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Abstract It is well-known that the values of symbolic variables may take various forms such as an

interval, a set of stochastic measurements of some underlying patterns or qualitative multi-values and so

on. However, the majority of existing work in symbolic data analysis still focuses on interval values. Al-

though some pioneering work in stochastic pattern based symbolic data and mixture of symbolic variables

has been explored, it still lacks of flexibility and computation efficiency to make full use of the distinctive

individual symbolic variables. Therefore, we bring forward a novel hierarchical clustering method with

weighted general Jaccard distance and effective global pruning strategy for complex symbolic data and

apply it to emitter identification. Extensive experiments indicate that our method has outperformed its

peers in both computational efficiency and emitter identification accuracy.
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1 Introduction

In symbolic data analysis (SDA), the data

complexity has gone beyond the classic data

framework. Instead of possessing single values

only, the symbolic variables usually appear in

aggregate forms to represent certain homoge-

neous behaviours of objects. These aggregated

variables have drawn more and more attention

especially when it comes to the age of big data.

Generally, there are two categories of sym-

bolic variables, quantitative and qualitative.

The most common quantitative symbolic vari-

able is the interval-valued one, where inter-

val regions are provided. For example, stud-

ies show that most people within the age in-

terval of [18, 45] are in favour of Military ser-

vice. Meanwhile, the most common qualita-

tive symbolic variable is the qualitative multi-

valued one whose value is a finite subset of a

category set with the corresponding weights,

frequencies or probabilities to indicate how fre-

quent or likely that category is for this element.

Recently, another type of quantitative

symbolic data has become more and more pop-

ular, namely the stochastic pattern based sym-

bolic data [1]. In the stochastic pattern based

symbolic data, the variable values are sets of

stochastic measurements. Examples of stochas-

tic pattern based symbolic data objects include

the aggregated behaviours of a customer group

in online shopping, the daily heart rate mea-

surements for a group of patients aged from

60 to 70, the parameter measurement sets of a

certain type of radar emitters and so on. Here,

each value of the stochastic pattern based sym-

bolic variable is an instance of a stochastic pat-

tern. Though some pioneering work in stochas-

tic pattern based symbolic data has been con-

ducted [2], it still suffers a high computational

cost and lacks of robustness to various types of

symbolic variables.

Nowadays, most SDA methods are re-

stricted for the interval-valued symbolic data

only. A considerable greater effort has been

made for developing methods for interval-

valued symbolic data. For instance, the repre-

sentative SDA methods, including the univari-

ate and bivariate descriptive statistics [3], fac-

torial analysis [4], clustering [5], discriminant

or unsupervised learning [6], linear regression

[7] and time series analysis [8], are almost all

designed for interval data.

As can be seen, existing SDA methods gen-

erally concentrate on one special type of sym-

bolic data. In practical applications, there may

be several different types of complex variables

in the same symbolic data, either multi-valued

or interval-valued or stochastic pattern based.

Table 1 illustrates a running example of

complex symbolic data composed of a mixture



Table 1. An Example of Complex Symbolic Data

Observation Heart Beat Rate Blood Pressure Appearance Class

(num. beat/min) (mmHg) {height, hair color, skin color}

o1 {60, 69, 85, 100} [62, 98] {tall, black-hair, yellow-skin} c1

o2 {61, 70, 84, 99} [58, 102] {tall, black-hair, yellow-skin} c1

o3 {70, 86, 101} [60, 100] {tall, yellow-skin} c1

o4 {71, 120} [61, 101] {tall, yellow-skin} c2

o5 {69, 122} [59, 99] {tall, yellow-skin} c2

o6 {70, 118} [90, 120] {yellow-skin} c3

o7 {70, 120} [93, 125] {yellow-skin} c3

of qualitative multi-valued, interval-valued and

stochastic pattern based variables. Specifically,

attribute “heart beat rate” is stochastic pattern

based, attribute “blood pressure” is interval-

valued and attribute “appearance” is multi-

valued. In such a case, none existing symbolic

data analysis methods could be applied to dis-

criminate the three different classes.

The benchmark interval data analysis

methods are unable to discriminate class c1

from class c2, as the two classes are overlapping

heavily on attribute “blood pressure”. The

stochastic pattern based methods are unable

to discriminate class c2 from c3 either, since the

two classes are overlapping on attribute “heart

beat rate”. However, all the three classes could

be discriminated well when considering all the

three attributes. Specifically, class c3 is differ-

ent from classes c1 and c2 on attribute “blood

pressure”; class c1 and c2 are different on both

the stochastic pattern based attribute “heart

beat rate” and the multi-valued attribute “ap-

pearance”.

In [9], a framework has been put forward

to address complex symbolic data composed of

a mixture of qualitative multi-valued, interval-

valued and stochastic pattern based variables.

It evaluates the similarity between a pair of

symbolic variables for each data type sepa-

rately and sums them up to produce a global

similarity score. For example, for the running

example in Table 1, it evaluates the similarity

on symbolic variable “heart beat rate”, “blood

pressure” and “appearance” respectively and

sums up the three similarity scores to get the

global scores. Upon that, hierarchical cluster-

ing is applied and the symbolic data would

be clustered into groups of interest (Table 7).



However, when it comes to real world applica-

tion, e.g., emitter identification, it still lacks of

flexibility and computation efficiency to make

full use of the distinctive individual symbolic

variables. Emitter identification is basically a

classification task. Each training emitter ob-

servation is composed of a mixture of symbolic

variable types and an emitter type. The task

is to identify the emitter types given the com-

plex symbolic observations. In this paper, we

extend our previous approach by revisiting the

similarity composition methods and evaluate it

thoroughly in a real world emitter identification

application.

Inspired by the above problems, we bring

forward a novel hierarchical clustering method

for complex symbolic pattern discovery and ap-

ply it to emitter identification. The major con-

tributions are listed as follows:

• We propose the concept of weighted gen-

eral Jaccard distance for flexible similar-

ity evaluation on a pair of complex sym-

bolic observations composed of interval-

valued, multi-valued and stochastic pat-

tern based variables;

• We develop a global pruning strategy

for complex symbolic data to further en-

hance the computation efficiency;

• Extensive experiments on both synthetic

and real-life emitter datasets have vali-

dated the efficiency and effectiveness of

our method for application in emitter

identification.

The rest of paper is organized as follows.

We review related work in Section 2. Our hi-

erarchical clustering method for complex sym-

bolic data is formally presented in Section 3. In

Section 4, we present the experimental results

and apply our method to real-life emitter iden-

tification. The conclusion is made in Section

5.

2 Related Work

Our work belongs to symbolic data anal-

ysis (SDA). SDA was first introduced by E.

Diday in the 1980s [1, 10, 11]. The aim of

SDA is to address the need to represent and

analyze the data which is unable to be repre-

sented in the classical data model. The pio-

neering SDA projects include two European re-

search projects, “Symbolic Objects Data Anal-

ysis System” (SODAS) [12] and “Analysis Sys-

tem of Symbolic Official data” (ASSO) . The

SODAS project was devoted for systematic de-

velopment of data analysis methodologies for

symbolic data and produced the first statistical

package for SDA. Following the effort of SO-

ASSO, https://www.info.fundp.ac.be/asso/



DAS, the ASSO project continued to develop

new SDA methodologies and expanded the sta-

tistical package. Meanwhile, the first book on

SDA, “Analysis of Symbolic Data” [13] was for-

mally published.

Generally, there are three typical types

of symbolic variable, the qualitative multi-

valued, interval-valued and stochastic pattern

based. The symbolic variable is qualitative

multi-valued if its values are finite subsets of

the domain, interval-valued if an empirical dis-

tribution over a set of subintervals is given or

stochastic pattern based if the variable val-

ues are sets of stochastic measurements corre-

sponding to a certain stochastic process [1].

However, there has been quite a lot of

effort in interval-valued symbolic data analy-

sis. The benchmark SDA methods for interval-

valued symbolic data analysis include the uni-

variate and bivariate descriptive statistics [14],

factorial analysis [4], clustering [5], discrimi-

nant or unsupervised learning [6], supervised

learning [15], linear regression [7] and time se-

ries analysis [8]. Some of them have been

adapted for histogram-valued data [8, 16]. And

some fuzzy pattern mining approaches based

on pre-defined interval structures have been ex-

plored [17] as well.

In term of similarity evaluation, our work

is related with Jaccard index [18, 19]. The tra-

ditional Jaccard index [18], also known as the

Jaccard similarity coefficient, is a statistic used

for comparing the similarity and the diversity

of sample sets. It measures similarity between

finite sample sets, which is defined as the car-

dinality of the intersection of the two sample

sets divided by the cardinality of the union

of the two. A generalized Jaccard similarity

[19] has been proposed to evaluate the simi-

larity between two real-valued vectors of equal

length. The Jaccard similarity coefficient is de-

fined as the proportion of the sum of the min-

imum element values to that of the maximum

element values. However, none of the variants

is adaptable to the similarity evaluation of ei-

ther interval-valued or stochastic pattern based

symbolic variables yet.

In term of uncertainty processing strategy,

our work is also related with the fuzzy pattern

mining methods. Quite a large number of fuzzy

pattern mining methods on uncertain data have

been put forward to address the “fuzziness” in

either item distribution [20, 21] or item spec-

ification [17, 22, 23]. On one hand, in order

to cope with the fuzziness of item distribution,

many probabilistic frequent item mining meth-

ods based on the probabilistic model have been

put forward so that the frequentness probabil-

ities of item sets could be approximated accu-

rately [20, 21]. On the other hand, in order



to deal with the fuzziness of item specification,

the fuzzy set theory [22, 23] and the interval

structured approaches [17] have been applied

as well. However, all these fuzzy pattern min-

ing methods demand clear definitions of crystal

item, fuzzy set or region specification, which is

inappropriate in real applications.

Hierarchical clustering techniques [24, 25]

have received quite much attention in various

domains for partitioning objects into optimally

homogeneous groups. The discovered clusters

reflect certain empirically measured relations of

similarity.

For multi-dimensional spatial data, vari-

ous spatial query approaches [26, 27, 28] could

be utilized to speed up the hierarchical clus-

tering process. The closest pairs [26] in a spa-

tial dataset could be identified efficiently with

the branch-and-bound techniques [28] based on

the R-tree index [27]. In such ways, the time

complexity of hierarchical clustering on spatial

datasets could be reduced to O(nlogn). How-

ever, these approaches are not applicable to

our complex symbolic dataset since our similar-

ity evaluation metric is different. Specifically,

our general Jaccard index does not satisfy the

δ−inequality requirement of the spatial dataset

claimed in [26].

Some efficient hierarchical clustering ap-

proaches for discrete datasets have been pro-

posed as well. The pruning strategy in the

“similarity join” approach [29] on records which

are composed of token sets is rather similar

to ours on qualitative multi-valued symbolic

variables. It explores the prefix filtering, po-

sitional filtering and suffix filtering strategies

for fast similarity evaluation based on the Jac-

card similarity. However, it is restricted to

the qualitative multi-valued variable and could

not be applied to the stochastic pattern based

one in our symbolic dataset. In addition, it

is reported that the MapReduce strategy helps

to speed up the hierarchical clustering signif-

icantly [30]. For instance, with the MapRe-

duce framework, the top-k join approach [30]

successfully reduces the time of web access log

hierarchical clustering for user group discovery

from 80 hours to 6 hours.

We also adopt hierarchical clustering for

symbolic pattern discovery as the prior work

[2, 9] did. In [2], a novel hierarchical clus-

tering algorithm for stochastic pattern based

symbolic data is proposed to conduct stochas-

tic pattern discovery only. However, it is re-

stricted for stochastic pattern only. Com-

paratively, besides the stochastic pattern, our

method is available for qualitative multi-valued

and interval-valued symbolic pattern discovery

as well. And a framework has been put forward

to address complex symbolic data composed of



a mixture of qualitative multi-valued, interval-

valued and stochastic pattern based variables

[9]. However, its pruning strategies are re-

stricted for individual symbolic variables and

it still lacks of a flexible general Jaccard dis-

tance calculation metric to make full use of

the distinctive information from all the sym-

bolic variables. As a result, it is not flexible

enough for real applications yet. In this work,

we bring forward a weighted general Jaccard

distance calculation metric and a global prun-

ing strategy to further enhance the robustness,

flexibility and computation efficiency.

In this paper, instead of computing the

general Jaccard distances for all the observa-

tion pairs on each symbolic variable, we cal-

culate the the general Jaccard distance on

multi-valued and stochastic pattern based sym-

bolic variables with efficient similarity pruning

first. The observation pairs below the similar-

ity threshold are pruned away. Then, we fur-

ther calculate the general Jaccard distance on

interval-valued variables for the remaining ob-

servation pairs only.

3 Method

In this section, we formally propose our hi-

erarchical clustering method for complex sym-

bolic pattern discovery. Our method is com-

posed of three major components: 1) simi-

larity evaluation of symbolic variables, 2) dis-

tance matrix construction via similarity prun-

ing and 3) symbolic pattern discovery via hier-

archical clustering. The input of our method is

the complex symbolic data consisted of a mix-

ture of qualitative multi-valued, interval-valued

and stochastic pattern based symbolic variables

while the output is the set of discovered com-

plex symbolic patterns. Table 2 summarizes

the notations in our method.

Firstly, we propose a novel evaluation met-

ric based on Jaccard index to evaluate the

similarity for qualitative multi-valued, interval-

valued and also the stochastic pattern based

symbolic variables. Then, an effective prun-

ing strategy is introduced to speed up the dis-

tance matrix construction process. And fi-

nally, a novel hierarchical clustering procedure

[31] based on the general Jaccard index is out-

lined for the discovery of complex symbolic

patterns composed of either qualitative multi-

valued or interval-valued or stochastic pattern

based symbolic variables.

The details of our hierarchical clustering

method for complex symbolic pattern discov-

ery are illustrated as follows.



Table 2. Notation

Symbol Indication

Ci Cluster candidate i

Mi Value of the qualitative multi-valued symbolic variable in cluster candidate i

Ii Value of the interval-valued symbolic variable in cluster candidate i

Si Value of the stochastic pattern based symbolic variable in cluster candidate i

Sir the r−th numeric measurement in stochastic numeric measurement set Si

Mir the r−th discrete element in qualitative multi-valued set Mi

wir Weight of the rth measurement/element in set Si/Mi

Iil Lower bound of interval region Ii

Iiu Upper bound of interval region Ii

MatchSetM (Mi,Mj) Matched set between two qualitative multi-valued sets Mi and Mj

MatchSetI(Ii, Ij) Matched set between two interval regions Ii and Ij

MatchSetS(Si, Sj) Matched set between two stochastic numeric measurement sets Si and Sj

JaccardM (Mi,Mj) General Jaccard index between two qualitative multi-valued sets Mi and Mj

JaccardI(Ii, Ij) General Jaccard index between two interval regions Ii and Ij

JaccardS(Si, Sj) General Jaccard index between two stochastic numeric measurement sets Si and Sj

JaccardDistM (., .) General Jaccard distance between two qualitative multi-valued sets

JaccardDistI(., .) General Jaccard distance between two interval regions

JaccardDistS(., .) General Jaccard distance between two stochastic numeric measurement sets

JaccardDist(., .) General Jaccard distance between two symbolic observations

MemSeti Member set of cluster candidate i

Supi Support of cluster candidate i

DisSingle(., .) Distance between a pair of cluster candidates with the single linkage

δ Approximation threshold

ε Similarity threshold within range [0,1]

minw Minimum weight threshold within range [0,1]

minsup Minimum support threshold

Ω Set of discovered complex symbolic patterns



3.1 Similarity Evaluation of Symbolic

Variables

The traditional Jaccard index is only ap-

plicable for the qualitative multi-valued sym-

bolic variable. Though the δ-Jaccard index

has been put forward to evaluate the simi-

larity between stochastic pattern based sym-

bolic variables [2], it is not flexible enough for

the interval-valued and the stochastic pattern

based symbolic variables yet. For this reason,

we propose a general Jaccard index for various

symbolic variable types.

3.1.1 Matched Set

To evaluate the similarity between sym-

bolic variables which are either qualitative

multi-valued or interval-valued or stochastic

pattern based, we first define the concept of

matched set for the three different types of sym-

bolic variables respectively.

The matched set between two qualitative

multi-valued symbolic variables Mi = {Mip}p
and Mj = {Mjq}q, denoted as MatchSetM(Mi,

Mj), is defined as the set of common elements

within the two sets, as shown in (1):

MatchSetM (Mi,Mj) = Mi

⋂
Mj . (1)

The matched set between two interval-valued
symbolic variables Ii = [Iil, Iiu] and Ij = [Ijl,
Iju], MatchSetI(Ii, Ij), is calculated as their

overlapping region, as illustrated in (2),

MatchSetI(Ii, Ij) = [max(Iil, Ijl),min(Iiu, Iju)], if max(Iil, Ijl) ≤ min(Iiu, Iju),

∅, otherwise.

(2)

As stated in [2], given a specified approxi-

mation threshold δ and a symmetric distance

function dist(x, y) = |x−y|
max(x,y)

, the matched set

between two stochastic numeric measurement

sets Si = {Sip}p and Sj = {Sjq}q is defined as

the set of their matched pairs within δ distance

away, MatchSetS(Si, Sj) = {(Si1, Sjm1), (Si2,

Sjm2), ......, , (Sit, Sjmt)}, where t is the num-

ber of matched pairs.

3.1.2 General Jaccard index

Based on the concept of matched set,

we further propose the general Jaccard index

for similarity evaluation of qualitative multi-

valued, interval-valued and stochastic pattern

based symbolic variables. The general Jaccard

index between two qualitative multi-valued sets

Mi and Mj is calculated as the proportion of

the matched set size to the union size of Mi

and Mj:

JaccardM (Mi,Mj) =
|MatchSetM (Mi,Mj)|

|Mi|+ |Mj | − |MatchSetM (Mi,Mj)|
.

(3)

The general Jaccard index between two interval

regions Ii and Ij is calculated as the proportion

of matched interval length to the union interval



length:

JaccardI(Ii, Ij) =
Len(MatchSetI(Ii, Ij))

Len(Ii) + Len(Ij)− Len(MatchSetI(Ii, Ij))
,

(4)

where Len() indicates the length of the corre-

sponding interval region. The general Jaccard

index between two stochastic numeric measure-

ment sets Si and Sj is calculated as the num-

ber of matched measurement pairs to the total

number of distinct measurements after match-

ing:

JaccardS(Si, Sj) =
|MatchSetS(Si, Sj)|

|Si|+ |Sj | − |MatchSetS(Si, Sj)|
. (5)

As can be observed, our general Jaccard in-

dexes for all the three different types of sym-

bolic variables vary between zero and one.

On the qualitative multi-valued attribute

“appearance” in Table 1, observations o1 and

o2 share three equal discrete values, thus they

have a general Jaccard index of 1. On the

interval-valued attribute “blood pressure”, the

general Jaccard index between observations o1

and o2 is 36/44 ≈ 0.82. For the stochastic pat-

tern based attribute “heart beat rate”, given

the approximation threshold δ of value 0.1, ob-

servations o1 and o2 achieve a general Jaccard

index of 1, since all their four pairs of stochas-

tic numeric measurements are within δ distance

away (Please refer to [2] for details).

3.2 Distance Matrix Construction via

Similarity Pruning

Based on the proposed general Jaccard in-

dex, we construct the distance matrix for the

complex symbolic observations via an effective

pruning strategy.

We define the general Jaccard distance be-

tween two symbolic variables of a certain type

as one minus the corresponding general Jaccard

index, as shown in (6), (7) and (8):

JaccardDistM (Mi,Mj) = 1− JaccardM (Mi,Mj), (6)

JaccardDistI(Ii, Ij) = 1− JaccardI(Ii, Ij), (7)

JaccardDistS(Si, Sj) = 1− JaccardS(Si, Sj). (8)

The general Jaccard distance between two

symbolic observations is defined as the sum

of weighted general Jaccard distances between

the symbolic variables in the two observations,

where αA indicates the weight for symbolic

variable A, as shown in (9):

JaccardDist(i, j) =
∑
A

αA × JaccardDistA(Ai, Aj). (9)

Inspired by the test statistic using pairwise

similarity measures in [32], we extend it to our

complex symbolic datasets. Given a set of com-

plex symbolic observations with class labels, we

define a modified test statistic dA to evaluate

the class discriminant power of each symbolic



variable A in the observation as the difference

between the average within-class general Jac-

card index and the average between-class gen-

eral Jaccard index, as illustrated in (10):

dA = JaccardA within − JaccardA between, (10)

where JaccardA within indicates the average

general Jaccard index on symbolic variable A

for all pairs of observations from the same class

and JaccardA between indicates the average gen-

eral Jaccard index on symbolic variable A for

all pairs of observations from different classes.

Upon that, the the weight for each symbolic

variable A could be inferred:

αA =
dA∑
A dA

. (11)

As can be observed, the similarity evalua-

tion and the distance calculation on the qual-

itative multi-valued and the stochastic pat-

tern based symbolic attributes are the bot-

tleneck. Therefore, we develop an effective

pruning strategy to speed up the distance ma-

trix construction process. The basic idea of

our pruning strategy is to estimate the upper

bound of the general Jaccard index of these

symbolic variables and waive the distance cal-

culation when the estimated upper bound is

below the specified similarity threshold ε.

According to the definitions of general Jac-

card index for qualitative multi-valued and

stochastic pattern based symbolic variables, we

can easily infer that the maximal general Jac-

card index is achieved when the size of matched

set is maximized. The formal rationale is pro-

vided in Lemma 1.

Lemma 1. Suppose Vi and Vj are either

two qualitative multi-valued sets or two stochas-

tic numeric measurement sets whose sizes are

|Vi| and |Vj| respectively, then the upper bound

of general Jaccard index between sets Vi and Vj

is

upperJaccard(Vi, Vj) =
min(|Vi|, |Vj |)

|Vi|+ |Vj | −min(|Vi|, |Vj |)
. (12)

Proof. Since the maximum size of the

matched set between sets Vi and Vj is min(|Vi|,

|Vj|), the conclusion holds.

Based on Lemma 1, we have designed a

novel similarity pruning strategy for individual

qualitative multi-valued and stochastic pattern

based variables as follows: For each qualita-

tive multi-valued or stochastic pattern based

attribute, we rank the observations first in de-

scending order of value set sizes and next in

ascending order of original observation index.

The larger size and smaller observation index

is, the higher rank the observation would ob-

tain.

Then, starting from the first observation

in rank, we calculate the general Jaccard index

for the qualitative multi-valued or the stochas-

tic pattern based variable between the current

observation and its successors in turn. Once



Table 3. Distance Matrix Construction on “Heart Beat Rate” via Similarity Pruning

JaccardDistS o2 o3 o4 o5 o6 o7

o1 → 0.00 → 0.25 - - - -

o2 → 0.25 - - - -

o3 - - - -

o4 → 0.00 → 0.00 → 0.00

o5 → 0.00 → 0.00

o6 → 0.00

Table 4. Distance Matrix Construction on “Appearance” via Similarity Pruning

JaccardDistM o2 o3 o4 o5 o6 o7

o1 → 0.00 → 0.33 → 0.33 → 0.33 - -

o2 → 0.33 → 0.33 → 0.33 - -

o3 → 0.00 → 0.00 - -

o4 → 0.00 - -

o5 - -

o6 → 0.00

the estimated upper bound of general Jaccard

index is below the similarity threshold ε, the

distance calculation for the current observation

stops and starts the next round of calculation

for the next observation in rank.

The calculation process could be safely

pruned because once the estimated upper

bound of general Jaccard index between the

current observation oi and its successor oj is

below the similarity threshold ε, the general

Jaccard index between oi and those successors

ranked after oj must be below threshold ε as

well. The details of the rationale are given in

Lemma 2.

Lemma 2. Suppose attribute V in sym-

bolic data D is either multi-valued or stochastic

pattern based, ORD is the rank of the observa-

tions such that the observations are sorted first

in descending order of value set sizes of V and

next in ascending order of original observation

index, ε is the specified similarity threshold. If

the estimated upper bound of general Jaccard

index between the current observation oi and

its successor oj in rank ORD on attribute V is

below ε, upperJaccard(Vi, Vj) < ε, then for any

value set of successor ok of oj, denoted as Vk,



Table 5. Distance Matrix Construction on “Blood Pressure”

JaccardDistI o2 o3 o4 o5 o6 o7

o1 0.18 0.10 - - - -

o2 0.09 - - - -

o3 - - - -

o4 0.10 - -

o5 - -

o6 0.23

Table 6. Distance Matrix Construction between Symbolic Observations

JaccardDist o2 o3 o4 o5 o6 o7

o1 0.06 0.23 - - - -

o2 0.22 - - - -

o3 - - - -

o4 0.03 - -

o5 - -

o6 0.08

we must have upperJaccard(Vi, Vk) < ε.

Proof. Since ok � oj in ORD rank, we

have |Vk| ≤ |Vj|. And since upperJaccard(Vi,

Vj) = |Vj |
|Vi| < ε, we have upperJaccard(Vi, Vk) =

|Vk|
|Vi| ≤ upperJaccard(Vi, Vj) < ε. Therefore, the

general Jaccard distance calculation between oi

and successors after oj could be safely pruned.

The observation pairs that do not satisfy

the similarity threshold ε on either qualitative

multi-valued or stochastic pattern based vari-

ables would be pruned. The corresponding

distance calculation on the interval-valued at-

tributes would be waived.

For instance, the rank of the seven ob-

servations in Table 1 on attribute “heart beat

rate” is o1 ≺ o2 ≺ o3 ≺ ...o6 ≺ o7. Given the

similarity threshold ε = 0.6, the distance cal-

culation process would start from observation

o1. When it comes to successor o4, the calcu-

lation process for observation o1 stops, as the

upper bound of general Jaccard index is below

ε. Then the current observation will be up-

dated to o2 and the next round of calculation

continues iteratively. Table 3, 4 and 5 illustrate



the process of distance matrix construction via

similarity pruning first on attribute “heart beat

rate”, next on “appearance” and last on “blood

pressure” respectively. Table 6 shows the pro-

cess of distance matrix construction with equal

weights of 1/3 between symbolic observations

via a global similarity pruning on all the at-

tributes. The units denoted with “-” in Tables

3, 4, 5 and 6 indicate the corresponding dis-

tance calculation has been pruned off.

Obviously, with the similarity pruning

strategy conducted on all the symbolic vari-

ables simultaneously, a significant amount of

computation cost could be saved.

3.3 Symbolic Pattern Discovery via Hi-

erarchical Clustering

Upon the general Jaccard distance matrix,

we discover the complex symbolic patterns via

agglomerative hierarchical clustering of cluster

candidates. For each cluster candidate Ci, its

qualitative multi-valued set Mi is modelled as

a set of weighted discrete elements, Mi = {Mi1,

Mi2, ..., Mi|Mi|}. Similarly, its stochastic mea-

surement set Si is modelled as a set of weighted

stochastic measurements, Si = {Si1, Si2, ...,

Si|Si|}. The values of these weights all vary

within range [0, 1] to indicate the probabil-

ity that the corresponding discrete element or

stochastic measurement has a match in the cur-

rent candidate cluster. The interval region Ii is

modelled as [Iil, Iiu]. The member set of cluster

candidate Ci is denoted as MemSeti, indicat-

ing the set of symbolic observations it has cov-

ered. And the corresponding support value is

the size of the member set, Supi = |MemSeti|.

Subroutine SymbolicPatternDiscovery

Input Parameters:

• D: a complex symbolic dataset

• δ: the approximation threshold

• ε: the similarity threshold

• minw: the minimum weight threshold

• minsup: the minimum support threshold

Output:

• Ω: the set of discovered complex symbolic patterns

1. for each pair of observation oi and oj ∈ D that i < j do

2. flag[i,j]=true

3. for each multi-valued or stochastic pattern based attribute V do

4. set V S and Ord order; cur = 1;

5. while cur < |V S| do

6. suc = cur + 1

7. while !flag[Ord[cur], Ord[suc]] and suc < |V S| do

8. suc = suc + 1

9. while suc ≤ |V S| and
|V S[Ord[suc]]|
|V S[Ord[cur]]| ≥ ε do

10. index = JaccardV (V S[Ord[cur]], V S[Ord[suc]])

11. if index< ε then

12. flag[Ord[cur], Ord[suc]]=false

13. else

14. JaccardDistV (Ord[cur], Ord[suc])=1-index

15. suc = suc + 1

16. cur = cur + 1

17. for each interval-valued attribute I do

18. for each pair of observations oi and oj ∈ D and i < j and

flag[i,j]=true do

19. index=JaccardI (i, j)

20. if index< ε then

21. flag[i, j]=false

22. else

23. JaccardDistI (i, j) = 1− index
24. for each pair of observations i and j do

25. if flag[i, j] = TRUE then

26. JaccardDist[i, j] =
∑

A∈{I,M,S}
JaccardDistA[i, j]

27. else

28. JaccardDist[i, j] = 1.0

29. Ω = ∅
30. for cluster candidate Ci do

31. Ci = oi; MemSeti = {oi}; Supi = 1;

32. CS = {Ci}
33. repeat find closest Cx, Cy ∈ CS below 1− ε do

34. merge Cx and Cy into Cx′ ; update symbolic variable models;

35. MemSetx′ = MemSetx ∪MemSety ; Supx′ = Supx + Supy ;

36. output the set of symbolic patterns Ω above minsup.

Fig. 1. Subroutine of symbolic pattern discovery.

Each cluster candidate is initialized with



an individual symbolic observation from sym-

bolic dataset D. Then, the cluster candidates

would merge with one another agglomeratively

as long as the general Jaccard indexes between

them are above the specified similarity thresh-

old ε in each attribute dimension. During the

above hierarchical clustering, the qualitative

multi-valued sets, interval regions, stochastic

measurement sets, member sets and supports

of the cluster candidates would be updated dy-

namically all along the way. Also, a minimum

weight threshold minw is applied so that the

qualitative elements and stochastic measure-

ments below thresholdminw would be removed

from the models.

The set of complex stochastic patterns, de-

noted as Ω, would be discovered from the final

cluster candidates above the minimum support

threshold minsup. The details of the complex

symbolic pattern discovery subroutine is illus-

trated in Fig. 1.

Cluster Candidate Initialization

Each cluster candidate Ci is initial-

ized with an individual symbolic observation.

Specifically, for the qualitative multi-valued set

and the stochastic numeric measurement set,

the weights of the corresponding elements and

measurements are all initialized as 1. The

member set MemSeti is initialized as the corre-

sponding symbolic observation oi, MemSeti =

{oi}, and the support Supi is initialized as 1,

Supi = 1.

For the running example in Table 1, a clus-

ter candidate C1 could be initialized with o1

such that M1 = {tall, black-hair, yellow-skin},

I1 = [62, 98] and S1 = {60, 69, 85, 100}. The

element weights of M1 and S1 are all initial-

ized as 1. For instance, w11 of M1 indicates

the weight of “tall” element which is initialized

as 1. Likewise, cluster candidates C2 and C3

could be initialized with o2 and o3 respectively.

For cluster candidate C2, we have M2 = {tall,

black-hair, yellow-skin}, I2 = [58, 102] and

S2 = {61, 70, 84, 99}. And for cluster can-

didate C3, we have M3 = {tall, yellow-skin},

I3 = [60, 100] and S3 = {70, 86, 101}.The sup-

ports of these cluster candidates are all initial-

ized as 1, Sup1 = Sup2 = Sup3 = 1.

Cluster Candidate Update

In this work, we make use of the single-

linkage scheme during agglomerative hierarchi-

cal clustering. The general Jaccard distance

between two cluster candidates, Cx and Cy, is

defined as the minimum general Jaccard dis-

tance between the members from the two clus-

ter candidates, as shown in (13):

distSingle(Cx, Cy) = min
oi∈MemSetx,oj∈MemSety

JaccardDist(i, j).

(13)

Of course, besides the single linkage, com-

plete linkage and average linkage could be ap-

plied as well.



During the process of hierarchical cluster-

ing, the pair of cluster candidates (Cx, Cy)

with the minimum general Jaccard distance

below threshold 1 − ε on each symbolic at-

tribute would merge into a new cluster candi-

date Cx′ . Specifically, the agglomerative merg-

ing of stochastic pattern based attribute pro-

ceeds just as that in [2]. For the qualita-

tive multi-valued attribute, the agglomerative

merging process is similar.

Firstly, the matched set MatchSet(Mx,

My) between the pair of qualitative multi-

valued sets Mx and My is inferred.

Then, for each matched element Mxpk =

Myqk ∈ MatchSetM(Mx, My), 1 ≤ k ≤

|MatchSetM(Mx, My)|, the associated element

weight wk would be generated according to (14)

:

wk =
wxpk × Supx + wyqk × Supy

Supx + Supy
. (14)

As indicated in Table 6, cluster candidate

C1 would merge with candidate C2 into cluster

candidate C ′1. The matched set of their quali-

tative multi-valued sets MatchSet(M1, M2) is

{tall, black-hair, yellow-skin}, where the num-

ber of matched elements is three and the as-

sociate weights are all updated to one accord-

ing to (14). The qualitative multi-valued set

of cluster candidate C ′1, denoted as M ′
1, thus

becomes {tall, black-hair, yellow-skin} and the

support of cluster candidate C ′1 is updated to

2.

And for each unmatched element, either

Mxp′ from set Mx or Myq′ from set My, the

corresponding weight wr in the merged cluster

candidate Cx′ would be calculated as shown in

(15):

wr =


wxp′×Supx
Supx+Supy

Mxp′ ∈Mx and Mxp′ is unmatched

wyq′×Supy
Supx+Supy

Myq′ ∈My and Myq′ is unmatched

.

(15)

For instance, when cluster candidate C ′1

further merges with candidate C3, the element

“black-hair” in M ′
1 = {tall, black-hair, yellow-

skin} has no match in M3 = {tall, yellow-

skin}. According to (15), the weight of element

“black-hair” is updated to 2/3, as its original

weights are 1 for both C ′1 and C3 and its original

supports are 2 and 1 for C ′1 and C3 respectively.

Similar to the update of stochastic pat-

terns, we generally keep the discrete elements

whose weights are above threshold minw. The

elements with weights below threshold minw

are considered as noises and thus are pruned.

For the interval-valued attribute, given an

interval Ix = [Ixl, Ixu] from cluster candidate

Cx and the interval region Iy = [Iyl, Iyu] from

cluster candidate Cy, the interval lower bound

and upper bound for the merged cluster candi-

date Cx′ would be updated as well, as shown in

(16) and (17) respectively:



Table 7. Three Discovered Complex Symbolic Patterns

Pattern Heart Beat Rate Blood Pressure Appearance Member Set

P1 {60.5, 70, 85, 100} [60, 100] {tall, black-hair, yellow-skin} {o1, o2, o3}

P2 {70, 121} [60, 100] {tall, yellow-skin} {o4, o5}

P3 {70, 119} [91, 5, 122.5] {yellow-skin} {o6, o7}

Ix′l =
Ixl × Supx + Iyl × Supy

Supx + Supy
, (16)

Ix′u =
Ixu × Supx + Iyu × Supy

Supx + Supy
. (17)

Meanwhile, the support and member set

of the new cluster candidate Cx′ would be cal-

culated as well, as shown in (18) and (19):

Supx′ = Supx + Supy , (18)

MemSetx′ = MemSetx ∪MemSety . (19)

Global Similarity Pruning Strategy

Note that the distance matrix construc-

tion process typically starts from the qualita-

tive multi-valued or stochastic pattern based

symbolic variables and ends with the interval-

valued ones. In addition, with our global sim-

ilarity pruning strategy, once we find that the

pairs of observations whose Jaccard distances

on the current symbolic attributes do not sat-

isfy the ε threshold, the corresponding distance

calculation on other symbolic attributes would

be waived. This pruning strategy ensures that

the cluster candidates merge with each other

only when they satisfy the similarity threshold

ε on all the attributes. Finally, the complex

stochastic patterns satisfying thresholdminsup

would be discovered after hierarchical merging.

For instance, given the approximation

threshold δ = 0.1, similarity threshold ε = 0.6,

minimum weight threshold minw = 0.5 and

minimum support threshold minsup = 2, the

final distance matrix constructed for the run-

ning example in Table 1 is illustrated in Ta-

ble 6. The units marked with “-” indicate the

corresponding general Jaccard distance calcu-

lation has been skipped. Three complex sym-

bolic patterns are discovered as illustrated in

Table 7, which are representative for class c1,

c2 and c3 respectively.

4 Results

We evaluated our hierarchical clustering

method for complex symbolic pattern discovery

on a series of synthetic datasets and applied it

for real-life emitter identification. Experiments

were conducted on a Dell PC running Microsoft

Windows XP with a Pentium dual-core CPU of



2.6GHz and a 4G RAM.

The synthetic datasets are composed of

three types of symbolic attributes, the qualita-

tive multi-valued, the interval-valued and the

stochastic pattern based. For the qualitative

multi-valued symbolic attribute, six qualitative

multi-valued sets of different lengths varying

from 3 to 8 are embedded. For an interval-

valued attribute, seven interval regions are em-

bedded. And for the stochastic pattern based

attribute, three overlapping stochastic patterns

of length 3, 5 and 8 are embedded respectively.

The stochastic numeric measurements and

the interval bound values all comply with a nor-

mal distribution N orm(p, sd), where p is the

underlying true value, sd = c × p is the stan-

dard deviation and the coefficient c is varied

between 0.1 and 0.5.

To evaluate the robustness of our method

to value missing, a missing probability mprob

was applied and set as 20% in default. We

made use of a data generator with a random

variable R for missing measurement simulation.

The values of variable R follow a uniform distri-

bution in the range of [0, 1]. In case variable R

is below mprob, the corresponding discrete ele-

ment in the qualitative multi-valued set and the

measurement in the stochastic pattern would

be missed.

The real-life airborne emitter parameter

dataset consists of 7k symbolic observations.

Each observation consists of one qualitative

multi-valued “working mode” parameter, one

interval-valued “RF” (radio frequency) param-

eter, one stochastic pattern based “PRI” (pulse

repetition interval) parameter and a class label

indicating the emitter type, as shown in Ta-

ble 8. There are three different emitter types,

denoted as C1, C2 and C3 respectively. In addi-

tion, an independent test dataset is provided to

validate the discovered complex symbolic pat-

terns.

Specifically, the “PRI measurement” at-

tribute value is a set of stochastic measure-

ments of pulse repetitive interval for the emit-

ter. The “RF interval” attribute value is an in-

terval composed of the lower and upper bound

of the radio frequency measurements of the

emitter. The “working mode” attribute is com-

posed of a set of discrete values describing the

emitter working mode. Particularly, the “work-

ing mode” attribute is composed of a set of dis-

crete values : Air (the emitter platform is an

airplane, etc.), Ground (the emitter platform is

a stationary one on the ground), Sea (the emit-

ter platform is a ship, etc.), RF low (the radio

frequency measurements are in the low region),

RF mid (the radio frequency measurements are

in the middle region), RF high (the radio fre-

quency measurements are in the high region),



Table 8. The Structure of the Real-life Airborne Emitter Parameter Dataset

Observation PRI Measurements RF Interval Working Mode Emitter Type

index {measurement1, measurement2, ...} [RF lower bound, RF upper bound] {Air, Ground, Sea, ...} C1, C2 or C3

PRI low (the PRI measurements are in the low

region), PRI mid (the PRI measurements are

in the middle region), PRI high (the PRI mea-

surements are in the high region), Pulse group

(the working mode of the emitter PRI param-

eter).

We validated the efficiency and effective-

ness of our hierarchical clustering method on

a large number of synthetic datasets. In term

of efficiency evaluation, we examined the use-

fulness of our similarity pruning strategy for

general Jaccard distance calculation and sym-

bolic pattern discovery, and tested the scala-

bility of our method by varying the number

of attributes. In term of effectiveness evalu-

ation, we compared the discovered stochastic

patterns against the underlying true ones in

term of general Jaccard index. To evaluate

the potential usefulness of our method in real

applications, we also applied our hierarchical

clustering method for complex symbolic pat-

tern discovery in emitter identification.

In the default setting, we fixed the ap-

proximation threshold δ as 0.1 for the stochas-

tic pattern based attributes. We also set the

similarity threshold ε as 0.8 and the mini-

mum weight threshold minw as 0.5 for both

the qualitative multi-valued and stochastic pat-

tern based attributes. The minimum support

threshold minsup was fixed as 0.1.

4.1 Efficiency Evaluation

To evaluate the efficiency of our method,

we compared the computational time (in sec-

onds) of general Jaccard distance calculation

and symbolic pattern discovery when varying

the similarity threshold ε. We also examined

the scalability of our method when varying the

number of attributes.

4.1.1 Similarity Pruning for Distance Calcu-

lation

During the experiments, we evaluated the

similarity pruning strategy on both the quali-

tative multi-valued and the stochastic pattern

based symbolic attributes.
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Fig. 2. Computational time of distance calcula-

tion when varying ε. (a) Qualitative multi-valued

attribute. (b) Stochastic pattern based attribute.

As clarified in Lemma 2, the sizes of a pair

of qualitative multi-valued variables or a pair

stochastic measurement sets must be at least

epsilon of each other to satisfy the similarity

constraint. With the increase of the similar-

ity threshold ε, the number of qualified multi-

valued and stochastic measurement set pairs

decreased significantly, and thus the amount of

Jaccard distance calculation reduced. As a re-

sult, we can see a significant decrease in the

computation time with the rising of threshold

ε. Specifically, when the threshold ε was in-

creased from 0 to 1, the computation time on

the qualitative multi-valued attribute was de-

creased from around 600 seconds to 100 sec-

onds with the data size 10k, decreased from

around 2500 seconds to 400 seconds with the

data size 20k and from around 5500 seconds to

950 seconds with the data size 30k, as shown

in Fig. 2(a). Meanwhile, when threshold ε in-

creased from 0.0 to 1.0, the computation time

on the stochastic pattern based attribute was

decreased from around 1440 seconds to 290 sec-

onds with the data size 10k, decreased from

around 6100 seconds to 1150 seconds with the

data size 20k and from around 15400 seconds to

2600 seconds with the data size 30k, as shown

in Fig. 2(b).

For the stochastic pattern based method

IHCPSD (Incremental Hierarchical Clustering

algorithm for stochastic Pattern-based Sym-

bolic Data) [2], all pairs of stochastic measure-

ment sets have to be compared. Therefore, our

method has outperformed the IHCPSD method

significantly in term of efficiency.

4.1.2 Scalability in Distance Calculation

In scalability evaluation, we compared the

computational time of general Jaccard dis-

tance calculation on qualitative multi-valued,
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interval-valued and stochastic pattern based

symbolic attributes respectively when varying

the number of attributes. We presented the

experimental results in Figs. 3(a), 3(b) and

3(c) respectively. As the computational cost

of general Jaccard distance calculation for all

the three types of symbolic attributes was ap-

proximately linear w.r.t. the number of at-

tributes, the computational time increased ap-

proximately linearly with the increase of the

number of attributes.

Generally, the computational time of

general Jaccard distance calculation on the

interval-valued attribute was the lowest and

that on the stochastic pattern based attribute

was the highest. However, as there was no

similarity pruning for the interval-valued at-

tributes, we observed a longer computational

time for the synthetic dataset of size 10k on

the interval-valued attribute than that on the

qualitative multi-valued attribute.

4.1.3 Similarity Pruning for Pattern Discov-

ery

In addition, we evaluated the computa-

tional time of pattern discovery via similarity

pruning. We varied the similarity threshold ε

from 0.6 to 1.0 and compared the correspond-

ing runtime on the synthetic datasets.

The higher the similarity threshold was,

the fewer cluster candidates merged, and vicev-

ersa. As a result, the computational time was

negatively correlated with similarity threshold

ε. As can be seen from Fig. 4, with the increase

of ε, the runtime of pattern discovery decreased

significantly, especially for the interval-valued

symbolic variables. This also indicated that the

interval-valued symbolic pattern discovery was

more sensitive to the similarity threshold.

4.2 Effectiveness Evaluation

To evaluate the effectiveness of discovered

complex symbolic patterns, we simulated the

noises by varying the missing probability pa-

rameter mprob between 0.1 and 0.5 for both the

qualitative multi-valued and stochastic pattern

based symbolic attributes and varying the co-

efficient c between 0.1 and 0.5 for the interval-

valued symbolic attributes.

When parameter mprob was set as 0.5,

there was a probability of 50% that the cor-

responding qualitative multi-valued element

and stochastic numeric measurement would be

missed during the data simulation. When pa-

rameter mprob was set as 0.1, the probability

of missing was 10%. Likewise, the larger the

value of coefficient c is, the larger noises the

synthetic data would have.

Firstly, we evaluated the effectiveness of

discovered symbolic patterns on individual
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symbolic variables. Given the discovered sym-

bolic pattern on each individual symbolic vari-

able, we assigned it to the closest underlying

true ones and calculated the general Jaccard

index between them. In this way, we could

obtain the average general Jaccard indexes for

the stochastic pattern, qualitative multi-valued

pattern and interval pattern, as illustrated in

Figs 5(a), 5(b) and 5(c) respectively. The

higher the average general Jaccard index was,

the more accurate the discovered symbolic pat-

terns were.

As illustrated in Figs. 5(a) and 5(b), when

the missing probability parameter mprob was

varied from 0.5 to 0.1, all the qualitative multi-

valued symbolic patterns were discovered suc-

cessfully with an average general Jaccard index

value of 1. As for the stochastic pattern based

symbolic variable, the average general Jaccard

index between the discovered stochastic pat-

terns and the associated true ones was around

0.7 when parameter mprob was 0.5. This indi-

cated that around 70% stochastic numeric mea-

surements in the stochastic pattern have been

discovered on average. When parameter mprob

was either 0.4 or 0.3, more than 80% stochastic

numeric measurements in the stochastic pat-

tern have been discovered. And when parame-

ter mprob was 0.1, all the stochastic measure-

ments in the stochastic pattern have been dis-

covered.

The experimental results for the interval

patterns were illustrated in Fig. 5(c). When

coefficient c was varied from 0.5 to 0.1, the

mean values of the general Jaccard indexes for

the interval-valued symbolic variable increased

significantly. When coefficient c was above or

equal to 0.3, none of the underlying true in-

terval patterns were discovered and thus the

resulted mean values of the calculated general

Jaccard indexes were zeros. When coefficient

c was 0.2, approximately 70% to 80% of the

underlying true interval regions were success-

fully discovered. And when coefficient c was

0.1, around 85% of the underlying true interval

regions were successfully discovered.

Next, we evaluated the effectiveness of dis-

covered symbolic patterns on complex sym-

bolic observations. We simulated the complex

symbolic datasets composed of a qualitative

multi-valued, a stochastic pattern based and

an interval-valued variable. We calculated the

average general distance between the discov-

ered symbolic patterns on all the three sym-

bolic variables and the underlying true ones.

As can be seen in Figs. 6(a) and 6(b), with

the decrease in missing probability and param-

eter c, the average general distances decrease

significantly.

As can be seen, our method was robust to



Table 9. Emitter Identification Accuracy on the Transformed Data with Varying Variable Weights v.s.

on the Mean & Range Data

Accuracy (%) Mean & Range
Pattern-based Data Transformation

(0.33, 0.33, 0.33) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0.1, 0.15, 0.75)

Naive Bayes 78.7 87.2 65.5 69.2 86.6 89.5

Logistic Regression 82.9 88.5 66.4 70.5 86.5 90.2

Multilayer Perceptron 90 95.2 68.2 78.6 94.3 96.3

RBFNetwork 88.6 93.2 65.5 68.6 93.4 94.2

SVM 78.7 85.3 62.8 67.5 84.4 88.4

KNN 92.3 94.2 67.5 71 94.2 96.1

Decision Tree 92.8 93.8 66.3 73.5 94.2 95.2

the noises and missing values in the qualita-

tive multi-valued, the interval-valued and the

stochastic pattern based symbolic attributes.

4.3 Application for Emitter Identifica-

tion

Firstly, we discovered the complex sym-

bolic patterns with the approximation thresh-

old δ = 0.05, the similarity threshold ε = 0.5,

the minimum weight threshold minw = 0.2,

the minimum support threshold minsup =

0.05× the training dateset size.

Then, we applied the discovered complex

symbolic patterns for emitter data transforma-

tion. Specifically, we selected the set of top dis-

criminating symbolic patterns Ω and calculated

the general Jaccard distance values between the

discriminating patterns and the observations as

provided in (9). In this way, each observation

is transformed into a set of general Jaccard dis-

tance values, one for each discriminating sym-

bolic pattern [2]. And the whole original com-

plex symbolic dataset would be transformed

into the classical data format with the corre-

sponding general Jaccard distance values.
The class discriminating power of each dis-

covered complex symbolic pattern Pi in Ω is
evaluated by its pattern confidence patconfi.
The patconfi value is calculated as the max-
imum class distribution of the corresponding
member set MemSeti, as shown in (20):

patconfi =
maxc |MemSeti[c]|
|MemSeti|

, (20)

where c indicates a certain emitter type

whose class distribution rate in the member

set MemSeii is the maximal one among all the

emitter types.

For example, suppose the member set of

a complex symbolic pattern q was composed



of 150 members, 100 from emitter type C1, 20

from emitter type C2 and 30 from emitter type

C3. Then the corresponding pattern confidence

would be 0.67, as the maximum class distri-

bution was obtained in emitter type C1 whose

distribution rate in the member set is 0.67.

We ranked the discovered complex sym-

bolic patterns in descending order of pattern

confidence values. The top twenty discriminat-

ing complex symbolic patterns from Ω with the

highest pattern confidence values were then se-

lected for data transformation.

With each selected complex symbolic pat-

tern, the original symbolic observation would

be transformed into a general Jaccard distance.

In this way, the original complex symbolic

dataset could be transformed into one com-

posed of twenty columns. After the transfor-

mation, the classical data analysis approaches

could be applied straightforward.

Finally, we compared the emitter type

identification accuracy on the pattern-

transformed emitter parameter data against

that on the corresponding “Mean & Range”

dataset. In the “Mean & Range” dataset,

the stochastic pattern based value sets and

interval regions were simply converted to the

mean and range of the corresponding measure-

ments. During experiments, we applied seven

classification methods, the benchmark Naive

Bayes, Logistic Regression, Multilayer Percep-

tron, RBFNetwork, SVM, KNN and Decision

Tree. Please note that the IHCPSD method [2]

was unable to deal with the interval regions and

the qualitative multi-value sets for the above

pattern-based data transformation.

Table 9 illustrates the emitter identifica-

tion accuracy of seven benchmark classification

methods on the transformed emitter data with

varying variable weights against that on the

mean & range emitter data. The highest accu-

racy achieved is highlighted in bold. With our

method, a weight vector of (0.1, 0.15, 0.75) was

assigned for the multi-valued, interval-valued

and stochastic pattern based variables respec-

tively according to (11). Alternatively, a weigh

vector of (0.33, 0.33, 0.33) was assigned for

the equal-weight approach in [9] . In addi-

tion, the weight vectors of (1, 0, 0), (0, 1, 0)

and (0, 0, 1) were used for a single one sym-

bolic variable. We set the weight for one sym-

bolic variable as 1 and the remaining ones as

0 to obtain the “multi-valued only”, “interval

only” and “stochastic pattern only” results re-

spectively. As can be observed, our method

outperformed both the equal-weight approach

and the single-one-variable approaches on the

transformed dataset. The identification accu-

racy of our method on the transformed dataset

is also higher than that on the mean & range



dataset. This is because we have made a better

use of the underlying complex symbolic vari-

ables with our flexible weighted general Jaccard

distance.

5 Conclusion

In this paper, we proposed a novel hierar-

chical clustering method for complex symbolic

pattern discovery. To our knowledge, this is the

first algorithm that not only deals with com-

plex symbolic data of various types but also is

adaptable for application in emitter identifica-

tion. Experimental results indicate that it is

robust to missing values and noises and it out-

performs the peers in term of both efficiency

and effectiveness.
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