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Abstract — Air pollution has become a major issue and caused widespread environmental and
bealth problems. Aerosols or particulate matters are an important component of the atmosphere
and can transport under complex meteorological conditions. Based on the data of PMas ob-
servations, we develop a network approach to study and quantify their spreading and diffusion
patterns. We calculate cross-correlation functions of the time lag between sites within different
seasoh. The probability distribution of correlation changes with season. It is found that the
probability distributions in four seasons can be scaled into one scaling function with averages
and standard deviations of correlation. This seasonal scaling behavior indicatesjthere is the same
mechanism behind correlations of PM2.5 concentration in different seasons. Further, the weighted
degrees reveal the strongest correlations of PMz 5 concentration in winter and in the North China
Plain for the positive correlation pattern that is mainly caused by the transport of PMa5. These
directional degrees show net influences of PMs 5 along Gobi and inner Mongolia, the North China
Plain, Central China, and Yangtze River Delta. The negative correlation pattern could be related
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to the large-scale atmospheric waves.

Copyright (€ EPLA, 2018

4

poblicotion (o~

Introduction. — Aerosols or particulate matters,
which control the process from low visibility events to pre-
cipitation, are important components of the atmosphere.
They play a critical role in the global climate pattern and
public health. Chen et al. [1] have reported the impact on
life expectancy of sustained exposure to air pollution from
China’s Huai River policy. Due to anthropogenic emis-
sions, the concentration of particulate matters is growing
sharply. In the past few years, China has witnessed a rapid
growth both in industry and in cities population. As a re-
sult, air pollution, especially the pollution caused by the
high fine particulate matter (i.e., with aerodynamic diam-
eters not larger than 2.5 ym, or PM, 5) concentration, has
become a serious issue [2].

@) E-mail: chenxs@itp.ac.cn

Most previous studies on PM, 5 concentrated on obser-
vation in one site. Winter and summer PM; 5 chemical
compositions in 14 cities of China have been analysed by

Cao et al. [3]. The F&L}ligwof hourly data since 2013
provided the possibility to study the spatial distribution
and seasonal variation of PMs 5 in China [4]. Using the
data of monitoring network in the North China Plain an
e Yangize River Delta, Hu et al. [5] found a strong tem-
poral correlation between cities within 250km. For 81
cities in China, Gao et al. [6] studied air pollution of city
clusters from June 2004 to June 2007. The relation be-
tween the air quality over Beijing and its surroundings and
circulation patterns was studied by Zhang et al. [7]. The
spatiotemporal variations of PMy 5 and PM;, concentra-
tions of 31 Chinese cities from March 2013 to March 2014
were related to 303, NO3z, CO and Og [8]. At a suburban
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site between Beijing and Tianjin, the correlation of pollu-
tants with meteorological conditions was discussed {9].

The studies [5,6] have shown that PMs 5 concentrations
in different cities are not localized and related to each
other. Tt is of great interest to investigate how far the
P M, 5 concentrations in different cities of China are cor-
related. Using the hourly data of monitoring sites over
China, the spatial correlations of PAM, s concentrations
in 2015 have been studied using the principal component
analysis [10].

In the last decade, networks have emerged as an im-
portant tool in studies of complex systems and has been
applied to a wide variety of disciplines [11-13]. Re-
cently, complex network theory has been used to study
climate systems [14-21]. For a climate system, geograph-
ical locations or grid points are regarded as nodes of
network and the links between them are defined from a
eross-correlation function [18,21] or other ways ik Event
synchronization [22,23], mutual information [24,25] and
causalities [26].

In this letter, we study the global properties of PMy 5
concentrations in China from the aspect of complex net-
works. The nodes of PMs5 concem network can be
defined from the monitoring stations. Using PM; 5 con-
centration data, we can calculate the correlation between
nodes and define their links. Qur work is organized as
follows. In the next section, we describe the data and in-
troduce the methodology. The resulis are presented and
discussed in the third section. Finally, a short summary
is given.

Data and methodology. —

Daia.  The Ministry of Environmental Protection of
China has been publishing the air quality index since 2013
and has provided data for us to study atmospheric pol-
ution. We use the hourly PMs 5 concentration data of

54 monitoring sites over China from Dec.2014 to Nov.
2015 @http: //113.108.142,147:20035/encpublish

In pre-processing, we transform 754 monitoring stations

into 163 sites with the area 1° x 1°. The concentration
of a site is defined mhe average of monitoring stations
inside this site. Since the strong seasonal dependence of
PM; 5 concentration, we divide the data into four groups
corresponding to winter (Dec, Jan, Feb), spring (Mar,
Apr, May), summer {Jun, Jul, Aug) and autumn (Sep,
Oct, Nov).

Methodology. During a time period T, the PM; 5 con-
centration of site 1 is represented by a series X;(t). With
respect to its average (X;} = %Zf;l X;(t), there is a
fluctuation series §X;(t) = Xi{t) — {X;). To study the
correlation of PMs; 5 concentration between sites 7 and 3,
we calculate the cross-correlation function [18]

Gijlr) = ——Xil0) 0 X5t + 7))
Voo RV ARl

1)

where —Tge € T < Timaz 18 the time lag, Onhthe basis
of time-reversal symmetry, there is a relation Cy(—7) =
Oji('r). The cross-correlation in the interval [—Tinaz, Tmaz)
can be calculated by Cy;(r > 0) and Cy(r = 0). We
identify the largest absolute value of Cj;(7) and denote
the corresponding time lag as ;. The correlation between
sites ¢ and j is defined as Cy = C’ij('r*). If oy # 0,
the correlation between sites 4 and j is directional. The
direction of correlation is from 4 to j when 7j; > (¢ and
from j to i when 7 < 0.

For given N nodes, there are (N — 1)N/2 correlations
and they can be described by a probability distribution
function (PDF) p(C).

For the definition of a network, a threshold A of correla-
tion is introduced to exclude noise. The adjacency matrix
of the network is defined with the threshold as

_[1-dy, |Cyl> A,
i = {01 |Cis| < A, @
where Kronecker’s delta §;; = 0 for i # j and &5 =1 for
1 = 7 so that self-loops are excluded.
The importance of site 7 in the network is characterized
usually by its degree k¥ = Zj,v:l A;; [11]. More informa-
tion can be taken into account with a weighted degree

N
B = AylCyl. (3)
i=1

The direction from sites ¢ to 7 is described by a unit
vector &; = 3(64,80} with d = \/8¢? + 662, where ¢
and 49 are the longitude and latitude differences of ¢ and
7, respectively. We can further introduce a directional
degree as

N N
EE = D AylCyl e+ D AylCyl (=85) (4)

F=L75>0 F=1,15<0

to quantify the PMjy 5 concentration directional influences
of site 4.

Alternatively, we can determine network links accord-
ing to

Gy = Cyy — meim{Cij () , 5)
std(C’,- J (‘T ))

where “mean” and “std” represent the mean and standard
deviation of the cross-correlation function [19,27,28]. Gy,
characterizes actually the significance of the correlation
Cy; among Ci;(7) of different time lag .

The adjacency matrix of the network is now defined as

B.: = 1_61:_';71 ‘Gij|>@7
R 12 Gy <0

(6)

with the threshold @ of G. With Cj; replaced by Gy in
eq. {3) and eq. (4), we can obtain the weighted degree k¥
and the directional degree k¥ of G.
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Correlation and scaling behaviors of PMy 5 concentration in China
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Fig. 1: (Color online) Distribution of mean PMs 5 concentra-
tion over China from Dec.20t4 to Nov.2015 for winter (Dec-
Jan-Feb, or DJF), spring (Mar-Apr-May, or MAM), summer
(Jun-Jul-Aug, or JJA) and autumn (Sep-Oct-Nov, or SON) [4].
The tiny figure at the bottom-right corner is the Nine-Dash
Line of China.

Results. — We calculate firstly the mean PMy; 5 con-
centration (X;) = & Y1, Xi(t) of sites i = 1,2,...,163
and show them in fig. 1 for the four seasons. The overall
average

N
%=1 3 ) ™
i=1

is 75.3 ,ug/m3 in winter, 48.2 yg/m® in spring, 36.5 ,ug/ma
in summer and 46.9 ug/m3 in autumn. In winter, 45 per-
cent of sites has mean PMss concentration above
75 ,ug/m3 and the percentage of the sites above 35 pg/ m®
is 95%. The maximum mean P M3 5 concentration in win-
ter is related to the enhanced anthropogenic emissions
from fossil fuel combustion, biomass burning and unfavor-
able meteorological conditions for pollution dispersion [4].
In spring, 8 percent of sites have mean concentrations
above 75 ,ug/ma and 77 percent are above 35 ,u,g/ma. The
lowest mean PMs 5 concentration is reached in summer.
Only 4 perceni of sites have mean concentrations above
5 ug/ m® and 47 percent are above 35 pg/ m®. In autumn,
the percentage of sites above 35ug/m°® and 75 pg/m®
reaches 78% and 7%, respectively.

The cross-correlation functions Cj;{7) between IV sites
were calculated according to eq. {1) and with T = 10
days. From Cj;{r), we can obtain the correlation Cy; be-
tween sites 4 and j. The PDF p(C) of correlation is pre-
sented in fig. 2 fo_lifour seasoms. [t can be seen that p(C) is
separated into positive and negative parts {corresponding
to & > 0 and C < 0, respectively}.

The proportions of positive and negative correlations
can be calculated by

Ap

f

i
Ammw, (8)
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Fig. 2: (Celor online) Probability distribution function of corre-
lation between sites inffour seasons from Dec.?ﬂltl to Nov\2015.
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Fig. 3: (Color online) Probability distribution functions pp{C)
in (a) and pn(C) in (b). The variation of f{W) as a function
of the scaling quantity W for (¢) positive and (d) negative
correlations,

For positive correlations, we get A, = 95% in winter, 78%
in spring, 55% in summer and 84% in autumn. Corre-
spondingly, the negative correlations have the proportion
An =1, = 5%, 22%, 45% and 16% in the four seasons.

Further, we introduce the probability distribution
functions

%@=imn (10)

for C > 0 and 1
pal0) = 5-6(C) )

for €' < 0. They are presented in fig. 3(a} and (b} and de-
pend on the season. The averages (Cp), (Cn} and standard
deviations oy, ¢, of positive and negative correlations can
be calculated with p,(C) and pp{C}. Their results are
summarized in table 1 for different seasons. A, and (Cp)
have their maximum in winter and minimum in summer,
which is in accord with the overall average of mean PMsy 5
concentration.

In a system near its critical point, its physical proper-
ties follow a scaling behavior because of long-range cor-
relation [29,30]. The two-variable function of a physical
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Table 1: Proportion, average, and standard deviaticns of pos-
itive and negative correlations.

DJF  MAM JJA _ SON
X, 95%  78%  B5%  84%
(C,) 0406 0361 0356  0.397
o 0146 0136 0145  0.155
A 5% 22%  45%  16%
(C,) —0.249 —0.255 —0.277 —0.254
o, 0058 0060 0072 0.064

property can be rewritten as a function of the scaled vari-
able, which is universal. We take account of the long-
range correlation of PMy 5 concentration and search for
the scaling behavior of the probability distribution func-
tions p,(C) and p,,(C). Using the scaling variable

Wy = [C = {Cp)]/op, (12}

Wr = [C = {Cp}]/ o, (13)
we can introduce two scaling functions

Fo(Wp) = 0p - pn(C) (14)
for positive correlations and

Fa(Wp) = 0 - pu(C). (15)

for negative correlations. As shown in fig. 3(c) and {d),
the scaling distribution functions for positive and negative
correlations in the four seasons collapse together. This
indicates that there is the same mechanism behind the
correlation of PMs 5 concentration.

The different characters of positive and negative corre-
lations can be demonstrated further by their PDF of dis-
tance r and time lag 7, which are shown in fig. 4. p,(r)
of positive correlations has its peak at the PD¥F of r and
7*|are shown in fig. 4{a) and (c}. The PDF of negative

correlations are presented in fig. 4(b) for the distance and
in fig. 4(d) for the time lag. At the peaks of PDF, the
distance of negative correlations is obviously larger than
that of positive correlations. The PDT of time lag has a
maximum at 7 = 0 for positive correlations and 7 #£ 0
W for negative correlations. Negative correlations take on
the character of larger distance and longer time lag.

The average positive correlation Oy (r) at fixed distance
r is shown in fig. 4(e). The decay of C,(r) follows a power
law in some range of r. A linear fitting process is ap-
plied in log-log data. Since the head and tail data should
not satisfy the power law, we intercepted the data in the
middle to fit. The power-law slopes are —0.48 £ 0.008,
—0.52 £ 0.03, —0.59 £ 0.05 and —0.49 &+ 0.01 for DJF,
MAM, JJA and SON. It decays slowest in winter and the

The powsesr- law sloge @: 7

fitting error is mimmal " This could be related to the trans-
port of PM5 5 by atmospheric currents. This trend will be
weakened in summer [31]. The average negative correla-
tion Oy () demonstrates quite different behaviors, which
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Fig. 4: {Colour online) The PDF of the distance r is shown in
(a) for positive and in (b) for negative correlations. The PDF
of time lag 7* is shown in (¢) for positive and in (d) for negative
correlations. Averages of positive and negative correlations at
distance r are plotted in (&) and (f).
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Fig. 5: (Color online) PDF of correlations from resl data and
shuffle data in all seasons.

are shown in fig. 4(f}. At large distance, C,(r) becomes
nearly constant. We suppose that negative correlations
are the result of some external factors existing in a large
scale of distance, i.e.&:he large-scale atmospheric waves or
oscillations.

To define the network of correlation, the threshold A of
(The correlation s determined from the shuffled data ob-
tained by permuting randomly the real data in a season.
The PDF of the correlation from shuffle data is compared
with that from real data in fig. 5. We define the average
of absolute values of correlations from shuffled data as the
threshold A. We obtain A = 0.017 and the adjacency ma-
trix of the network for correlation C according to eq. (2).

The weighted degree of a site, which characterizes its

total correlation with surrounds, can be calculated using
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Fig. 6: (Color online) Distribuition of weight degree in the net-
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Fig. 7: (Color online) Distribution of weight degree in the net-
work of negative correlations.

eq. (3). The distribution of the weighted degree for pos-
itive correlations is shown in fig. 6. In comparison with
fig. 1 of mean PMsy 5 concentration, the relevance of the
weighted degree to mean PM» s concentration can be
found. TIn the regions with larger mean PMs 5 concen-
tration, the sites there have also a larger weighted degree.
There are the largest weighted degrees in winter as the
mean PMs g concentration.

For negative correlations, distributions of weighted de-
gree in different seasons are shown in fig. 7. On the con-
trary, there are the largest weighted degress in summer
and the smallest weighted degrees in winter.

The directional degree of a site, which is calculated ac-
cording to eq. {4), characterizes its net influence to the
surroundings. We present the distribution of the direc-
tional degree for positive correlations in fig. 8. In win-
ter, there are the strongest directional degrees in the most
sites. The sites of the north-west China, such as Xinjiang,
Sichuan and Guizhou, have directional degrees in the di-
rection from west to east. The directional degrees indi-
cate net influences of PMs; 5 concentration along Gobi and
Inner Mongolia plateau, the North China Plain, Central
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Fig. & (Color online) Distribution of directional degree in the
network of positive correlations.
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Fig. 9: {Color online) Distribution of directional degree in the
network of negative correlations.

China, and Yangtze River Delta. This phenomena can be
related to the east Asia winter monsoon [31,32], which has
been shown by numerous studies. In other seasons, the di-
rectional degrees are smaller and less directicnal than in
winter. In summer especially, only the sites around Pearl
River Delta have visible directional degrees in the direction
from south to north. The distribution of the directional
degree for negative correlations is shown in fig. 9. No
significant directional influence can be found for negative
correlations.

According to eq. (5), Gi; between sites 4 and j can be
calculated. The threshold © = 3.25 of G can be obtained
by averaging absolute values of the shuffled data of G. It is
found that © is larger than all absclute values of negative
Gy;. Therefore, only a network of positive Gy can be de-
fined by the adjacency matrix B of eq. (6) . The paper [27]
has discussed the characteristics of G and C in details by
using surface air temperature data. They found that the
major differences between the two networks are caused by
the autocorrelation in the records. Two correlated high-
frequency signals will correspord to a large |G|. But for
the correlated low-frequency signals could get a large |C]
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Fig. 11: (Color online} Distribution of the directional depgree
in network of positive G.

with small |G|. Thus, the negative part with small |G| is
mainly produced by low frequency signals. For the pos-
itive part, the distribution of weighted degree in this G
network is shown in fig. 10. The weighted degrees in sum-
mer and autumn are close to zero. In winter and spring,
there are large weighted degrees in the eastern part of
China, especially around Beijing. The distribution of di-
rectional degrees of the G network is shown in fig. 11. We
can also see that there are large directional degrees only in
winter and spring and in the eastern part of China, S t
weighted degrees. The direction of directional degrees is
from north to south. We think that the large weighted and
directional degrees of the {7 network are the result of the
high-frequency process ;ngi cold fronts with strong winds
elp to ventilate PMs 5 in heavily poliuted regions. Com-
paring with fig. 6 and fig. 8, some weighted and directional
degrees become small in the western part of China. This
implies that their degrees are not due to strong winds, but
are caused by some low-frequency factors such as trans-

& ‘)h‘.d,\ port by the difference in terrain height. With the C and

@

(& networks, different properties of PMjy 5 concentration
in China have been characterized.
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Summary. — We have studied the correlations of
PMs 5 concentrations in different sites of China. Using
the hourly PM;5 concentration data in 754 monitoring
sites over China from Dec.014 to Nov.‘2015, we can cal-
culate correlations between different sites igl_four geasons.
The probability distribution functions of positive and neg-
ative correlations depend on season. With averages and
standard deviations of correlation, the different probabil-
ity distribution functions of the different seasons can be
scaled into one scaling function. This indicates that there
is maybe the same mechanism related to the correlation
of PMy 5 concentration in different seasons. But positive
and negative correlations are quite different corresponding
to different atmospheric processes.

Further, PM;5 concentrations in different sites of
China are studied from the aspect of complex networks.
Networks of PMs s concent{a%r can be defined either
by correlations or by their significances. From, weighted
and directional degrees of network, different properties of
PMs s concentration can be studied. In the networks of
positive correlations, the largest weighted degrees appear
in winter and in the North China Plain as far as location is
concerned. The location distribution of the weighted de-
gree and its seasonal dependence are in accord with that
of the mean PMs 5 concentration. In the networks of neg-
ative correlations, the largest weighted degrees appear in
summer. This indicates further that the origins of posi-
tive and negative correlations are different. Positive cor-
relations are mainly caused by transmission of PMa 5. In
winter, this effect is most remarkably related to the global
serious air pellution and the direction of transmission is
affected by wind in eastern China. In summer this effect is
very weak. Instead, negative correlations dominate. Neg-
ative correlations are caused probably by large-scale oscil-
lating climate conditions, i.e. bhe large-scale atmospheric
waves. From significances of\ positive correlation G, we
can ﬁndm%requency signals only in win-
ter and spring and in the eastern part of China. The di-
rectional degrees are in the direction from north to south.
These properties of PM; 5 concentrations could be related
to cold fronts with strong windsfhelp to ventilate PMos 5
in heavily polluted regions.
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