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Abstract 

An investigation of geometrical ratio effects on failure mechanisms of functionally graded 

sandwiches with multi-layered cores (FGSMLC) is presented in this paper. The extended 

cohesive damage model (ECDM) is used in detailed investigations of geometrical ratio effects 

on the failure mechanisms of the FGSMLC under three-point bending. The ECDM prediction 

shows very good agreements with previous experimental work. The ECDM prediction reveals 

that the FGSMLC with 8-layered graded cores shows loading capacities increased by 64% 

compared to the one with a homogeneous core in all investigated cases with varied spans. The 

FGSMLC behaves different failure modes when their geometrical ratio between the depth and 

the span varies. It is the first time that this investigation explores the correlation between the 

failure load and the geometrical ratio of the FGSMLC. This investigation provides a sustainable 

approach to predict detailed failure mechanisms of the FGSMLC in further research and 

industrial applications.  

1. Introduction 

There are wide applications of composite sandwich panels in various industries such as 

automobile, aeronautical, civil, and others [1]. Composite sandwich panels are manufactured 

by attaching two thin layers of fibre laminates having very high material strength which are 

separated by a thick layer of core that is generally a material with lightweight and very low in 

material properties compared to top and bottom faces [1-3]. Fibre composite sandwiches show 

superior advantages [4] such as increased stiffness compared to other engineering materials 

[2]. There are other different benefits of using composite sandwich panels such as light weight, 

resistant to corrosive behaviour, high strength, high bending stiffness, etc. [2, 4, 5].   
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Usually honeycomb, corrugated, foam, and truss cores are used in composite sandwich panels. 

Core with honey comb and synthetic foam have been widely used in various application. For 

examples, various structures and parts in automotive industries, sporting industries and 

aerospace industries are built using core with honeycomb [6-8]. Likewise, synthetic foam based 

core have been used in panels for cladding [9], bridge decks [10, 11], various parts of ship [12], 

turbine blades [11] and flooring in building constructions [13].  However, this conventional 

sandwich panel is suffering from de-bonding or delamination at the interface between fiber-

laminate on bottom and core due to high value of concentrated stresses and significantly varied 

material properties between the core and laminate at that region [1, 14], which restrains its 

loading capacity. 

Some researches were carried out to mitigate those problems to reduce material property gap 

using functionally graded materials [1, 15, 16]. In their investigations different materials were 

mixed at different ratios to design a core with mixed materials, and the core is designed as a 

single layered core. On the other hand, composite sandwich panels by varying material 

properties on core were also investigated to reduce the gap between material properties by 

various researchers [17, 18]. Material properties were varied non-uniformly that results in 

varied overall property on core. Strains in normal and shear directions were significantly 

decreased when core is functionally graded and discontinuities were reduced at the interface 

between the face sheets and the core, resulting in reduced deflection as well as stresses [17, 

19].  

Analytical, experimental and numerical modelling approaches were usually used to study the 

failure behaviour of composite sandwich panel in the past. In analytical approach, various 

theories based on the high order plate theory were used to calculate mechanical behaviour of 

composite sandwich panels having functionally graded cores (FGC). These analytical 

approaches employed third-order zig-zag model [20], 3-D elasticity equation [17], classical 

deflection formulae [21] and polynomial equation [19]. However, it was difficult to predict 

failure mechanisms of multi-layered composite sandwich panels in the structural level through 

these analytical approaches. Likewise, different experiment tests were carried out to investigate 

the failure mechanisms of FGC [18, 22]. Experimental tests were completed by [18] in 

examining the impact of variable densities of foam core to bending response on sandwich 

panels. There was a significant improvement on performance of a 4-layered sandwich panel 

having FGC on bending stiffness and resistance compared to traditional sandwich panels 
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having homogeneous cores. However, experimental approach is costly in investigating failure 

mechanisms of the composite sandwich panel and optimizing its behaviour. On the other hand, 

the numerical modelling approach compared to other approaches is less time consuming and a 

cost-effective approach.  

The geometrical ratio of composite sandwich panels will affect their failure behaviour. The 

effect of depth-span ratio on failure behaviour of aircraft sandwich panels under bending load 

was studied experimentally by [23] in which various spans such as 125 mm, 80 mm, 70 mm 

and 55 mm of honeycomb core sandwich panel were considered. Deflection was highly 

influenced by span length. Bending stiffness of the panel was decreased with increased span. 

Experimental results showed good agreements with analytical calculations calculated by [23] 

based on analytical formulation by [24]. Critical load is decreased but deflection is increased 

from short span to long span in honeycomb core sandwich panels. Effect of thickness was also 

investigated by [25] and concluded that increasing depth-to-span ratio will lead to increasing 

bending strength and bending stiffness. Failure mechanisms of composite sandwich panels with 

metal foam with varied densities were studied by [26] and found shear failure of foam core as 

major failure but this investigation was merely focused on a sample with one density and varied 

number of plies in faces. Likewise, impact of increasing thickness of faces has been studied by 

[27] and found improved stiffness, flexural rigidity and ultimate load. However, the effect of 

depth-span ratio of functionally graded sandwiches with multi-layered cores (FGSMLC) in 

which material properties are varied layer by layer in core were much less investigated in the 

past.   

Cohesive zone model (CZM) [28, 29] and extended finite element method (XFEM) [30] are 

widely used to predict discontinuities in different structures for decades. In this paper, the 

failure behaviour of FGSMLC having various depth-span ratios are investigated using 

Extended Cohesive Damage Model (ECDM) considering its advantages in efficiency and 

accuracy comparted to CZM and XFEM [31-34]. This investigation is the first time to predict 

geometrical ratio effects on failure mechanisms of the FGSMLC. Experimental results from 

[18] are considered as reference in this paper. Detailed analysis of sandwich panel with varied 

geometrical ratio based on bending stiffness, failure load and residual stiffness are explored. 

The correlation between failure load and number of layers as well as depth-span ratio of the 

FGSMLC are explored by this investigation.  
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2. Methodology 

Prediction of failure mechanisms of the FGSMLC is one of the challenging issues in 

computational damage mechanics. Even though, CZM and XFEM are widely used to predict 

discontinuities in different structures for decades, however, these techniques have some 

drawbacks due to specific features of both techniques. CZM needs pre-defined crack paths and 

it also often faces convergent issues in simulation of crack propagation at the structural level 

simulation. Standard XFEM is a bit weak approach in simulating multicrack propagation in 

composites due to limited special functions given at the crack front.  XFEM uses additional 

degrees of freedoms so computational burden is huge when dealing with strong discontinuities 

[31-34].  

In this paper, the detailed failure mechanisms of the FGSMLC are studied using the highly 

efficient approach ECDM to predict non-linear failure mechanisms. The ECDM developed by 

Li and Chen [31-34] is capable to overcome the problems in CZM and XFEM. Reliability and 

validity of ECDM were identified through previous applications in simulating failure 

mechanisms in composites [31-34]. According to [31, 34], the computational efficiency of the 

ECDM is increased by 60% and 90% compared to XFEM and CZM respectively. Furthermore, 

the ECDM offers improved numerical accuracy and mesh independency. It was not found that 

convergent problems are encountered in non-linear failure analysis of investigated composite 

samples [31-34].  

A user element model based on commercial package ABAQUS is used to apply ECDM in the 

non-linear failure analysis to investigate the geometrical ratio influence of the FGSMLC. Basic 

theoretical ECDM formulas that are implemented in an ECDM 2D 4-node quadrilateral 

element is described as below [31-34]. 

It is argued by [35] that partition of unity condition can be satisfied by a 2D quadrilateral 4-

node element with classical shape functions Ni (i=1,2,3,4). Hence, the displacement 

approximation can be presented as shown in Eq. (1).    
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Where, u and v are representing displacement in x and y directions respectively. And, step 

function can be expressed as:  

                                 iii nHnHnstep
dd

,,,                                                   (2) 

According to [31-34] the shape function matrices N and the discretised gradient operator matrix 

B are established in general FEM format.  

                                              ENRSTD ,NNN                                                             (3) 

Where, standard function - NSTD and enriched function - NENR can be represented as:  
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According to [31-34], the formulation of ECDM is one-order lower order than that of XFEM, 

and only standard degrees of freedoms are used for nodal displacement in ECDM to represent 

discontinuities in cracked elements. Based on the weak form of equilibrium equation by 

Bubnov-Galerkin method, the discrete form of final equilibrium equation for static analysis can 

be represented as:  

                         coh

aauau

ext

auaauauu u fKKfKKKK
11 

                               (6) 

Where, u represents displacement due to standard degrees of freedom, matrices Kuu and Kaa 

are representing standard and enriched approximation respectively. Likewise, Kua and Kau are 

representing coupled standard and enriched FE approximations; f
u

ext
is for equivalent nodal 

force vector due to standard FEM degrees of freedom. Calculations for Kuu, Kaa, Kua and Kau 

are given as below.  
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Where, the gradient matrices B for 2D quadrilateral element can be expressed as:  

                                                  ENRSTD ,BBB                                                         (8) 

Where, BSTD and BENR can be calculated by Equs. 9 and 10.  
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Likewise, fcoh, internal nodal force vector due to cohesive traction that will be applied in the 

crack surface as shown in Fig. 1, can be expressed by Equ. 11.   

                                                      
Crack
Element

dcoh tNf STD                                              (11) 

In which, t represents traction between two crack surfaces on a cracked element.  
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Fig. 1: Cohesive tractions between cracked surfaces 

In this investigation, a mixed-mode failure criterion is considered. Total fracture energy is 

considered as a function of crack mode ratio by Benzeggagh and Kenane also known as B-K 

law for mixed-mode failure. According to Reeder [36], the following expression can be used 

as 3D mixed mode failure criteria: 

                       1
)/)))((/)(()/)((( 1
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Where, GT is total energy release rate which is equivalent to GI+ GII + GIII and accounted as a 

function of the ratio (GII + GIII)/GT. Likewise, GIC, GIIC and GIIIC are opening and two shear 

fracture energies respectively, n is the power faction parameter.    

In 2D  case GIII = 0, so, it is equivalent to B-K criteria [37] as given in Equ. 13 for 2D cases:  
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3. Geometry and material property of sandwich samples    

The main theme of this research is to investigate the detailed failure mechanisms of FGSMLC 

with varied material properties layer by layer and explore the correlation between failure load 

and geometrical ratio. An initial sample as a three point bending test from [18] is considered in 

this investigation. The sandwich sample with dimensions of 90 mm span L, 20 mm width B 

and 12 mm depth H was manufactured by glued fibre laminates and foam as shown in Figs. 2 

and 3. The FGSMLC panels having 10 different span cases ranged from 15 mm to 100 mm, a 

fixed width of 20 mm and total thickness or depth of 12 mm are investigated. A 2D half model 

with 8 mm thick core and 2 mm thick top and bottom laminates taking benefit of symmetric 

case is considered. Simply supported supporting conditions at two edges align with three-point 

bending test and displacement controlled loading scheme by a loading cell at the middle of 

sandwich panel as shown in Fig. 4 are used. An ECDM based 2D plain strain elements are 

applied in modelling. 

Top and bottom laminates are manufactured by twelve woven bi-directional layers of carbon 

fibre-T300 and homogeneous foam core is manufactured by 3MTM using K20 hollow glass 
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microspheres with binder resin epoxy 520 and 523 hardener [18]. Their material properties are 

given in Tables 1 and 2. Foam core material properties are comparatively higher than what in 

ordinary foam materials. 

 

Table 1: Basic material properties for top and bottom laminates 
Young’s moduli 

(MPa) 

Shear moduli 

(MPa) 

Poisson ratio 

E1  E2  E3  G12 G13 G23 ⱱ12 ⱱ13 ⱱ23 

35000 35000 3150 13257 13257 13257 0.33 0.33 0.33 

 

Table 2: Foam material properties of homogeneous core 

Young’s modulus 

(MPa) 

Poisson 

ratio 

Normal strength 

(MPa) 

Shear Strength 

(MPa) 

Fracture Energy (N/mm) 

1500 0.35 26.25 9.865 0.32 

 

 

 

 

 

 

 

Fig. 2: A sandwich panel with a homogeneous core (not to scale) 

 

4. Results analysis and discussion 

Results analysis and discussion are given in the following three sections. Firstly, the ECDM 

modelling work is conducted for comparing with experimental results given in [18] for 

verifying the ECDM prediction. Secondly, geometrical ratio effects on failure mechanisms of 

FGSMLC with various spans are studied. Finally, the correlation between failure load and 

depth-span geometrical ratio is explored.  

4.1 Verification of ECDM predictions  

This section presents two different simulations: the first one with homogeneous foam core and 

second one with 4-layered functionally graded core. Table 3 shows the material properties of 

4-layered core sandwich panels. Material properties of homogeneous core are same as the 

material properties for layers 2 and 3 in Table 3. 
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Fig. 3: A cross-sectional view of sandwich panel with a multi-layered core (not to scale) 

 

 

 

 

 

 

 

Fig. 4: A half model of sandwich panel 

Table 3: material properties of sandwich panel with 4-layered core 

 

Figs. 5 and 6 shows the failure modes given by experimental test and ECDM prediction 

respectively. There is a good agreement between the ECDM prediction and experimental test. 

Fig. 5 shows experimentally presented dominated sliding shear cracks from the edge to the 

middle of the panel followed by the main through thickness cracks at the middle of the panel. 

While, as presented in Fig. 6, grey colour is representing sliding shear cracks or delamination 

initiated at the edge and propagated to the middle of the panel, which is in the line of the tested 

failure mode. Fig. 6 also shows the direction of through thickness crack growth at the middle, 

which agrees with test observation in the middle area. The failure mode is sliding shear crack 

Layer Young’s 

modulus (MPa) 

Poisson ratio Normal strength 

(MPa) 

Shear strength 

(MPa) 

Fracture energy 

(N/mm) 

1 1900 0.36 33.25 12.495 0.41 

2 1500 0.35 26.25 9.865 0.32 

3 1500 0.35 26.25 9.865 0.32 
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starts from the edge of the panel due to concentrated shear stresses, then cracks propagate 

towards the middle of the panel as fracture energy released. Along the main sliding shear 

cracking path a few through thickness cracks are captured by both experimental test and ECDM 

prediction as shown in Figs. 5 and 6 respectively. Furthermore, a mixed failure mode with 

tensile and shear failure is occurred in the middle area of the panel due to high values of shear 

stresses as well as tensile stresses. It is noticed that sliding shear cack or delamination slightly 

above the interface between the core and the bottom sheet captured by both experimental test 

and ECDM prediction. This is because high values of stresses in that region above the interface 

due to materials mismatch.    

The failure mode of the sandwich panel with 4-layered core was not presented by [18]. The 

ECDM predicted its failure mode can be seen from Fig. 7, which is similar to that in the case 

of homogenous core. It is dominated by sliding shear failure from the edge to the middle of the 

panel, however, there are more through thickness cracks along the sliding cracking path. 

Cracked surfaces are expanded in the sandwich panel with 4-layered core. It can be seen from 

Fig. 8 that initial stiffness and failure load have very good agreements between experimental 

tests and ECDM predictions in both homogeneous and 4-layered cases. Results revealed that 

loading capacity of sandwich panel with 4-layered core compared to homogeneous core has 

improved by 26% in ECDM prediction and 22% in experimental observations. 

 

Fig 5: Experimentally tested sandwich panel with a homogenous core [18] 

 

Fig. 6: ECDM predicted failure mode of sandwich panel with a homogenous core 
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Fig. 7: ECDM predicted failure mode of sandwich panel with a 4-layered core 

 

Fig. 8: ECDM predicted failure responses and experimental solutions [18] 

 

Fig. 9: ECDM predicted failure responses for three different core cases 

Furthermore, the ECDM investigations are carried out for multi-layered core where material 

properties are increased proportionally layer by layer up to 100% from the middle of the 

sandwich panel towards top and bottom sheets to decrease the material gap between the core 

and the laminated sheets. The case of the core with average material properties is also 
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investigated based on the 90 mm span model for comparison. It is noted that original 

homogeneous core material properties are as tabulated in Table 2 and the averaged material 

properties are derived by taking the average between the original homogeneous material 

properties and the 100% increment. It can be seen from Fig. 9 that the case with 8-layered core 

perform the best with highest failure load. Loading capacity of 8-layered core is increased by 

64% and 13% compared to original homogeneous and averaged homogeneous core.  

4.2 Geometrical ratio effect of the sandwiches with multi-layered cores 

The ECDM prediction has been verified by the comparative study carried out in section 4.1. In 

this section, further investigations based on ECDM are carried out by varying depth-span ratio 

from 0.12 to 0.8. The depth of sandwich panel is kept as a constant as 12mm and span is varied 

from 15mm to 100mm. Geometrical depth-span ratio effect are investigated through fifty 

different simulations for homogeneous, 6, 8, 12, and 24 layered cores with various spans. As 

presented and discussed in previous section, failure load in 8 layered core is significantly 

increased compared to homogeneous core. It is happened in the most variable span cases, so, 

failure responses of selected two cases; homogeneous core and 8 layered core, are discussed in 

details for comparison. 

Figs. 10 and 11 show the failure responses of homogeneous core and 8 layered core with 

various spans predicted by ECDM. It can be seen from Figs. 10 and 11 that failure responses 

of sandwich panels with homogeneous and 8 layered cores have a similar load-displacement 

curve in all span cases. Failure responses of long span cases have a single failure point, on the 

other hand, failure responses of short span cases have multiple failure points. It is noted that 

initial stiffness of sandwich panel is increased when span decreased in all investigated cases. 

Similar behaviours can be seen in other investigated cases with variable number of layers e.g. 

6, 12, and 24. A similar behaviour is appeared in all shorter span cases having less 30 mm span 

length. Hence, the first case for short spans representing the cases where initial failure is caused 

by through-thickness shear failure and having higher residual stiffness represented by 20 mm 

span is considered for detailed analysis. Likewise, longer spans having 40 mm or more also 

behave a similar failure mode, therefore, the second case with 40 mm span representing all 

other long spans having only one major horizontal sliding shear failure is discussed in details.   

 

As shown in Figs. 12 and 13, the failure modes are basically dominated by one sliding shear 

failure presented by grey colour, which occurs when geometrical ratio is 0.3 or less regarding 
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medium to long span cases. Sandwich panel loses its loading capacity as the shear failed areas 

completely cracked through the whole panel. There is some extent of residual stiffness because 

split parts by shear failure are still contacted from each other.  

 

 

 

 

 

 

 

Fig. 10: Failure responses of homogeneous core with various spans 

 

 

 

 

 

 

Fig. 11: Failure responses of 8 layered core with various spans 
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Fig. 12: Failure mode at the first failure point of 40 mm span case with 8 layered core 

 

Fig. 13: Failure mode at the final stage of 40 mm span case with 8 layered core 

At the transition stage e.g. geometrical ratio between 0.3 to 0.4 or medium span stage, the failure 

load of the FGSMLC is slightly decreased. This is because initial failure mode changes as 

shown in Fig. 14 when ratio is 0.4 from sliding shear failure to through-thickness shear failure 

at the beginning of failure in which strain energy distribution is slightly changed. It is followed 

by sliding shear failure which consists of a number of through-thickness cracks. Fig. 15 and 16 

show the failure mode at the second and third failure points respectively in the load-

displacement curve, which is continued sliding shear failure from the edge to the middle of the 

panel. Fig. 17 shows the failure mode at the final stage in the load-displacement curve, which 

shows two sliding shear cracks almost reached the middle of the panel at the final stage. The 

additional sliding shear crack is appeared exactly at the interface between the core and bottom 

sheet. 

 



15 

 

       

Fig.14: Failure mode at the first failure point of 30 mm span case with 8 layered core 

 

Fig. 15: Failure mode at the second failure point of 30mm span case with 8 layered core 

 

Fig. 16: Failure mode at the third failure point of 30 mm span case with 8 layered core 
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Fig. 17: Failure mode at the final stage of 30 mm span case with 8 layered core 

Figs. 18 to 21 show the failure modes of the panel with 20 mm span or geometrical ratio 0.6 

and an 8 layered core, which has three failure points in the load-displacement curve. The failure 

starts from a number of individual through-thickness cracks at the first failure point in the load-

displacement curve as shown in Fig. 18. It links individual through-thickness cracks together 

as a continued sliding shear crack at the second failure point as shown in Fig. 19. At the third 

failure point, one more sliding shear failure crack is appeared at the interface between the core 

and the bottom sheet as shown in Fig. 20. Fig. 21 shows two sliding shear cracks almost reached 

the middle of the panel at the final stage.  

 

In the cases of high geometrical ratio such as above 0.6, failure always initiates from the edge 

towards the middle of the panel, and failure modes distributed in several layers in through-

thickness way. They are multiple failure modes including individual through-thickness cracks 

at the beginning and the following multiple sliding shear cracks in different levels. The more 

number of layers and the bigger failed area are associated with the final or major failure mode. 

Hence, it needs high fracture energy to split the panel and results in increased failure loads.  

 

4.3 Correlation between failure load and geometrical ratio 

Detailed failure mechanisms of the FGSMLC with various spans is analysed in previous 

sections. In this section, detailed effects of geometrical ratio on failure mechanisms is explored. 

Fig. 22 shows the correlation between geometrical depth-span ratio and failure load of the 

FGSMLC. The FGSMLC with homogeneous core, 6, 8, 12 and 24-layer cores are considered 

in this investigation. 

Corresponding 

failure mode 
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Fig. 18: Failure mode at the first failure point of 20 mm span case with 8 layered core 

 

Fig. 19: Failure mode at the second failure point of 20 mm span case with 8 layered core 

 

Fig. 20: Failure mode at the third failure point of 20 mm span case with 8 layered core 
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Fig. 21: Failure mode at the final stage of 20 mm span case with 8 layered core 

 

Fig. 22: Correlation between failure load and geometrical depth-span ratio  

Fig. 22 shows the correlation between the geometrical ratio and failure load of the FGSMLC. 

Results from this investigation reveal that the performance of the FGSMLC is varied when 

depth-span ratio is varied from 0.12 to 0.8 or long span to short span. Failure load is relatively 

a constant when geometrical ratio is in between 0.12 and 0.3 in the long span cases. It is slightly 

decreased when geometrical ratio varies from 0.3 to 0.4 in the medium span cases. However, 

failure load is drastically increased when geometrical ratio is over 0.4 in the short span cases. 

It can be seen from Fig. 22 that the FGSMLC shows varied behaviours as geometrical ratio 

varies and anisotropic natures of sandwich panels.  
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In the long span cases or geometrical ratio less than 0.3, the failure mode is always horizontal 

sliding shear crack from the beginning to the end. A mixed failure mode with through-thickness 

shear and horizontal sliding shear cracks occurs at the initial failure stage when geometrical 

ratio is over 0.4 regarding short span cases. It is noticed that there is a transition between 

horizontal sliding shear failure and through-thickness shear failure in the medium span cases or 

geometrical ratio between 0.3 and 0.4. In all short span cases, through-thickness shear cracks 

initiate first then followed by horizontal sliding shear cracks. However, the final or major failure 

mode is dominated by multiple layered sliding shear cracks, and each layered sliding failure 

consists of through-thickness shear cracks at different points along the span direction. This 

mixed failure mode requires high strain energy to crack the panel in both span and through-

thickness directions, which leads a drastically increased failure load. 

 

It is also revealed that the loading capacity varies when the number of layer of the core varies. 

In the medium and long span cases e.g. geometrical ratio is in between 0.12 and 0.4, the number 

of layers of the core has influence in some extent, the case with 8 layered core shows a higher 

failure load than others. In average, the loading capacities of the FGSMLC with 8-layered core 

are increased by 64% and 12% compared to the cases with original homogeneous and averaged 

homogeneous cores respectively in the medium to long span cases. In the short span cases, the 

number of layers of the core shows more influence. The case with 6 layered core shows superior 

loading capacity when ratio is between 0.5 and 0.75. Failure load of the case with 6-layered 

core is increased by 78% and 48% compared to the cases with original homogeneous and 

averaged homogeneous cores respectively when geometrical ratio is 0.6. However, the case of 

24 layered core shows the maximum failure load when geometrical ratio is 0.8 and a trend of 

increasing failure load as increasing geometrical ratio. The loading capacity of the FGSMLC 

with 24-layered core is increased by 62% and 46% compared to the cases with original 

homogeneous and averaged homogeneous cores respectively when geometrical ratio is 0.8. 

5. Conclusions and the future work 

The geometrical ratio effect on the failure mechanisms of the FGSMLC was successfully 

investigated in this paper using ECDM. There are good agreements between ECDM predictions 

and previous experimental work on failure mechanisms of composite sandwich panel with 

homogeneous core and 4-layered core. Loading capacity is significantly improved with multi-

layered core. In average, loading capacities of the FGSMLC with a 8-layered core are increased 

by 64% and 12% compared to the cases with original homogeneous and averaged 
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homogeneous cores respectively in the medium to long span cases. Based on this investigation, 

the core of sandwich panels are suggested to be manufactured as multi-layered foam rather 

than homogeneous foam. Furthermore, the correlation between the failure load and geometrical 

depth-span ratio is explored. In the long span cases e.g. geometrical ratio is or less than 0.3, the 

predicted failure modes are dominated by sliding shear failure and the predicted failure loads 

are almost a constant, the number of layers of the core has effects in some extent on failure 

loads, and the case of the 8-layered core gives relatively higher failure load than others. In the 

medium span cases e.g. geometrical ratio is between 0.3 and 0.4, mixed failure modes with 

through thickness shear and sliding shear failure are founded, and the failure loads are slightly 

decreased, and the number of layers of the core has the same influence as that in the long span 

cases. In the short span cases e.g. geometrical ratio is or bigger than 0.4, failure modes are 

dominated by through thickness shear failure, and the failure loads are drastically increased, 

the influence of number of layers in the core are significant and varied in various number of 

layers in the core. 

 

These findings can be used to carry out further researches and manufacture sandwich panels 

for various engineering applications with different geometrical depth-span ratios and variable 

layered sandwich cores. In most industrial applications, the long span FGSMLC panels would 

be usual cases. Considering the influence of the number of layers in the core of the FGSMLC, 

it is recommended to manufacture the FGSMLC using 3D printing technology in the future. 

The future work will also consider to investigate the failure mechanisms of the FGSMLC under 

different types of loading conditions such as impact, thermal or fatigue load using ECDM.    
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