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Key messages/ Clinical implications
- Nasal epithelial transcriptome changes in resptmseason
- Pollen allergen immunotherapy (AIT) alters expressof asthma, chemokine signaling, and
toll like receptor signaling related genes
- AIT increases microbial community diversity

- RNA-sequencing enables integrated analysis of roecend host transcriptomes

Capsule summary
Nasal epithelial transcriptome is altered by thassa. Birch pollen allergen immunotherapy recovers

microbial community diversity and alters expressibmllergy related genes.
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Tothe Editor,

Airway epithelial cells are known to have an impott role in allergic rhinitis (AR) (1-3). They
constitute the first line of defense against inladeroallergens and are active mediators of inaade
adaptive immune responses (3). Their aberrantifumog is linked with an intake of allergens (2)dan
their transcriptome is reprogrammed under exposullens (2-3) as well as in AR (3) and atopic
asthma (1). Furthermore, epithelial cells interaith and are involved in generating an environmienta
niche for the respiratory microbiota, whose imbatahas been associated with seasonal AR (4) and
childhood rhinitis and asthma (5). However, thecme functions of epithelial host cells and redpina
microbes in AR are still largely elusive, espegallring pollen allergen immunotherapy (AIT) that i
associated with symptom reduction (6), decreasdléngen-specific biomarkers, and altered T- and B-
cell responses (7).

We collected nasal brushings for RNA-sequencingnffive healthy subjects and three
birch pollen AR patients with and without AIT atdvsprings and winters and studied seasonal, AR,
and AlT-related alterations in the nasal epithediadl microbial transcriptomes (Fig 1, A, Fig E1blEa
E1l). Pollen count and AR symptom information wasoahssessed, revealing the presence of high
amounts of birch pollen at spring samplings (Fid3Land a marked improvement of quality of life in
AR subjects with AIT compared to controls (p-vat@®.005) and AR subjects without AIT (p-value <
0.03) but not between other groups (Fig 1, C).

RNA-sequencing resulted in 90 million mappable seper sample on average. Of all the
annotated human protein-coding genes, 17,347 weduocgd expressed and 360 differentially
expressed between different timepoints within geoapd between different groups within timepoints
(Fig 2, G). Identified were also 166 (Fig 2, A a@and 17 (Fig 2, D and E) protein-coding gene$wit
an altered expression between the consecutivegspaind winters, respectively. Notably, we identifie
the greatest transcriptional reprogramming betwsg@mgs in the AR-AIT group, indicating that AIT
alters epithelial expression in the presence argdins. Analyses also revealed three allergy celate

pathways that were affected between the spring lsagsp An asthma pathway was found to be altered
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in AR-noAIT subjects, whereas TLR (Toll like receptand chemokine signaling pathways were both
affected in AR-noAIT and AR-AIT subjects (Fig 2, @nd Fig E2). Pathway enrichment analysis of
winter data revealed pathways with coordinated &gion change only in healthy controls (Fig 2, F).
Analysis of expressed variants pinpointed in tughievariants expressed in two or more AR subjects
at some time point but in none of the healthy aast(Fig E3).

Further analysis of the gene expression profilehefthree allergy pathways between the
spring samplings highlighted marked similaritiegshe AR-AIT and control groups that were not seen
in the AR-noAIT group (Fig E2). These results imghat AIT may restores epithelial gene expression
towards normal and indicate that effectivity of Adduld be screened from nasal epithelium in additio
to leukocytes. Specifically, the MHCIlI componentsres up-regulated at the second spring in AR-AIT
and control but not in the AR-noAIT group (Fig E9, indicating that AIT restores the compromised
antigen-presenting capacity of epithelial cellsAiR. We also found that genes that are downstream
effectors of the chemokine signaling or patternogeition and provide proinflammatory, antiviral,
chemotactic, and T-cell stimulatory effects behaakke between the AR-AIT and control groups (Fig
E2 B, C). These findings are in line with the fimgé that changes in expression of TLR genes are
associated with allergic rhinitis and suggest a fol TLR agonists in treatment of AR (3, 7). Ndyab
expression of several asthma related genes wasl fioube in opposite between the AR-AIT and AR-
NoAIT subjects (Fig E2).

Microbial classification of sequencing data wasfqgrened to explore whether AR alters
nasal microbiota (archaeal, bacterial, and viral) ahether AIT could restore microbial imbalances
towards normal. On average, ~500 CPMs (~16,340-paad) per sample were assigned to microbial
taxa, 98.13% of which received a genus-level diassion (Fig E4, A). The classification showedttha
bacteria, archaea, and viruses were part of theeaghsal microbiota, the most common genera being
Bacillus (average abundance 42.23%)lethanocaldococcus (average abundance 35.72%), and
Alpharetrovirus (average abundance 4.32%). Similar to previoudiesu8), a large sample-to-sample
variation was observed (Fig E4, A). Particularly, samples taken at the second spring varied great!
from the rest (Fig E4, A and E4, B) and were, fostance, the drivers of the greater abundance of
viruses at the second spring compared to the éthepoints (Fig 2, H). Interestingly, examinatioh o
changes in species abundancies (Fig E4, C) pirgbirgeudomonas aeruginosa to be more abundant
in the first spring in comparison to the secondmgpin the AR-AIT group.
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We also computed alpha diversities to evaluatestfext of AR and AIT on the microbial
diversity of nasal epithelia (Fig E5-E7, A-N). Ttaealysis revealed that control subjects primdrdg
the highest alpha diversity, differing from thaesepreviously in a study on seasonal allergic tisini
(4) but similar to that focusing on children witktlama and rhinitis (5). Interestingly, majority thie
diversity indices suggested an increase of divelsttween the first and second winter in all groups
Most prominent the increase was in the AR-AIT growpile some increase was also detectable in the
control and AR-noAIT groups (Fig E6, A-N). The disiy at the second winter in the AR-AIT group
also changed more towards that of the control gthap what was the corresponding change in the
AR-noAIT group (Fig E6, A-N). These findings aredaly in line with the previous studies noting that
the bacterial diversity varies during allergy sea$4) and suggest that AIT may increase microbial
diversity and restore it towards normal.

Limitations of this study include the small sultjewumber, lack of placebo group,
differences in baseline allergic symptoms betweka groups, differences in pollen seasons,
differences in air quality, and technical differeadn sampling, which may in part have compromised
results. Yet, the study provided interesting intgimto the epithelial transcriptome during AIT and
revealed that AIT causes subtle but significargrations in asthma, TLR signaling, and chemokine
signaling related genes and may as well recoverafiglogical diversity towards normal. Seasonal
heterogeneity represented the largest source @tiar in transcriptomes, indicating a need for elov
biomarkers in AIT treatment monitoring that accondae inherent heterogeneity and seasonal

variation.
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Figurelegends

FIG 1. Study overview. A) Study flow chart showing number of subjects, phng points, and the
start of the AIT. Samples were collected at founssxutive sampling points from five healthy control
subjects and six AR subjects. Three patients wifR #tarted AIT. All subjects were without
medication for at least four weeks before samplingprings, symptomatic AR patients were without
antihistamines for at least three days prior toarg. B) Counts of birch and total pollen duririget
course of the study in grey and black, respectivElgunts of other pollens than birch were under
detection level during sampling during the spriaghplings. There were no counts of pollen in the air
during the winter samplings. C) Total visual analegscale (VAS) symptom score at the day of
sampling. Control and AR-AIT groups (p-value < @®&p@as well as AR-AIT and AR-noAIT groups (p-
value < 0.023) differed in interaction by two-wagpeated measures analysis of variance (ANOVA).
Statistically significant interaction were not obssl between control and AR-noAIT groups at the

alpha-level of 0.05.
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FIG 2. Overview of RNA-sequencing data. A and D) Protein-coding genes statistically diéfatially
expressed (Q-value 0.1 and absolute lgdold-change> 1.5) between spring (A) and winter (D). The
heatmap was drawn using jo@t+1 offset) counts per million expression valuegan centered and
scaled by gene averages. Red indicates up-regulatithe gene and blue down-regulation of the gene
relative to the average. B) and E) Venn diagranmswshthe total number of differentially expressed
genes between spring (B) and winter (E) samplingtpaat each group. C) and F) KEGG pathways
enriched among differentially expressed genes pmipgy Shades of blue and red indicate significance
of the enrichment and size of the dot represeng genint. Listed at the bottom in brackets is thal to
number of differentially expressed genes in eadngmwith an association to some KEGG pathway. G)
Number of differentially expressed genes in setbgi@irwise comparisons. Comparisons not shown
are: AR-noAIT Noy vs. AR-noAIT May (52), AR-AIT Now vs. AR-AIT May; (1), AR-AIT May, vs.
AR-noAIT May; (7), AR-AIT Now; vs. AR-noAIT Nov (0), AR-AIT May, vs. AR-noAIT May (6),
AR-AIT Nov; vs. AR-noAIT Noy (1), Control May vs. Control May (27), Control Noy vs. Control
May; (7), and Control Noyvs. Control Noy (17). H) Relative abundances of microbial (archaea
bacterial, and viral) genera and average micrdbed per group. Only genera accounting for >5% of
the total microbial load in any group are showne Time denotes the average number of microbe-

classified reads within the group.
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CPM: Count per million
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M aterials and methods

Subjects

Study subjects were recruited from Skin and AlleHyyspital of Helsinki University Hospital. The
study plan was approved by the ethical committeeHo$pital District of Helsinki and Uusimaa,
Finland (permission number19/13/003/00/11). Wriitdormed consent was received from all subjects
and their parents if the age of the participant wader 18-years. The study has been registered in
ClinicalTrials.com (nro. NCT01985542). Baselinealaf the study subjects is shown in Table E1. The
total number of participants entering the study ®agFig E1). AR-AIT group received SCIT in Nov
2011 after the second sampling visit (Fig 1, Fig, Bieaning that two samplings of the AR-AIT group

were performed before and two during AIT.

Nasal brushings and RNA extraction

Nasal epithelial brushing was performed to middikeatas of both sides of nasal cavity after slight
blowing of nose without local anesthesia as desdrifi). Epithelial cells were collected at four ¢im
points, washed once with ice cold nuclease free, RBE resuspended immediately into RNAlater
RNA stabilization reagent (Qiagen, Hilden, Germatoypreserve RNA profiles. The epithelial RNA
isolation was done next day using Qiagen RNeasyi Mih with the optional DNAse treatment

included.

Library preparation and RNA sequencing

Agilent Bioanalyzer RNAnano chip (Agilent) was usiedevaluate the integrity of RNA and Qubit
RNA —kit (Life Technologies) to quantitate RNA impithelial cell samples. If acceptable in quality
(RIN value >7), 1.0 ug of total RNA sample was dbpleted and prepared to RNA sequencing library
by using ScriptSeq v2™ Complete kit (Illumina, ln8an Diego, CA, USA). RNA sequencing libraries
were purified with SPRI beads (Agencourt AMPure >d&ckman Coulter, Brea, CA, USA). The
library QC was evaluated on High Sensitivity chipg Agilent Bioanalyzer (Agilent). Paired-end
sequencing of sequencing libraries with 100 bp resdjth was performed using lllumina HiSeq
technology (HiSeq 2000, lllumina, Inc., San Die@#, USA). Planned read amount was 40 million

reads per sample.
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RNA sequencing data processing

RNA sequencing data were preprocessed as desgibgibusly (2). Briefly, Trimmomatics (3) was
used to correct read data for low quality, lllumexdapters, and short read-length. Filtered pairet-e
reads were aligned to the human genome (GRCh38)gutie STAR (4) with the guidance of
EnsEMBL v82 gene models. Default 2-pass per-sapgrlameters were used, except that the overhang
on each side of the splice junctions was set tora@.alignments were then sorted and PCR duplicates
were marked using Picard, feature counts were ctedpusing SubRead (5), feature counts were
converted to expression estimates using TrimmednM#aMV-values (TMM) normalization (6), and
lowly expressed genomic features with counts pdliami (CPM) value<1.00 in less than half of
controls or birch-pollen patients were removed. dD#f parameters were used, with exception that

reads were allowed to be assigned to overlappingrge features in the feature counting.

Host gene expression analysis

Differential expression testing was performed uding edgeR (7) software and included testing of
differential expression between and within groupditherent sampling points. In the statisticaltieg,
comparisons between subject groups used a comii@wtor of subject group and sampling point,
while comparisons within subject groups employesb @ factor for the subject. The resultinggiues
were adjusted Storey’'s Q-value approach with sicgnifce defined as Q-valu€).10. A cut-off of
absolute log fold-change of> 1.5 and EnsEMBL v82 biotype annotations were useddditional
filters to select differentially expressed genesE(@3) with protein coding annotation for the
downstream analysis. Heatmaps of differentiallyrezped protein coding genes were produced with
pheatmap R package (8). Hierarchical clusters (&} generated using the spearman correlation and
ward.D2 as the linkage method, with the exceptibnsing ward.D2 and Euclidean distance for genes
that were differentially expressed between differeampling years at springs and using complete
linkage and spearman correlation for genes thate wbfferentially expressed between different
sampling years at winters. Counts per million (CPMata were used to generate heatmaps. Venn
diagrams were generated using the VennDiagram Ragac(9). Functional profiles of differentially
expressed genes were investigated with clustet®rofi10) using functions enrichGO and
enrichKEGG. Outputs of enrichment analyses werealiged using dotplot function in clusterProfiler.

Biologically relevant pathways found by clusterfesf were visualized using pathview R package
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(11). In the process, KEGG gene IDs of the selepettiways were fed along with lofpld-change
values from relevant comparisons. Color codes ermptthway map were used to illustrate genes that
were differentially expressed and the directionhefir expression changes. Fold-change values beyond
that range were truncated to the closest extremeyalues >2 were truncated to 2, and values < -2

truncated to -2. Downstream analyses were perfoused) R 3.3.1 with Bioconductor 3.0.

Variant analysis

Transcript variants were called from STAR alignnsensing the GATK best practices workflows for
transcriptome data (12) and then annotated usingovar (13) as defined previously (2). Quality
control analyses were performed as defined prelyo(®. Variant calls were further filtered by
accepting only those that were present in two oren&R cases, not present in any control case, and
predicted to be pathogenic by various pathogenigtted methods part of the Annovar (13) annotation
tool. Heatmap was plotted using pheatmap. The iomak effects of variants were taken from Annovar
(13) outputs. Additionally, we also plotted barplating CPM expression value of genes in healthy

control and AR groups.

Microbial community profiling

Microbial community profiling was performed as pi@wsly described (14) with some modifications.
Specifically, RNA-sequencing data were preproce$seddapter trimming, low quality bases filtering,
and removal of reads less than 36 bp in lengthdiyguTrimmomatic (3). Paired-end reads passing the
pre-processing were mapped against rRNA sequemogs RFAM (15) v12.3 using the Burrows-
Wheeler Aligner (BWA) (16) with default settingscaneads matching rRNAs were filtered by using
samtools (17). Centrifuge (18) was then used tssdla paired-end reads to microbial taxa. Alignment
data were converted to kraken-style output. In dlassification, reads were aligned against 27,127
known complete bacterial, archaeal, and viral gem@ssemblies, the human genome, and 10,615
technical artifact sequences that were availablhénRefSeq (19) database at February 2018. Default
parameters were used, with the exception that omdy {.e. the lowest common ancestor) assignment
was reported for read-pairs with multiple primasgignments. Taxa having <100 read-pairs assigned
to them in any sample were removed. Pairwise coisgas between and within groups at different
sampling points were performed by applying DeS&p 6n the number of reads covered by the clade

rooted at the given taxon level. In the analyses factors were estimated by using the poscounts
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method, comparisons between subject groups were dsing a combined factor of subject group and
sampling point, and comparisons within subject geowith a model where individuals were nested
within subject groups. Each taxonomic level was ly@el separately and variance stabilizing
transformation (VST) was used to generate expressitimates for heatmap visualizations. The
Storey’s Q-value adjustment (21) was used to cordata for multiple hypothesis testing, with
significance defined as Q-valu€).05. Finally, alpha diversity (Observed, Chaol,EAGhannon,
Simpson, InvSimpson, and Fisher), beta diversityayBCurtis dissimilarity), and rarefaction analyses
were done using the Phyloseq software (22) appliredumber of reads assigned directly to the given

taxonomic level.

Results

General

AR subjects, and especially AR-AIT cases, had higbtal median S-IgE, birch specific S-IgE, and
SPT wheel diameter to birch and symptom scoresagwgamplings (Table E1, Fig 1). AR-AIT group
reported benefit (Fig 1) and reported no severe-sitects at the end of SCIT three years aftet sfar
SCIT (data not shown).

Transcriptome of nasal epithelium

We generated in total of 5164 million raw pairedi@ranscript reads. Manual inspection of the qualit
plots generated using FASTQ indicated that seqngndata was of excellent quality. On average, 90
million reads were mapped to the reference perestibMapped reads were then used to generate CPM
expression estimates, revealing expression of B3y83tein coding genes among healthy controls and
17,347 across all the 44 samples. Altogether, esspye of 34,896 genes were found. To gain insight
into cellular processes dysregulated in AR and Alifierentially expressed genes between sample
groups were identified using edgeR (7). In thislgsig, we identified altogether 360 genes to be
differentially expressed with the Q-valge0.1 and absolute ledold change> 1.5 between different

timepoints within group and between different groumpthin timepoints.

Alterationsin gene expression profilesin thetwo following springs and winters
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Comparison of the transcriptome profiles betweea #prings revealed 119 DEGs between the
samplings in the AR-AIT group, 49 between the samggl in the AR-noAIT group, and 27 between
the samplings in healthy controls (Fig 2, B), whetlggest that greatest transcriptional reprogrammin
took place in AR-AIT group followed by AR-noAIT gup and healthy subjects. Comparison of the
two consecutive winters revealed only 17 DEGs anteeajthy controls and none among AR patients,

suggesting that AIT alters epithelial expressioly amthe presence of allergens (Fig 2, E).

Differential expression of immune response and signaling pathways

We performed KEGG pathway enrichment analysis sezalier functional themes shared by DEGs.
This analysis revealed altogether 21 KEGG pathwdifs coordinated expression change between the
spring samplings (Fig 2, C). Out of these, 4 wessoaiated with genes differentially expressed in AR
AIT group, including the chemokine signaling andlTi&e receptor (TLR) signaling pathway (Fig 2,
C). Genes differentially expressed in AR-noAIT guowere in turn associated with 8 pathways,
including IL-17 signaling and asthma pathway thatevdiscovered only in this comparison (Fig 2, C).
The healthy group genes were enriched in 11 KEGBways (Fig 2, C). Altogether we detected three
allergy related pathways, of which asthma was disiezd only in the AR-noAIT comparison and TLR
signaling and chemokine signaling pathways wereadisred in AR-noAIT and AR-AIT comparisons
(Fig 2, C). Pathway enrichment analysis of wintmparison data revealed pathways with coordinated

expression change only in healthy controls (Fig)2,

In depth analysis of allergy related pathways

Allergy-related pathways found in the pathway asislfFig E2) were analyzed more in-depth to study
these mechanisms. Firstly, the asthma pathway stedsin total 3 DEGs. The AR-AIT group and
healthy controls displayed upregulationMHCII and downregulation dfceRI at the second spring
(Fig E2, A). The expression of various other merabef the pathway was altered, although
unsignificantly, between spring samplings (Fig B2, These more borderline findings included13
that is a T-cell-specific transcription factor anterleukin (23),)L-4 that is IgE synthesis switch factor
(23), andIL-5 that is an eosinophil growth factor (23). Expressof genes of the asthma pathway
between timepoints occurred to opposite directiomSR-AIT and AR-noAIT groups (Fig E2, A). The
second pathway of interest was TLR signaling pathw@ig E2, B) consisting altogether 67

dysregulated genes, suchp8, TNF-a, IL-12, andINF-o genes. Expression of genes between springs
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happened to opposite directions in AR-AIT and ARMIogroups (Fig E2, B). The third pathway of
relevance to AR was chemokine signaling pathways pathway consisted of 49 dysregulated genes
(Fig E2, C), including various chemokines and chlem® receptors. Expression of genes between

timepoints occurred to opposite directions in ARFAINd AR-noAIT groups (Fig E2, C).

Transcript variants expressed in AR patients

The GATK best practice for RNA sequencing (12) wasployed to identify expressed variants. This
approach revealed altogether 3,268,177 (on avetégé7 per subject) variants passing GATK filters.
Removal of intronic and silent variants and polypiosms resulted in 8,174 (on average 186 per
subject) variants that were further narrowed dowm tpotential candidates expressed in at least two

AR subjects at any time point but in none of thaltig control samples (Fig E3).

Functional characterization of microbiome showed no AR related changes

The effect of AR and AIT to the active nasal midgotd was studied by identifying microbial reads
from the RNA sequencing data and performing miabbliassification. On average ~16,340 read-pairs
(500 CPMs) per sample were assigned to bacter@aaal, or viral taxa with a high sample-to-sample
variation (minimum of 791 reads (24 CPMs) and maxmof 69,428 reads (1791 CPMs)). Of these
microbial reads, on average ~98.13% were classdtegenus-level and 67.08% at the species-level.
The genus-level classifications (Fig 2, H and F#) Bhowed that overall the most abundant genera
were Bacillus, Methanocaldococcus, and Alpharetrovirus, with average relative proportions of
~42.23%, ~35.72%, and ~4.32%, respectively, otlererpn having average relative proportions of
~1.57% Acinetobacter) or less. The relative proportions of the detegedera varied greatly between
the samplesBacillus demonstrating the greatest variation (relative propns ranging from 0% to
~63.76%). The relative proportions of viruses, ipatarly Alpharetrovirus, was greater in the second
spring sampling point than in the other samplingnggofor all the groups, whereas the relative
proportion ofBacillus was reduced (Fig 2, H and Fig E4, A). This vaoiatihowever, was mainly
driven by the second spring samples of six caske, were distributed among all groups (Fig E4, A).
Examination of the community compositional diffecea between the samples revealed these six
samples to be the most dissimilar from the resticyhin turn, had rather similar community
compositions (Fig E4, B). To further investigatecrabial richness, we estimated the alpha diversity

measures for all the samples (Fig E5-E7, A-N). Mgjaf the indices demonstrated an increase in the
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diversity for AR-AIT group when the second winteasvcompared to the first (Fig E6, A-N). Some
change of diversity between second and first winteas also seen for the control group, while some
indices indicated also an increase for the AR-nogiddup. The increase seen in AR-noAIT group was,
however, less than that observed for the AR-AlTugtdlrhe second winter diversity indices of the AR-
AIT group were also mainly closer to those of tloateol group than the indices of the AR-noAIT
group (Fig E6, A-N). Finally, examination of sige#nt (Q-value<0.05) changes in species
abundancies (Fig E4, C) revealed more changed gralps between the two spring sampling points
than between the winter sampling points. The wintanparisons revealed only increased species for
the control and AR-AIT groups, whereas for the AT group only decreased species were
reported. The AR-AIT group had significantly leBseudomonas aeruginosa in the second spring
sampling point than the first. For the other grqupe comparisons revealed no significant changes i

the abundance of this bacterium.
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Table E1. Baseline characteristics of the subjects.

All subjects AR patients
Controls AR patients P-value AR-noAIT AR-AIT P-value

Baseline characteristics

No. of subjects 5 6 3 3

Age (y), median (IQR) 44 (39-48) 39 (34-46) 43 4 (32-42) 41 (39-43) 70

Men/women (n) 1/4 3/3 .54 2/1 1/2 1.00
Spirometry values (% predicted), median (IQR)

FEV1 baseline 107 (105-109) 95 (94-96) 23 5103) 97 (94-95) 30

FEV1 bronchodilation 110 (105-110) 97 (95-99) .39 97 (96-104) 97 (95-99) 1.00

FEV1/FVC ratio baseline 104 (101-104) 98 (98-103) .33 103 (101-107) 95 (92-98) .30

FEV1/FVC bronchodilation 105 (101-106) 102 (9810 .55 104 (101-108) 99.5 (97-102) 40

PEF baseline 109 (102-125) 109 (101-110) 57 (106-116) 98 (87-109) 20

PEF bronchodilation 104 (92-125) 112 (92-114) 74 112 (102-113) 100.5 (86-115) 1.00
Symptoms during sampling in springnedian (IQR)

Total RQLQ score 0 (0-6) 485 (24-74) 019 48-4D) 74 (49-87) 40

Total VAS score 15 (10-36) 744 (358-1352) .009 7 @58-471) 1352 (1128-1512) .10
Serum values in springmedian (IQR)

Total IgE (KU/L) 9 (7-14) 61.5 (39-200) 015 FB(275) 72 (62-136) 70

Birch-specific IgE (KU/L) 0 (0-0) 16.4 (3.3-24.2) .004 12 (6-16) 24 (14-28) 40

Timothy-specific IgE (KU/L) 0 (0-0) 0 (0-0) .85 (0-45) 0 (0-0) 1.00
SPT wheal diameter (mm), median (IQR)

Negative control 0 (0-0) 0 (0-0) 1.00 0 (0-0) 000) 1.00

Histamine (positive control) 5 (5-5) 5 (5-5) 1.00 5 (5-5) 5 (5-5) 1.00

Birch pollen 0 (0-0) 5 (4-6) .004 4 (3.5-6) 5 (5-5.5) 60

Timothy grass pollen 0 (0-0) 0 (0-0) 1.00 0 (B)2. 0 (0-0) 1.00

Festuca pratensis pollen 0 (0-0) 0 (0-0) 1.00 0 (0-2.5) 0 (0-0) 1.00

Mugwort pollen 0 (0-0) 0 (0-0) 1.00 0 (0-2.5) 0 (0-0) 1.00

Cladosporium herbarum 0 (0-0) 0 (0-0) 1.00 0 (0-0) 0 (0-0) 1.00

Cat dander 0 (0-0) 0 (0-5) 46 0 (0-2.5) 0 (0-3) 1.00

Dog dander 0 (0-0) 0 (0-4) 46 0 (0-2) 0 (0-2.5) 1.00

Horse dander 0 (0-0) 0 (0-0) 1.00 0 (0-0) 0 (0-0) 1.00

Dermatophagoides pteronyssinus 0 (0-0) 0 (0-0) 1.00 0 (0-0) 0 (0-0) 1.00

Diagnosis of allergic rhinitis (AR) was based otypical history, skin prick test (SPT; ALK-Abello,

Harsholm, Denmark), total serum IgE, and serumhbaed timothy allergen specific IgE antibodies.

Healthy volunteers did not have symptoms and wegative for SPT of common aeroallergens and

serum birch and timothy allergen specific IgE antiies. Exclusion criteria were: age under 12 years,

use of tobacco products, nonallergic rhinitis, rgile rhinitis symptoms caused by other than sedsona

allergens, asthma, and general disease requirgudaremedication. Asthma was excluded by absence

of typical symptoms and by normal values in spirggevith bronchodilation test? One subject

starting pollen allergen immunotherapy (AIT) wastéel for bronchial hyperresponsiveness by
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histamine challenge test. He had normal 15th péteatensity (PD15) of Forced expiratory volume in
1 second (FEV1) result instead of bronchodilatest.tQuestionnaire regarding baseline charactsisti
and symptoms was collected at each sampling Wé&t.used the 28-item Rhinoconjunctivitis Quality
of Life Questionnaire (RQLQ) (25). Subjects filletsual analogue scale (VAS) so that they were
without medication. The questionnaire included 1fgjions concerning airway symptoms and 23
questions concerning general health. Value 0 (mmdjcated no symptoms and value 100 (mm)
indicated the worst case. The total maximum scbtheo41 questions was 4,100. In the analysis, VAS
scores< 3 mm were regarded as GvBlues were computed by Kruskal-Wallis and Mann théy U-

tests (continuous variables) or by Fisher’s exestt(dichotomous variables).
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Figureslegends

FIG E1. Flowchart of the study. The total number of participants entering the gtwds 23. Initially,
seven allergic rhinitis (AR) patients were assign&ith pollen allergen immunotherapy (AIT; AR-AIT
group) and nine others to the conventional the&R~noAlIT group). The study also included seven
control subjects (control group) without allergynéparticipant in the AR-AIT group discontinued the
study before starting AIT due to a diagnosis of amd@c disease requiring surgery. The other
participants in the AR-AIT group fulfilled the wheKAIT scheme of three years with the total dose ove
2,000.000 SQ (standardized quality). AIT was peried according to standard 3-year protocol or
normal 3-year scheme (26). Subcutaneous injectbrisrch pollen extract (Betula verrucosa, ALK
Abello, Horsholm, Denmark) were administered in thaic and included an induction phase with
increasing dosing starting with a dose of 20 SQe Wraintenance phase dose was 100 000 SQ. Six
subjects discontinued the study before the lasdvieup. Moreover, five out of the 16 subjects, who
completed the study, had poor RNA quality in atsteane nasal epithelial sample, leading to their
exclusion. Thus, a total of 11 subjects (five Healtontrols, three AR-AIT, and three AR-noAIT)
completed the study. These participants were aduits of white European ancestry except one

Chinese male at AR-noAIT group.

FIG E2. Allergy related pathways identified in the pathway analysis. Gene expression profiles of
A) asthma, B) toll like receptor (TLR) signalingydaC) chemokine signaling pathways among allergic
rhinitis (AR) patients with pollen allergen immuhetapy (AIT), AR patients without AIT, and control
subjects. Boxes in the figure represent genes.gradient colors indicate the lpfpld-change of the
gene between the spring samplings in AR-AIT (ljleRR-noAIT (lI/middle) and control (lll/right)
groups. Fold-change values beyond the range (fibto 2) were truncated to the closest extrenee,
values >2 were truncated to 2, and values < -Z#tad to -2. Asterisk indicates statistically sfgpaint
difference with a Q-valug 0.10. Green gradient colors indicate up-regulatibthe gene at the second

spring and red colors indicate up-regulation affitts¢ spring.
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FIG E3. Landscape of expressed variants in allergic rhinitis. Short non-synonymous transcript
variants identified in at least two AR (allergidmnitis) but in none of the control cases. Variaate
grouped by gene. Column annotations from top tdobamt subject group, sampling season, and
sampling year. Bar-plot at the right indicate therage expression level of the gene in AR and obntr

subjects expressed as counts per million (CPM).

FIG E4. Microbial variation. A) Relative abundances of microbial (archaeal tdréad, and viral)
genera and total microbial load per sample. Onhege accounting for >5% of the total microbial load
are shown. The line denotes the total number ofahial reads per sample expressed as counts per
million (CPM). B) Principal coordinates analysi®pbf microbial community structure based on Bray-
Curtis distance. C) A heat map of differentialljualdant microbial species (Q-valge0.05) between
any season- and group -matched year comparisondiffieeent shades of blue illustrate the variance
stabilizing transformation (VST) values. Darker ¢és of blue indicate higher values. The species
were hierarchically clustered using average linkage distance metric Pearson correlation. Acronym
S1 in the sample name stands for first spring (M8y) for the second spring, W1 for the first winter
(November), and W2 for the second winter. Compassihat reached the statistical significance are

indicated by black boxes next to the heatmap.

FIG EbB. Alpha diversity of epithelial microbiotas across study groups during winter and spring.
Alpha diversity indices of different sample growmssng a variety of alpha diversity metrics. Shown i
the figure are alpha diversities computed usingn8ba (A, B), ACE (C, D), Chaol (E, F), observed
(G, H), Fisher (I, J), InvSimpson (K, L), and Sirops(M, N) metrics with (B, D, F, H, J, L, N) and
without (A, C, E, G, I, K, M) rarefaction of sampléo the minimum sampling depth. In the figure,
Nov1l stands for the first winter, Nov2 for the sedavinter, Mayl for the first spring, and May2 for
the second spring sampling point.

FIG EG6. Alpha diversity of epithelial microbiotas between groups during winter. Alpha diversity

indices of different groups during two consecutwiaters using a variety of alpha diversity metrics.
Shown in the figure are alpha diversities computsihg Shannon (A, B), ACE (C, D), Chaol (E, F),
observed (G, H), Fisher (I, J), InvSimpson (K, apd Simpson (M, N) metrics with (B, D, F, H, J, L,
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N) and without (A, C, E, G, I, K, M) rarefaction samples to the minimum sampling depth. In the

figure, Novl stands for the first winter and Now2 the second winter sampling point.

FIG E7. Alpha diversity of epithelial microbiotas between groups during spring. Alpha diversity
indices of different groups during two consecutspeings sampling using a variety of alpha diversity
metrics. Shown in the figure are alpha diversities\puted using Shannon (A, B), ACE (C, D), Chaol
(E, F), observed (G, H), Fisher (I, J), InvSimpgKnL), and Simpson (M, N) metrics with (B, D, F, H
J, L, N) and without (A, C, E, G, |, K, M) rarefam of samples to the minimum sampling depth. In
the figure, May1 stands for the first spring andy®lfor the second spring sampling point.
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