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Abstract

Structural vector autoregressive analysis aims to trace the contemporaneous linkages among

(macroeconomic) variables back to underlying orthogonal structural shocks. In homoskedas-

tic Gaussian models the identification of these linkages deserves external and typically not-

data-based information. Statistical data characteristics (e.g, heteroskedasticity or non-Gaussian

independent components) allow for unique identification. Studying distinct covariance changes

and distributional frameworks, we compare alternative data-driven identification procedures and

identification by means of sign restrictions. The application of sign restrictions results in esti-

mation biases as a reflection of censored sampling from a space of covariance decompositions.

Statistical identification schemes are robust under distinct data structures to some extent. The

detection of independent components appears most flexible unless the underlying shocks are

(close to) Gaussianity. For analyzing linkages among the US business cycle and distinct sources

of uncertainty we benefit from simulation-based evidence to point at two most suitable iden-

tification schemes. We detect a unidirectional effect of financial uncertainty on real economic

activity and mutual causality between macroeconomic uncertainty and business cycles.
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1 Introduction

In the past decades, various techniques for the identification of structural vector autoregressive

(SVAR) models have been suggested with reference to distinct assumptions on the underlying eco-

nomic principles and the data structures. Identification based on economic theory has been widely

applied in macroeconometrics. Respective a-priori assumptions have been formalized, for instance,

by means of zero restrictions on the impact effects or the long-run effects of structural shocks (Sims,

1980; Blanchard and Quah, 1989). Assuming a recursive causation scheme for simplicity (i.e., lower

triangularity of the structural matrix) might be too restrictive in many applications. In contrast,

sign restrictions (Faust, 1998) facilitate the derivation of a structural model and implied impulse

response functions (IRFs) by reducing the set of all instantaneous effect patterns which are in line

with reduced form model features to those that accord with a-priori economic reasoning. Neverthe-

less, the most reasonable structural model cannot be recovered if its sign pattern does not coincide

with the one assumed (Fry and Pagan, 2007).

Alternatively, data-driven identification procedures can be particularly appealing if no well-

founded economic restrictions on the effects of structural shocks are available a-priori. Additional

assumptions on the covariance structure or on the distribution of the structural error terms can be

seen as external information to solve the identification problem. Statistical identification schemes

can be classified into two major categories. Firstly, using heteroskedasticity for unique identification

of SVAR models has become a frequently applied approach. In this context, informative assumptions

on the covariance structure of the reduced form model residuals include the presence of an uncon-

ditional exogenous covariance shift (Rigobon, 2003; Lanne and Lütkepohl, 2008), Markov switching

mechanisms (Lanne et al., 2010), smooth transitions between the covariance states (Lütkepohl and

Netšunajev, 2017b), or patterns of conditional heteroskedasticity (Normadin and Phaneuf, 2004).

Secondly, more recent statistical identification procedures build upon non-Gaussianity of the struc-

tural shocks within frameworks of independent component analysis (ICA) (Moneta et al., 2013;

Lanne et al., 2017; Gouriéroux et al., 2017). Under a non-Gaussian distribution, independent com-

ponents can be uniquely identified (Comon, 1994).1

Although statistical identification schemes promise point identification of ‘structural’ relations,

their application is far from straightforward for at least two reasons. Firstly, it is by no means guar-

1Notions of stochastic dependence and correlation coincide under Gaussianity. Furthermore, the assumption of non-
Gaussianity might be reasonable for economic data allowing, for example, leptokurtic distributions (see e.g., Chib and
Ramamurthy, 2014; Cúrdia et al., 2014, for dynamic stochastic general equilibrium models with t-distributed shocks).
It is also worth highlighting that the concepts independence and second order heterogeneity might complement each
other in empirical data.
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anteed that uniquely identified shocks have economically meaningful properties. In this respect, the

issue of so-called ‘shock labelling’ is an important modelling step in the context of statistical iden-

tification. Herwartz and Lütkepohl (2014) and Herwartz and Plödt (2016a) show how statistical

identification approaches can be combined with external information garnered from economic the-

ory. Secondly, yet having a viable variety of alternative statistical approaches to the modelling of -

lastly - latent structural relationships at hand, the uniqueness of shocks is somehow traded against

the multitude of identification schemes. Put differently, method selection becomes an important

step of statistical identification and the application of any specific identification scheme comes with

risks of inefficient or even biased assessments of the structural model parameters. The literature

on the comparative performance of statistical identification schemes is still scant. Lütkepohl and

Netšunajev (2017a) review alternative heteroskedasticity-based models by pointing out their ad-

vantages and drawbacks, while Lütkepohl and Schlaak (2018) provide guidelines on how to choose

between these models conditional on distinct forms of underlying covariance changes. Herwartz and

Plödt (2016a) compare stylized sign restrictions and identification by means of covariance shifts. Yet,

however, little is known about how independence-based methods perform under covariance changes

compared with sign restrictions and heteroskedasticity-based identification schemes. Moreover, it

is still unclear how the latter approaches perform under non-Gaussian distributional frameworks.

The prime purpose of this paper is to compare representatives of two families of alternative sta-

tistical identification schemes (heteroskedasticity-based identification vs. independent component

analysis). Seeing that theory-based sign restrictions have become a common strategy to resolve

the imposition of ad-hoc triangular model structures, we complement the comparison of statistical

identification schemes with a stylized implementation of sign restrictions as a second direction of our

Monte Carlo analysis. Identification through heteroskedasticity builds upon unconditional covari-

ance shifts (Rigobon, 2003; Lanne and Lütkepohl, 2008) or conditional patterns of heteroskedasticity

(Normadin and Phaneuf, 2004). The considered variants of detecting independent components com-

prise parametric maximum likelihood (ML) estimation (Lanne et al., 2017) and two nonparametric

procedures that build upon dependence diagnostics (Herwartz, 2018; Matteson and Tsay, 2017).

In the first part of this study and similar to Herwartz and Plödt (2016a), we assess the relative

merits of alternative identification schemes (theory-based sign restrictions and statistical techniques)

using the log linearized counterpart of a stylized dynamic stochastic general equilibrium (DSGE)

model for data generation. Our simulation set-up highlights numerous aspects of performance

characteristics conditional on the underlying data generating process (DGP). In the second part, we
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provide a comparative analysis of alternative identification methods to examine the interdependence

between economic uncertainty and business cycle fluctuations in the US economy. While the related

literature (e.g., Bloom, 2009; Jurado et al., 2015) focuses on the role of uncertainty in recessions,

our analysis complements recent results of Ludvigson et al. (2018) who argue powerfully for a need

to differentiate major categories of uncertainty, namely macroeconomic and financial uncertainty.

Specifically, to provide a structural view at the relationship between the US business cycle and

alternative sources of uncertainty, we unravel if and in how far alternative statistical identification

designs obtain structural shocks which are (best) in line with the event and correlation constraints

of Ludvigson et al. (2018). Our results highlight distinct effects of macroeconomic and financial

uncertainty on real economic activity. Additionally, we detect strong support for the narrative

restrictions of Ludvigson et al. (2018) in the estimated independent components. Using external

information (beyond impact effects of the shocks on the variables) supports the economic labeling

of statistically identified shocks. Furthermore, the plausibility of the theory based identification in

Ludvigson et al. (2018) benefits from the results of the statistical models.

In the next section, we introduce the stylized SVAR model and describe six alternative identifi-

cation schemes. Section 3 provides the simulation setting and the corresponding results. Section 4 is

explicit on the relation between uncertainty and business cycles. Section 5 concludes. Appendix A

depicts the dependence diagnostics and Appendix B provides details on the DSGE model adopted

for the simulation study. Appendix C documents detailed simulation results and Appendix D shows

additional results on the link among uncertainty and real economic activity. Throughout, compu-

tations have been pursued by means of the R package svars (Lange et al., 2018).2

2 Identification procedures for structural VAR analysis

This section provides a brief outline of the identification problem in SVAR models and subsequently

sketches alternative identification schemes in more detail. Specifically, we consider a stylized variant

of identification by means of sign restrictions, and two (three) representatives of identification

schemes which exploit the informational content of covariance changes (independent components).

2The R package svars comprises a large variety of statistical identification schemes and diverse diagnostic tools
which are popular in the SVAR literature. It is available on CRAN at https://cran.r-project.org/package=svars.
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2.1 The structural model representation

Consider a K-dimensional vector autoregressive model of order p

yt = νt +A1yt−1 + . . .+Apyt−p + ut,

= νt +A1yt−1 + . . .+Apyt−p + Bεt,

⇔ A(L)yt = νt + Bεt, t = 1, . . . , T, (1)

with vector valued deterministic terms νt and A(L) = IK − A1L − . . . − ApL
p, where IK denotes

the K×K identity matrix. Furthermore, the model is causal by assumption, i.e., det(A(z)) 6= 0 for

all |z| ≤ 1.3 The stochastic model components are commonly characterized from two perspectives:

Firstly, zero mean reduced-form residuals ut, E(ut) = 0, are subject to cross equation correlation

with covariance matrix Σu = BB
′. Secondly, structural shocks εt = B

−1ut are uncorrelated across

equations with E(εt) = 0 and Σε = IK . While reduced form residuals can be estimated consistently

by means of least squares (LS) or ML techniques, it is more challenging to obtain the structural

shocks since the decomposition of the covariance matrix Σu = BB
′ is not unique. For instance,

alternative covariance decompositions obtain as

Σu = DD′ = DQQ′D = DQ(DQ)′, (2)

with Q denoting any rotation matrix (Q 6= IK , QQ′ = IK) and D, e.g., the lower triangular Choleski

factor of Σu. Accordingly, the representation B=DQ highlights B as a specific member from a space

of covariance factors which are all in line with the reduced form model (Σu = BB
′). In parametric

form, the matrixQ(θ) could be specified as a product of Givens rotation matrices defined through the

associated (K(K−1)/2)×1 dimensional vector of rotation angles θ = (θ1, . . . , θK(K−1)/2). Noticing

that ut = Bεt, the structural matrix B formalizes the instantaneous impacts of the structural shocks

on the variables of the system. Hence, it carries informational content for causal relationships within

a dynamic system. Therefore, a particular goal in structural analysis is to identify the matrix B

properly. The literature on SVAR models yet covers several approaches to solve this identification

problem assuming either economic or statistical properties of the structural shocks.

In the following, we briefly describe identification by means of sign restrictions which grounds

on a-priori economic assumptions. Subsequent to this prominent approach of set identification, we

3While approaches exist to identify noncausal SVARs, standard methods have been developed under the stability
condition. The consideration of noncausal SVARs model is of particular relevance if the underlying economic model
includes forward looking behavioral relations (e.g. fiscal/Ricardian foresight).
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outline some identification schemes which build upon statistical properties of the data. These ap-

proaches allow the recovery of a unique (up to column permutation and scaling) structural matrix.

Broadly speaking, the statistical properties which have been suggested as informative for identifica-

tion fall in two not necessarily disjoint categories, heteroskedasticity and non-Gaussian distributed

independent components. For a broad overview and textbook treatment of identification in SVARs

we refer the reader to Kilian and Lütkepohl (2017).

2.2 Identification based on sign restrictions (SR)

A typical element of B, bij , quantifies the direction and magnitude of the contemporaneous effect

of a (positive) structural unit shock εjt on the i-th variable in the system. For both characteristics -

direction and (relative) magnitude - economic theory might offer plausible restrictions. Throughout

the SVAR literature, several variants of identification by means of sign restrictions build upon

restricting the structural parameter matrix B to have an economically reasonable sign pattern (see,

for instance, Faust, 1998; Fry and Pagan, 2007).

In this study, we consider a stylized sign restriction approach which formalizes directional effects

throughout. After obtaining LS estimates of the reduced-form covariance matrix, Σ̂u, identification

by means of sign restrictions consists of generating a large set of Q(θ) rotation matrices as formalized

in equation (2). Drawing the rotation angles θi, i = 1, . . . ,K(K − 1)/2, uniformly from the interval

[0, π] ensures to cover the entire space of covariance decompositions (for more technical details,

see, for instance, Canova and Nicolo, 2002). A particular draw is admissible for identification if

the associated decomposition B(θ) = DQ(θ) fulfills the a-priori specified sign restrictions. The

sampling proceeds until a prespecified number of successful draws (e.g., 10000) has been obtained.

After this sampling exercise the collection of admissible matrices provides a set identification of B.

For purposes of point estimation, for instance, the median of this set of admissible matrices could

be considered as matrix estimate. Henceforth we denote this point estimate as B̂SR.

2.3 Identification through heteroskedasticity

Time-varying variances characterize many (macroeconomic) time series and, likewise, may be used

to identify underlying structural shocks (see, e.g., Sentana and Fiorentini, 2001; Rigobon, 2003, for

discussions of this theoretical result). In the following, we consider two specific variants which either

build upon the assumption of external covariance changes (Rigobon, 2003; Lanne and Lütkepohl,

2008) or on patterns of generalized autoregressive conditional heteroskedasticity (GARCH, Nor-
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madin and Phaneuf, 2004; Bouakez and Normadin, 2010).

2.3.1 Unconditional heteroskedasticity (UH)

Rigobon (2003) suggests to exploit covariance shifts at pre-specified time points for the identification

of structural shocks. The covariance structure reads accordingly as

E(utu
′
t) = Σu(m), (3)

where m = 1, . . . ,M indicates variance regimes. In the simplest framework of two covariance states

(M = 2) and a structural break occurring at time Tsb ∈ {1, . . . , T}, the covariance matrices are

E(utu
′
t) =




Σ1 for t = 1, ..., Tsb − 1

Σ2 for t = Tsb, ..., T.

(4)

Thus, the first regime is characterized by the covariance matrix Σ1 and the second regime by Σ2,

where Σ1 6= Σ2. Since the structural parameter matrix B is time invariant, the covariance matrices

can be rewritten as Σ1 = BB
′ and Σ2 = BΛB′ such that Λ is a diagonal matrix with diagonal

elements λii > 0, i = 1, 2, . . . ,K. By construction, the structural shocks have unit variance in the

first regime and variance λii in the second regime. The structural matrix can be uniquely identified

if the diagonal elements in Λ are distinct.

Conditional on the break point Tsb, the estimation of B and Λ might follow ML principles.

Under the assumption of Gaussian residuals ut and M = 2 variance regimes, the log-likelihood

function is (without constant)

l = −
Tsb − 1

2

(
log det(Σ1) + tr(Σ̂1(Σ1)

−1)
)
−

T − Tsb + 1

2

(
log det(Σ2) + tr(Σ̂2(Σ2)

−1)
)
. (5)

The numerical maximization of the log-likelihood is conditional on Tsb. For the selection of a suitable

break point the analyst might use external information. Alternatively one might fit the model

conditional on a range of break point candidates (for instance, within the interval [0.15T, 0.85T ])

and, subsequently, select the model with the highest log-likelihood as in Lütkepohl and Schlaak

(2018). In this study we use the latter approach to obtain estimates denoted B̂UH.
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2.3.2 Conditional heteroskedasticity (CH)

The identification of structural shocks through patterns of conditional heteroskedasticity has been

proposed by Normadin and Phaneuf (2004), Lanne and Saikkonen (2007) and Bouakez and Nor-

madin (2010), amongst others. For the formal exposition let Ft denote a filtration that summarizes

systemic information which is available up to time t. Then, time varying covariances allow for a

representation as

E(utu
′
t|Ft−1) = Σt|t−1 = BΛt|t−1B

′, (6)

where

Λt|t−1 = diag(σ2
1,t|t−1, ..., σ

2
K,t|t−1) (7)

is a (K × K) matrix with GARCH-type variances on the main diagonal. Assuming a low order

GARCH(1,1) specification, for instance, the individual variances exhibit a dynamic structure as

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, ..,K. (8)

Under suitable distributional and parametric restrictions, γk > 0, gk ≥ 0 and γk + gk < 1, the

marginal GARCH processes εk,t are covariance stationary (Milunovich and Yang, 2013). Sentana

and Fiorentini (2001) show that if there are at least K− 1 GARCH-type variances present in Λt|t−1

the matrix B is unique (up to the permutation of columns and signs). The Gaussian log-likelihood

function is

l = −
1

2

T∑

t=1

log det(Σt|t−1)−
1

2

T∑

t=1

u′tΣt|t−1ut. (9)

For practical implementation of identification through conditional heteroskedasticity, we follow the

approach of Lütkepohl and Milunovich (2016) and rely on two-step ML estimation as suggested in

Lanne and Saikkonen (2007). The structural estimator is denoted as B̂CH.

2.4 Independence based identification

Instead of focusing on changing covariance structures, an alternative approach is to impose a re-

striction on the distribution of the structural shocks (i.e., non-Gaussianity). A fundamental result

of Comon (1994) implies that a vector of independent components εt allows the unique recovery of

B from reduced form residuals if at most one independent component exhibits a Gaussian distribu-
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tion.4

Building on the uniqueness of independent components, Lanne et al. (2017) have suggested a fully

parametric ML approach for targeting at independent (standardized) Student-t distributed struc-

tural shocks. Weakening the distributional assumptions in comparison with ML approaches, two

further identification strategies allow an interpretation of the structural model as Hodges Lehman

estimation (HL estimation, Hodges and Lehmann, 2006).5 Principles of HL estimation motivate

the detection of least dependent structural shocks by the minimization of two alternative nonpara-

metric dependence criteria, namely the so-called distance covariance (dCov) of Székely et al. (2007)

and the Cramér-von Mises (CvM) distance of Genest and Rémillard (2004). While the former has

already been employed in the context of independent component analysis (Matteson and Tsay,

2017), the latter has been successfully employed for macroeconometric modelling in Herwartz and

Plödt (2016b) and Herwartz (2018).

2.4.1 Identification through non-Gaussian ML estimation (nGML)

Lanne et al. (2017) suggest to determine the structural matrix B by means of maximizing the

joint density of independently and not-normally distributed variables. Let fk denote the densities

of independent components εt,k, k = 1, . . . ,K. The corresponding distributional parameters are

collected in λk.
6 Furthermore, the matrix of structural parameters is column-wise normalized by

the associated standard deviation σk. The resulting matrix with unit values on the diagonal is

denoted as B̌ and β collects the vectorized off-diagonal elements of B̌.

ML estimation of B proceeds in two steps.7 In the first step, reduced form residuals ût are

extracted from the VAR model by means of LS. Conditional on ût, the log-likelihood is

l(β, σ, λ) = T−1
T∑

t=1

lt(β, σ, λ), (10)

4In the case of multiple independent Gaussian components the system lacks full identification, however, partial
identification of the non-Gaussian components is possible (Maxand, 2019).

5Conditional on a particular nuisance free test statistic, the HL estimator of a parameter of interest is the specific
parameter value obtaining the largest p-value when subjected to testing.

6Note that the component densities fk each depend on (possibly distinct) parameter values λk which can, for
instance, correspond to the family of t-distributions with λk degrees of freedom (Lanne et al., 2017).

7We apply the two-step ML estimation procedure rather than a simultaneous estimation of the reduced form VAR
and the structural parameters, since the latter is computationally demanding even for medium dimensions K and
time series of moderate length (Lanne et al., 2017).
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where time specific contributions are

lt(β, σ, λ) =
K∑

k=1

log fk(σ
−1
k ι′kB̌

−1
ût;λk)− log det(B̌)−

K∑

k=1

log σk, (11)

with ιk denoting the k-th unit vector. In the second step l, is maximized with respect to the

parameter vector (β′, σ′, λ′)′ . The vector comprises standard deviations σ = (σ1, . . . , σK)′, the

parameter vector β and the component specific distribution parameters λ = (λ1, . . . , λK)′. With

ML estimates σ̂ and β̂ the matrix B then obtains as B̂nGML = B̌ diag(σ̂). Gouriéroux et al. (2017)

propose pseudo ML estimation as a less restrictive generalization of the fully parametric ML model.

2.4.2 Nonparametric identification techniques and HL estimation

ML estimation (Lanne et al., 2017) proceeds under the assumption of a well and fully specified dis-

tributional framework, however, the exact distribution of the underlying data is mostly unknown, or

might not be fully described by any existing parametric distribution. In contrast, nonparametric de-

pendence measures offer alternative approaches for identification without specifying the distribution

of the elements in εt explicitly.

The two subsequent algorithms share an interpretation of HL estimation in the sense that they

provide matrix estimates B̂ such that the corresponding structural shocks ε̂t = B̂
−1

ût minimize a

dependence criterion. Hence, the structural shocks are least dependent according to a particular

test statistic. Similar to the identification by means of sign restrictions, the detection of shocks

with minimal dependence departs from the space of covariance decompositions formalized in (2).

Instead of random sampling sets of rotation angles, HL estimation targets at specific choice of

Q(θ) to minimize the contemporaneous dependence among implied shocks ε̂t(θ) = B(θ)−1ût. At the

implementation side we use two alternative nonparametric dependence diagnostics, i.e. the distance

covariance (Székely et al., 2007) or the Cramér-von Mises (CvM) statistic (Genest and Rémillard,

2004).8

Distance covariance (dCov) Matteson and Tsay (2017) suggest the so-called distance covari-

ance of Székely et al. (2007), denoted UT , for the implementation of ICA. In the sense of HL

8Apart from computational merits, targeting at structural shocks with weakest dependence in terms of the CvM
diagnostic holds the advantage that B is consistent against any form of dependence (Genest and Rémillard, 2004).
Additionally, the two dependence criteria applied here outperform alternative dependence measures in terms of power
against a wide range of dependence structures (Herwartz and Maxand, 2019). Matteson and Tsay (2017) show by
means of a simulation study that the ICA algorithm employed in Capasso and Moneta (2016) (FastICA) shows larger
mean errors compared with the algorithm implemented in steadyICA.
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estimation, the distance covariance UT is minimized by θ̂ = argminθ UT (ε̂t(θ)) which consequently

determines the estimated matrix B̂dCov = B(θ̂). For details on the exact minimization procedure

and the empirical definition of the dependence measure we refer to Appendix A and Matteson and

Tsay (2017). In this study, we apply the function steadyICA from the R package steadyICA (Risk

et al., 2015) to determine B̂dCov.

Cramér-von Mises statistic (CvM) As an alternative nonparametric dependence criterion

Genest and Rémillard (2004) have introduced the CvM distance between the empirical copula and

the independence copula of the components of the random sample, which we denote as CT (the

exact definition of CT is given in Appendix A). Then, the HL estimate of the optimal specification

of the rotation matrix in (2) is θ̂ = argminθ CT (ε̂t(θ)) which consequently determines the estimated

matrix B̂CvM = B(θ̂). We use the implementation of CT in the R package copula (Hofert et al.,

2015).

2.5 Summary of identification procedures

Wrapping up the descriptions of this section, Table 1 provides a summary of the distributional

assumptions on the error term εt in relation to the different identification techniques. Stylized sign

restrictions build on economic assumptions on the relationship between the variables in the system

and base on standard assumptions in terms of the error distribution, i.e., homoskedasticity and

Gaussianity. In contrast, the statistical methods require some informational content from either

changing covariance patterns or independence in non-Gaussian distributional frameworks. More-

over, obtaining the underlying shocks via likelihood based models needs an explicit parametrization

of the distribution of the error terms, whereas estimating the structural parameter through non-

parametric methods is possible under much weaker assumptions on the distribution.

3 Simulation study

The simulation study documented in this Section sheds light on the performance of the six identifi-

cation schemes described above. More specifically, we compare the estimated structural parameter

matrices B̂•, • ∈ {SR, UH, CH, nGML, dCov, CvM}, under five distributional scenarios and three

alternative characteristics of the covariance structure of the DGP. In the following, we discuss the

DGP, stochastic characteristics of the structural shocks and the criteria that we use for performance

evaluation. Subsequently, we report the simulation results.
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Model

Assumptions on
the variance of εt the distribution of εt

Homoskedasticity
Heteroskedasticity

Gaussian
Non-Gaussian

Unconditional Conditional Arbitrary t-distribution

Economic-theory based identification
SR X X

Statistical identification
Heteroskedasticity based identification
UH X X

CH X X

Independence based identification
nGML X X

dCov X X

CvM X X

Table 1: Summary of the identification techniques and the respective underlying assumptions on
the errors εt.

3.1 Data generation

3.1.1 Autoregressive dynamics

VAR processes yt are generated by means of an economically reasonable simulation framework as

described in Herwartz and Plödt (2016a). The employed DGP resembles a log-linearized version of

a stylized three-equation DSGE model comprising the output gap (xt), inflation (πt) and nominal

interest rates (rt) (Gertler et al., 1999; Carlstrom et al., 2009; Castelnuovo, 2013, 2012, 2016). First

order autoregressive innovations characterize demand, supply and monetary policy shocks. The

resulting three-dimensional SVAR reads as

yt = A1yt−1 +A2yt−2 + Bεt, t = 1, . . . , T, (12)

where yt = (xt, πt, rt)
′. Based on typical calibrations of the underlying DSGE model, the associated

autoregressive matrices A1, A2 and the structural parameter matrix B are

A1 =




1.24 −0.09 −0.16

0.13 0.94 −0.06

0.24 0.30 1.03


 , A2 =




−0.37 0.05 0.08

−0.07 −0.22 0.03

−0.12 −0.15 −0.27


 and B =




2.32 −0.48 −0.41

0.72 2.32 −0.22

0.98 1.57 0.76


 , (13)

respectively. The matrix B shows a unique pattern of instantaneous effects of the structural shocks

on the variables.9 The first shock exerts an on-impact increase of all variables. Hence, it can be

considered as a stylized demand shock. A supply shock raises the levels of prices and interest rates,

9Herwartz and Plödt (2016a) show that the response pattern implied by B is robust under a broad set of parameter
calibrations of the underlying DSGE model. For further information see Appendix B.
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but at the same time it causes a negative response of output. Moreover, a positive interest rate shock

reduces inflation and dampens economic activity. The monetary policy shock is already identified

by means of its counter directional impact on policy rates and prices. Conditional on the DGP

in (12) and (13) we analyze the performance of alternative identification procedures under distinct

(co)variance settings and various choices of the distribution of the structural shocks εt = B
−1ut.

3.1.2 Covariance settings

The reduced form covariance matrix of the DGP in equation (12) and (13) is Σu = BΛB′. While B

is time invariant, the diagonal matrix Λ allows the formalization of distinct (co)variance scenarios.

We consider three variants of Λ:

1. Homoskedasticity

Setting Λ = I3 establishes a constant (co)variance Σu = BB
′, ∀t.

2. Unconditional heteroskedasticity

An unconditional (co)variance change obtains by subjecting Λ to a fixed shift at time (Tsb =

0.5T ). Specifically, Λ is the identity matrix up to observation Tsb and Λ = diag{9, 4, 1}

afterwards. The magnitude of the variance shift is empirically plausible and in line with

comparable simulation studies (e.g., Cavaliere et al. (2010) and Herwartz and Plödt (2016a)).

3. Conditional heteroskedasticity

Conditional variances follow the GARCH(1, 1) dynamics

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, .., 3. (14)

Univariate variances enter the model as Λ = diag(σ2
1,t|t−1, ..., σ

2
3,t|t−1). The parameter choices

of the three variance equations, γ = (0.15, 0.1, 0.17) and g = (0.75, 0.7, 0.8), are based on the

simulation experiments in Lütkepohl and Milunovich (2016).

3.1.3 Distributional frameworks

To mimic a variety of practically relevant distributional features (normality, leptokurtosis, skewness)

isolated structural shocks εkt in (12) are drawn independently and identically from the following

five alternative univariate distributions:

1. Gaussian;

13



2. Standardized Student-t(df) with alternative degrees of freedom df = 4, 8;

3. Centered and standardized χ2
(3);

4. Centered and standardized inverse-Gaussian IG(1, 1).

This selection of distributions is representative for possible characteristics of the structural shocks.

After standardization the Student’s t-distribution is characterized by excess kurtosis and both the

χ2- and IG-distribution are skewed. With the vector of structural shocks εt and the matrices

A1, A2 and B in (13), we generate samples {yt}
T
t=−1000 of size T = 100, 200, 500, 1000 according

to the dynamic model in (12).10 Sample sizes of T = 100, 200 (T = 500) are representative for

macroeconomic series at quarterly (monthly) frequency. Higher frequency data are rarely considered

in macroeconomic applications, but are of interest in financial econometrics. From the generated

processes, we estimate LS residuals ût under the assumption that the true autoregressive order

(p = 2) is known. Conditional on sample information {ût}
T
t=1, we estimate the structural matrix

B by means of the alternative procedures described in Section 2 to obtain a set of estimators

B̂•, • ∈ {SR, UH, CH, nGML, dCov, CvM}. Similar to Lütkepohl and Schlaak (2018), we fit all

identification schemes to all series regardless of the underlying DGP. Hence, we mimic the simplified

case of an analyst who has no further knowledge about the properties of the data. Each Monte

Carlo experiment covers L = 500 replications.

3.2 Performance evaluation

We evaluate the performance of the alternative identification techniques in terms of two stylized

criteria. Firstly, we record the relative mean squared error (MSE) of the estimated matrices with

respect to the true structural matrix B in (13). Let l, l = 1, 2, . . . , L, L = 500 denote an indexation

of single Monte Carlo experiments. The relative MSE of B̂• is

M̂SE• =
1

L

L∑

r=1

inf
P∈P

√√√√
K∑

i=1

K∑

j=1

(
Bij − (B̂•,lP )ij

Bij

)2

, (15)

where B̂•,l is the estimated structural matrix for each replication l and identification scheme • ∈

{SR, UH, CH, nGML, dCov, CvM}. Since any identification outcome is ‘unique’ up to column

signs and column ordering, the infimum in equation (15) is taken over all matrices P ∈ P of the

10After the generation step we drop the first 1000 observations to immunize simulation results against the effects
of initial conditions.
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subset of signed column permutation matrices of B̂•,l within the set of the nonsingular K × K

matrices.11 Accordingly, the definition in (15) accounts for the non-uniqueness of the estimated

matrices with respect to signed permutations, as it evaluates the matrix P which fits best to

the true matrix of structural parameters B. Secondly, complementing the relative MSE in (15),

Table 2: Shock labeling
Shocks

Variable εx → επ → εr →
x + – –
π + + –
r + + +

we evaluate alternative identification outcomes in a more economic sense noticing that structural

shocks are typically qualified in terms of their impact effects on macroeconomic aggregates. The

data generating matrix B in (13) holds a characteristic sign pattern which is supported by economic

theory and displayed in Table 2. To assess data-based identification outcomes we examine in

every iteration if an estimated structural matrix B̂• holds this specific sign pattern or if single

shocks can be identified in terms of a unique (and correct) pattern of effect signs. Aggregating

over single iterations we report the frequency of fully or partially identified sign patterns of B̂•,

• ∈ {UH, CH, nGML, dCov, CvM}.12

3.3 Simulation results

3.3.1 Mean squared errors

Figure 1 shows estimates M̂SE•, • ∈ {SR, UH, CH, nGML, dCov, CvM}, with respect to alterna-

tive sample sizes, underlying distributions and patterns of heteroskedasticity. Detailed simulation

results are documented in the Tables A1 to A4 in Appendix C.

Studying the three alternative (co)variance scenarios separately, MSE estimates of structural

matrices identified by means of sign restrictions, M̂SESR, are invariant over sample sizes and

alternative distributional models (see also the results in Appendix C). Noticing that the applica-

tion of sign restrictions can be understood as a censored sampling from the set of possible covari-

ance decomposition matrices B= DQ(θ) (see equation (2)), an estimation bias arises by construc-

tion.13 Unlike M̂SESR, estimates obtained from statistical identification, M̂SE•, • ∈ {UH, CH,

11With b.k denoting a typical column of B, it holds that BB′ =
∑K

k=1 b.kb
′
.k.

12Since the identified matrices B̂SR hold the true sign pattern by assumption, we do not include identification by
means of (correct) sign restrictions in this direction of performance assessment.

13Reducing the set-identification to the median matrix allows to quantify the bias of B̂SR. Note that we consider
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Figure 1: Summary of M̂SE•, • ∈ {SR, UH, CH, nGML, dCov, CvM} calculated as in equation

(15) from L = 500 Monte Carlo experiments. The thick black lines represent the averaged M̂SESR.

The first (second) row displays M̂SE estimates for DGPs processing standardized Student-t(4) and
t(8) (centered and standardized χ2- and IG-) distributed structural shocks.

nGML, dCov, CvM}, vary with the sample size, the underlying distribution and the underlying

(co)variance patterns. The estimated MSEs of the independence-based identification schemes

(nGML, dCov and CvM) show a clear reduction conditional on larger sample sizes. Apparently,

these identification techniques benefit from the consistency of the nonparametric independence di-

agnostics (dCov and CvM) against unspecified forms of dependence on the one hand. On the

other hand, it is interesting to see that ML estimation benefits from consistency even if the (ho-

moskedastic Student-t) likelihood is misspecified. As such, MSE outcomes illustrate the result of

Gouriéroux et al. (2017) on the consistency of the Pseudo ML estimator under independent and

identically distributed (iid) shocks. Unlike the detection of independent components, the perfor-

a stylized implementation of the sign restriction approach such that the model is fully restricted. The bias can be
reduced by incorporating further characteristics of the data prior to estimation, for instance, in the framework of a
more agnostic model (Arias et al., 2014).

16



mance of SVAR identification by means of heteroskedasticity depends on the correct diagnosis of

the underlying form of heteroskedasticity (conditional vs. unconditional). These identification

schemes fail to recover the true structural matrix under homoskedasticity or under a misspecified

form of heteroskedasticity. However, M̂SE• estimates, • ∈ {UH, CH}, are almost unaffected by

a misspecification of the likelihood, i.e., of the distribution. Regardless of the degrees of freedom

of the underlying t-distribution, MSE estimates shrink to zero with increasing sample sizes as long

as the underlying assumptions on the covariance structure are fulfilled. In contrast to this result,

M̂SE• estimates, • ∈ {nGML, dCov, CvM}, change remarkably with distinct error distributions.

The closer the distribution is to the Gaussian (e.g. comparing Student-t(df) for df = 8 vs. df = 4)

the larger is the estimated MSE. Moreover, the ML estimator B̂nGML suffers from weak preci-

sion particularly in the presence of variance shifts (see also Lanne et al., 2017). Under changing

(co)variances M̂SE•, • ∈ {dCov, CvM}, increase on average, while their precision improves under

conditional heteroskedasticity if structural shocks are Gaussian or close to Gaussian.

It is worth noticing that performance statistics assigned to B̂dCov are more favorable than those of

B̂CH under conditional heteroskedasticity in small samples and skewed distributions. The estimator

B̂UH shows the smallest M̂SE under unconditional covariance shifts and the B̂nGML estimator

outperforms rival approaches under homoskedastic Student-t(4) distributed shocks and in samples

larger than T = 200. Furthermore, set identification by means of sign restrictions obtains smallest

M̂SE statistics under homoskedastic Gaussian innovations and in small samples.

3.3.2 Frequencies of correct sign patterns

Figure 2 documents the frequency of the matrices B̂•, • ∈ {UH, CH, nGML, dCov, CvM}, which are

fully in line with the theoretical sign pattern documented in Table 2. Conditional on homoskedastic

structural shocks, these frequencies provide conclusions on the relative performance of data based

identification schemes which are largely similar to those obtained from MSE estimates. Conditional

on heteroskedastic shocks, however, the two criteria (MSE vs. sign pattern frequencies) do not

necessarily agree in the assessment of an identification scheme under scrutiny. For instance, even

though the estimator B̂UH obtains the lowest M̂SE under unconditional covariance shifts, it falls

behind the estimators B̂•, • ∈ {nGML, dCov,CvM} in recovering the true sign pattern. The inferior

performance of the independence-based identification schemes in terms of MSE estimates reflects

the fact that they do not account for the change in the covariance matrix of the structural shocks

(BΛB′) that applies in the second half of the sample. Rather, targeting at independent components
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Figure 2: Frequency of matrices B̂•, • ∈ {UH, CH, nGML, dCov, CvM} holding the corresponding
sign pattern as in Table 2 based on L = 500 Monte Carlo experiments. For further notes see
Figure 1.

results in a covariance decomposition B̂•B̂
′

•, • ∈ {nGML, dCov,CvM} to hold for the entire sample.

While this effect implies an estimation bias, the signs of the elements of the structural matrix could

remain unaffected.

Under conditional heteroskedasticity the B̂CH estimator detects the true sign pattern most re-

liably and outperforms the identification of independent components irrespective of the underlying

distribution. In addition, the detection of the correct sign pattern by means of B̂•, • ∈ {dCov,CvM},

is subject to the underlying distribution. Interestingly, in comparison with scenarios of homoskedas-

ticity, both forms of heteroskedasticity might enable a more frequent detection of the true sign

pattern by means of targeting at independent components. At least in large samples, independence

based identification benefits from covariance changes, which apparently shift the distribution of the

shocks away from normality.
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3.3.3 Summary of the simulation results

The MSEs and sign patterns of the structural estimates B̂• highlight performance differentials among

the identification schemes • ∈ {SR, UH, CH, nGML, dCov, CvM}. Unlike the application of sign

restrictions, the average performance of statistical identification schemes improves with increasing

sample sizes. However, at least for the evaluation of scarce sample information, small frequencies

of correctly identified effect directions (see Figure 2) indicate a notable risk of mislabelling shocks

according to a specific statistically identified sign pattern.

Our results allow a general conclusion: If the distribution family for the non-Gaussian ML

method is specified correctly (i.e., as standardized Student-t distribution) this estimator performs

best (in large samples and under homoskedasticity). In other settings, nonparametric identification

schemes show a superior performance. Identification based on unconditional heteroskedasticity is

the preferred approach under covariance shifts and the identification by means of GARCH dynamics

performs best under conditional heteroskedasticity (in larger samples). In terms of MSE and the

frequency of correct sign patterns, identification based on the distance covariance outperforms the

HL-estimator that builds upon the Cramér-von Mises statistic. Across all simulation scenarios

(including normally distributed shocks) and sample sizes, the HL-estimator conditioning on the

distance covariance obtains, on average, the smallest MSE estimates and highest frequencies of

correctly detected sign patterns. As long as the shocks are non-Gaussian, it is worth considering

the use of this identification technique.

4 Economic uncertainties and the business cycle

Similar to the analysis in Ludvigson et al. (2018), we consider a trivariate system to shed light on

the ongoing debate if economic uncertainties are a cause or an effect of changes in real economic

activity.14 More precisely, we highlight the performance of the previously discussed statistical

identification techniques to disentangle the causality between different types of uncertainty and

fluctuations of the business cycle in the U.S. economy. As argued by Ludvigson et al. (2018), the

relevant literature on the matter lacks a consensus on the signs of the economic relationships in such

systems, thus, we refrain from using stylized sign restrictions for identification. Arguing against

restrictive recursive model specifications, Ludvigson et al. (2018) suggest a combination of event

and correlation constraints imposed on the structural shocks for model identification. As they are

14For further studies on this topic and insights from recursive identification schemes see, e.g., Bloom (2009), Bach-
mann et al. (2013) and Bekaert et al. (2013).
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directly placed on the structural shocks, event constraints take the form of narrative restrictions

in the spirit of Antoĺın-Dı́az and Rubio-Ramı́rez (2018) on the one hand. Correlation constraints

apply to the relation between structural shocks and first order autoregressive residuals from a market

portfolio. Hence, on the other hand, using stock market information for instrumentation connects

the approach of Ludvigson et al. (2018) to so-called proxy SVARs (Stock andWatson, 2012).15 In the

following, we evaluate if (i) the event and correlation constraints are generally in line with outcomes

from statistical identification, and (ii) if a particular statistical identification approach provides

a unique reflection of the external information and economic narratives suggested by Ludvigson

et al. (2018). Thereby, our analysis is informative in how far external instruments or economic

narratives are in line with heteroskedastic structural shocks and/or the independent component view

at identification. In this case, the external or narrative information is obviously most helpful for the

economic labelling of the statistically identified shocks. Similarly, the statistical information benefits

the interpretation of the economic identification. On the one hand, the detection of heteroskedastic

shocks is important for a realistic (i.e., likely state dependent) interpretation of the scale of ‘unit’

shocks and their effects which are of main interest in impulse response analysis. On the other

hand, the detection of independent shocks is crucial for the stylized assumption that within impulse

response analysis unit impulses hit a variable under scrutiny in isolation.

After a brief introduction of the data, we discuss statistical identification outcomes and evaluate

the model implied structural shocks in terms of event and correlation constraints. We compare

impulse responses to statistically identified shocks and their accordance with economic concepts

in quantitative terms. Furthermore, we discuss potential limitations of recursive identification

schemes and turn to an unrestricted analysis of the relationship between financial uncertainty,

macroeconomic uncertainty and real economic activity.

4.1 Data

The three-dimensional VAR (K = 3) consists of the variables

• U
(M)
t – one-month ahead macroeconomic uncertainty index (y1t),

• qt – linearly detrended log of U.S. real industrial production (y2t),

• U
(F )
t – one-month ahead financial uncertainty index (y3t).

15Lütkepohl and Milunovich (2016) exploit conditional heteroskedasticity for model identification. Testing multiple
restrictions on the structural parameters within an augmented model (K = 4), they cannot reject the null hypothesis
of valid instrumentation.
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The uncertainty indices have been constructed from a large set of macroeconomic and financial

time series (see Ludvigson et al., 2018, for a detailed description). Extending the data set of

Ludvigson et al. (2018) and Lütkepohl and Milunovich (2016) we consider monthly data from July

1960 to June 2018 which results in 696 observations.16 The industrial production index has been

downloaded from the Federal Reserve Bank of St. Louis database (FRED), and the uncertainty

measures have been drawn from Sydney C. Ludvigson’s website.17 We set the lag order p in the

estimated system to p = 5, as indicated by the Akaike information criterion (AIC). To evaluate

the correlation constraints, we use first order autoregressive residuals (ŵt) extracted from monthly

S&P500 returns. Ludvigson et al. (2018) use first order autoregressive residuals of value-weighted

CRSP (Center for Research in Securities Prices) stock market returns as instrumental series. In

sum, marginally different variable and instrument definitions, distinct lag orders for VAR estimation

and a slightly extended sample period complicate a one-to-one comparison with benchmark results

of Ludvigson et al. (2018).

As it is evident from the simulation study, non-normality is a crucial assumption for the unique-

ness of identification outcomes achieved by targeting at independent components. To check for

Gaussianity, we perform component-wise kurtosis and skewness tests as implemented in the R

package normtest (Gavrilov and Pusev, 2014). Additionally, we test the number independent

Gaussian components by means of fourth-order blind identification implemented in the R package

ICtest (Nordhausen et al., 2018).18 The results displayed in Table A5 indicate at least one skewed

component and excess leptokurtosis in all three components. Moreover, we find no indication of

Gaussianity. The extraction of independent components by means of minimizing nonparametric

independence diagnostics bears the interpretation of HL-estimation. In the present case the max-

imization of the p-values of the CvM distance and of the distance covariance are 0.987 and 0.975,

respectively. While we are aware that the supremum approach invalidates the standard interpre-

tation of p-values, we assume that supremum p-values close to unity indicate the independence of

shocks extracted by means of HL estimation. As argued by Lütkepohl and Milunovich (2016) the

data are heteroskedastic and the model can be fully identified under the assumption of a GARCH

structure.

16The sample sizes analyzed in Ludvigson et al. (2018) and Lütkepohl and Milunovich (2016) are 658 and 666,
respectively.

17https://www.sydneyludvigson.com/
18Maxand (2019) finds satisfying power and size properties of univariate normality tests and tests based on fourth-

order blind identification to evaluate non-Gaussianity of structural shocks.
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4.2 Economic narratives and instrumental information

4.2.1 Event and correlation constraints

Noticing that any identification outcome for the structural matrix B could be subjected to column

reorganisation we assume in the following that the shocks in εt correspond to the variable ordering

in yt = (U
(M)
t , qt, U

(F )
t ). In terms of shock labelling, for instance, we call εU(M) , εq and εU(F )

the macroeconomic uncertainty shock, economic activity shock and financial uncertainty shock,

respectively. Ludvigson et al. (2018) argue that the structural shocks related to the estimates B̂

should align with the following three event constraints.

E1. Financial uncertainty is subject to a large positive shock (εU(F ) ≥ 4) in October 1987 (Black

Monday).

E2. The financial uncertainty shocks show large positive value(s) (εU(F ) ≥ 4) for at least one

month during the financial crisis (2007M12-2009M6).

E3. There are no large positive shocks to economic activity (εq ≤ 2) during the financial crisis

(2007M12-2009M6).

Moreover, theoretical arguments (e.g., Sharpe, 1964; Lintner, 1965) suggest that uncertainty shocks

have an impact on stock market returns which is channeled through their influence on risk premia.

Using this implication for model identification, Ludvigson et al. (2018) impose the following three

inequality restrictions on the correlation between the structural shocks and first order autoregressive

residuals (ŵt) extracted from a broad market portfolio (in their case the CRSP stock index).19

C1. Macroeconomic uncertainty shocks and financial uncertainty shocks are negatively correlated

with ŵt such that −0.05− corr(ŵt, εU(M)) ≥ 0 and −0.05− corr(ŵt, εU(F )) ≥ 0.

C2. Shocks to financial uncertainty are markedly stronger correlated with ŵt than macroeconomic

uncertainty shocks, i.e., |corr(ŵt, εU(F ))| − 2× |corr(ŵt, εU(M))| ≥ 0.

C3. The aggregated correlation between both uncertainty shocks and ŵt exceeds 0.18, i.e.,
√

corr(ŵt, εU(M))2 + corr(ŵt, εU(F ))2 − 0.18 ≥ 0.

We evaluate if the shocks implied by the estimated structural matrices B̂•, • ∈ {UH, CH, nGML,

dCov, CvM} are in line with the event and correlation constraints. For this exercise it is worth

19For a detailed discussion on the choice of the external variable and the derivation of the correlation constraints
see Ludvigson et al. (2018).

22



noticing that owing to presumed (co)variance changes the shocks B̂
−1

• ût, • ∈ {UH, CH}, are het-

eroskedastic and their unconditional empirical covariance differs from the identity matrix by con-

struction. To enable a comparison of model based structural shocks which is not subject to distinct

unconditional scaling, the event constraints are not only compared with heteroskedastic shocks

ε̂•,t = B̂
−1

• ût, • ∈ {UH, CH}, but also with their standardized counterparts, ε̃•,t = Λ̂
−1/2
•,t ε̂•,t, where

Λ̂•,t is the diagonal matrix comprising model specific variance estimates (i.e., • ∈ {U,C}). Structural

shocks with unit (unconditional) variance are displayed in Figure 3.

4.2.2 Qualitative evaluation of statistically identified shocks

With respect to the event constraints, we note that within the vectors of structural shocks ε̂•, • ∈

{nGML, dCov, CvM} and the standardized shocks ε̃UH only the third series (εU(F ) in Figure 3

shows a large positive value (≥ 4) in October 1987 (Black Monday). Accordingly, the statistical

identification confirms its labelling as the financial uncertainty shock. After standardization, the

shocks retrieved from assuming conditional heteroskedasticity lack a large positive outcome on

Black Monday. For the labelled financial uncertainty shocks, we find, moreover, several months

during the financial crisis at which the shocks are beyond a rule-of-thumb threshold of two standard

deviations. However, none of the shocks exceeds a value of four during this period, which would

be necessary in order to fulfill the second event constraint E2 exactly. The third event constraint

is clearly violated by the productivity shocks in ε̃UH, while the productivity shocks from the other

identification schemes hit the two standard deviation threshold only for some months in 2018. In

summary, the shocks resulting from most statistical identification schemes are not exactly in line

with all event restrictions, however, it is interesting to see that the statistical criteria mostly support

the economic narratives in qualitative terms.

The left hand side of Table 3 displays correlation estimates between identified shocks and instru-

mental information (ŵt). Both uncertainty shocks are negatively correlated with the stock market

residuals, and financial uncertainty shocks exhibit a stronger correlation with the instrument than

macroeconomic uncertainty shocks. Overall, the correlation constraints are fully supported by the

structural shocks obtained from the independence-based models and are partially supported by

the (standardized) heteroskedastic shocks. Seeing that the event and correlation constraints are

qualitatively in line with results from alternative statistical identification schemes, an immediate

interest arises in unravelling which identified shocks allow a most precise approximation of the eco-

nomically motivated constraints of Ludvigson et al. (2018). Next, we turn to a precise quantitative
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Figure 3: Magnitudes of the standardized structural shocks on black Monday and during the finan-
cial crisis (shaded area in the right hand side panel). The dashed lines correspond to ±2 standard
deviations from the mean for all series and the shaded areas correspond to the period of the financial
crisis 2007M12-2009M6. The three rows show the financial uncertainty shocks (εU(F )), productivity
shocks (εq) and macroeconomic uncertainty shocks (εU(M)), respectively.

characterization of shocks obtained from alternative statistical identification schemes.

4.2.3 Quantitative performance differentials of statistical identification schemes

For a comparative assessment of the alternative statistical identification techniques, we next eval-

uate which particular estimates B̂•, • ∈ {UH, CH, nGML, dCov, CvM}, obtain the most extreme

shocks in the spirit of the three event constraints, and/or align most favorably with the correlation

restrictions. Pursuing along these lines could support the selection of a ‘most suitable’ identifica-

tion scheme, from the middle ground spanned by narrative and instrumental information. Figure 4

displays the (average) magnitudes of the shocks at time instances in question.
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Table 3: Correlation between stock market returns AR(1) residuals (ŵt) and structural shocks.
The correlation constraints are reported in the last three columns (positive values indicate that
the correlation constraints are fulfilled). Largest positive values for the inequalities are marked in

boldface and results for standardized shocks (ε̃) are indicated as ŨH and C̃H.

Model corr(ŵt, ε̂U(M)) corr(ŵt, ε̂q) corr(ŵt, ε̂U(F )) C1 C2 C3

UH -0.064 0.123 -0.133 0.014 0.083 0.202 -0.033

ŨH -0.037 0.136 -0.172 -0.013 0.122 0.307 -0.004
CH -0.074 0.024 -0.175 0.024 0.125 0.276 0.010

C̃H -0.087 0.025 -0.096 0.037 0.046 0.105 -0.051

nGML -0.070 0.039 -0.173 0.020 0.123 0.276 0.006
dCov -0.082 0.017 -0.173 0.032 0.123 0.264 0.011
CvM -0.077 0.002 -0.172 0.027 0.122 0.267 0.008

Firstly, looking for most extreme values for all event constrains, Figure 4 does not hint at one

‘ideal’ method. The structural shocks ε̂•, • ∈ {dCov, CvM, } and ε̃CH each optimize one of the

constraints. While the shocks ε̂dCov comprise the most extreme values for two out of three event

constraints among the independence-based approaches, we find the same relative performance out-

come for the standardized shocks ε̃CH among the heteroskedasticity-based models. Secondly, while

financial uncertainty shocks recovered from B̂CH attains a large positive value on black Monday,

their standardized counterparts are relatively small at this event. Hence, for the practical work with

shocks that are extracted under assumptions of conditional (co)variance changes it is important to

notice that structural outcomes might differ if one adjusts the heteroskedastic ‘shocks’ by scaling

information which is already available before the shock occurs. Thirdly, the shocks derived from

B̂•, • ∈ {UH, nGML}, obtain intermediate diagnostics throughout.

As displayed in the right hand side of Table 3, the outcomes of the heteroskedasticity-based

models with respect to the correlation constraints C1-C3 are ambiguous. On the one hand, C1

and C2 are maximized by the standardized shocks ε̃•, • ∈ {UH, CH}, on the other hand, assuming

time-varying covariances for identification implies structural shocks, which violate at least one of

the correlation constraints (with exception of ε̂CH). Overall, the constraints are jointly maximized

by ε̂CH followed by ε̂dCov.
20

20Lütkepohl and Schlaak (2018) argue that the AIC is an appropriate criterion to choose between alternative
heteroskedasticity-based SVARs. In our case we obtain for UH and CH the diagnostic outcomes

Model logL AIC Model logL AIC

UH -3121.66 6365.31 CH -2929.31 5980.62

which support the results from Figure 4 and Table 3. Exploiting conditional heteroskedasticity for identification is
superior to assuming unconditional covariance shifts.
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(III) 
 Average production shocks during 

 the financial crisis

(IV) 
 Average financial uncertainty shocks during 

 the financial crisis

(I) 
 Financial uncertainty shocks on black Monday

(II) 
 Financial uncertainty shocks in the month 
 of their highest values during 2007−2009
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Figure 4: Comparison of the magnitudes of the structural shocks during event periods, obtained by
B̂•,∈ {UH,CH, nGML, dCov,CvM}. Standardized shocks retrieved from heteroskedasticity-based

identification schemes are indicated as ŨH and C̃H. Panel (I) visualizes the first constraint (Black
Monday), whereas the second constraint (financial crisis uncertainty) is associated with panel (II;
maximum shock) and panel (IV; average). Panel (III) shows the averaged production shocks during
the third event restriction (financial crisis economic activity).

4.3 Structural shocks under maximized constraints

Having seen that independent shocks are qualitatively and also largely quantitatively in line with

event narratives and correlation constraints, it is tempting to check if - vice versa - structural

shocks which conform best with economic narratives and instrumental information exhibit some

higher order dependence beyond orthogonality. To address this issue, we follow two complementary

approaches. Firstly, we adapt the identification scheme of Ludvigson et al. (2018) to our data.

Secondly, we rescale the on impact impulse responses shown in Ludvigson et al. (2018) to provide

a decomposition of the reduced form variance of our data.21 From both exercises and for both

dependence diagnostics, dCov and CvM, we obtain p-values below 1% which indicate significant

violations of the null hypotheses of independent structural shocks obtained from maximum align-

ment with the event and correlation constraints of Ludvigson et al. (2018). As an implication of

21Let BL denote a benchmark structural matrix which we obtain from linear interpolations of impact effects
shown in Figure 4 of Ludvigson et al. (2018). Then the rescaled structural matrix adapted to our data is

B̃L = Σ̂
1/2
u

̂(BLB
′
L)

−1/2

BL, where the notation G1/2 indicates the symmetric square root matrix of G.
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higher order dependence, the tracing of isolated unit shocks by means of stylized IRFs might hide

important actual transmission patterns among origins of uncertainty and business cycles.

4.4 Comparative analysis of IRFs

So far, we have investigated how statistically identified shocks align with economic narratives (event

constraints) and external information (correlation constraints). Furthermore, we compare the in-

sights obtained from statistical identification in terms of implied IRFs, which are depicted in Fig-

ure 5. The IRFs computed from B̂CH and B̂dCov are almost identical throughout, and B̂nGML and

B̂CvM obtain qualitatively the same results. IRFs implied by the assumption of unconditional covari-

ance shifts show qualitative differences for three out of nine response patterns. These findings are in

line with our simulation results: Detecting independent components by means of nonparametric de-

pendence diagnostics and the GARCH identification approach perform similarly under conditional

heteroskedasticity and non-Gaussianity of the structural shocks. Moreover, the relatively weak per-

formance of B̂UH in this setting can be confirmed. Accordingly, the subsequent analysis of economic

activity vs. uncertainty linkages and feedback is conditional on the structural models implied by

B̂CH and B̂dCov.

4.5 The relationship between uncertainty and business cycles

Related studies on the effects of uncertainty shocks identify the structural parameter matrix by the

assumption of lower triangularity. However, for the specific system under scrutiny, the literature

does not agree on the (best) ordering of the variables. For instance, Bloom (2009) and Bach-

mann et al. (2013) order uncertainty indices first, whereas Bekaert et al. (2013) and Jurado et al.

(2015) order them last. The estimates of the structural parameter matrices obtained from assuming

conditional heteroskedasticity or independence of structural shocks (dCov) are

B̂CH =




0.035
(−0.03; 0.02)

−1.054
(−1.04; −35.97)

0.218
(0.23; 3.87)

0.871
(0.85; 32.13)

0.183
(0.13; 2.20)

0.081
(0.06; 1.72)

−0.077
(−0.06; −1.27)

−0.045
(−0.03; −0.73)

1.741
(1.73; 36.96)




and B̂dCov =




0.105
(0.05; 0.51)

−1.075
(−1.06; −28.61)

0.210
(0.20; 2.54)

0.866
(0.86; 18.98)

0.252
(0.20; 1.49)

0.039
(0.05; 0.85)

−0.038
(−0.06; −0.46)

−0.070
(−0.08; −0.61)

1.566
(1.56; 136.22)



,

respectively, with values in parentheses (a; b) denoting the bootstrap means (a) and t-ratios (b).22 Since

structural shocks are often labeled in terms of their impact effects on the variables of the system, it is worth

22Bootstrap means out of 1000 replications are close to the point estimates for both models, which we consider as
an informal indication of bootstrap consistency. Bootstrap t-ratios are the ratio of parameter estimates and bootstrap
standard errors. Standard errors for B̂CH could be also derived as the square root of the inverted information matrix.
Both approaches obtain similar results.
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Figure 5: Point estimates of impulse response functions.

noticing that we find a characteristic sign pattern in both estimated matrices B̂•, • ∈ {CH, dCov}.

The t−ratios for the upper diagonal parameter estimates, b̂•,ij , j > i, • ∈ {CH, dCov}, indicate that

contemporaneous dynamics are not supportive for the assumption of a triangular relation between structural

and reduced form disturbances of the present ordering. Moreover, since both structural matrices show

two significant impact effects on macroeconomic uncertainty and economic activity b̂•,ij 6= 0, i = 1, 2, • ∈

{CH, dCov}, there is no alternative column ordering (or variable ordering in yt) which is in line with a lower

triangular impact transmission of identified shocks on the variables of the system (see also the tests on joint

insignificance of upper diagonal parameters H0 : b•,ij = 0, j > i, documented in Table A6).

To investigate the causality between uncertainty and real economic activity in an exemplary manner, we

show IRFs associated with B̂dCov in Figure 6 joint with 68% confidence intervals. It turns out that financial

uncertainty shocks trigger sluggish real economic slow-downs after about six months. In contrast, positive

production shocks do not reduce financial uncertainty, which indicates that enhanced financial uncertainty is

not a result of economic slowdowns. While the link of financial uncertainty and production is unidirectional,
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we find a bidirectional relation between macroeconomic uncertainty and real economic activity. Overall, our
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Figure 6: Impulse response functions obtained by B̂dCov joint with point-wise 68% confidence bands
obtained by 1000 bootstrap replications. Point-wise comparisons do not reveal any significant
differences between the IRFs implied by B̂dCov and B̂•, • ∈ {CH, nGML, CvM}. With regard to
IRFs obtained from B̂UH, point-wise comparisons show significantly different effects in case of three
response functions (εU(M) → U (M), εU(M) → q, εU(M) → U (F )).

findings are mostly in line with those of Ludvigson et al. (2018). Nevertheless, we stress two noteworthy

differences in the IRFs. Firstly, while the financial uncertainty shock in Ludvigson et al. (2018) exerts an

extremely persistent effect on industrial production, the IRFs in Figure 6 signal a transitory effect, which

is more in line with the associated literature (see Bloom, 2009; Bekaert et al., 2013; Jurado et al., 2015).

Secondly, Ludvigson et al. (2018) find a positive instantaneous effect of a production shock on financial

uncertainty, yet we detect no significant effect on impact. Interestingly, our result seems to be more in line

with theoretical arguments of Ludvigson et al. (2018) which are in favour of a uni directional transmission

from financial uncertainty to real economic activity.
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5 Conclusions

The detection of structural shocks in SVARs relies either on economically motivated restrictions or statistical

means. We compare alternative identification approaches in a simulation study and in the framework of an

empirical analysis of the relationship between uncertainty and business cycles in the US economy. In specific,

we focus on a stylized version of identification based on sign restrictions (representing economic restrictions),

two identification approaches based on heteroskedasticity (statistical identification) and three identification

procedures based on independence of the shocks.

By means of Monte Carlo simulations we confirm and specify the bias induced by classical sign restrictions

to occur irrespective of the underlying distribution and sample size. Unlike theory based set identification,

statistical identification schemes provide consistent estimates of the structural model parameters. Overall,

we find that identification by means of (co)variance changes appears more specialized in the sense that it (i)

provides precise estimation results if the data aligns with the specified/assumed type of heteroskedasticity,

and (ii) obtains imprecise estimates under (co)variance misspecification. In contrast, the independence-based

models (especially those which are nonparametric) are more flexible. More specifically, a non-Gaussian ML

estimator performs best if the likelihood is correctly specified, while identification by means of nonparametric

dependence diagnostics is the method of choice if the distribution of structural shocks is unknown, non-

existent or subjected to heteroskedasticity of unknown form. Hence, in non-Gaussian models, identification

of independent components is worth considering regardless of potential heteroskedasticity. In particular,

targeting at independent components by means of minimizing a nonparametric independence diagnostic (the

distance covariance, say) appears as a method of choice if an analyst lacks detailed and accurate information

on statistical features of the data.

We apply alternative statistical identification procedures to an SVAR model on the relationship between

macroeconomic and financial uncertainty and the US business cycle (Ludvigson et al., 2018). The obtained

structural shocks and impulse responses largely support the results of Ludvigson et al. (2018) who argue

powerfully against recursive identification schemes, and - instead - advocate a combination of narrative event

constraints and nonzero correlations with external instruments. Economic narratives and external instru-

ments are most helpful for the labelling of statistically identified shocks. The more agnostic identification by

means of statistical criteria and the understanding of the statistical characteristics of the identified shocks

are, however, important for the reliability and interpretation of structural model implications. For instance,

under heteroskedasticity the quantitative interpretation of impulse responses to ‘unit’ shocks deserves par-

ticular attention, and the notion of shocks to occur in ‘isolation’ is best motivated within systems generated

from independent structural shocks. Structural shocks determined to align with economic narratives and

correlation constraints in the strongest possible form lack independence with high significance. We find that

financial uncertainty is primarily a source of business cycle fluctuations, whereas macroeconomic uncertainty

rises in response to economic activity shocks.
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Antoĺın-Dı́az, J. and Rubio-Ramı́rez, J. F. (2018). Narrative sign restrictions for SVARs. American Economic

Review, 108(10):2802–29.

Arias, J., Rubio-Ramı́rez, J., and Waggoner, D. (2014). Inference based on SVARs identified with sign and

zero restrictions: Theory and applications. Dynare Working Paper Series 30.

Bachmann, R., Elstner, S., and Sims, E. R. (2013). Uncertainty and economic activity: Evidence from

business survey data. American Economic Journal: Macroeconomics, 5(2):217–49.

Bekaert, G., Hoerova, M., and Lo Duca, M. (2013). Risk, uncertainty and monetary policy. Journal of

Monetary Economics, 60(7):771–788.

Blanchard, O. J. and Quah, D. (1989). The dynamic effects of aggregate demand and supply disturbances.

American Economic Review, 79(4):655–73.

Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77(3):623–685.

Bouakez, H. and Normadin, M. (2010). Fluctuations in the foreign exchange market: How important are

monetary policy shocks? Journal of International Economics, (81):139–153.

Canova, F. and Nicolo, G. D. (2002). Monetary disturbances matter for business fluctuations in the G-7.

Journal of Monetary Economics, 49(6):1131–1159.

Capasso, M. and Moneta, A. (2016). Macroeconomic responses to an independent monetary policy shock: A

(more) agnostic identification procedure. Lem papers series, Sant’Anna School of Advanced Studies, Pisa,

Italy.

Carlstrom, C. T., Fuerst, T. S., and Paustian, M. (2009). Monetary policy shocks, Choleski identification,

and DNK models. Journal of Monetary Economics, 56(7):1014–1021.

Castelnuovo, E. (2012). Monetary policy neutrality: Sign restrictions go to Monte Carlo. ”Marco Fanno”

Working Papers 151, Dipartimento di Scienze Economiche ”Marco Fanno”.

Castelnuovo, E. (2013). Monetary policy shocks and financial conditions: A Monte Carlo experiment. Journal

of International Money and Finance, 32:282–303.

Castelnuovo, E. (2016). Monetary policy shocks and Cholesky VARs: An assessment for the euro area.

Empirical Economics, 50(2):383–414.

Cavaliere, G., Rahbek, A., and Taylor, A. R. (2010). Testing for co-integration in vector autoregressions with

non-stationary volatility. Journal of Econometrics, 158(1):7–24.

31



Chib, S. and Ramamurthy, S. (2014). DSGE models with Student-t errors. Econometric Reviews, 33(1-

4):152–171.

Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3):287–314.
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Herwartz, H. and Plödt, M. (2016b). The macroeconomic effects of oil price shocks: Evidence from a statistical

identification approach. Journal of International Money and Finance, 61(C):30–44.

Hodges, J. and Lehmann, E. (2006). Hodges-Lehmann estimators. In Encyclopedia of Statistical Sciences.

Hofert, M., Kojadinovic, I., Maechler, M., and Yan, J. (2015). copula: Multivariate dependence with copulas.

R package version 0.999-13.

32



Jurado, K., Ludvigson, S. C., and Ng, S. (2015). Measuring uncertainty. American Economic Review,

105(3):1177–1216.

Kilian, L. and Lütkepohl, H. (2017). Structural Vector Autoregressive Analysis. Themes in Modern Econo-

metrics. Cambridge University Press.

Lange, A., Dalheimer, B., Herwartz, H., and Maxand, S. (2018). svars: Data-driven identification of SVAR

models. R package version 1.2.1.

Lanne, M. and Lütkepohl, H. (2008). Identifying monetary policy shocks via changes in volatility. Journal

of Money, Credit and Banking, 40(9):1131–1149.

Lanne, M., Lütkepohl, H., and Maciejowska, K. (2010). Structural vector autoregressions with Markov

switching. Journal of Economic Dynamics and Control, 34(2):121–131.

Lanne, M., Meitz, M., and Saikkonen, P. (2017). Identification and estimation of non-Gaussian structural

vector autoregressions. Journal of Econometrics, 196(2):288–304.

Lanne, M. and Saikkonen, P. (2007). A multivariate generalized orthogonal factor GARCH model. Journal

of Business & Economic Statistics, 25(1):61–75.

Lintner, J. (1965). Security prices, risk, and maximal gains from diversification. The Journal of Finance,

20(4):587–615.

Ludvigson, S. C., Ma, S., and Ng, S. (2018). Uncertainty and business cycles: Exogenous impulse or

endogenous response? Working Paper 21803, National Bureau of Economic Research.

Lütkepohl, H. and Milunovich, G. (2016). Testing for identification in SVAR-GARCH models. Journal of

Economic Dynamics and Control, 73(C):241–258.
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Appendix

A Dependence diagnostics

Distance covariance (Matteson and Tsay, 2017)

For a K-dimensional vector of structural shocks εt at time t = 1, . . . , T the distance covariance V2 detects

dependence between two subsets of the components. Between the kth component εt,k, k ∈ {1, . . . ,K} and

all subsequent ones εt,k+ with k+ = k + 1, . . . ,K, dependence is measured by V2(εt,k, εt,k+) which is the

distance between the characteristic functions ϕεt,k,εt,k+
and ϕεt,kϕε

t,k+
, the joint characteristic function and
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the one under independence, respectively. To measure mutual dependence, i.e. dependence of all possible

combinations between the variables εt,1, . . . , εt,K , the dependence criterion reads as

UT (εt,1, . . . , εt,K) = T ·
K−1∑

k=1

V2(εt,k, εt,k+). (16)

The distance covariance UT (ε̂t,1, . . . , ε̂t,K) is then minimized to identify ε̂t = B
−1ût with least dependent

components.

Cramér-von Mises statistic (Genest and Rémillard, 2004)

Mutual dependence within a K-dimensional vector of structural shocks εt at time t = 1, . . . , T can be

measured by the Cramér-von Mises functional

CT =

∫

(0,1)K
T
(
CT (ǫ)−

K∏

k=1

UT (ǫk)
)2

dǫ

with cumulative distribution function UT of a uniformly distributed variable on {1/T, . . . , T/T} and the

empirical copula CT . Apparently, the functional C measures the distance between the empirical copula based

on the vector of structural shocks εt and the copula under independence. Genest and Rémillard (2004)

describe the estimation of the copula and the explicit statistic in more detail. Minimizing C with respect to

B (i.e., considering an empirical copula CT determined by ε̂t = B
−1ût) provides the HL estimates and the

corresponding least dependent components.

B The trinity DSGE model

For a detailed description of the underlying DSGE model and the parametrization see Herwartz and Plödt

(2016a). The derivation of the log linearized SVAR from the underlying DSGE model relies on a first order

Taylor series expansion. Under deviations from Gaussian innovations, the numerical solution provided in (13)

is not robust with regards to higher order moments of the true shocks (i.e., with regards to the solution of

higher order Taylor series expansions). Since our interest is not in the most accurate dynamic description of

economic optimization solutions and to avoid distribution specific DGPs, we abstract from this point to take

advantage of scenario-independent ‘true’ parameter values in simulated DGPs. For simulation purposes we

employ a simple 3-equation dynamic stochastic general equilibrium (DSGE) model that has been widely used

as a baseline framework for monetary policy analysis (Gertler et al., 1999; Carlstrom et al., 2009; Castelnuovo,

2013, 2012, 2016). The consideration of trivariate systems is also common practice in the SVAR literature.
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The log-linearized version of the model reads as

xt = γEtxt+1 + (1− γ)xt−1 − δx(rt − Etπt+1) + ωx,t, (17)

πt = (1 + αβ)−1βEtπt+1 + (1 + αβ)−1απt−1 + κxt + ωπ,t, (18)

rt = τrrt−1 + (1− τr)(τππt + τxxt) + ωr,t, (19)

ω•,t = ρ•ω•,t−1 + ε•,t, • ∈ {x, π, r}, t = 1, . . . , T, (20)

where xt, πt and rt denote the output gap, inflation and the nominal interest rate, respectively, and Et indi-

cates expectations formed at period t. Accordingly, the equations (17) to (19) represent a New Keynesian IS

equation, a hybrid New Keynesian Phillips curve, and a Taylor rule with interest rate smoothing. First order

autoregressive shock processes are summarized in equation (20), with subscripts • ∈ {x, π, r} indicating a

demand shock, a supply shock and a monetary policy shock, respectively.

The employed parameter settings correspond to common calibration assumptions drawn from the macroeco-

nomic literature. The model is calibrated with common settings, i.e., β = 0.99 (discounting), κ = 0.05 (slope

of Phillips curve), α = 0.5 (indexation of past inflation), δx = 0.1 (impact of real interest), γ = 0.5 (effect of

output expectations), τπ = 1.8, τx = 0.5, τr = 0.6 (Taylor rule). The autoregressive parameters in (20) are

set to ρx = ρπ = ρr = 0.5.
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C Detailed simulation results

Table A1: Simulation results for sample size T = 100. A labeling ratio of 1 means that the true
sign pattern of B from the DGP in equation (12) (or single shocks respectively) was found in every
Monte Carlo iteration.

Homoskedasticity Unconditional Heteroskedasticity Conditional Heteroskedasticity

Labeling ratio Labeling ratio Labeling ratio

Distribution M̂SE All εx → επ → εr → M̂SE All εx → επ → εr → M̂SE All εx → επ → εr →

Sign Restrictions
N 2.48 . . . . 5.51 . . . . 2.46 . . . .
t(4) 2.45 . . . . 5.33 . . . . 2.42 . . . .

t(8) 2.49 . . . . 5.41 . . . . 2.45 . . . .

χ2 2.49 . . . . 5.43 . . . . 2.38 . . . .
IG 2.50 . . . . 5.39 . . . . 2.25 . . . .

Unconditional Heteroskedasticity
N 4.85 0.14 0.58 0.72 0.2 2.95 0.37 0.71 0.61 0.49 3.22 0.3 0.71 0.64 0.34
t(4) 3.80 0.23 0.67 0.68 0.31 3.22 0.37 0.73 0.62 0.46 3.02 0.27 0.7 0.65 0.32

t(8) 4.35 0.18 0.59 0.73 0.25 3.03 0.37 0.74 0.58 0.51 3.07 0.27 0.72 0.65 0.31

χ2 4.04 0.24 0.66 0.68 0.33 3.29 0.37 0.75 0.63 0.48 2.84 0.37 0.74 0.67 0.41
IG 3.32 0.38 0.73 0.69 0.46 3.19 0.41 0.72 0.68 0.51 2.72 0.31 0.71 0.65 0.36

Conditional Heteroskedasticity
N 4.64 0.19 0.75 0.72 0.23 4.97 0.18 0.72 0.71 0.22 1.99 0.73 0.91 0.86 0.76
t(4) 4.16 0.24 0.73 0.73 0.29 4.36 0.2 0.69 0.68 0.27 2.24 0.68 0.87 0.84 0.72

t(8) 4.50 0.21 0.75 0.65 0.27 4.52 0.2 0.74 0.71 0.24 1.96 0.73 0.91 0.86 0.77

χ2 4.17 0.27 0.75 0.72 0.33 4.09 0.28 0.74 0.73 0.35 2.15 0.65 0.87 0.83 0.69
IG 3.79 0.38 0.77 0.71 0.44 3.94 0.35 0.74 0.71 0.42 2.31 0.62 0.85 0.81 0.67

Non-Gaussian ML
N 4.70 0.22 0.75 0.73 0.36 12.41 0.28 0.72 0.61 0.42 5.30 0.47 0.87 0.7 0.51
t(4) 2.64 0.59 0.87 0.78 0.65 8.47 0.44 0.75 0.68 0.56 5.03 0.51 0.86 0.72 0.56

t(8) 3.70 0.41 0.77 0.72 0.52 9.64 0.32 0.66 0.6 0.49 5.08 0.52 0.89 0.73 0.53

χ2 2.77 0.51 0.8 0.72 0.59 6.84 0.4 0.68 0.64 0.54 4.25 0.55 0.89 0.74 0.6
IG 1.77 0.67 0.9 0.78 0.71 5.57 0.51 0.78 0.7 0.61 3.14 0.61 0.92 0.76 0.62

Distance Covariance
N 3.60 0.16 0.57 0.62 0.27 5.99 0.17 0.5 0.54 0.31 2.66 0.31 0.72 0.64 0.39
t(4) 2.38 0.46 0.78 0.71 0.55 4.15 0.35 0.62 0.68 0.47 2.34 0.38 0.76 0.67 0.44

t(8) 3.23 0.25 0.64 0.7 0.37 4.96 0.27 0.57 0.6 0.4 2.41 0.33 0.72 0.67 0.42

χ2 1.28 0.79 0.95 0.84 0.81 3.53 0.56 0.78 0.73 0.64 1.91 0.54 0.87 0.74 0.57
IG 1.06 0.87 0.99 0.89 0.88 3.11 0.66 0.88 0.8 0.72 1.85 0.69 0.94 0.81 0.69

Cramer-von Mises
N 5.03 0.15 0.57 0.72 0.2 8.41 0.09 0.49 0.56 0.13 3.84 0.15 0.59 0.6 0.21
t(4) 4.16 0.24 0.66 0.69 0.33 6.71 0.19 0.52 0.6 0.25 3.15 0.22 0.67 0.61 0.25

t(8) 4.86 0.17 0.58 0.7 0.24 7.72 0.12 0.46 0.59 0.17 3.49 0.18 0.63 0.59 0.23

χ2 1.96 0.57 0.87 0.76 0.62 5.11 0.33 0.63 0.73 0.42 2.49 0.32 0.75 0.67 0.36
IG 1.56 0.7 0.93 0.81 0.73 4.14 0.43 0.72 0.74 0.51 2.17 0.45 0.83 0.71 0.48
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Table A2: Simulation results for sample size T = 200. For further notes see Table A1.

Homoskedasticity Unconditional Heteroskedasticity Conditional Heteroskedasticity

Labeling ratio Labeling ratio Labeling ratio

Distribution M̂SE All εx → επ → εr → M̂SE All εx → επ → εr → M̂SE All εx → επ → εr →

Sign Restrictions
N 2.48 . . . . 5.49 . . . . 2.44 . . . .
t(4) 2.46 . . . . 5.41 . . . . 2.40 . . . .

t(8) 2.48 . . . . 5.47 . . . . 2.45 . . . .

χ2 2.46 . . . . 5.41 . . . . 2.43 . . . .
IG 2.46 . . . . 5.40 . . . . 2.34 . . . .

Unconditional heteroskedasticity
N 4.82 0.17 0.6 0.73 0.22 2.00 0.53 0.82 0.65 0.67 2.79 0.37 0.78 0.68 0.43
t(4) 3.80 0.32 0.68 0.74 0.39 2.32 0.54 0.8 0.68 0.68 2.62 0.38 0.75 0.71 0.42

t(8) 4.50 0.19 0.62 0.71 0.25 2.04 0.56 0.83 0.68 0.68 2.97 0.38 0.74 0.67 0.41

χ2 3.92 0.3 0.65 0.71 0.36 2.29 0.51 0.83 0.65 0.62 2.79 0.38 0.76 0.68 0.43
IG 3.08 0.4 0.76 0.71 0.47 2.55 0.51 0.8 0.66 0.62 2.53 0.45 0.79 0.73 0.49

Conditional Heteroskedasticity
N 4.55 0.21 0.76 0.75 0.24 5.83 0.44 0.79 0.61 0.57 1.44 0.91 0.99 0.95 0.91
t(4) 4.01 0.3 0.75 0.73 0.35 5.89 0.41 0.77 0.66 0.51 1.89 0.87 0.96 0.93 0.88

t(8) 4.50 0.21 0.74 0.72 0.27 5.78 0.38 0.78 0.57 0.54 1.66 0.89 0.98 0.94 0.89

χ2 4.36 0.26 0.76 0.74 0.32 6.58 0.36 0.78 0.6 0.46 1.72 0.86 0.95 0.93 0.87
IG 3.89 0.36 0.78 0.72 0.39 6.86 0.38 0.72 0.65 0.45 2.10 0.79 0.94 0.89 0.8

Non-Gaussian ML
N 4.53 0.23 0.75 0.69 0.43 10.27 0.36 0.76 0.62 0.54 4.06 0.68 0.94 0.79 0.71
t(4) 1.36 0.82 0.96 0.87 0.83 7.16 0.68 0.9 0.79 0.73 3.18 0.77 0.97 0.83 0.77

t(8) 2.69 0.52 0.84 0.74 0.61 7.25 0.48 0.8 0.66 0.61 3.26 0.67 0.97 0.78 0.68

χ2 1.68 0.66 0.9 0.78 0.7 4.32 0.5 0.77 0.68 0.62 3.01 0.72 0.95 0.8 0.73
IG 0.98 0.86 0.98 0.89 0.87 3.92 0.7 0.89 0.77 0.78 2.61 0.75 0.98 0.81 0.75

Distance Covariance
N 3.58 0.17 0.56 0.65 0.27 4.74 0.29 0.61 0.56 0.46 1.90 0.59 0.88 0.77 0.64
t(4) 1.72 0.63 0.87 0.77 0.68 3.28 0.62 0.85 0.75 0.7 1.79 0.65 0.93 0.77 0.67

t(8) 2.77 0.31 0.7 0.63 0.44 3.90 0.38 0.7 0.59 0.55 1.82 0.57 0.9 0.71 0.6

χ2 0.78 0.93 1 0.94 0.93 2.84 0.77 0.93 0.87 0.8 1.61 0.77 0.98 0.82 0.77
IG 0.70 0.97 1 0.97 0.97 2.67 0.86 0.98 0.9 0.88 1.69 0.84 0.99 0.87 0.84

Cramer-von Mises
N 5.01 0.16 0.58 0.74 0.21 7.01 0.19 0.59 0.57 0.25 2.97 0.31 0.76 0.65 0.36
t(4) 3.58 0.37 0.69 0.72 0.45 5.46 0.3 0.67 0.62 0.37 2.53 0.33 0.74 0.69 0.37

t(8) 4.68 0.2 0.61 0.71 0.27 6.33 0.2 0.62 0.58 0.28 2.81 0.32 0.75 0.65 0.36

χ2 1.06 0.84 0.98 0.88 0.86 3.56 0.53 0.81 0.79 0.6 1.91 0.58 0.91 0.74 0.58
IG 0.92 0.9 0.99 0.91 0.91 3.24 0.67 0.89 0.83 0.7 1.84 0.66 0.94 0.78 0.67

38



Table A3: Simulation results for sample size T = 500. For further notes see Table A1.

Homoskedasticity Unconditional Heteroskedasticity Conditional Heteroskedasticity

Labeling ratio Labeling ratio Labeling ratio

Distribution M̂SE All εx → επ → εr → M̂SE All εx → επ → εr → M̂SE All εx → επ → εr →

Sign Restrictions
N 2.46 . . . . 5.50 . . . . 2.46 . . . .
t(4) 2.44 . . . . 5.42 . . . . 2.38 . . . .

t(8) 2.45 . . . . 5.47 . . . . 2.46 . . . .

χ2 2.45 . . . . 5.46 . . . . 2.43 . . . .
IG 2.45 . . . . 5.42 . . . . 2.40 . . . .

Unconditional Heteroskedasticity
N 5.00 0.13 0.61 0.74 0.18 1.20 0.81 0.96 0.82 0.84 2.47 0.52 0.85 0.72 0.55
t(4) 3.64 0.32 0.71 0.67 0.4 1.35 0.74 0.92 0.77 0.82 2.38 0.5 0.81 0.77 0.53

t(8) 4.58 0.21 0.65 0.72 0.26 1.29 0.77 0.93 0.79 0.82 2.47 0.48 0.79 0.74 0.52

χ2 4.00 0.29 0.69 0.71 0.34 1.32 0.77 0.92 0.8 0.83 2.44 0.49 0.81 0.73 0.52
IG 2.97 0.45 0.81 0.72 0.5 1.58 0.73 0.91 0.77 0.8 2.33 0.5 0.83 0.73 0.54

Conditional Heteroskedasticity
N 4.74 0.21 0.71 0.74 0.24 3.95 0.64 0.86 0.72 0.78 1.14 0.98 0.99 0.98 0.98
t(4) 3.82 0.31 0.78 0.73 0.36 4.92 0.61 0.83 0.7 0.73 1.43 0.97 1 0.98 0.97

t(8) 4.47 0.27 0.77 0.74 0.31 4.20 0.57 0.85 0.65 0.71 1.30 0.97 0.99 0.98 0.97

χ2 3.97 0.35 0.8 0.75 0.39 4.58 0.58 0.82 0.7 0.73 1.36 0.95 0.98 0.98 0.95
IG 3.74 0.36 0.78 0.73 0.41 5.70 0.49 0.79 0.72 0.58 1.56 0.96 1 0.98 0.96

Non-Gaussian ML
N 4.60 0.2 0.76 0.68 0.36 6.78 0.43 0.81 0.62 0.63 2.32 0.87 1 0.88 0.87
t(4) 0.76 0.95 1 0.96 0.95 6.57 0.89 0.99 0.9 0.9 2.34 0.91 1 0.92 0.91

t(8) 1.63 0.7 0.94 0.77 0.73 4.86 0.64 0.88 0.71 0.74 2.42 0.87 1 0.88 0.87

χ2 1.00 0.86 0.98 0.89 0.87 3.50 0.69 0.87 0.75 0.8 1.88 0.88 1 0.9 0.88
IG 0.61 0.96 1 0.96 0.96 3.12 0.89 0.98 0.9 0.91 1.78 0.92 1 0.92 0.92

Distance Covariance
N 3.58 0.14 0.56 0.63 0.25 3.78 0.4 0.72 0.57 0.62 1.37 0.81 0.99 0.84 0.82
t(4) 0.92 0.9 0.99 0.92 0.9 2.61 0.89 0.98 0.9 0.9 1.47 0.89 1 0.9 0.89

t(8) 2.17 0.43 0.78 0.67 0.5 3.03 0.64 0.86 0.7 0.74 1.37 0.84 0.99 0.86 0.85

χ2 0.47 1 1 1 1 2.53 0.96 1 0.97 0.96 1.37 0.88 1 0.89 0.88
IG 0.44 1 1 1 1 2.44 0.98 1 0.98 0.98 1.55 0.92 1 0.92 0.92

Cramer-von Mises
N 5.04 0.13 0.58 0.72 0.18 4.89 0.33 0.72 0.57 0.44 2.08 0.53 0.89 0.73 0.55
t(4) 2.42 0.53 0.81 0.75 0.59 3.45 0.6 0.85 0.74 0.66 1.82 0.6 0.93 0.76 0.61

t(8) 4.29 0.22 0.67 0.68 0.28 4.29 0.38 0.76 0.6 0.48 1.84 0.58 0.9 0.75 0.59

χ2 0.63 0.98 1 0.98 0.98 2.82 0.83 0.98 0.88 0.84 1.44 0.78 0.99 0.84 0.78
IG 0.54 0.99 1 0.99 0.99 2.72 0.84 0.99 0.91 0.84 1.58 0.86 0.99 0.88 0.86

39



Table A4: Simulation results for sample size T = 1000. For further notes see Table A1.

Homoskedasticity Unconditional Heteroskedasticity Conditional Heteroskedasticity

Labeling ratio Labeling ratio Labeling ratio

Distribution M̂SE All εx → επ → εr → M̂SE All εx → επ → εr → M̂SE All εx → επ → εr →

Sign Restrictions
N 2.45 . . . . 5.49 . . . . 2.45 . . . .
t(4) 2.44 . . . . 5.44 . . . . 2.39 . . . .

t(8) 2.45 . . . . 5.47 . . . . 2.44 . . . .

χ2 2.45 . . . . 5.47 . . . . 2.44 . . . .
IG 2.46 . . . . 5.49 . . . . 2.40 . . . .

Unconditional Heteroskedasticity
N 4.96 0.16 0.61 0.74 0.19 0.83 0.9 0.98 0.9 0.92 2.18 0.6 0.9 0.75 0.63
t(4) 3.44 0.34 0.73 0.71 0.4 0.97 0.89 0.97 0.89 0.93 2.22 0.54 0.88 0.71 0.57

t(8) 4.57 0.18 0.61 0.73 0.23 0.91 0.89 0.98 0.89 0.91 2.27 0.57 0.88 0.74 0.6

χ2 4.01 0.27 0.65 0.7 0.34 0.89 0.9 0.97 0.91 0.93 2.18 0.59 0.88 0.75 0.62
IG 3.08 0.44 0.77 0.72 0.5 1.05 0.85 0.95 0.86 0.9 2.13 0.58 0.88 0.73 0.62

Conditional Heteroskedasticity
N 4.74 0.19 0.73 0.72 0.23 3.23 0.82 0.91 0.83 0.91 1.04 0.98 0.98 1 0.98
t(4) 4.16 0.34 0.78 0.71 0.39 4.11 0.76 0.89 0.82 0.84 1.31 0.98 0.99 0.99 0.98

t(8) 4.61 0.25 0.74 0.73 0.3 3.64 0.77 0.88 0.79 0.87 1.18 0.97 0.98 1 0.97

χ2 4.06 0.3 0.78 0.74 0.35 3.75 0.76 0.89 0.79 0.87 1.15 0.99 0.99 1 0.99
IG 3.86 0.38 0.8 0.75 0.44 4.92 0.68 0.85 0.79 0.77 1.43 0.97 0.99 0.99 0.97

Non-Gaussian ML
N 4.45 0.19 0.77 0.63 0.42 5.28 0.53 0.82 0.62 0.71 1.64 0.96 1 0.96 0.96
t(4) 0.51 0.99 1 0.99 0.99 6.72 0.97 1 0.97 0.97 1.94 0.99 1 0.99 0.99

t(8) 1.02 0.87 0.99 0.89 0.87 3.78 0.85 0.97 0.86 0.88 1.76 0.97 1 0.97 0.97

χ2 0.69 0.93 1 0.93 0.93 2.88 0.83 0.94 0.85 0.88 1.46 0.96 1 0.96 0.96
IG 0.42 1 1 1 1 2.90 0.98 1 0.98 0.99 1.52 0.96 1 0.96 0.96

Distance Covariance
N 3.74 0.12 0.5 0.62 0.22 3.18 0.6 0.79 0.67 0.76 1.17 0.93 1 0.93 0.93
t(4) 0.60 0.98 1 0.98 0.98 2.45 0.96 1 0.96 0.96 1.34 0.96 1 0.96 0.96

t(8) 1.48 0.71 0.9 0.81 0.76 2.67 0.84 0.96 0.86 0.87 1.20 0.93 1 0.94 0.93

χ2 0.33 1 1 1 1 2.42 0.99 1 0.99 0.99 1.22 0.97 1 0.97 0.97
IG 0.31 1 1 1 1 2.41 1 1 1 1 1.47 0.97 1 0.97 0.97

Cramer-von Mises
N 5.03 0.12 0.55 0.72 0.18 3.61 0.49 0.8 0.61 0.6 1.51 0.71 0.95 0.8 0.71
t(4) 1.65 0.68 0.92 0.8 0.71 2.76 0.77 0.97 0.81 0.79 1.49 0.76 0.98 0.83 0.76

t(8) 3.23 0.42 0.75 0.72 0.48 3.16 0.64 0.88 0.71 0.71 1.47 0.73 0.97 0.79 0.73

χ2 0.36 1 1 1 1 2.64 0.9 1 0.93 0.9 1.26 0.9 1 0.91 0.9
IG 0.36 1 1 1 1 2.60 0.94 1 0.96 0.94 1.48 0.95 1 0.95 0.95
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D Further results from the empirical application

Table A5: Separate test results on kurtosis and skewness for ε̂•, • ∈ {UH, CH, nGML, dCov, CvM}.
Tests on non-Gaussian components can be rejected for k1 = 1 and k1 = 2 Gaussian components.

ε̂U(M) ε̂q ε̂U(F ) H0 : k1 = 1 k1 = 2

B̂UH
Kurtosis: 10.324

(0.000)
5.423
(0.000)

13.673
(0.000)

Gaussian components 50523.7
(0.001)

4790.12
(0.001)

Skewness: −0.323
(0.001)

0.309
(0.001)

−1.184
(0.000)

B̂CH
Kurtosis: 9.361

(0.000)
5.161
(0.000)

21.259
(0.000)

Skewness: −0.116
(0.208)

0.15
(0.104)

−1.844
(0.00)

B̂nGML
Kurtosis: 10.073

(0.000)
5.078
(0.000)

21.337
(0.000)

Skewness: −0.28
(0.001)

0.056
(0.176)

−1.853
(0.000)

B̂dCov
Kurtosis: 8.388

(0.000)
5.258
(0.000)

21.363
(0.000)

Skewness: 0.054
(0.548)

0.099
(0.294)

−1.855
(0.000)

B̂CvM
Kurtosis: 9.091

(0.000)
5.184
(0.000)

21.001
(0.000)

Skewness: −0.066
(0.454)

0.13
(0.15)

−1.822
(0.000)

Table A6: Test results on the null hypothesis H0 : b•,ij = 0, j > i, • ∈ {CH, dCov}, against the
alternative that at least one of the coefficients is nonzero for all six permutations of the vector
of variables. We evaluate the set of restrictions by means of likelihood-ratio (LR) tests with the
SVAR-CH model and by means of joint significance χ2 tests with the distance covariance approach.
The χ2 statistics and corresponding p-values are based on 1000 bootstrap iterations.

CH dCov
LR statistic p-value χ2 statistic p-value

(U
(M)
t , qt, U

(F )
t )′ 51.642 < 0.0001 6695 < 0.0001

(U
(M)
t , U

(F )
t , qt)

′ 84.151 < 0.0001 1091 < 0.0001

(qt, U
(M)
t , U

(F )
t )′ 38.034 < 0.0001 5922.3 < 0.0001

(qt, U
(F )
t , U

(M)
t )′ 14.639 0.0022 4239.8 < 0.0001

(U
(F )
t , qt, U

(M)
t )′ 134.36 < 0.0001 4202.6 < 0.0001

(U
(F )
t , U

(M)
t , qt)

′ 20.858 0.001 362.45 < 0.0001

41


	Introduction
	Identification procedures for structural VAR analysis
	The structural model representation
	Identification based on sign restrictions (SR)
	Identification through heteroskedasticity
	Unconditional heteroskedasticity (UH)
	Conditional heteroskedasticity (CH)

	Independence based identification
	Identification through non-Gaussian ML estimation (nGML)
	Nonparametric identification techniques and HL estimation

	Summary of identification procedures

	Simulation study
	Data generation
	Autoregressive dynamics
	Covariance settings
	Distributional frameworks

	Performance evaluation
	Simulation results
	Mean squared errors
	Frequencies of correct sign patterns
	Summary of the simulation results


	Economic uncertainties and the business cycle
	Data
	Economic narratives and instrumental information
	Event and correlation constraints
	Qualitative evaluation of statistically identified shocks
	Quantitative performance differentials of statistical identification schemes

	Structural shocks under maximized constraints
	Comparative analysis of IRFs
	The relationship between uncertainty and business cycles

	Conclusions
	lit
	Dependence diagnostics
	The trinity DSGE model
	Detailed simulation results
	Further results from the empirical application

