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Abstract: This paper presents experimental and analytical studies on impact and 

compression after impact (CAI) responses of synthetic foam sandwiches with glass 

fiber reinforced polymer (GFRP) skins and synthetic foam cores under low-velocity 

impacting. The impact test results showed that the penetration depth of GFRP panels 

with synthetic foam is much smaller than that of bare synthetic foam panels. The 

edgewise compression test results indicated the facesheet debonding dominates the 

failure mode of the sandwich panels without lattice webs, while the failure mode of 

the sandwich panels with lattice webs is predominated by the wrinkling and 

delamination of the facesheets and the crushing of foam core. The influences of 

applied impact energy, GFRP lay-up, synthetic foam density and the existence of 

webs on the impact and post impact behavior of sandwich panels are discussed herein. 

Analytical models are proposed to predict the residual ultimate edgewise compressive 

load capacity of sandwich panels with lattice webs after impacts, using energy 

principles and variational methods in applied mechanics. The influences from impact 

damage, the local buckling of the facesheets and the confined strength of the foam 

core are measured and compared well with proposed analytical models. 
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1. Introduction 

Sandwich composites with high stiffness are able to carry more loads and absorb 

more energy. This is attributed to their lightweight, high flexural and transverse shear 

stiffness, and good environmental resistance over solid sections [1-3]. However, they 

are susceptible to low-velocity impacts, which would result a sudden structural 

destruction [4]. Synthetic foam consisting of fillers with hollow cores is one of the 

promising core materials for sandwiches, providing superior compressive strength, 

high damage tolerance and excellent energy absorption [5].  This synthetic foam 

sandwiches withsynthetic hollow core have potential to be widely used in marine 

structures, transportations and civil infrastructures, however,their applications require 

fully understanding their failure mechanism under low-velocity impacting and 

reliably assessing their damage tolerance. 

Composite sandwich panels: The impact behavior of sandwich composites has 

attracted attention from many researchers. Xia and Wu [6] studied low-velocity 

impact responses of sandwich composites with different types of fiber reinforced 

polymer (FRP) skins. Their test results showed that sandwiches with Kevlar facesheet 
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have the largest average damage angle and the smallest cracking width and dent depth, 

compared to those sandwiches with glass, carbon, and carbon/Kevlar hybrid 

facesheets. Ugale et al. [7] compared the impact responses of GFRP thin sandwich 

panels (thickness of 2.5 mm) and carbon fiber reinforced polymer (CFRP) thin 

sandwich panels with polyester foam Coremat XM. The CFRP thin sandwich panel 

was penetrated under the applied impact energy of 18 J while the GFRP thin sandwich 

panel was not penetrated because of its higher elastic deflection and lower stress [7]. 

Low-velocity impact causes various forms of damages in sandwich structures and 

results in a severe reduction in compressive, shear and bending strengths, in which the 

residual compressive strength is most susceptible to the impact [8-10]. Zhu and Chai 

[11] investigated the damage modes and failure modes of CFRP-Nomex honeycomb 

core sandwich panels under low velocity impact. They found that the facesheet 

thickness and the core density affected the failure modes significantly while the latter 

had insignificant effects on ultimate load capacity. The test results of Schubel et al. [8] 

showed that the sandwich panels containing delamination in the impacted facesheets 

had edgewise compressive strength which is less than the half of the original strength. 

The reduction of residual compressive strength of sandwich panels with CFRP skins 

(60.8%) is far greater than that of panels with GFRP skins (14.3%) [12]. Castanie [13] 

proposed a core crush criterion to analyze the nonlinear impact response and predicted 

the residual strength of sandwich composite structures with impact damage. The 

experimental study of Nettles [14] showed that dividing the impact energy by the 

facesheet thickness to powers of 2.0 and 2.5 gave more comparable strength under 

compression after impact (CAI) than the power of 1.0 for composite sandwich panels 

with 8-, 16- and 24-ply facesheet laminates (nominal laminate thickness of 1.09, 2.18 

and 3.28 mm). Feng and Aymerich [15] modeled the typical damage modes of 

CFRP-PVC foam sandwich panels under low-velocity impact through finite element 

methods, in which the nonlinear behavior of the foam core was modeled by a 

crushable foam plasticity model. 

 

Metal sandwich panels: In order to improve the impact performance of sandwiches 

with aluminum honeycomb core, Sabah et al. [16] developed a novel sandwich beam 

in which a layer of rubber was inserted between the honeycomb core and facesheets, 

resulting in an impact resistance 2.7-5.7 times higher than that of conventional 

sandwich beams. Crupi et al. [17] compared the impact responses of aluminum foam 

sandwiches reinforced with and without GFRP skins. They found that the debonding 

of the aluminum face from the core dominated the failure mode of specimens 

reinforced with GFRP skins, whereas the foam core crushing dominated the failure 

mode of specimens without GFRP skins. Chen et al. [18] developed numerical models 

to predict the intra-laminar damage, inter-laminar and adhesive delamination and core 

crushing of composite sandwich structures under low-velocity. Hassan et al. [19] 

compared the impact responses of GFRP/aluminium honeycomb sandwich panels and 

self-reinforced polypropylene (SRP)/ polypropylene (PP) honeycomb sandwich 

panels. Their test results showed that with the increase of skin thickness, the specific 

perforation energy (SPE) of GFRP/aluminium sandwiches remained approximately 



constant while the SPE of SRP/PP sandwiches increased rapidly, and the SPE of 

GFRP/aluminium sandwiches was much lower than that of SRP/PP sandwiches [19].  

 

Synthetic foam sandwich panels: Although sandwiches with polymer foam exhibit 

higher SPE than metal foam sandwiches, the polymer foam sandwiches have no 

overwhelming superiority on the impact resistance compared with metal sandwiches 

under the same weight. Using synthetic foam as sandwich core can increase the 

stiffness and strength of sandwiches significantly without a large weight increase [20]. 

Lamanna et al. [21] investigated the dynamic characterization of aluminum synthetic 

foam sandwich composites with CFRP skins based on free vibration method. Kumar 

and Ahmed [22] developed a stiffening phenolic synthetic foam core by the 

incorporation of resin impregnated paper honeycomb (RIPH), resulting in a 60% 

enhancement of energy absorption. Omar et al. [23] studied the compressive property 

of aluminum synthetic foam sandwich composites at quasi-static and high strain rates. 

Their test results revealed that the CFRP skin had a reinforced effect under 

quasi-static conditions, while the compressive strength of the sandwich was similar to 

that of bare synthetic foam core in the strain range 525-845/sec. Bardella et al. [24] 

proposed a micromechanical model to capture the quasi-brittle failure of synthetic 

foams under compression. Using synthetic foam as core can fully utilize the 

mechanical properties of both synthetic foams and FRPs, and avoid debonding 

between the core and facesheets.  

 

Although some focus were given on the static and impact responses of synthetic foam 

sandwiches in several studies, the residual strength of synthetic foam sandwiches after 

impact has received scant attention. For synthetic foam sandwiches applied as load 

bearing elements or energy absorbers, it is necessary to estimate their damaged 

conditions and load carrying capacities after impact. Therefore, the present study 

focuses on characterizing the impact damage and the residual compression strength of 

sandwich panels with GFRP facesheets, and the influence of macrospheres embedded 

in epoxy matrix synthetic foam core after low-velocity impact. Influences of the 

number of GFRP skin layers, synthetic foam density including lattice webs, as well as 

the applied impact energy are discussed in this paper. Analytical models are 

developed to predict residual ultimate load capacity of synthetic foam sandwich 

panels with longitudinal and transversal webs after impact, using classical energy 

principles in mechanics of materials. 

2. Experimental program 

2.1 Materials and test specimens 

E-glass bidirectional woven fabrics with fiber orientation angle 0/90° and vinyl ester 

resin were used in facesheets with 0.6 mm thickness and lattice webs. The synthetic 

foams were cut into blocks with specific dimensions to fit test specimen sizes, and 

wrapped with GFRP fabrics. Vacuum assisted resin infusion process was used to 

manufacture GFRP- synthetic foam sandwich panels with and without lattice webs. 

The fiber longitudinal -transversal volume fraction is 1:1 in both the facesheets and 



webs. To determine the material properties of GFRP composites, tensile and 

compressive tests were conducted in accordance with ASTM D 638-10 [25] and 

ASTM D 695-15 [26]. The measured properties of the composite materials are given 

in Table 1. 

 

The macrosphere synthetic foams, supplied by Engineered Synthetic Systems, USA, 

with density of 450 kg/m3 and 480 kg/m3 were used in this study. The compressive 

properties of the synthetic foams were measured in accordance with ASTM D 

1621-10 [27]. The test results showed that the synthetic foam with density of 450 

kg/m3 has compressive strength of 22 MPa and Young’s modulus of 1 GPa, and the 

synthetic foam with density of 480 kg/m3 has compressive strength of 25 MPa and 

Young’s modulus of 2.5 GPa.  

 

A total of 40 specimens were prepared to study the influence of impact damage on the 

residual strength, including 8 bare synthetic foam panels, 16 GFRP- synthetic foam 

sandwich panels without webs, and 16 GFRP- synthetic foam sandwich panels with 

transverse and longitudinal webs. The distance between the webs is 50 mm. Fig.1 

shows the sketch of the sandwich panels with lattice webs. All the test specimens are 

of the same width of 100 mm, length of 150 mm and core height of 50 mm. The 

differences between the test specimens are the number of layers of the FRP 

facesheets, the density of synthetic foams and applied impact energy, as well as the 

existing of the GFRP facesheets and webs. Table 2 lists the details of the test 

specimens. 

 

2.2 Impact testing 

DTM1203 drop-weight impact testing machine was used to impact the specimens at 

room temperature. The maximum drop height is 2 m. The impactor has a semicircular 

nose with a diameter of 16 mm. During testing, the drop hammer with a mass of 5.5 

kg is raised automatically by an automatic control system. Four different drop heights 

were used (0, 0.8 m, 1.2 m and 2 m), in which the applied energy can be varied from 0 

to 108 J. Each specimen was impacted only once. Four corners of the test specimens 

were clamped to avoid slippage and rotation. Fig. 2 shows the test set up of 

low-velocity impact. 

The time histories of impact loads were captured with a piezoelectric sensor mounted 

onto the drop hammer. The maximum penetration depth (MPD) after impact was 

measured by a micrometer with a resolution of 0.01 mm.  

 

2.3 CAI testing 

A universal testing machine with 600 kN capacity was used for testing edgewise 

compressive strength of damaged and undamaged specimens. During testing, the 

compressive load was applied through a very stiff steel top panel with the load rate of 

1.25 mm/min, and was collected via a load cell mounted directly on the top panel. The 

displacement of crosshead was recorded by the actuator automatically. Steel fixture 

systems were applied to both ends of the sandwich columns to minimize the stress 



concentrations of the facesheets at the contact with loading panels and to ensure 

uniform load transfer. In accordance with ASTM D7137/7127M-12 [28], all the 

specimens were loaded until the maximum load was reached and load application was 

continued till the residual load reduced 70% of its maximum load value. The test 

set-up of edgewise compression was shown in Fig.3. 

3. Results and discussion 

3.1 Impact responses 

The bare synthetic foam panels exhibited a circular dent on the impact face, as shown 

in Fig.4 (a). The increase in applied impact energy from 41 J to 108 J leads to 61% ~ 

76% increments in the maximum penetration depth (MPD) for bare synthetic foam 

panels. Under the same applied impact energy, the MPD of synthetic foam panels 

with foam density of 450 kg/m3 is 20%~40% higher than the panels with foam density 

of 480 kg/m3. 

   

For GFRP- synthetic foam sandwich panels without webs under the applied impact 

energy 41 J, the damage is concentrated in the facesheets and has a diamond shape 

due to the breakage of fibers in the longitudinal and transverse directions, as shown in 

Fig.4(b). The deformation of the core in the impact zone is insignificant. However, 

when increasing applied impact energy, the shape of damaged area changes to be a 

circle because the resin is crushed by the semicircular nose of the impactor and 

delamination occurs in the FRP layers. The facesheets in the loading location is 

penetrated into the core resulting in a deeper MPD in the foam core. When the applied 

impact energy increased from 41 J to 108 J, the MPD increased by 121% to 646% for 

synthetic sandwich panels with varied number of layers of GFRP facesheets from 2 to 

6. Although the increment of applied impact energy leads to remarkable increases in 

MPD of sandwich panels, the MPD of sandwich panels is much smaller than that of 

bare synthetic foam panels. 

 

The damage mode of GFRP- synthetic foam sandwich panels with webs is similar to 

those sandwiches without webs, as shown in Fig.4(c). However, the sandwich panels 

with webs have smaller damage width and penetration depth than the counterparts 

without webs. When the applied impact energy increased from 41 J to 108 J, the MPD 

increased by 260% to 323% for synthetic sandwich panels with varied number of 

layers of GFRP facesheets from 2 to 6 and lattice webs. The MPD of sandwiches with 

webs at 41 J is almost the same as that of counterparts without webs, while the MPDs 

of sandwiches with webs at 81 J and 108 J are much less than those of counterparts 

without webs. 

 

The impact load-time history curves of test specimens exhibit similar half-sinusoidal 

profile (Fig.5). Increment of the number of layers of facesheets from 0 to 6 leads to a 

118% increment of the peak load and a 35% reduction of the duration for specimens 

at 108 J. When the applied impact energy increased from 41 to 108 J, the peak load 

and duration increased by 33% and 12%, respectively, for bare synthetic foam panels, 



increased by 20%~41% and 3%~23%, respectively, for sandwich panels without webs, 

and increased by 27%~45% and 5%~15%, respectively, for sandwich panels with 

webs. The peak load increased up to 16% for sandwich panel with webs compared 

with the counterparts without webs. Moreover, the specimens with 4 layers of 

facesheets and webs had a shorter duration than the counterparts without webs, while 

the specimens with 6 layers of facesheets and webs had a longer duration than the 

counterparts without webs. In addition, the peak impact load and duration have no 

significant difference in responses of synthetic foam panels with and without GFRP 

facesheets at different foam densities. The impact responses of all the test specimens 

are shown in Table 2. 

 

Given the same thickness of core and skins, the peak load of impact of 

GFRP-synthetic foam sandwiches is about two times of that of GFRP- 

polymethacrylimide (PMI) foam sandwiches under 40 J in Ref [9], and the 

corresponding MPD of GFRP-synthetic foam sandwiches is much smaller than that of 

GFRP- PMI foam sandwiches.  

 

3.2 Undamaged sandwich panel under compression 

Fig.6 shows the conditions of undamaged specimens after edgewise compression. For 

bare synthetic foam specimens, the transversal cracks initiated at the mid-height of the 

specimens, and then propagated to the margin. The synthetic foam sandwich 

specimens without webs failed with the debonding between the facesheets and core 

and vertical cracks in the foam core. For synthetic foam sandwich specimens with 

webs, the debonding between the facesheets and core is partially controlled by the 

webs and the facesheets wrinkled due to the local buckling. Moreover, vertical cracks 

of the foam core are restrained at the central region of the specimens by the webs. The 

edgewise compressive strength of undamaged specimens is then compared with the 

CAI strength of the damaged specimens. 

 

3.3 Damaged sandwich panel under compression 

Fig.7 shows the conditions of damaged specimens after edgewise compression. The 

cracks of damaged synthetic foam specimens are initiated from the impact dent due to 

the stress concentration in this region, and propagated in transversal and vertical 

directions, as shown in Fig.7(a). For damaged sandwich specimens without webs, 

widespread debonding between the facesheets and core occurred on both sides 

accompanied by vertical crack propagation in the foam core. The sandwich columns 

without webs are failed due to the facesheets being buckled into a half-wave and shear 

buckling of the foam core, as shown in Fig.7(b). The failure mode of damaged 

sandwich columns with webs is comprised by the debonding of facesheets, core being 

crushed between two webs, as well as delamination in GFRP layers, especially in the 

facesheets with impact damages. The debonded area of panels with webs is much 

smaller than thedebonded area of panels without webs because the debonding 

between the facesheets and the foam is controlled by the webs. Meanwhile, wrinkling 

occurred at the intersection of facesheets and webs. The indentation on the facesheets 



under edgewise compression propagated to the intersection of facesheets and the 

upper web until the stress in this intersection reached to its critical value, resulting in 

local buckling in the upper intersection. Then the indentation continued to propagate 

to the intersection of facesheets and the lower web, and caused local buckling at this 

intersection. This wrinkling process not only causes the delamination of facesheets, 

but also results in shear buckling of the foam core between two webs, as shown in 

Fig.7(c). 

 

The typical compressive load vs. displacement curves of bare synthetic foam panels 

and FRP- synthetic foam sandwich panels are shown in Fig.8. Both the intact and 

impacted bare synthetic foam panels exhibited brittle failure under edgewise 

compression. The load on synthetic foam panels increases linearly to its peak then the 

panels lost their load carrying capacities suddenly. In contrast to bare synthetic foam 

specimens, the sandwich specimen without webs underwent a short plastic phase after 

the linear-elastic phase which is associated with the crushing of the foam, then the 

load increased due to compaction of the foam core and facesheets until total 

separation of facesheets from the core. Finally, the sandwich specimens lost their load 

carrying capacities due to buckling of facesheets and the core. For sandwich 

specimens with webs, they have a much larger plastic deformation than the specimens 

without webs and their load carrying capacities decreased gradually, which indicates 

they are suitable to be applied as energy absorption members. 

 

The ultimate load of impacted bare synthetic foam panels after 108 J is reduced less 

than 8% in comparison with the intact panels. Although the damage depth of 

sandwich panels is much lower than that of bare synthetic foam panels, the ultimate 

load of impacted sandwich panels with and without webs after 108 J is reduced by 8% 

to 14% in comparison with the intact panels. This is attributed to the fact that the 

impact dent aggravates the debonding between facesheets and core, and delamination 

between GFRP layers.  

4. Prediction of residual load capacity 

4.1 Local buckling of the facesheets  

The local buckling of a facesheet strengthened by lattice webs can be analyzed based 

on the theory of elastic stability, as shown in Fig.9. 

It is assumed that the top and bottom edges (z=0 and z=a) of the facesheets have no 

deformation in the y direction. Thus, the deflected surface of a buckled facesheet 

strengthened by lattice webs can be taken in the form of a double trigonometric series, 

as given by Timoshenko and Gere [29] 

1
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where a and b are the length and width of the facesheets, respectively. 

The potential energy of bending of a facesheet is given by Timoshenko and Gere [29] 
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where D is the flexural rigidity of the facesheets and v is Poisson’s ratio 

Substituting Eq. (2) to Eq. (1), the strain energy of bending of a facesheet can be 

achieved as (Timoshenko and Gere 1961)  
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Considering the restraint effects of foam core on the facesheets, the foam is 

represented by the springs with a stiffness of k (per unit width and length) and we 

assumed that the facesheets are supported on the elastic foundation. Thus, the energy 

associated with elastic foundation is 
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For a longitudinal web at distance ci from the edge x=0, the web bending strain energy 

when buckled together with the facesheet, is  
2
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where E is the modulus of elasticity and Ii is the moment of inertia of the longitudinal 

of webs. 

For a transversal web at the distance di from the edge z=0, the strain energy of 

bending of the web, when buckling together with the facesheets, is  
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where Ii
’ is the moment of inertia of transversal webs. 

The work done during buckling by the compressive load Nz acting on a facesheet is  
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The work done during buckling by the compressive load Pi acting on a longitudinal 

web is  
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Based on the principle of energy conservation, the general equation for calculating the 

critical stress is  

2 2L T L

i i f iU U U U T T +  +  + =  +                              (9) 

where n is the number of facesheets. In this paper, n=2 and each facesheet has the 

same thickness. 



Using the notations 
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and using the notation 
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where h is the thickness of a facesheet, Eq. (10) can be resulted from Eq.(9) 
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The minimum value of σcr can be obtained by equating to zero the derivatives of Eq. 

(10) with respect to the coefficients am, as given by 

0cr

ma


=

                                                           (11) 

From Eq. (11), it can be obtained as below.  
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σcr can be determined by equating to zero the determinant of this system of equations. 

In the case of sandwiches with two facesheets, two longitudinal webs and two 

transverse webs, we have n=2, d1/a =1/3, d2/a=2/3, c1/b=1/4 and c2/b=3/4. Moreover, 

it is assumed that the facesheets buckle into one half-wave and m is taken as 1[27]. 

Then 
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4.2 Ultimate compressive load capacity of undamaged panels 

The sandwich panels under edgewise compression can be considered as consisting of 

foam core confined by lattice webs and unconfined core, as shown in Fig. 9(b). The 



compressive strength of the confined synthetic foam core can be expressed as [30] 

'

11c l
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c c

f f
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f f
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where '

cf and fc are the compressive strength of synthetic foam confined with and 

without FRP, respectively, k1 is the confinement effectiveness coefficient, which is 

taken as 0.93 for foam core[31], fl is the lateral confining pressure of FRP and ks is the 

shape factor.  

The applied compressive load on the composite columns (P) is the sum of the loads 

on the FRP facesheets (Pf), longitudinal webs (Pw), confined foams (Pcc) and 

unconfined foams (Pc). Thus, the ultimate compressive load capacity of the panels 

without local buckling is expressed as 

' '

1 0.8 0.8F f F w c c c cP f A f A f A f A= + + +                                    (15) 

where 0.8 is design facor for FRP [30], fF is the compressive strength of FRP, Af and 

Aw are the areas of FRP facesheets and longitudinal webs, respctively, and '

cA  and 

cA  are the areas of the confined foam and unconfined foam, respectively. 

The ultimate compressive load capacity of the panels with the local buckling of FRP 

facesheets is expressed as 

' '

2 0.8cr f F w c c c cP A f A f A f A= + + +                                      (16) 

where σcr is obtained from Eq.(13). 

In practical design, the ultimate compressive load capacity of the panels Pu is the 

lesser of P1 and P2  

Pu=min (P1, P2)                                                    (17) 

4.3 Residual ultimate compressive load capacity of damaged panels 

The strength and moduli retention ratios ξ1 and ξ2 are used to account for the effects 

of impact on the FRP. According to Ref. [32], the residual compression strength of 

GFRP laminates under the applied impact energies of 45 J and 68 J are about 75% and 

60% of compressive strength of the undamaged GFRP laminates, respectively. There 

is a lack of the residual compression strength of GFRP laminates under the applied 

impact energy of 108J, so the reduction of CFRP properties after impact is used 

herein. Schubel et al. [8] reported that the reduction of compressive strength of CFRP 

facesheets under the applied impact energies of 108J aree about 70% of compressive 

strength of the undamaged CFRP laminates. Thus, the value of ξ1 is taken as 0.75, 0.6 

and 0.3 for FRP subjected to impact of 45 J, 68 J and 108 J. Moreover, as mentioned 

in Ref. [33], the moduli retention ratio is in the range of 0.11 and 0.19, which is 

related to the impact damage areas. Thus, ξ2 is taken as 0.11, 0.15 and 0.19 for FRP 

subjected to impact of 45 J, 68 J and 108 J. Because the damage on the foam core is 

small, so the reduction on the mechanical properties of the foam core is negligible. 



For a sandwich panel with impact damage on a facesheet, the buckling stress can be 

obtained based on Eq. (13), as given by 
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The compressive strength of synthetic foam core confined by FRP with impact 

damage '

ccf  can be expressed as  

'
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                                                         (19) 

Substituting Eq. (19) into Eq. (15), the ultimate compressive load capacity of 

damaged panels without local buckling 
1P  is given by 

' '

1 10.8 0.8F f F w c c c cP f A f A f A f A= + + +                                   (20) 

Substituting Eq. (18) into Eq. (16), the ultimate compressive load capacity of 

damaged panels with local buckling 
2P  is given by 

' '

2 0.8cr f F w c c c cP A f A f A f A = + + +                                         (21) 

The ultimate compressive load capacity of the damaged panels 
uP  is the lesser of 

1Pand 
2P  

( )' '

1 2min ,uP P P =                                                                  (22) 

Table 3 displayed the comparisons of calculated and experimental results of damaged 

sandwich panels. The theoretical results are found to be in good agreement with 

experimental results. 

5. Conclusions and the futue work 

The impact and post impact behavior of GFRP- synthetic foam sandwich panels were 

investigated. The results obtained from this study are summarized as follows:  

(1) The bare synthetic foam panels exhibited a circular dent on the impacted face for 

the fiber architecture of the proposed foam panels. The shape of damaged area of 

sandwich panels under impacting is relative to the applied impact energy and the 

number of layers in GFRP facesheets. The GFRP- synthetic foam sandwich panels 

have a diamond shape of damaged area for specimens with 2 or 4 layers of facesheets 

after 41J-impact due to the fracture of fibers in orthogonal directions. Further 

increasing the number of GFRP layers or impact energy results in a circular damage 

on the facesheets. The MPD of sandwich panels is much smaller than that of bare 

synthetic foam panels, and the sandwich panels with webs have a smaller MPD than 



the panels without webs. 

(2) The cracks of damaged synthetic foam panels are initiated at the impact dent due 

to the stress concentration in this region, then propagated in both transversal and 

vertical directions. The damaged sandwich panels without webs are failed 

predominantly by debonding between facesheets and core. In contrast, delamination 

and local buckling of facesheets are occurred in sandwich panels with webs. 

(3) When the compressive load of synthetic foam panels is increased up to its peak 

value,, the panels lost their load carrying capacities suddenly. The sandwich panels 

without webs exhibit a four-phase displacement: linear-elastic phase, plastic phase, 

foam compaction phase and facesheets buckling phase. Moreover, the plastic 

deformation of sandwich panels with webs is much larger than that of panels without 

webs. After 108J-impact, the reduction of ultimate load of damaged bare synthetic 

foam panels is less than 8% in comparison with the undamaged panels, while, the 

ultimate load of damaged sandwich panels with and without webs after 108J-impact is 

reduced from 8% to 14%.  

(4) The proposed analytical model, considered the effects from impact damage, local 

buckling of FRP facesheets and the confined strength of synthetic foam core, is able 

to accurately predict the residual ultimate edgewise compressive load capacity of 

sandwich panels with lattice webs. 

In the future, a recently developed computational damage mechanics approach, 

extended cohesive damage model (ECDM) [34, 35] can be employed to investigate 

detailed damage evolution in such synthetic foam sandwiches thus directly predict 

their failure mechanism, loading capacity and residual stiffness in the design stage. 
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Table 1. Mechanical properties of GFRP 

Property Value 

Tensile strength (MPa) 370 

Tensile modulus (GPa)  26 

Compressive strength (MPa) 167 

Compressive modulus (GPa) 12 

Poisson ratio 0.23 

 

 

 

 

 



 

Table 2 Summary of test matrix 

Specimens m (g) Pmax (kN) T (ms) MDD (mm) MPD (mm) CAI strength (kN) 

S0d-I 338 - - - - 106.62 

S0d-II - 5.92 3.504 15.8 7.028 104.40 

S0d-III - 6.68 3.724 16.0 8.837 103.84 

S0d-Ⅳ - 7.86 3.920 16.0 11.280 102.63 

S0D-I 360 - - - - 119.04 

S0D-II - 6.02 3.384 15.1 5.432 117.87 

S0D-III - 7.64 3.368 15.6 6.315 114.07 

S0D-Ⅳ - 8.03 3.796 16.0 9.535 110.28 

S2D-I 432 - - - - 119.62 

S2D-II - 8.87 2.676 11.8 1.592 118.56 

S2D-III - 10.41 3.104 12.1 3.087 115.61 

S2D-Ⅳ - 11.26 3.288 15.5 3.512 112.04 

S4d-I 483 - - - - 117.83 

S4d-II - 10.97 2.568 11.6 0.397 116.36 

S4d-III - 12.47 2.752 11.9 2.035 112.51 

S4d-Ⅳ - 13.38 3.152 15.2 2.962 109.88 

S4D-I 506 - - - - 123.39 

S4D-II - 11.49 2.552 10.9 0.386 121.41 

S4D-III - 12.78 2.684 11.7 1.405 120.83 

S4D-Ⅳ - 13.83 2.976 13.6 1.624 117.15 

S6D-I 578 - - - - 147.79 

S6D-II - 12.43 2.54 10.1 0.263 133.46 

S6D-III - 16.38 2.592 10.3 0.968 131.26 

S6D-Ⅳ - 17.50 2.468 11.4 1.142 127.45 

S4dW2-I 528 - - - - 150.88 

S4dW2-II - 11.57 2.648 9.1 0.374 139.56 

S4dW2-III - 14.16 2.876 9.3 1.273 133.09 

S4dW2-Ⅳ - 14.74 3.056 10.1 1.366 130.13 

S4DW2-I 552 - - - - 154.89 

S4DW2-II - 12.23 2.548 8.7 0.312 143.44 

S4DW2-III - 14.42 2.776 8.8 0.897 136.25 

S4DW2-Ⅳ - 16.01 2.676 9.0 1.218 134.03 

S6dW2-I 602 - - - - 167.64 

S6dW2-II - 12.62 2.620 8.3 0.251 160.04 

S6dW2-III - 16.32 2,648 8.6 0.747 154.68 

S6dW2-Ⅳ - 16.23 2.936 8.9 1.061 151.37 

S6DW2-I 623 - - - - 174.54 

S6DW2-II - 12.71 2.520 7.8 0.227 170.29 

S6DW2-III - 17.26 2.416 8.1 0.268 164.01 

S6DW2-Ⅳ - 18.30 2.852 8.2 0.818 159.83 



Note: In the first column, the letter d and D mean the densities of synthetic foams are 

450 kg/m3 and 480kg/m3, respectively, the letter W means the specimens have 

longitudinal and transversal webs, the first and second numbers mean the number of 

FRP layers of the facesheets and webs, respectively, and I, II, III and Ⅳ mean the 

applied impact energy is 0, 43 J, 81 J and 108 J, respectively. 



 

Table 3 Comparison between theoretical and experimental results of ultimate load 

capacities of undamaged sandwich panels  

Specimens 1P  (kN) 
2P  (kN) 

uP (kN) Pt (kN) 
'

100%u t

t

P P

P

−
  

S2D-I 165.18 126.70 126.70 119.62 5.9 

S4d-I 190.86 123.80 123.80 117.83 5.1 

S4D-I 205.31 136.30 138.25 123.39 10.5 

S6D-I 245.44 163.02 169.59 147.79 10.3 

S4dW2-I 221.79 145.59 145.59 150.88 -3.5 

S4DW2-I 234.84 158.64 158.64 154.89 2.4 

S6dW2-I 261.92 173.26 173.26 167.64 3.4 

S6DW2-I 274.93 186.27 186.27 174.54 6.7 

 



 

Table 4. Comparison between theoretical and experimental results of ultimate load 

capacities of damaged sandwich panels  

Specimens 1P  (kN) 
2P  (kN) 

uP (kN) Pt (kN) 
'

100%u t

t

P P

P

−
  

S2D-II 160.16 125.68 125.68 118.56 6.0 

S2D-III 157.15 125.54 125.54 115.61 8.6 

S2D-Ⅳ 155.15 125.41 125.41 112.04 11.9 

S4d-II 180.83 115.62 115.62 116.36 -0.7 

S4d-III 174.81 114.56 114.56 112.51 1.8 

S4d-Ⅳ 170.80 113.50 113.50 109.88 3.3 

S4D-II 195.28 130.07 130.07 121.41 7.1 

S4D-III 189.26 129.01 129.01 120.83 6.8 

S4D-Ⅳ 185.25 127.95 127.95 117.15 9.2 

S6D-II 230.39 141.98 141.98 133.46 6.4 

S6D-III 221.36 138.41 138.41 131.26 5.5 

S6D-Ⅳ 215.34 134.85 134.85 127.45 5.8 

S4dW2-II 209.25 136.53 136.53 139.56 -2.1 

S4dW2-III 208.62 127.88 134.18 133.09 -3.9 

S4dW2-Ⅳ 204.61 127.03 131.33 130.13 -2.4 

S4DW2-II 222.30 149.58 149.58 143.44 4.3 

S4DW2-III 222.03 141.28 147.23 136.25 3.7 

S4DW2-Ⅳ 218.02 140.44 144.37 134.03 4.8 

S6dW2-II 244.36 154.52 154.52 160.04 -3.5 

S6dW2-III 240.73 142.12 148.43 154.08 -8.1 

S6dW2-Ⅳ 234.71 137.53 141.83 151.37 -9.1 

S6DW2-II 257.37 167.52 167.52 170.29 -1.6 

S6DW2-III 254.09 155.49 161.43 164.01 -5.2 

S6DW2-Ⅳ 248.07 150.90 154.84 159.83 -6.0 

 



 

Fig.1 Sketch of FRP-synthetic foam sandwich panels with lattice webs 



 
Fig.2 Test set- up of low-velocity impact 

 

 



 

 
Fig.3 Test set-up of edgewise compression 
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(b) GFRP-synthetic sandwich panels 
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(c) GFRP-synthetic sandwich panels with lattice webs 

Fig.4 Impact damage of typical specimens 
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(a) Specimens with different layers in 

facesheets  

(b) Specimens with different foam 

density 
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(c) Specimens under different applied 

energy 

(d) Specimens with and without webs 

Fig. 5 Impact load histories 



 

 

   
(a) S0D-I (b) S4D-I (c) S4DW2-I 

Fig.6 Edgewise compressive failure modes of undamaged specimens 



 

 

  
(a) S0D-IV 

  
(b) S4D-IV 

  

(c) S6DW2- IV 

Fig.7 Edgewise compressive failure modes of damaged specimens 
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 (a) Bare synthetic foam panels  (b) Sandwich panels 

 

(c) Sandwich panels with webs 

Fig.8 Experimental compressive load vs. displacement cures of the investigated 

specimens 
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(a) Coordinate system of facesheets (b) Geometry of sandwich panels 

with lattice webs 

Fig.9 Edgewise Compressive diagram of sandwiches with lattice webs 


