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Intercellular communication is essential in bone remodelling to ensure that

new bone is formed with only temporary bone loss. Monocytes (MCs) and

osteoclasts actively take part in controlling bone remodelling by providing

signals that promote osteogenic differentiation of mesenchymal stem/stro-

mal cells (MSCs). Extracellular vesicles (EVs) have attracted attention as

regulators of bone remodelling. EVs facilitate intercellular communication

by transferring a complex cargo of biologically active molecules to target

cells. In the present study, we evaluated the potency of EVs from MCs and

osteoclasts to induce a lineage-specific response in MSCs. We analysed gene

expression and protein secretion by both adipose tissue-derived MSCs and

bone marrow-derived MSCs after stimulation with EVs from lipopolysac-

charide-activated primary human MCs and (mineral-resorbing) osteoclasts.

Isolated EVs were enriched in exosomes (EVs of endosomal origin) and

were free of cell debris. MC- and osteoclast-derived EVs were taken up by

adipose tissue-derived MSCs. EVs from activated MCs promoted the secre-

tion of cytokines by MSCs, which may represent an immunomodulatory

mechanism. MC-derived EVs also upregulated the expression of genes

encoding for matrix metalloproteinases. Therefore, we hypothesize that

MCs facilitate tissue remodelling through EV-mediated signalling. We did

not observe a significant effect of osteoclast-derived EVs on gene expression

or protein secretion in MSCs. EV-mediated signalling might represent an

additional mode of cell-cell signalling during the transition from injury and
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inflammation to bone regeneration and play an important role in the cou-

pling between bone resorption and bone formation.

Database

Gene expression data are available in the GEO database under the accession number

GSE102401.

Introduction

Cells release diverse types of membrane vesicles into the

extracellular environment. These so-called extracellular

vesicles (EVs) represent an important mode of intercel-

lular communication by transferring a complex cargo of

biologically active molecules to target cells [1,2]. Given

the importance of cellular interactions in bone remod-

elling [3], EVs have attracted attention as regulators of

this process [4]. EVs could find use in the treatment of

bone diseases that are related to aberrant bone remod-

elling, such as rheumatoid arthritis, osteoarthritis and

osteoporosis [5]. Moreover, EVs have potential in regen-

erative medicine as biomimetic tools to induce lineage-

specific differentiation of stem cells [6,7]. The cell type

from which the most potent regulatory EVs originate

and the mechanism by which the EVs mediate bone

remodelling remain to be investigated [5,8].

The immune system strongly influences tissue repair

and regeneration, and active control of the immune

system is an attractive therapeutic approach to induce

tissue regeneration [9], including bone regeneration

[10]. The mononuclear phagocytic system is part of the

immune system and consists of hematopoietic cells

derived from progenitor cells in the bone marrow

(BM) [11]. Monocytes (MCs) and osteoclasts (OCs)

are mononuclear phagocytic cell types that share pre-

cursors. Both MCs [12,13] and OCs [14–16] actively

take part in controlling bone remodelling by providing

signals that promote osteogenic differentiation of mes-

enchymal stem/stromal cells (MSCs).

In the context of tissue healing, there are few studies

looking into the potential of EVs from mononuclear

phagocytes. Nevertheless, EVs from these cells most

likely have a role in the crosstalk between immunity and

tissue healing [17] and may contribute to maintaining

bone homeostasis [4]. In the present study, we evaluated

the potency of EVs from primary human MCs and OCs

to induce a lineage-specific response in MSCs. We anal-

ysed gene expression and protein secretion by both adi-

pose tissue-derived MSCs (AT-MSCs) and BM-derived

MSCs (BM-MSCs) after stimulation with EVs from

activated primary human MCs and OCs. The study

sheds light on the mechanism by which EVs mediate

bone remodelling and their potential as therapeutic

tools to enhance the regeneration of bone tissue.

Results

Culture of lipopolysaccharide-activated

monocytes and formation of osteoclasts on

tissue culture plastic and hydroxyapatite

coatings

Monocyte and OC cultures were monitored using a

phase-contrast microscope (Fig. 1). Lipopolysaccharide

(LPS)-activated MCs were visible as small adherent

cells. The conditioned medium from these cells was

collected at 3 days (Fig. 1A,B) and 5 days (Fig. 1C) of

culture. Part of the LPS-activated MCs was positive

for OC-marker tartrate resistant acid phosphatase

(TRAcP; Fig. 1B).

One of the aims of this study was to investigate the

effect of OC-EVs on the differentiation of MSCs.

Therefore, peripheral blood MCs were differentiated

towards OCs using macrophage colony-stimulating

factor (M-CSF) and receptor activator of nuclear fac-

tor j-B ligand (RANKL). MCs eventually fused and

formed OCs in presence of M-CSF and RANKL

(Fig. 1D,E). Nonactive OCs were generated on tissue

culture plastic (tissue culture polystyrene, TCPS). Hen-

riksen et al. [16] showed that pro-osteogenic signalling

of OCs is partially dependent on mineral dissolution.

To investigate if the potential EV-signalling from OCs

to MSCs is dependent on mineral dissolution, cells

were also cultured on a hydroxyapatite (HA) substrate

(Fig. 1H–K). HA coatings have been previously used

to model mineral dissolution by OCs [18,19]. The for-

mation of mature OCs was confirmed by the positive

staining for TRAcP (Fig. 1F). Mature OCs on HA

were dissolving the substrate (Fig. 1K,J).

Characterization of EVs from LPS-activated

monocytes and osteoclasts

Extracellular vesicles were obtained using an isolation

kit or by ultracentrifugation (UC) of the MC- and

OC-conditioned medium. The obtained particles were
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characterized for size, morphology and the presence or

absence of membrane proteins. Transmission electron

microscopy revealed the isolation of vesicles with an

intact lipid bilayer (Fig. 2A–F).
Nanoparticle tracking analysis showed that the large

majority (> 80%) of the particles isolated in this study

was between 50 and 200 nm in diameter (Fig. 3). The

number of particles between 50 and 400 nm in diame-

ter were considered EVs for the functional assays in

this study. Isolation using the kit resulted in a higher

number of EVs than isolation by UC (Table 1), espe-

cially from OCs cultured on TCPS. The number of

EVs recovered from MC-conditioned medium by UC

did not reach beyond the background levels of uncon-

ditioned LPS-supplemented medium. UC yielded big-

ger EVs, especially for MCs.

Western blotting revealed the presence of EV-

associated proteins CD90 (Thy-1), tumour susceptibility

gene 101 (TSG101) and 70 kilodalton heat shock pro-

teins (Hsp70; Fig. 4). TSG101 and Hsp70 were also

detected from MC lysate. CD63 (lysosomal-associated

membrane protein 3), a marker for EVs of endosomal

origin was only barely detectable extracellular vesicles

from lipopolysaccharide-activated MCs (MC-EVs).

CD63 was on the other hand highly enriched in EVs

from OCs cultured on both TCPS (OC TCPS-EVs) and

HA coatings (OC HA-EVs). MC and macrophage mar-

ker CD14 was present in all EV types, just like RANKL

receptor RANK. The CD14 and RANK signals were

minute in MC lysate. Calnexin, a protein of the endo-

plasmic reticulum, was only present in MC lysate.

Uptake of EVs by adipose tissue-derived-

mesenchymal stem/stromal cells

To show that the MC-EVs and OC-EVs could interact

with MSCs, we studied the uptake of the EVs by AT-

MSCs (Fig. 5). EVs were labelled with lipophilic dye

DiD before adding them to AT-MSC cultures. After

3 days of culture, labelled EVs from all three cell

sources were visible inside the AT-MSCs (Fig. 5B–D).

To exclude that DiD micelles or other background

staining would be mistaken for EVs, EV-free PBS was

stained with DiD and processed the same way. No

background staining was visible under the confocal

microscope when the cells had been incubated with the

control (Fig. 5A).

The interaction between AT-MSCs and MC-EVs

and OC-EVs was confirmed by flow cytometry analysis

(Fig. 5E–G). EV-positive AT-MSC fractions could be

A B

D

H I J K

E F G

C

Fig. 1. Phase-contrast microscopy (A,C–E,G–I,K) and stainings for osteoclast-marker TRAcP (B,F,J) of LPS-activated MCs (A–C), osteoclasts

on TCPS (D–G) and osteoclasts on HA coatings (H–K). MC-conditioned medium was collected at 3 days (A,B) and 5 days (C) of culture.

Incomplete osteoclast formation (D) and intact HA coating (H) was observed at 5 days of osteoclast differentiation. Medium was changed

to medium depleted of EVs when osteoclasts had formed (E,I). Osteoclast-conditioned medium was collected 3 days (F,J) and 5 days (G,K)

after changing to EV-depleted medium. Scale bar: 100 lm.
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detected, defined as the fraction of the cells with a flu-

oresence higher than greater than that of 95% of AT-

MSCs incubated with the DiD-labelled control.

Microarray analysis of gene expression by AT-

MSCs cultured in the presence of monocyte- and

osteoclast-derived EVs

The effect of the MC-EVs and OC-EVs on gene

expression patterns in AT-MSCs was analysed using

microarrays. AT-MSCs were exposed to equal

numbers of MC-EVs or OC-EVs for a period of 18

days. The EVs had been isolated from the conditioned

media using the isolation kit. AT-MSCs cultured in

EV-depleted maintenance medium (MM) was the ref-

erence condition. Because gene expression patterns

related to osteoblast differentiation and bone remod-

elling were of interest in this study, we also included

AT-MSCs cultured in established osteogenic culture

conditions (osteogenic differentiation medium, ODM).

A total of 3187 genes were found to be differentially

expressed between the culture conditions (false discov-

ery rate < 0.05; Figs 6 and 7). We performed direct

quantification of nine selected gene transcripts by

quantitative PCR (qPCR) to validate the microarray

findings (Fig. 8). The qPCR analysis was performed

separately for each of the six donor replicates. In every

case, a strong correspondence between the microarray

and qPCR data was observed.

Figure 6 shows a heatmap of the genes that were

differentially expressed between the culture conditions.

Gene expression patterns of samples cultured in

ODM were most distinct from those in other condi-

tions. However, ODM did not result in a gene

expression pattern typical of (differentiating) osteo-

blasts. Osteogenic marker genes like RUNX2 or

ALPL stayed at similar or even slightly lower levels,

although not significant. Expression of BMP2, which

plays an important role in bone development, was

even substantially downregulated in ODM. When the

microarray results were validated by qPCR, BMP2

A B C

D E F

Fig. 2. Transmission electron microscopy images of MC-EVs (A,D), OC TCPS-EVs (B,E) and OC HA-EVs (C,F). Close-ups (D,E,F) of the

regions marked in A, B and C, respectively. Scale bars: 100 nm.

Table 1. EV yield and median particle size based on nanoparticle

tracking analysis.

EV source Median size (Q1–Q3)

Yield�mL�1 of

conditioned medium

LPS-activated MCs

Donor 1 107 nm (86–158) 1.43 9 109

Donor 2 91 nm (77–124) 1.68 9 109

Donor 3 133 nm (107–198) 3.56 9 108

Donor 4 147 nm (112–193) 3.17 9 108

Osteoclasts on TCPS

Donor 1 114 nm (92–149) 1.17 9 1010

Donor 2 126 nm (98–163) 1.96 9 1010

Donor 3 134 nm (112–165) 7.42 9 108

Donor 4 131 nm (108–163) 5.40 9 108

Osteoclasts on HA

Donor 1 126 nm (96–155) 2.35 9 109

Donor 2 121 nm (93–157) 6.03 9 109

Donor 3 120 nm (97–155) 1.24 9 108

Donor 4 135 nm (112–170) 7.87 9 108
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expression levels were significantly lower in ODM

compared to MM (Fig. 8).

The gene expression patterns of cells from donor

pool was similar when these cells had been exposed to

OC TCPS-EVs, OC HA-EVs or when cultured in MM

without EVs (Fig. 6). The gene expression patterns

were more similar between these conditions than with

other donor pools in the same culture condition. This

reflects the similarity between these conditions and the

limited effect of OC-EVs on gene expression patterns

in AT-MSCs. Exposure to either OC TCPS-EVs or

OC HA-EVs, did not lead to significant regulation of

genes relative to EV-depleted MM (Fig. 7).

Stimulation with MC-EVs on the other hand resulted

in 176 upregulated genes and 251 downregulated genes

compared to EV-depleted MM (Fig. 7). Samples

exposed to MC-EVs show great similarity among the

different donor pools (Fig. 6). Genes that were differen-

tially expressed in the presence of MC-EVs showed great

overlap with genes differentially expressed in established

osteogenic induction conditions. Of the 427 genes that

were significantly regulated by MC-EVs, 211 were also

differentially expressed in ODM. The direction of regu-

lation, however, did not necessarily match. Of the 176

genes upregulated by MC-EVs, only 10 were also
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Fig. 3. Distribution of particles in MC-EVs, OC TCPS-EVs and OC HA-EVs according to nanoparticle tracking analysis. Particles were isolated

using the EV isolation kit for blood donors 1 and 2 and by UC for blood donors 3 and 4. UC precipitate from LPS-activation medium and

LPS-supplemented OCDM that had not been in touch with cells (unconditioned medium) were included as negative controls for MC-EVs

and OC-EVs, respectively. Particle concentration in each bin (10 nm in size) is expressed as the number of particles�mL�1 of (un)conditioned

medium from which the particles originate.

Fig. 4. Western blots for EV-associated proteins CD90, TSG101,

CD63 and Hsp70, MC and macrophage marker CD14, RANKL

receptor RANK and endoplasmic reticulum protein calnexin in EVs

and MC lysate.
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upregulated in ODM and 53 genes were downregulated

in ODM. Of the 251 genes downregulated by MC-EVs,

107 were also downregulated in ODM and 41 were

upregulated.

Genes that were significantly upregulated by MC-

EVs include many genes encoding for cytokines

(Fig. 9). More specifically, CXC chemokines, such as

CXCL5 and CXCL3, and interleukin 1 (IL-1) cytoki-

nes, such as IL1RN and IL1B were expressed at higher

levels. In addition, exposure to MC-EVs led to expres-

sion levels of matrix metalloproteinases, such as

MMP3 and MMP1.

To characterize the function of the genes upregulated

by MC-EVs, an enrichment analysis of the genes was

performed by their functional annotation with gene

ontology (Fig. 10). Gene ontology terms for biological

processes reflecting the function of cytokines, such as

regulation of cell motility, positive regulation of cell

migration and positive regulation of immune system

processes were enriched for genes upregulated by MC-

EVs. Gene ontology terms for molecular functions

exerted by cytokines and chemokines in particular were

enriched, as well as the binding of receptors for CXCR

chemokines and IL–1 molecules. Enrichment of the

gene ontology term for metalloendopeptidase activity

reflects the increased expression levels of matrix metal-

loproteinases.

Biochemical analysis of AT-MSCs cultured in the

presence of monocyte- and osteoclast-derived

EVs

Quantification of alkaline phosphatase activity was

employed to evaluate the effect of MC-EVs or OC-EVs

on the early osteogenic differentiation of AT-MSCs

(Fig. 11). The observed effect of established osteogenic

conditions was only small. Exposure to MC-EVs led to

a slightly bigger increase in alkaline phosphatase activ-

ity. We did not observe an effect of OC TCPS-EVs or

OC HA-EVs on alkaline phosphatase activity.

Total collagen production was evaluated by quantifi-

cation of hydroxyproline content in the cell lysate.

ODM induced a small median increase in collagen

production compared to EV-depleted MM. Collagen

content had increased substantially under OC HA-EVs

stimulation for some samples. The effect from MC-

EVs was more consistent among the different donor

replicates causing a median 2-fold increase in collagen

content. We observed a slight decrease in collagen con-

tent when OC TCPS-EVs were used to stimulate AT-

MSCs.

According to Kruskal–Wallis one-way analysis of

variance by ranks, alkaline phosphatase activity and

collagen content were not equal in all conditions

(P = 0.021 and P = 0.0098, respectively).

PBS: 4.7%
MC−EVs: 31.6%

PBS: 4.7%
OC TCPS−EVs: 97.4%

PBS: 4.9%
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Fig. 5. EVs were added to cultures of AT-MSCs and uptake was examined after 72 h using confocal microscopy (A–D) and flow cytometry

(E–G). AT-MSCs were cultured with EV-free PBS control (A), with MC-EVs (B,E), OC TCPS-EVs (C,F) and OC HA-EVs (D,G), all stained

with lipophilic dye DiD. Blue: Hoechst 33342-stained nuclei, green: CellTraceTM CFSE-stained cell membrane, red: DiD-labelled EVs. Scale bar:

25 lm. Percentages denote DiD-positive fraction (grey area) in flow cytometry analysis with 5% overlap with cells cultured in PBS control.
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Gene expression and protein secretion by AT-

MSCs and BM-MSCs cultured in the presence of

monocyte- and osteoclast-derived EVs

Next, we assessed the difference between MSCs iso-

lated from adipose tissues and BM with respect to

their response to MC- and OC-EVs. LPS was added

to both MCs and OCs before the conditioned medium

was collected. EVs were isolated by UC. To control

for the effect of particles coprecipitated with the EVs,

we supplemented the MSC culture medium with UC

precipitate from LPS-activation medium (UC LPS)

and LPS-supplemented osteoclast differentiation med-

ium (UC OCDM) that had not been in touch with

cells. After culturing the AT-MSCs and BM-MSCs in

the presence of the EVs and controls without EVs, we

analysed gene expression using qPCR (Fig. 12). Genes

were chosen because of their relevance in osteoblast

differentiation or because they had been found

differentially expressed in MC-EV-stimulated AT-

MSCs in our microarrays. In addition, we assessed the

secretion of cytokines and soluble intercellular adhe-

sion molecule 1 (ICAM-1) at protein level (Fig. 13).

These experiments confirmed in large the results

obtained from the microarrays. Expression of CXCL5

was increased in the presence of MC-EVs for both

AT-MSCs and BM-MSCs (Fig. 12A). The difference

with UC LPS was statistically significant for BM-

MSCs. MMP1 expression levels were also slightly

increased in AT-MSCs in response to MC-EVs

(Fig. 12B). We did not detect differences in MMP1

expression levels in BM-MSCs in response to EVs.

MMP1 expression by BM-MSCs was substantially

decreased when BM-MSCs were cultured in ODM.

Culture in ODM slightly decreased expression levels of

ICAM1 in AT-MSCs (Fig. 12C), confirming our previ-

ous observation (Fig. 8F). In BM-MSCs on the other

hand, ICAM1 was expressed at significantly higher
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Fig. 6. Heat map generated from

microarray data reflecting the Z-score of

gene expression values of AT-MSCs

cultured in EV-depleted MM, ODM or MM

supplemented MC-EVs, OC TCPS-EVs or

OC HA-EVs. Red denotes high gene

expression and blue denotes low gene

expression. The microarray was performed

using three distinct pools per condition (a,b

and C), assembled from five donor cell

replicates. The dendogram illustrates the

arrangement of clusters produced by

hierarchical clustering.
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levels in ODM than in MM. ICAM1 expression was

higher in the presence of EVs than in MM for both

MSC types, but a similar effect was seen in AT-MSCs

when cultured with UC precipitate without EVs. Stim-

ulation of BM-MSCs with MC-EVs and OC TCPS-

EVs caused a substantial increase in expression of

ICAM1 compared to the controls without EVs.

Expression of osteogenic marker genes ALPL and

RUNX2 were not affected by our experimental

conditions (Fig. 12D,E). BM-MSCs expressed RUNX2

at higher levels than AT-MSCs.

Monocyte-EVs stimulated the secretion of cytokines

by AT-MSCs, confirming our microarray results

(Fig. 13A–C). MC-EVs also increased cytokine secre-

tion by BM-MSCs, although the effect was less appar-

ent than for AT-MSCs. Due to the high variability

between the three donor repeats, no statistically signifi-

cant differences were found between the protein
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secretion by MSC-EV-stimulated AT-MSCs and the

control (UC LPS). The conditioned medium from

MSCs cultured with OC TCPS-EVs also contained

slightly elevated levels of cytokines. The chemokines

CCL2 (chemokine [C–C motif] ligand 2) and IL8 were

already present in the OC TCPS-EV-supplemented

medium. Chemokines CCL5, chemokine [C–X–C
motif] ligand 9 (CXCL9) and CXCL10 were not

detected by the human chemokine kit.

Mesenchymal stem/stromal cells secreted soluble

ICAM-1 in response to MC-EVs and OC-EVs

(Fig. 13D). ICAM-1 secretion in response to the EVs

showed similarities with cytokine secretion. AT-MSCs

secreted the most ICAM-1 in response to MC-EVs,

just like we observed for cytokines. Highest ICAM-1

concentrations in BM-MSC-conditioned medium were

measured from cultures with OC-TCPS-EVs, but like

cytokines, soluble ICAM-1 was already present in the

OC TCPS-EV-supplemented medium before MSCs

were cultured.

Discussion

Tight control of bone remodelling through cellular

interactions is essential to ensure that new bone is

formed with only temporary bone loss. Many cell types

and molecular mechanisms contribute to coupling

between bone resorption and bone formation [3]. EVs

from mononuclear phagocytes most likely have a role in

maintaining bone homeostasis [17]. EVs from LPS-

activated MCs for instance, were found to increase

expression levels of osteogenic marker genes RUNX2,
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BMP2 and BGLAP and were suggested to constitute an

additional mode of cell-cell signalling during the transi-

tion from injury and inflammation to bone regeneration

[20]. OCs couple their bone-resorbing activity to the

activity of osteoblasts by providing signals that promote

osteogenic differentiation of MSCs and coordinate

osteoblastic bone formation [14–16]. We wanted to find

out if the osteoinductive signals from OCs to MSCs are

partially carried by EVs.

We compared the effects of EVs from LPS-activated

MCs and OCs at a genome-wide scale. Unlabelled

MCs were obtained by depletion of non-MCs using a

cocktail of antibody-conjugated microbeads. Positive

selection of CD14+ MCs using anti-CD14 microbeads

would block CD14, which functions as a receptor for

LPS [21]. This would lead to an inability of the MCs

to be activated by LPS stimulation, which is thought

to lead to more profound and prolonged osteoinduc-

tive signalling to MSCs [22]. When experiments were

repeated, we also added LPS to the OC cultures to

make comparison between the effects of MC-EVs and

OC-EVs more straightforward. We hypothesized that

EVs represent a part of the osteoinductive signals from

OCs to MSCs that depends on the resorption activity
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by OCs [16]. Mineral resorbing OCs were therefore

included as an EV source. OCs were activated for min-

eral resorption by culturing them on coatings of HA.

EV isolation method affected EV yield, but did

not change the response in MSCs

We used a kit to isolate the EVs from the cell-

conditioned medium for the microarray experiments.

The isolation kit works by lowering the hydration of the

EVs, thereby reducing their solubility and allowing pre-

cipitation of the EVs at lower centrifugal forces. The

main advantage of this type of kits is the ability to iso-

late EVs from a large volume of conditioned medium in

a relatively short period of time. However, these kits

usually give lower purity than e.g. UC, as the solubility

of almost all particles decreases equally [23]. When we

repeated the experiments and included BM-MSCs

exposed to the EVs, we had isolated the EVs by UC.

The particle yield in the UC precipitate was much lower

than in the kit’s isolate (Fig. 3 and Table 1). It is possi-

ble that most particles isolated using the kit were not

EVs. Nevertheless, experiments using kit isolates and

using EVs obtained by UC lead to similar results. We

included EV-free controls for UC and obtained rela-

tively high background levels. The effects of coprecipi-

tated particles on gene expression and cytokine

secretion by MSCs, though, were still minor compared

to the effects of the EVs, especially MC-EVs.

More EVs were obtained from OCs on TCPS, with

the exception of blood donor 4. The higher yield from

OCs on TCPS than on the HA coatings could be

explained by better attachment of the cells on TCPS,

resulting in higher cell proliferation than on HA. Con-

sequently, more cells were available to produce EVs.

EV isolates were enriched in exosomes and were

free of cell debris

Detection and characterization of EVs in a standard-

ized manner have proven difficult [24]. EV are there-

fore often characterized using a combination of

methods. We identified EVs based on their size, pres-

ence of proteins and their biological activity according

to the minimal criteria parameters recommended by

the International Society of EVs [25]. Overall,

morphology and size distribution of the particles indi-

cated an enrichment in exosomes, EVs of endosomal

origin between 40 and 100 nm in diameter [26].

The presence of CD90 argues for the presence of

membrane in the isolate and is a general EV marker [25]

(Fig. 4). EVs can bear Hsp70 when they are exposed to

stress conditions [27], and could be upregulated upon

LPS stimulation [28]. The presence of TSG101 is more

specific for exosomes: TSG101 is required for the sort-

ing of cargo into exosomes [29]. Interestingly, there was

a strong signal from tetraspanin CD63 in OC-EVs,

while it was almost absent in MC-EVs. Tetraspanins are

widely used as exosome markers, because of their role in

biogenesis, assembly, and sorting of protein and genetic

material into exosomes [27]. Our other results do, how-

ever, not suggest a shift in EV population from

microvesicles to exosomes when MCs differentiate

towards OCs. This shows the difficulty in finding com-

mon EV/exosome marker proteins for EVs derived from

different cell types, even if those cells stem from the

same population.

Monocyte-EVs and OC-EVs were both positive for

CD14, reflecting the cell membrane of the MC and

shows that CD14 is still expressed on the EV surface

once MCs have differentiated into OCs. In accordance

with Huynh et al. [30], we detected RANK in the EVs

from mature OCs. The RANK-rich EVs may function

by competing with RANK+ OC precursors for

RANKL, thereby inhibiting their own formation [30].

The MC-EVs also expressed RANK, contrary with the

previously reported RANK-negative EVs from primary

mouse marrow-derived OC precursors [30]. This shows

that precursor cells derived from different tissues and

animals might differ in the EVs they produce and the

way these EVs function in regulating differentiation.

As mentioned above, impurities in the samples

might affect the results. We can rule out major con-

taminations consisting of cell debris, because endoplas-

mic reticulum protein calnexin was absent.

Isolated monocyte- and osteoclast-derived EVs

were functional and adipose tissue-derived MSCs

are one of their targets

Apart from sample purity, it is important that the iso-

lated EVs are functional. Our results show that the

Fig. 12. Quantitative PCR analysis of gene expression of CXCL5 (A), MMP1 (B), ICAM1 (C), ALPL (D) and RUNX2 (E) in AT-MSCs (pink fill)

and BM-MSCs (blue fill). MSCs were cultured in EV-free MM, ODM or exposed to MC-EVs, OC TCPS-EVs or OC HA-EVs. In addition,

MSCs were cultured in MM supplemented with UC LPS or UC OCDM. Gene expression levels (log2 scale) are shown relative to the

median gene expression in MM. Pink and blue bars indicate median expression for AT-MSCs and BM-MSCs, respectively. *False discovery

rate-controlled P-value < 0.05, based on paired t-tests for CXCL5 expression in BM-MSCs between MC-EVs and UC LPS (A) and for ICAM1

expression in BM-MSCs between ODM and MM (C).
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isolated EVs were able to interact with target cells: AT-

MSCs took up both MC-EVs and OC-EVs (Fig. 5).

The same was previously found for BM-MSCs that

took up EVs from LPS-activated MCs [20]) and den-

dritic cells [31], another mononuclear phagocytic cell

type. These results suggest that many, if not all,

mononuclear phagocytes interact with MSCs through

their EVs. The EVs were found in clusters close to the

nuclei, suggesting active endocytosis of the EVs leading

to processing of their molecular cargo [31]. Other
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Fig. 13. Protein concentrations of CCL2 (A), IL-8 (B), IL-6 (C) and soluble ICAM-1 (D) measured using cytometric bead arrays in the AT-MSCs
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mechanisms of interaction with the AT-MSCs cannot

be ruled out, such as EV-mediated activation of mem-

brane-bound receptors that trigger signalling pathways,

or fusion with the cell membrane leading to release of

the EV cargo into the cell cytoplasm [24].

Ekstr€om et al. [20] found that uptake of MC-EVs

by BM-MSCs differed largely between cells within the

same culture and also between different experiments.

Uptake of EVs could be affected by proliferation sta-

tus and membrane composition [20]. Differences in

uptake efficiency between the EVs of different origin

were not the main interest of this study and would

require a different experimental set-up. Conclusions

EV-MSC interaction based on different numbers of

DiD-labelled EVs inside the AT-MSCs (Fig. 5A–D) or

on EV-positive AT-MSC fractions (Fig. 5E–G) should

therefore be taken with care.

Isolated monocyte- and osteoclast-derived EVs

carry different signals to MSCs

Current scientific literature is not unanimous about the

effects of EVs derived from mononuclear phagocytes

on MSCs. EV derived from LPS-activated MCs were

reported to stimulate osteogenic differentiation of

MSCs [20] and similar results have been reported for

dendritic-cell derived EVs [32]. Silva et al. [31] on the

other hand did not find any effects of dendritic-cell

derived EVs on osteogenic differentiation, despite the

accumulation of these EV inside the MSCs. Also the

interactions between OCs, osteoblasts and mesenchy-

mal precursors partially take place through tranfer of

EVs. These interactions can also inhibit osteoblast

activity, as OC-EVs are able to transfer miR-214-3p to

inhibit osteoblast activity in vitro and reduce bone for-

mation in vivo [33,34].

In the present study, we did not observe a significant

effect of OC-EVs on gene expression in MSCs (Fig. 7).

We chose to culture the AT-MSCs in equal numbers

of MC- and OC-EVs in the microarray experiments, in

order to compare their potency to change AT-MSC

gene expression. When we analysed gene expression

and protein secretion by AT-MSCs and BM-MSCs,

we used EVs isolated from the same volume of condi-

tioned medium so that they came from cultures with

the same number of initially seeded MCs. OC-EVs did

not have or had a smaller effect than MC-EVs, at least

for the genes and proteins that we analysed (Figs 12

and 13). We cannot exclude that OC-EVs trigger sig-

nalling pathways different from the ones activated by

MC-EVs, but that we would only detect if we had

used more EVs. Characterizing the molecular cargo

carried by MC-EVs and OC-EVs would provide

insight in how the regulating potential of EVs changes

when MCs differentiate into OCs.

Monocyte-derived EVs promote the secretion of

various cytokines in MSCs, representing an

immunomodulatory mechanism

Mesenchymal stem/stromal cells interact with the

immune system by secreting anti-inflammatory factors,

as well as by expressing cell surface molecules that

suppress the maturation, activation and function of

immune cells [35]. Their immunosuppressive properties

make MSCs a relevant cell source when considering

immunomodulation therapies and allogeneic stem cell

treatments [36]. The immunosuppressive effects of

MSCs are at least partially mediated by EVs [37].

Here, we show that MC-EVs upregulated the secretion

of various cytokines by MSCs. Chemokine secretion

by MSCs may represent an immunomodulatory mech-

anism in which chemotaxis brings specific immune cell

subsets in close proximity to MSCs, which makes them

more susceptible for the immunosuppressive actions of

MSCs [38,39]. The response to MC-EVs was stronger

in AT-MSCs than in BM-MSCs, reflecting the greater

immunomodulatory potency of AT-MSCs [36].

Exposing MSCs to the UC precipitate of uncondi-

tioned LPS-supplemented medium (UC LPS and UC

OCDM) did not affect gene expression nor protein

secretion, except for ICAM1 expression and the secre-

tion of its protein product in AT-MSCs. We suspect

that traces of LPS in the UC precipitate upregulated

the expression of ICAM1. Upregulation of ICAM1 in

response to LPS has been long known in epithelial

cells [40–42], but has so far not been reported in

MSCs. LPS can suppress the osteogenic differentiation

potential of MSCs through the Toll-like receptor 4

mediated nuclear factor jB pathway [43]. The differen-

tiation potential of BM-MSCs, however, is not

affected by LPS, showing that the response to LPS is

dependent on the tissue source of the MSCs [43]. Like-

wise, in the present study, ICAM1 expression in BM-

MSCs was not affected by UC LPS and UC OCDM.

Addition of EVs did not lead to differential expression

of ICAM1 compared to the aforementioned controls.

Monocyte-derived EVs upregulated expression of

MMPs and might drive tissue remodelling

processes

After OCs have finished resorbing a packet of bone,

collagen fibrils are left in the resorption pit that pro-

trude from the bone surface. The collagen fibrils need

to be removed before new bone formation can take
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place [44]. It has long been unknown which cells are

responsible for the removal of these collagen fibrils.

Given that mononuclear cells (lymphocytes and MCs)

reside near the bone surface, it has been suggested that

mononuclear phagocytes are involved in their removal

[45]. Our data confirm that MCs might play a role by

stimulating collagen removal through EV-mediated sig-

nalling. MC-EVs upregulated the expression of

MMPs, thereby stimulating processes related to the

reorganization of the extracellular matrix structure, in

particular the removal of collagens. We show that

MMPs are overexpressed in MSCs, suggesting that

cells of mesencymal lineages start to remove collagens

in response to the presence and activation of MCs.

These results confirm the suggestion that bone lining

cells clean the bone surface before new bone formation

takes place [44]. Bone lining cells are mesenchymal

cells and although bone lining cells do not form bone,

they belong to the same lineage as osteoblasts.

Although speculative, signals from MCs, combining

both soluble factors and MC-EV interactions, may

direct MSCs to differentiate towards bone lining cells.

Our results show the importance of EV-mediated

signalling between MCs and MSCs for controlling the

function of the immune system. The promotion of

cytokine secretion by MC-EVs may enhance the

immunosuppressive actions of the MSCs. EV-mediated

signalling might represent an additional mode of inter-

cellular communication during the transition from

injury and inflammation to bone regeneration. The

upregulation of MMPs suggests an important role of

MC-EVs in the coupling between bone resorption and

bone formation. Characterizing the molecular cargo

carried by MC-EVs and OC-EVs would provide

insight in how the regulating potential changes of the

EVs when MCs differentiate into OCs.

Conclusion

Our results show the importance of EV-mediated sig-

nalling between MCs and MSCs for controlling the

function of the immune system. MC-EVs promoted the

secretion of various cytokines by MSCs. Chemokine

secretion by MSCs may represent an immunomodula-

tory mechanism in which chemotaxis brings specific

immune cell subsets in close proximity to MSCs, which

makes them more susceptible for the immunosuppres-

sive actions of MSCs. MC-EVs form promising pro-

spects for the development of MSC-based immune

therapy by enhancing the immunosuppressive actions of

the MSCs.

Monocyte-EVs upregulated the expression of MMPs,

thereby stimulating processes related to the reorgani-

zation of the extracellular matrix structure. Signals

secreted by MCs may direct MSCs to differentiate

towards bone lining cells. EV-mediated signalling might

represent an additional mode of cell-cell signalling dur-

ing the transition from injury and inflammation to bone

regeneration and play an important role in the coupling

between bone resorption and bone formation.

In the present study, we did not observe a significant

effect of OC-EVs on gene expression in MSCs. We

cannot exclude that OC-EVs trigger signalling path-

ways different from the ones activated by MC-EVs.

Characterizing the molecular cargo carried by MC-

EVs and OC-EVs would provide insight in how the

regulating potential changes of the EVs when MCs dif-

ferentiate into OCs.

Material and methods

Preparation of hydroxyapatite coatings in 24-well

culture plates

Hydroxyapatite coatings were deposited in 24-well culture

plates in a two-step procedure consisting of precalcification

and crystal growth as described by Patntirapong et al. [18].

The 24-wells were precalcified using a 3 9 concentrated

simulated body fluid (SBF 9 3) into each well. SBF 9 3

was prepared by mixing calcium solution (820 mM NaCl,

8.9 mM MgCl2�6H2O, 105 mM CaCl2�2H2O) and phosphate

solution (25 mM NaHCO3, 1.9 mM NaHPO4�2H2O), both

of which were prepared in 50 mM Tris HCl buffer solution

at pH 7.4. Freshly prepared SBF 9 3 solution was added

to each well (1.5 mL) and refreshed daily during a 3-day

incubation period at room temperature. This resulted in the

formation of a thin amorphous calcium phosphate coating

that acted as nucleation layer for crystal growth in the sec-

ond step. At the end of the precalcification, the wells were

thoroughly washed in distilled H2O and dried at 50 °C.
In the second step, calcium phosphate solution was pre-

pared by dissolving 140 mM NaCl, 4 mM CaCl2�2H2O and

2.6 mM NaHPO4�2H2O in 50 mM Tris HCl buffer at pH

7.4. Calcium phosphate solution was added to the precalci-

fied wells (1.5 mL) and refreshed daily during a 3-day incu-

bation period at room temperature. The resulting HA

coatings resemble the mineral component of bone. The HA

coated wells were thoroughly washed in distilled H2O and

dried at 50 °C. Before use for cell cultures, the wells were

sterilized by soaking in 70% ethanol and drying under

ultraviolet light for 20 min.

Isolation of human monocytes

Human buffy coats were obtained from the Finnish Red

Cross Blood Service (Helsinki, Finland). Buffy coats were

left from the processing of blood collected from healthy
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voluntary blood donors. Before blood donation, donors are

informed that blood samples that are not required for

patient treatment can be used anonymously for research

work. The use of buffy coats for this project was approved

by the ethical committee of the Finnish Red Cross Blood

Service. The study methodologies conformed to the stan-

dards set by the Declaration of Helsinki.

Monocytes were isolated from 40 mL of buffy coat in a

two-step procedure [46]. Briefly, peripheral blood mononu-

clear cells (PBMCs) were extracted from the buffy coats by

gradient centrifugation. The buffy coat was diluted 1 : 1 with

PBS and gently layered on top of LymphoprepTM (StemCell

Technologies, Vancouver, Canada). The gradient was cen-

trifuged for 30 min at 800 g with the brake off. The PBMC

layer was collected and washed several times with PBS.

Monocytes were isolated from the PBMC fraction by

depletion of non-MCs (negative selection) using a MC

Isolation kit II (Miltenyi Biotech, Bergisch Gladbach, Ger-

many) according to the manufacturer’s instructions. Briefly,

non-MCs were indirectly magnetically labelled with a

cocktail of biotin-conjugated monoclonal antibodies against

CD3, CD7, CD16, CD19, CD56, CD123 and Glycophorin

A. Anti-biotin monoclonal antibodies conjugated to

microbeads were used to magnetically label non-MCs

which were then retained in a magnetic field.

Culture of monocytes and generation of

osteoclasts

Monocytes were plated at a density of 1.5 9 105 cells�cm�2

in 24-well plates, either on TCPS or coatings of HA. MCs

were either activated by culturing in MM supplemented

with 10 ng�mL�1 LPS (LPS-activation medium, Table 2) or

stimulated to generate OCs in OCDM (Table 2). The cells

were cultured at 37 °C and 5% CO2 in a humidified atmo-

sphere. The culture medium was refreshed every 2–3 days.

LPS-activated MCs were cultured in EV-depleted medium

from the start of the culture. The OC differentiation cul-

tures were changed to EV-depleted OCDM once OCs had

formed. EV-depleted OCDM was supplemented with LPS

for the culture of cells from blood donors 3 and 4. EV-

depleted medium was prepared with FBS depleted of EVs

by UC for 19 h at 120 000 g (26 000 r.p.m. in an Optima

LE-80K ultracentrifuge equipped with an SW-28 swinging-

bucket rotor, Beckman Coulter, Inc., Brea, CA, USA).

At the beginning of the conditioned medium collection,

samples were taken by fixing of the cells in 4%

paraformaldehyde (Sigma-Aldrich, Saint Louis, MO, USA).

To confirm the formation of OCs, the cells were stained for

IC-specific marker TRAcP using the Leucocyte acid phos-

phatase kit (Sigma-Aldrich) according to the manufacturer’s

instructions. During the culture and after the staining, cells

were monitored and imaged using a Nikon Eclipse TS100

inverted phase-contrast microscope (Nikon Corporation,

Tokyo, Japan) equipped with a Nikon DS-Fi2 camera.

Collection of monocyte- and osteoclast-condition

medium and isolation of extracellular vesicles

The conditioned medium was collected from the LPS-acti-

vated MCs at 3 and 5 days of culture. The conditioned

medium from OCs was collected 3 days and 5 days after

changing to EV-depleted medium. The conditioned medium

was depleted of cell debris by centrifuging for 20 min at

2500 g and the supernatant was filtered through a 0.45 lm
sterile filter (Merck, Darmstadt, Germany).

For blood donors 1 and 2, EVs were isolated from

the conditioned medium using an isolation kit. The miR-

CURYTM Exosome Isolation Kit (Exiqon A/S, Vedbæk,

Denmark) was used according to the manufacturer’s

instructions. Briefly, hydration of particles was diminished

by mixing the media with the precipitation buffer provided

in the kit. After incubation at 4 °C for minimally 1 h, the

EVs were precipitated by centrifugation at 3000 g for

30 min. The supernatant was removed and the pellet was

resuspended in the resuspension buffer provided in the kit.

EVs were stored at �75 °C until further use.

For blood donor 3 and 4, EVs were isolated from the con-

ditioned medium by UC for 2 h at 120 000 g. The UC precip-

itate was washed by adding a large volume of filtered PBS

(0.1 lm filter), after which UC was repeated. EVs were resus-

pended in filtered PBS and stored at �75 °C until further use.

Characterization of monocyte- and osteoclast-

derived extracellular vesicles

Monocyte-EVs, OC TCPS-EVs or OC HA-EVs were char-

acterized using transmisssion electron microscopy, nanopar-

ticle tracking analysis and western blotting.

Table 2. The compositions of media used in the study

MM DMEM/F-12 with GlutaMAXTM

(Gibco�, Thermo Fisher Scientific), 10%

FBS (Gibco�), 100 units�mL�1 penicillin

and 100 lg�mL�1 streptomycin (Gibco�)

EV-depleted MM DMEM/F-12 with GlutaMAXTM, 10%

EV-depleted FBS, 100 units�mL�1

penicillin and 100 lg�mL�1 streptomycin

LPS-activation medium EV-depleted MM, 10 ng�mL�1 LPS

(Escherichiea coli O111: B4, Merck

Millipore, Billerica, MA, USA)

(EV-depleted) OCDM (EV-depleted) MM, 10 ng�mL�1

recombinant human macrophage

colony-stimulating factor (M-CSF, R&D

systems), 20 ng�mL�1 RANK-L

(Peprotech, Rocky Hill, NJ, USA),

(10 ng�mL�1 LPS)

EV-depleted ODM EV-depleted MM, 50 lM L-Ascorbic acid

2-phosphate (Sigma-Aldrich), 10 mM

b-glycerophosphate disodium

salt hydrate (Sigma-Aldrich), 100 nM

dexamethasone (Sigma-Aldrich)
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Extracellular vesicles were washed by diluting in PBS

and ultracentrifuged for 2 h at 120 000 g. The EV samples

were resuspended in PBS and prepared for transmisssion

electron microscopy as described previously [47]. After

loading to 200 mesh copper grids and fixation with 2%

paraformaldehyde in 0.1 M NaPO4 buffer (pH 7.0), samples

were washed with the 0.1 M NaPO4 buffer and deionized

water, negatively stained with 2% neutral uranyl acetate

and embedded in methyl cellulose uranyl acetate mixture

(1.8/0.4%). Samples were viewed with transmisssion elec-

tron microscopy using Tecnai 12 (FEI Company, Eind-

hoven, the Netherlands) operating at 80 kV. Images were

taken with Gatan Orius SC 1000B CCD-camera (Gatan

Inc., Pleasanton, CA, USA) with 4008 9 2672 px image

size and no binning.

Nanoparticle tracking analysis was used to quantify and

determine the size distribution of particles in the EV sam-

ples. EV samples were diluted in PBS and injected into

the NanoSight LM14 (NanoSight Ltd., Salisbury, UK)

equipped with a blue laser (405 nm, 60 mW) and a sCMOS

camera. Three videos of 60 s (1498 frames each) were

recorded and analysed using NANOSIGHT software v3.0 (Par-

ticular Sciences Ltd, Dublin, Ireland). Particles between 50

and 400 nm in diameter were considered EVs.

Western blotting was performed as described previously

[47]. The following antibodies were used: mouse anti-Thy1

(CD90; Sigma-Aldrich, clone 3F9, 1 : 500), rabbit anti-

TSG101 (Sigma-Aldrich, polyclonal, SKU HPA006161, 1 :

500), mouse anti-Hsp70 (BD Biosciences, Becton Dickin-

son, Franklin Lakes, NJ, USA, clone 5G10, 1 : 1000),

mouse anti-CD63, (BD Biosciences, clone H5C6, 1 : 1000),

mouse anti-CD14 (R&D systems, Minneapolis, MN, USA,

clone 134603, 1 : 1000), mouse anti-RANK (receptor acti-

vator of nuclear factor the conditioned medium using an j-
B; Novus Biologicals, Littleton, CO, USA, clone 9A725, 1 :

1000) and rabbit anti-calnexin (Cell Signaling Technology,

Leiden, the Netherlands, clone C5C9, 1 : 800). EVs were

isolated by UC from equal volumes of conditioned medium

and loaded to the gel. Protein from MC lysate was loaded

to the gels as a control. EV samples were denatured at

95 °C for 5 min in reducing Laemmli sample buffer, sepa-

rated using Mini-PROTEAN� TGXTM 4–20% gradient

SDS/PAGE gels (Bio-Rad, Hercules, CA, USA) with page

ruler prestained protein ladder (Thermo Fisher Scientific,

Waltham, MA, USA) as a standard and blotted on Immo-

bilon-P poly(vinylidene difluoride) membrane (Merck).

Blocking and antibody incubations were performed in

Odyssey blocking buffer (LI-COR BioSciences, Lincoln,

NE, USA) without and with 0.1% Tween-20, respectively.

Membranes were subsequently probed with IRDye�
800CW Goat anti-Mouse (LI-COR) at 1 : 15 000 for 2 h

at room temperature. After incubation, membranes were

washed three times in TBS-T for 10 min at room tempera-

ture and imaged on an Odyssey FC Imager (LI-COR).

Anti-CD63 was applied to nonreduced samples.

We have submitted all relevant data of our EV experi-

ments to the EV-TRACK knowledgebase (EV-TRACK ID:

EV170018) [48].

Isolation and characterization of adipose tissue-

derived and bone marrow-derived mesenchymal

stem/stromal cells

The use of human MSCs confirmed to the standards set by

the Declaration of Helsinki.

Human AT-MSCs were obtained from water-assisted

lipotransfer liposuction aspirates [49] from nine female

donors (median age 44.5, range: 32–60) using mechanical

and enzymatic isolation as described previously [50]. The

study was carried out under approval of the ethical com-

mittee of Helsinki and Uusimaa Hospital District and with

informed consent from the donors.

Human BM-MSCs were isolated as described previously

with slight modifications [51]. BM was obtained under

approval of the ethical committee of the Pirkanmaa Hospi-

tal District (R15174) and the written consent of the

patients. The BM was diluted 1 : 3 with Dulbecco’s PBS

(Gibco�; Thermo Fisher Scientific). The mixture was lay-

ered on a Histo Paque-1077 (Sigma-Aldrich) cushion and

centrifuged at 800 g for 20 min at room temperature.

Mononuclear cells were collected from the liquid interface

and washed with aMEM (Lonza, Basel, Switzerland).

The MSCs were expanded in MM (Table 2) at 37 °C
and 5% CO2 in a humidified atmosphere.

After expansion, MSCs were characterized using a BD

AccuriTM C6 flow cytometer (Becton Dickinson) to confirm

the mesenchymal origin of the cells. We used monoclonal

antibodies conjugated with allophycocyanin against CD14

(clone M5E2, 1 : 25), CD19 (clone HIB19, 1 : 25), CD34

(clone 581, 1 : 33), CD45RO (clone UCHL1, 1 : 33), CD54

(clone HA58, 1 : 33), CD73 (clone AD2, 1 : 143), CD90

(clone 5E10, 1 : 330), CD105 (clone 266, 1 : 100) and

HLA-DR (clone G46-6, 1 : 25), all purchased from BD

PharmingenTM (Becton Dickinson). Analysis was performed

on 1 9 105 events per sample and positive expression was

defined as the level of fluorescence > 99% of the corre-

sponding unstained cell sample.

Adipose tissue-MSCs and BM-MSCs demonstrated high

expression of CD73 (ecto-50-nucleotidase), CD90 (Thy-1)

and CD105 (endoglin) and no or low expression of CD14

(MC and macrophage marker), CD19 (dendritic cell mar-

ker), CD45 (pan-leucocyte marker) and HLA-DR (human

leucocyte antigen class II; Table 3). Moderate expression of

CD34 (haemopoetic progenitor cell antigen) and CD54

(ICAM-1) in AT-MSC conforms to previous reports for cul-

ture in FBS [52]. The results showed that MSCs expressed

most of the specific antigens that define human stem cells of

mesenchymal origin according to the criteria set by the Mes-

enchymal and Tissue Stem Cell Committee of the ISCT [53].
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Uptake of monocyte- and osteoclast-derived EVs

by adipose tissue-derived mesenchymal stem/

stromal cells

Extracellular vesicles were labelled in 1 lM DiD lipophilic

dye (Thermo Fisher Scientific) for 1 h at room tempera-

ture. The unbound dye was removed by adding a large vol-

ume of PBS and UC for 2 h at 120 000 g. The washing

step was performed twice before resuspending the EV pellet

in EV-depleted MM. DiD-labelled PBS without EVs was

processed the same way to serve as a control.

Adipose tissue-MSCs from donor 7 were seeded in 8-well

chamber slides (Ibidi GmbH, Planegg, Germany) at pas-

sages 4 or 7 and 1 9 104 cells�cm�2. The cells were allowed

to attach in MM overnight before the medium was changed

to EV-depleted MM supplemented with 3 9 109 DiD-

labelled EVs�mL�1 based on nanoparticle tracking analysis

(1.5 9 105 EVs per cell), or to EV-depleted MM supple-

mented with the PBS control. After 3 days, the cells were

labelled with 5 lM CellTraceTM CFSE dye (Thermo Fisher

Scientific) and 1 lg�mL�1 Hoechst 33342 (Sigma-Aldrich),

both for 20 min at 37 °C. The cells were washed prior to

imaging. Microscopy was performed on a TCS CARS SP8

confocal microscope (Leica Microsystems GmbH, Wetzlar,

Germany) with a 639 water immersion objective.

After imaging, cells were detached by trypsin treatment

and analysed by flow cytometry (BD Accuri� C6). DiD

fluorescence intensity was detected using the FL4 channel

(675/25 nm laser). The data were analysed and visualized

using R Statistical Software (R Foundation for Statistical

Computing, Vienna, Austria).

Exposure of adipose tissue-derived and bone

marrow-derived mesenchymal stem/stromal cells

to monocyte- and osteoclast-derived EVs

Adipose tissue-MSCs and BM-MSCs were seeded in 96-well

plates at passages 4–6 and 2.5 9 103 cells�cm�2. The cells

were allowed to attach in MM overnight before the medium

was changed to EV-depleted MM supplemented with

3 9 109 EVs�mL�1 based on nanoparticle tracking analysis

(6 9 105 EVs per cell). Cells cultured in EV-depleted MM

and cells cultured in EV-depleted ODM (Table 2) were used

as controls. In addition, we supplementing the MSC culture

medium with UC precipitate from LPS-activation medium

(UC LPS) and LPS-supplemented OCDM (UC OCDM)

that had not been in with cells, to control for the effect of

particles from the culture media coprecipitated with the

EVs.

The cells were cultured at 37 °C and 5% CO2 in a humidi-

fied atmosphere for 18 days or 19 days, during which the

medium was refreshed every 2–3 days. Each time, EVs were

freshly added. At the end of the culture, the wells were

washed in PBS and the contents were collected for analysis.

For analysis of protein secretion, the MSC-conditioned med-

ium was collected, depleted of cell debris by centrifuging for

20 min at 2500 g and stored at �75 °C until further use.

Gene expression analyses by microarrays and

quantitative PCR

Total RNA was isolated from MSCs using the miRCUR-

YTM RNA Isolation Kit (Exiqon A/S) according to the

manufacturer’s instructions. Concentration and purity of

RNA was measured with the Agilent 2200 TapeStation

(Agilent Technologies, Foster City, CA, USA) or Nano-

Drop-1000 (Thermo Fisher Scientific).

For the microarray analysis, the RNA from 5 AT-MSC

donors (donor 1–5) was pooled into three distinct pools per

condition. The starting amount of total RNA was 100 ng.

cDNA was generated using GeneChip� WT Plus Reagent

Kit (Affymetrix, Inc., Santa Clara, CA, USA). Micorarray

analysis was performed using Clariom D Human Arrays

(Affymetrix), which contain 135 750 human gene probes.

Moderated paired t-tests were performed using the limma

package in R based on Bayesian statistics and fitting of data

to a linear model [54]. A false discovery rate of < 0.05 was

used to filter differentially expressed genes between treat-

ments and control (EV-depleted MM). A heat map was

generated using the expression values of differentially

Table 3. Surface marker expression by AT-MSCs and BM-MSCs used in this study. Cells were defined positive for a surface marker if the

fluorescence level was > 99% of the corresponding unstained cell sample. CD, cluster of differentiation.

Median positive expression (min–max)

CD AT-MSCs (n = 9) BM-MSCs (n = 3)

CD14 LPS receptor, MC and macrophage marker 0.2% (0.0–0.5) 0.2% (0.2–0.4)

CD19 B-lymphocyte surface antigen B4 0.1% (0.0–0.2) 0.1% (0.1–0.2)

CD34 Protein tyrosine phosphatase receptor type C, leucocyte common antigen 13.0% (0.0–38.0) 0.2% (0.1–3.1)

CD45 Protein tyrosine phosphatase receptor type C, leucocyte common antigen 0.2% (0.0–0.7) 0.2% (0.2–0.3)

CD54 ICAM-1 60.8% (3.0–92.2) 13.3% (10.0–14.4)

CD73 ecto-50-nucleotidase 100.0% (96.8–100.0) 99.4% (99.1–99.8)

CD90 Thy-1 T-cell surface glycoprotein 99.9% (96.0–100.0) 97.6% (97.6–97.6)

CD105 Endoglin, part of the TGF beta receptor complex 98.1% (92.0–99.8) 97.3% (95.2–97.4)

HLA-DR Human leucocyte antigen – antigen D related 0.4% (0.1–1.2) 1.5% (0.8–1.6)
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expressed genes transformed to Z-scores and subsequent

hierarchical clustering based on Euclidean distances.

The microarray data discussed in this publication have

been deposited in NCBI’s Gene Expression Omnibus [55]

and are accessible through GEO Series accession number

GSE102401.

Functional enrichment was assessed by enrichment analy-

sis of gene ontology terms for genes differentially expressed

in the presence of MC-EVs compared to control (EV-

depleted MM). GOSTATS package (v3.5) for R was used to

compute the hypergeometric test and detect significantly

over-represented biological processes and molecular func-

tions affected by changes in the transcriptome [56]. Each list

of differentially expressed transcripts was tested against the

total list of transcripts in our analysis after filtering out tran-

scripts without Entrez Gene ID or gene ontology annotation.

Gene expression was analysed using qPCR. Total RNA

was converted into cDNA by reverse transcription using a

High-Capacity cDNA Reverse Transcription Kit (Thermo

Fisher Scientific). The expression of specific genes was

quantified using TaqMan� assays (Thermo Fisher Scien-

tific) for the following genes: aggrecan (ACAN, assay ID

Hs00153936_m1), alkaline phosphatase, liver/bone/kidney

(ALPL, assay ID Hs01029144_m1), bone morphogenetic

protein 2 (BMP2, assay ID Hs00154192_m1), collagen

type XV alpha 1 chain (COL15A1, assay ID Hs00266332_

m1), C–X–C motif chemokine 5 (CXCL5, assay ID

Hs00171085_m1), fibrinogen like 2 (FGL2, assay ID

Hs00173847_m1), ICAM1 (assay ID Hs00164932_m1), inte-

grin subunit alpha 3 (ITGA3, assay ID Hs01076879_m1),

matrix metallopeptidase 1 (MMP1, assay ID Hs00899658_

m1) and runt-related transcription factor 2 (RUNX2, assay

ID Hs01047973_m1). Genes were selected based on their

established relevance to osteogenesis, or based on their dif-

ferential expression in the presence of EVs compared to

EV-depleted MM in our array data. The PCR reactions

were conducted in triplicates in an Applied Biosystems�
7500 Fast Real-Time PCR System (Thermo Fisher Scien-

tific). The results were adjusted for the efficiency of the

chain reactions according to the method described by Yuan

et al. [57] and normalized to the geometrical average of

multiple reference genes: ribosomal protein lateral stalk

subunit P0 (RPLP0, assay ID Hs99999902_m1), TATA-

binding protein (TBP, assay ID Hs00427620_m1) and

YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-mono-

oxygenase activation protein zeta, assay ID Hs03044281_

g1), which have been shown to be stably expressed under

several experimental conditions [58].

Biochemical analyses

Adipose tissue-MSCs (donors 1–6) were lysed in 0.1%

triton-x-100 (Sigma-Aldrich) and frozen at �75 °C. Alka-

line phosphate activity was measured by mixing the cell

lysate with p-nitrophenyl phosphate (Sigma-Aldrich) and

2-amino-2-methyl-1-propanol (Sigma-Aldrich). The amount

of produced p-nitrophenol was measured in a VictorTM X4

multiplate reader (PerkinElmer Inc., Waltham, MA, USA)

at 405 nm.

Total collagen content was quantified using a hydrox-

yproline assay (Sigma-Aldrich). Hydroxyproline content is

a good measure of total collagen content, assuming that

elastin content is negligible [59]. The cell lysate was hydrol-

ysed in 6 N hydrochloric acid (Sigma-Aldrich) at 110 °C
for 3 h followed by quantification of hydroxyproline con-

tent based on the reaction of oxidized hydroxyproline with

4-(dimethylamino)benzaldehyde. Absorbance was measured

at 544 nm in the multiplate reader.

To normalize the alkaline phosphate activity and total

collagen content for cell number, the amount of DNA in

the cell culture lysates was quantified using 0.2 lg�mL�1

Hoechst 33258 nucleic acid stain (Bio-Rad Laboratories

Inc.) with purified calf thymus DNA as a standard (Bio-

Rad). Fluorescence was measured with the multiplate

reader using excitation at 360 nm and emission at 460 nm.

Cytometric bead arrays for quantification of

protein secretion

The concentration of ILs and chemokines in the AT-MSC-

(donors 7–9) and BM-MSC-conditioned media were

analysed using cytometric bead arrays according to the

manufacturer’s instruction on a BD Accuri C6 flow

cytometer. In addition, we analysed the unconditioned

(EV-supplemented) media to check for proteins present in

the media without the MSCs. We employed a human che-

mokine kit with specific antibodies for IL-8, CCL5,

CXCL9, CCL2, and CXCL10 (BD Biosciences, cat. no.

552990) and a flex set array for IL-6 (BD Biosciences, cat.

no. 558276) on 1 : 100 diluted conditioned media. Undi-

luted media were analysed with a flex set array for soluble

ICAM-1 (BD Biosciences, cat. no. 560269). CBA output

data were analysed using FCAP ARRAY software version 3.0

(BD Biosciences).

Statistical analyses

Statistical analyses were performed with R Statistical Soft-

ware. The effects of medium composition and EV source

on alkaline phosphatase activity, total collagen content

(Fig. 11) and gene expression levels (Fig. 8) in AT-MSC

cultures were analysed using Kruskal–Wallis one-way anal-

ysis of variance by ranks. Mann–Whitney U post hoc tests

were conducted to analyse specific conditions against the

control (EV-depleted MM) for significant differences.

Paired t-tests were performed to test for statistically signifi-

cant differences in gene expression (Fig. 12) and secreted

protein levels (Fig. 13) between MSCs exposed to MC-EVs

and UC LPS, between OC-EVs and UC OCDM, as well as

ODM, UC LSPS and UC OCDM against MM. The results
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were considered significant when the false discovery rate-

controlled P-value was below 0.05.
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