
object from M ; and (ii) the objects in set M are incomparable. We call set M
the anti-kernel of graph G. The elements of M are assigned to the less preferred
decision class Cl1. Then, the same procedure is used to identify the anti-kernel
M ′ of the sub-graph G′ = (U \ M,E′) and the elements of set M ′ are then
assigned to the second less preferred decision class Cl2. The same procedure is
repeated until all the objects are assigned. This idea is formalized in Algorithm 2.
The procedure AntiKernel in this algorithm permits to compute the anti-kernel
of the graph given as parameter. The procedures for identifying the AntiKernel
of a graph can be obtained by adapting those used to compute graph Kernels
[8][9]. Algorithm 2 runs in O(γ|U |) where γ is the complexity of computing the
anti-kernel.

Algorithm 2: BottomUp Procedure
Input : S = 〈U,Q, V, f〉, // information table.
Output: Cl, // equivalence classes.

1 n←− 1;
2 Z ←− ∅;
3 while (Z 6= U) do
4 E ←− {(x, y) : x, y ∈ U \ Z and y∆x};
5 G←− (U \ Z,E);
6 Cln ←− AntiKernel(G);
7 Z ←− Z ∪ Cln;
8 n←− n+ 1;

9 Cl←− {Cl1, · · · , Cln−1};
10 return Cl;

Figure 3 illustrates the application of the Bottom-Up procedure on the dom-
inance graph of Figure 1. The nodes with double circle boundary constitute the
anti-kernel. The procedure leads to four classes: Cl1 = {4, 9}, Cl2 = {3, 7},
Cl3 = {1, 5} and Cl4 = {2, 6, 8, 10}, where Cl4 is the most preferred class.

4 Refinement of Decision Classes

The number of decision classes may be very high. Hence, there is a need to reduce
the number of these classes to obtain a manageable set of decision classes. Two
simple refinement procedures that rely on the 80-20 rule are proposed in this
paper. The 80-20 principle (also known as Pareto principle) relies on the fact
that, for many events, roughly 80% of the effects come from 20% of the causes.

Let assume that there are n classes (with Cln is best class and Cl1 is the
worst) that should be mapped into p < n classes. The first refinement procedure
starts from the top and merge the 20% best classes into class Clp. The classes
already assigned are removed and then the 20% of best classes of the remaining
ones are merged to class Clp−1. The algorithm continues until the definition of
p− 1 classes. At the end, the remaining classes are merged into class Cl1.

Construction and Refinement of Preference Ordered Decision Classes 7

Fig. 3. Illustration of Bottom-Up Procedure

This first solution may lead to large classes. A better solution consists in
using the 80-20 rule but by considering objects instead of classes. Let assume
that there are n classes (with Cln is best class and Cl1 is the worst) that should
be mapped into p < n classes. Then, the working principle of the refinement
procedure using 80-20 rule on decision objects is as follows. It starts from the
top and merges a set of best classes that contain the best 20% objects into class
Clp. The classes already assigned are removed and then the classes containing the
top 20% of best remaining objects are merged into class Clp−1. The procedure
continues until the definition of p− 1 classes. At the end, the remaining classes
are merged into class Cl1.

In both versions, a strict application of 80-20 rule may lead to large classes.
One possible solution to handle this issue is to use a parameter ϑ to relax the
merging conditions.

Algorithm 3 implements the second refinement procedure. In this algorithm,
we assumed that there are n classes with Cln is best class and Cl1 is the worst.

5 Application and Validation

5.1 Dataset

For the purpose of illustration, we consider a real-world dataset (reproduced
from [13]) relative to spare parts management corresponding to a Chinese firm.
The dataset is composed of 98 spare parts described with respect to four criteria,

8 H.N. Dau et al.

Algorithm 3: Refinement Using 80-20 Rule on Decision Objects

Input : L = {Cl1, · · · , Cln}, // initial classes.
β, // integer.

Output: O = {K1, · · · ,Kp}, // refined classes.
1 i←− n;
2 while (i ≥ 2) do
3 Ki ←− top classes in L containing the top 20%± ϑ best objects;
4 L←− L \Ki;
5 i←− i− 1;

6 K1 ←− L;
7 O ←− {K1, · · · ,Kp};
8 return O;

namely A1 (Criticality), A2 (Annual Dollar Usage), A3 (Average Unit Cost), and
A4 (Lead Time) (see Table 3). The criteria A2 and A3 are continuous while A1

and A4 criteria are ordinal. The criterion A1 can take one of four values 1, 2, 3
and 4 where 1 corresponds to the lowest criticality and 4 corresponds to highest
critically. The possible values for A4 are 1, 2 and 3 where 1 means a low lead
time and 3 means a high lead time. All the criteria are benefit-type (i.e. the
higher their values, the more important spare part is). The evaluation of the
spare parts with respect to criteria is given in Table 4.

Table 3. Characteristics of Considered Criteria

Code Name Description Preference Data type
A1 Criticality It represents the influence of spare parts

running out on the availability of equip-
ment.

Gain Ordinal

A2 Annual Dollar Usage It is calculated by spare part cost multi-
ply demand volume.

Gain Continuous

A3 Average Unit Cost It refers to spare part cost. Gain Continuous
A4 Lead Time It refers to the time between the place-

ment of an order and delivery of a new
spare part from the firm’s supplier.

Gain Ordinal

5.2 Application and Results

We applied the Top-Down and Bottom-Up procedures using the dataset given
in Table 4. The results of these procedures are given in Table 5. As shown in
this table, the use of the Top-down procedure leads to 22 classes with class #1
is the most preferred and class #22 is the worst while the application of the
Bottom-Up procedure leads to 23 classes with class #23 is most preferred and
class #1 is the worst. As shown in Table 5, both the Top-Down and Bottom-
Up procedures lead to a high number of classes and should be mapped into a
reduced set of classes. Let assume that the obtained decision classes should be
mapped into p = 3 ordered decision classes, labelled A, B and C, respectively.

Construction and Refinement of Preference Ordered Decision Classes 9

Table 4. Information Table

A1 A2 A3 A4
1 2 1312.5 26.25 2
2 2 1365 27.3 2
3 1 347.76 19.32 1
4 1 74.8 7.48 1
5 1 1117.98 62.11 2
6 1 1289.88 71.66 2
7 3 193.55 38.71 1
8 4 1313 13.13 2
9 3 326 3.26 1
10 3 2268 126 1
11 3 4134.6 91.88 1
12 3 1587.6 88.2 1
13 3 2063.4 54.3 1
14 3 1786.4 44.66 1
15 3 10365.75 121.95 1
16 3 770.26 20.27 1
17 3 2646 52.92 1
18 3 113.4 5.67 1
19 1 650 65 1
20 1 418.88 14.96 1
21 1 948.3 31.61 1
22 3 410.7 13.69 1
23 3 26995.6 2699.56 2
24 4 746 7.46 2
25 4 3150 31.5 2
26 4 3675 36.75 2
27 3 27562.5 1837.5 2
28 4 840 8.4 3
29 4 1670 16.7 2
30 4 1754 17.54 2
31 4 437 4.37 2
32 4 2625 26.25 2
33 4 462 4.62 2

A1 A2 A3 A4
34 4 1260 12.6 2
35 4 2100 21 2
36 4 1050 10.5 2
37 4 1575 15.75 2
38 4 578 5.78 2
39 3 2936 29.36 1
40 4 19682.3 3936.46 2
41 4 1444.2 24.07 1
42 3 463.05 13.23 1
43 3 132.3 7.35 1
44 1 2734.2 97.65 1
45 1 3071.25 87.75 1
46 4 785.7 17.46 1
47 4 955.2 11.94 1
48 1 28.44 1.58 1
49 4 851 8.51 2
50 1 352.8 8.82 1
51 3 105.84 2.94 1
52 1 1304.48 21.04 1
53 4 3580.5 65.1 2
54 2 1325.52 73.64 1
55 4 18375 1837.5 3
56 2 236.7 2.63 1
57 2 862 8.62 1
58 3 735 7.35 1
59 1 2315.34 128.63 1
60 1 1984.5 110.25 1
61 1 157.5 15.75 1
62 1 340.2 18.9 2
63 1 642.6 35.7 2
64 4 346.5 34.65 2
65 3 1890 189 1
66 3 567 31.5 1

A1 A2 A3 A4
67 3 2126.25 47.25 1
68 3 623.7 34.65 2
69 3 420 4.2 2
70 4 840 8.4 2
71 4 3150 31.5 3
72 4 2625 26.25 3
73 4 13925.3 1392.53 3
74 3 199.5 5.25 2
75 3 472.5 9.45 2
76 3 336 16.8 2
77 1 57.8 5.78 2
78 1 161.84 5.78 2
79 3 840 8.4 2
80 4 840 8.4 3
81 4 2625 26.25 3
82 4 2100 21 3
83 4 25725 257.25 3
84 4 40056 400.56 3
85 4 3780 126 2
86 3 882 29.4 2
87 1 1470 36.75 2
88 3 126 12.6 2
89 4 1071 17.85 2
90 3 121.1 3.46 2
91 3 43.56 2.42 2
92 1 823.2 29.4 2
93 1 1029 5.78 2
94 4 1025.55 22.79 2
95 4 2688 33.6 2
96 3 1470 29.4 2
97 2 264.6 14.7 2
98 4 11025 5512.5 3

Table 5. Results of Top-Down and Bottom-Up Procedures

Preference Top-Down Bottom-Up
order Class ID Content Class ID Content

Best 1 23, 27, 40, 55, 84, 98 1 55, 84
2 73, 83, 2 40, 73, 83, 98
3 15, 59, 65, 71, 85 3 85
4 6, 10, 11, 26, 44, 53, 72, 81 4 26, 53, 71
5 5, 12, 13, 17, 25, 39, 45, 60, 64, 68, 82,

87, 95
5 25, 72, 81, 95

6 32, 54, 63, 67, 96, 28, 80 6 32, 82
7 2, 14, 19, 35, 41, 86, 94 7 35
8 1, 7, 16, 21, 30, 66, 89, 92 8 30
9 29, 46, 52, 62, 76 9 29
10 3, 37 10 37
11 8, 20, 22, 42, 61, 97 11 8
12 34, 49, 88 12 23, 27, 34, 89
13 36, 47, 13 15, 36, 94
14 57, 70, 75, 93 14 11, 28, 49, 80
15 24, 79 15 10, 17, 70
16 38, 50, 58 16 13, 24, 65, 67, 96
17 4, 33, 43, 74, 78 17 2, 6, 12, 14, 38, 39, 41, 59, 68, 86
18 18, 31, 77 18 1, 5, 16, 33, 44, 45, 46, 47, 54, 60, 64,

66, 79, 87
19 69, 19 7, 19, 21, 22, 31, 42, 52, 58, 63, 75, 76,

92
20 9, 90 20 3, 20, 43, 62, 69, 74, 88, 93, 97
21 51, 56, 91 21 9, 18, 50, 57, 61, 78, 90
22 48 22 4, 51, 56, 77, 91

Worst 23 48

In this paper, we used the second refinement procedure. The application
of this procedure on the output of Top-Down and Bottom-Up procedures is
summarized in Table 6. In both cases, we used a relaxation parameter of ϑ = 5.
Table 6 shows that the refinement of the Top-Down procedure’s output leads
to the assignment of 21 spare parts to class A, 13 to class B and 64 to class
C, which makes a percentage of 21.43%, 13.27% and 65.30%, respectively. It
also shows that the refinement of the Bottom-Up procedure’s output leads to
relatively the same rate with the assignment of 19 spare parts to class A, 16

10 H.N. Dau et al.

to class B and 63 to class C, which makes a percentage of 19.39%, 16.33% and
64.28%, respectively.

Table 6. Results of Refinement

Preference Top-Down Bottom-Up
order Class ID Content Nb of objects % Class ID Content Nb of objects %

Best A 23, 27, 40, 55, 84,
98, 73, 83, 15, 59,
65, 71, 85, 6, 10,
11, 26, 44, 53, 72,
81

21 21.43 A 55, 84, 40, 73, 83,
98, 85, 26, 53, 71,
25, 72, 81, 95, 32,
82, 35, 30, 29

19 19.39

B 5, 12, 13, 17, 25,
39, 45, 60, 64, 68,
82, 87, 95

13 13.27 B 37, 8, 23, 27, 34,
89, 15, 36, 94, 11,
28, 49, 80, 10, 17,
70

16 16.33

C 32, 54, 63, 67, 96,
28, 80, 2, 14, 19,
35, 41, 86, 94, 1, 7,
16, 21, 30, 66, 89,
92, 29, 46, 52, 62,
76, 3, 37, 8, 20, 22,
42, 61, 97, 34, 49,
88, 36, 47, 57, 70,
75, 93, 24, 79, 38,
50, 58, 4, 33, 43,
74, 78, 18, 31, 77,
69, 9, 90, 51, 56,
91, 48

64 65.30 C 13, 24, 65, 67, 96,
2, 6, 12, 14, 38, 39,
41, 59, 68, 86, 1, 5,
16, 33, 44, 45, 46,
47, 54, 60, 64, 66,
79, 87, 7, 19, 21,
22, 31, 42, 52, 58,
63, 75, 76, 92, 3,
20, 43, 62, 69, 74,
88, 93, 97, 9, 18,
50, 57, 61, 78, 90,
4, 51, 56, 77, 91, 48

63 64.28

5.3 Validation

To validate the results, we applied the preference learning method Dominance-
based Rough Set Approach (DRSA) [12] on the output of refinement procedures.
The input of DRSA is a learning dataset representing the description of a set of
objects with respect to a set of criteria. The main output of DRSA is a collection
of decision rules. A decision rule is a consequence relation E → H (read as If
E, then H) where E is a condition (evidence or premise) and H is a conclusion
(decision). Each elementary condition is built upon a single criterion while a
consequence is defined based on a decision class. The obtained decision rules can
then be applied to classify unseen objects.

We applied the DRSA using the outputs (after refinement) of the Top-Down
and Bottom-Up procedures as learning sets. This led to a collection of decision
rules, which are then validated through the reclassification of the spare parts in
the learning sets using the inferred decision rules. The results of reclassification
are summarized in the confusion matrices given in Table 7. As shown in this table,
the reclassification using the results obtained from the Bottom-Up procedure
shows a perfect match since all the spare parts have been re-classified to the
same class. In turn, the reclassification using the results obtained from the Top-
Down procedure shows a rate of 92% of correct classifications and a rate of 8%
of misclassifications. This holds because some spare parts have been assigned to
more than one class.

To further evaluate the results of the DRSA, we used a series of well-known
non-parametric statistics to measure the correlation between the assignments
provided by the Top-Down and Bottom-Up procedures and those generated

Construction and Refinement of Preference Ordered Decision Classes 11

Table 7. Confusion Matrices

Possible
Original C B A

C 64/64 0/1 0/1
B 0/5 13/13 0/2
A 0/0 0/1 21/21

Possible
Original C B A

C 63/63 0/0 0/0
B 0/0 16/16 0/0
A 0/0 0/0 19/19

Top-Down Procedure Bottom-Up Procedure

based on the corresponding rules. The result of the statistical analysis is sum-
marized in Table 8. Let us first note that for the Top-Down procedure, we dis-
tinguished two cases concerning the 9 ambiguous assignments: (i) case of best
choice in which the assignment intervals have been reduced into a single assign-
ment equal to the one generated by Top-Down procedure, and (ii) worst choice
in which the assignment intervals have been reduced into a single assignment
different from the one generated by Top-Down procedure. Based on Table 8,
we can conclude that all the statistics show a perfect agreement for the case
of Bottom-Up procedure and Top-Down with best choices procedure. For the
Top-Down procedure with worst choices, all the statistics show a relatively high
to very high agreement.

Table 8. Statistical analysis

Statistics Kendall’s Spearman’s Unweighted Weighted
Statistics tau rho kappa kappa
Top-Down with best choices vs rules 1 1 1 1
Top-Down with worst choices vs rules 0.8698 0.8893 0.8257 0.8714
Bottom-Up vs rules 1 1 1 1

6 Conclusion

The paper addresses the problem of ordered decision classes construction and
refinement. It has several theoretical and practical contributions. Firstly, it
proposes two procedures permitting to ‘automatise’ the construction of deci-
sion classes. These procedures rely on the most elementary preference relation,
namely dominance relation. Thus and in contrary to most of existing clustering
methods, the proposed procedures avoid the need for additional information or
distance/(di)similarity functions. Secondly, it extends the application domain of
preference learning methods, especially the DRSA, to decision problems involv-
ing large datasets. Thirdly, it introduces two refinement procedures that rely on
the 80-20 principle. The refinement procedures permit to map the output of the
construction procedures into a manageable set of decision classes. The simplicity
of the 80-20 principle on which the refinement procedures are based, make them
very adequate to large datasets.

Several topics need to be investigated in the future. The first topic concerns
the use of a mixed construction procedure by combining the results of Top-Down

12 H.N. Dau et al.

and Bottom-Up procedures. The second topic is related to the application and
performance evaluation of the procedures with very large data sets. The last
topic concerns the use of other refinement techniques.

References

1. Albatineh, A., M.Niewiadomska-Bugaj: MCS: A method for finding the number
of clusters. Journal of Classification 28(2) (2011) 184–209

2. Baroudi, R., Bahloul, S.: A multicriteria clustering approach based on similarity
indices and clustering ensemble techniques. International Journal of Information
Technology and Decision Making 13(04) (2014) 811–837

3. Bregar, A., Györkös, J., Jurič, M.: Interactive aggregation/disaggregation di-
chotomic sorting procedure for group decision analysis based on the threshold
model. Informatica 19(2) (2008) 161–190

4. de la Paz-Maŕın, M., Gutiérrez, P., Hervás-Mart́ınez, C.: Classification of countries’
progress toward a knowledge economy based on machine learning classification
techniques. Expert Systems with Applications 42(1) (2015) 562–572

5. De Smet, Y.: P2CLUST: An extension of PROMETHEE II for multicriteria or-
dered clustering. In: Industrial Engineering and Engineering Management (IEEM),
2013 IEEE International Conference on. (Dec 2013) 848–851

6. De Smet, Y.: An extension of PROMETHEE to divisive hierarchical multicriteria
clustering. In: Industrial Engineering and Engineering Management (IEEM), 2014
IEEE International Conference on. (Dec 2014) 555–558

7. De Smet, Y., Nemery, P., Selvaraj, R.: An exact algorithm for the multicriteria
ordered clustering problem. Omega 40(6) (2012) 861–869

8. Emmert-Streib, F., Dehmer, M., Shi, Y.: Fifty years of graph matching, network
alignment and network comparison. Information Sciences 346-347 (2016) 180–197

9. Ghosh, S., Das, N., calves, T.G., Quaresma, P., Kundu, M.: The journey of graph
kernels through two decades. Computer Science Review 27 (2018) 88–111

10. Gilboa, I., Schmeidler, D.: Case-based knowledge and induction. IEEE Transac-
tions on Systems, Man, and Cybernetics: Part A 30(2) (2000) 85–95

11. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Transactions
on Knowledge Discovery from Data 1(1) (2007) Article 4.

12. Greco, S., Matarazzo, B., S lowiński, R.: Rough sets theory for multicriteria decision
analysis. European Journal of Operational Research 129(1) (2001) 1–47

13. Hu, Q., Chakhar, S., Siraj, S., Labib, A.: Spare parts classification in industrial
manufacturing using the dominance-based rough set approach. European Journal
of Operational Research 262(3) (2017) 1136–1163

14. Rocha, C., Dias, L.: MPOC: an agglomerative algorithm for multicriteria partially
ordered clustering. 4OR 11(3) (2013) 253–273

