
QUASIDISKS AND TWISTING OF THE RIEMANN MAP

ISTVÁN PRAUSE

Abstract. Consider a conformal map from the unit disk onto a qua-
sidisk. We determine a range of critical complex powers with respect
to which the derivative is integrable. The results fit into the picture
predicted by a circular analogue of Brennan’s conjecture.

1. Introduction

Let f : D → Ω be a bounded conformal map defined on the unit disk D.

The integral means spectrum of f is the function

βf (t) = lim sup
r→1

log
´
|z|=r

∣∣f ′(z)t∣∣ |dz|
log 1

1−r
, t ∈ C. (1.1)

The complex power (f ′)t is defined in terms of the complex logarithm. As

the derivative f ′ is never zero in D, we can select a unique single-valued

branch of log f ′(z) by requiring that arg f ′(0) ∈ [0, 2π). For real t (positive

or negative), integral means measure boundary expansion and compression

associated with a given conformal map. Allowing t to be complex amounts

to addressing rotational phenomena, as well.

The universal integral means spectrum is obtained by taking the supre-

mum over all bounded conformal maps f ,

B(t) = sup
f
βf (t), t ∈ C.

We will actually work with conformal maps with quasiconformal extensions

and correspondingly introduce for any 0 6 k < 1,

Bk(t) = sup{βf (t) : f has a k-quasiconformal extension to C}, t ∈ C.
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2 I. PRAUSE

The quasiconformal extension means here that f extends to a W 1,2
loc -homeo-

morphism f : C→ C with the distortion inequality

|∂̄f(z)| 6 k|∂f(z)|, for a.e. z ∈ C.

Brennan’s classical conjecture [10, 17] states that B(−2) = 1. Note that

the identity B(2) = 1 is rather easy (follows readily from the finite area of

Ω). On the other hand, there is no real evidence that B(t) is even function.

Even a stronger radial invariance was hinted by Becker and Pommerenke in

[9] who proposed the following.

Conjecture 1.1 (Circular Brennan’s conjecture).

B(t) = 1, |t| = 2. (1.2)

In this work we provide some evidence for this conjecture by establishing

partial radial invariance for the function Bk.

Theorem 1.2. For every 0 < k < 1 we have

Bk(t) = 1, |t| = 2

k
Re t > 2. (1.3)

We believe that in fact the identity

Bk(t) = 1, |t| = 2

k
(1.4)

holds without restriction on the real part of t. This is basically equivalent to

Conjecture 1.1. On one hand, in view of the fractal approximation principle

[20], we have B(t) = supk<1Bk(t). In the other direction, we sketch an

argument along the lines of [9]. We first embed our map f into a standard

holomorphic motion fλ, with fk = f and f0(z) = z. We then consider the

subharmonic function for a fixed radius r < 1.

λ 7→
ˆ
|z|=r

∣∣∣f ′λ(z)2/λ
∣∣∣ |dz|, λ ∈ D.

Conjecture 1.1 controls the growth rates in r and the maximum principle

leads to the upper bound in (1.4). The lower bounds are easy, see Remark

2.4. The only issue with the above sketch is that we need uniform estimates

(independent of fλ) of the growth rates. Actually, Becker and Pommerenke

postulated this stronger uniform version in [9].

The approach of this paper is similar in spirit to the argument above:

to use the maximum principle to upgrade a priori bounds with the help
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of holomorphic dependence. The a priori information we will use is the

simple bound B(2) = 1 (and related area bounds for quasiconformal maps).

We amplify these using the holomorphic interpolation technique of [6, 7].

Instead of a standard holomorphic motion, we consider here a holomorphic

motion in two variables with certain symmetry properties. Conformality of

the map is exploited at this point, it gives us room to change the conformal

structure in terms of the second variable. This extra structure of the motion

leads to an improvement compared to general quasiconformal multifractal

bounds of [7]. In this setting, the maximum principle is invoked in the form

of a Nevanlinna-Pick interpolation problem on the bidisk.

The special case Bk(2/k) = 1 of Theorem 1.2 was proved in [23]. Recently,

Hedenmalm obtained [14] a general bound (without restriction on t) of the

form

Bk(t) 6 (1 + 7k)2k
2|t|2

4
, t ∈ C.

When specialised to the values of t covered by Theorem 1.2 this is weaker

by the factor (1 + 7k)2. Finally, let us note that the strongest conjecture in

this area [17, 23] of the form

Bk(t) = k2|t|2/4, |t| 6 2

k
,

has recently been disproved by Ivrii [16]. Namely, he shows that there are

better bounds asymptotically as k → 0 and k|t| → 0. Ivrii’s approach builds

on the recent developments of [4, 15] and on [9]. In this paper, we consider

the opposite asymptotic regime, when k|t| ≈ 1 and k arbitrary. This regime

is related to the following phase transition phenomenon.

1.1. Phase transition. Using the convexity of Bk(t) and the easy bounds

of Remark 2.4, it follows that Theorem 1.2 can be extended to

Bk(t) = k|t| − 1, Re t > k|t|, |t| > 2

k
.

Consider an angle θ ∈ [0, 2π) with cos θ > k. It means that for large positive

values of t, namely when t > 2/k, the function Bk(te
iθ) is linear in t. From

considerations of small values of t, in each of these directions there is a

phase transition point where the function becomes strictly convex. The

existence of such a phase transition phenomenon for B(t) in the negative

direction was shown by Carleson and Makarov [12] and later extended to
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arbitrary direction in [11]. As explained in [12], this can be interpreted as the

transition from isolated singularities to fractal distribution of singularities

in the extremal contribution to integral means.

Acknowledgements. It is my pleasure to thank H̊akan Hedenmalm, Oleg Ivrii

and Stas Smirnov for several discussions on topics related to the present

paper.

2. Pointwise bounds

Classical distortion estimates in conformal mappings describe the optimal

rate of growth for the derivative. For instance, we have [21, p. 66]

Proposition 2.1. For f ∈ S, we have∣∣∣∣log
zf ′(z)

f(z)

∣∣∣∣ 6 log
1 + |z|
1− |z|

.

Here S denotes the class of univalent maps of the disk with normalizations

f(0) = 0, f ′(0) = 1. Similarly, we will use notation Sk for maps in S
admitting k-quasiconformal extension to C. An immediate application of

Lehto’s majorant principle [19, p. 77] shows

Proposition 2.2. For f ∈ Sk, we have∣∣∣∣log
zf ′(z)

f(z)

∣∣∣∣ 6 k log
1 + |z|
1− |z|

.

One can alternatively describe the pointwise bounds in terms of scaling

and rotation exponents. For this, let us introduce a few definitions. For a

simply connected domain Ω ⊂ C, consider the harmonic measure ω with a

basepoint w0 ∈ Ω. The choice of the basepoint will be irrelevant in what

follows. We say that the harmonic measure scales with exponent α > 0 at

x ∈ ∂Ω if

lim
r→0

logωB(x, r)

log r
= α.

In a dual way, we will measure the rotation near x. Let Ωr be the connected

component of Ω\B(x, r) containing w0. We say that Ω rotates at rate γ ∈ R
if

lim
r→0

infw∈∂Ωr∩B(x,r) arg(w − x)

log r
= γ.

The branch of the argument is selected so that arg(w0 − x) ∈ [0, 2π). In

other words, γ measures the rate of rotation (in the sense of [7]) of how fast
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a curve should rotate around point x in order to get to the r-neighbourhood

of x from w0 within the domain Ω. Of course, in general, the limit in

these scaling and rotation exponents need not exist. To rectify this, one

could consider subsequential limits. In this case, it is important to require

that we measure both scaling and rotation simultaneously along the same

subsequence.

A well-known estimate of Beurling [13, Corollary 9.3] says that ωB(x, r) 6

Cr1/2. In terms of the scaling exponent, this means that α (if exists) is at

least 1/2. A slightly more general version relates the scaling exponent to

the twisting at a boundary point via the inequality, see [11, Lemma 1]

α >
1

2
(1 + γ2). (2.1)

2.1. Examples. The basic examples for extremal pointwise behaviour are

more conveniently described as conformal maps of the upper half plane C+ =

{z : Im z > 0}. Conjugating with an appropriate Möbius transformation

provides examples defined on the unit disk.

Example 2.3. The complex power map (with the principal branch) gσ : C+ →
C, gσ(z) = zσ defines a conformal map as long as |σ − 1| 6 1 and σ 6= 0.

With the notation σ = 1+iγ
α , α > 0, γ ∈ R, the conformal map gσ maps

the positive and negative half-lines of R to logarithmic spirals of rotation

rate γ, while harmonic measure scales with exponent α at the origin. The

condition |σ − 1| 6 1, σ 6= 0 is needed to ensure injectivity. Equivalently,

this condition is exactly (2.1).

Observe that gσ0 has a |σ0−1|-quasiconformal extension to the lower half

plane C−. This follows readily from the λ-lemma [5, Section 12.3]. Indeed,

gσ0 embeds to the holomorphic family gσ parametrised by σ − 1 ∈ D. In

Section 6 we describe the extensions and the corresponding holomorphic

motion explicitly.

Remark 2.4. The pointwise estimates of Proposition 2.1 and 2.2 give the

following trivial upper bounds for integral means spectra

B(t) 6 |t| Bk(t) 6 k|t| t ∈ C.
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Figure 1. Wλ is the union of the red and blue disks together
with their convex hull.

The trivial lower bounds are obtained by considering Example 2.3 and read

as

B(t) > |t| − 1 Bk(t) > k|t| − 1.

3. A three-point Nevanlinna-Pick problem on the bidisk

We are going to make use of the following three-point Nevanlinna-Pick

problem on the bidisk. In what follows, U = {w : Rew > 0} will denote the

right-half plane.

Problem 3.1. Given λ0 ∈ D, define the set Wλ0 as

Wλ0 =
{
w ∈ C | Ψ: D2 → U,Ψ(0, 0) = 1,Ψ(λ0, 0) = w,Ψ(0, λ̄0) = w̄

}
,

where Ψ ranges over all holomorphic mappings of the bidisk Ψ: D2 → U .

Describe Wλ0 in terms of the parameter λ0.

First, let us observe that Wλ0 only depends on |λ0|. This can be seen by

considering transformations of the form Ψ(eiθλ, e−iθη).

Lemma 3.2. Let |λ0| = k < 1. The solution of Problem 3.1 is described by

the convex hull of the union of two disks (see Figure 1)

Wλ0 =Wk = Conv

(
{w : |w − 1| 6 k} ∪

{
w :

∣∣∣∣ 1

w
− 1

∣∣∣∣ 6 k}) . (3.1)
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In connection with the Nevanlinna-Pick interpolation, it is more custom-

ary to consider holomorphic maps into D. We may achieve this by consider-

ing Φ = Ψ−1
Ψ+1 and the corresponding three-point problem. We shall consider

the two problems in parallel as we will need to move back-and-forth be-

tween the two settings. As is well-known, in the one variable case, the

positive semi-definiteness of Pick’s matrix is equivalent to the existence of

an interpolating map. Agler [1] found an analogous necessary and sufficient

condition for interpolation problems in the bidisk. The three-point case has

been analysed in detail in [2]. In fact, Problem 3.1 is very much related

to Example 3.4 from [2]. The difference is that Example 3.4 assumes that

w > 0, while we need to consider complex values. Nevertheless, the inner

functions found on [2, p. 236] will be relevant.

Proof of Lemma 3.2. We go through the analysis based on [2]. First, let us

consider only the two-point problem given by the nodes (λ0, 0) and (0, λ̄0).

We must have dU (w, w̄) 6 dD2((λ0, 0), (0, λ̄0)) = dD(0, k) in terms of the hy-

perbolic and Kobayashi distances. A short calculation reveals this is equiv-

alent to the tangent cone displayed in Figure 1

| Imw| 6 k|w|. (3.2)

Consider now the corresponding three-point problem in terms of Φ =
Ψ−1
Ψ+1 : D2 → D,

(0, 0) 7→ 0, (λ0, 0) 7→ ζ, (0, λ̄0) 7→ ζ̄, ζ =
w − 1

w + 1
.

We may assume that ζ 6= 0 and by multiplying with a positive number that

the problem is extremal. That is, ‖Φ‖∞ = 1 and there are no solutions with

smaller norm. The problem is non-degenerate in the sense that there are

no solutions that depend only on one of the coordinate functions (because

ζ 6= 0). It may happen that a sub two-point problem is already extremal,

but assume for now, that this is not the case and the problem is a genuine

three-point problem. Under these circumstances (extremal, non-degenerate,

genuine) we have a unique solution which is a rational inner function of

degree 2 [2, Theorem 0.1]. Moreover, the second order terms only involve

the mixed product λη [2, p. 234]. Since Φ(0, 0) = 0, we have the following
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representation (see [24])

Φ(λ, η) =
λη p(1/λ̄, 1/η̄)

p(λ, η)
,

where p is a linear polynomial which does not vanish on D2,

p(λ, η) = c0 + c1λ+ c2η 6= 0.

Since the function Φ(η̄, λ̄) solves the same three-point problem and the so-

lution is unique we have the symmetry

Φ(λ, η) = Φ(η̄, λ̄).

This leads to the following equations in terms of the coefficients

c2
0 = c̄2

0, c0c1 = c̄0c̄2.

There are two possibilities: either c0 is real or purely imaginary. Observe,

that we are free to multiply the coefficients by a real number without af-

fecting the function Φ. Thus the two cases can be normalized to c0 = 2 or

c0 = 2i. In the first case, we are led to

p(λ, η) = 2 + cλ+ c̄η, |c| 6 1.

The condition |c| 6 1 is enforced because p must not vanish on D2. Solving

for Ψ = 1+Φ
1−Φ we arrive at

Ψ(λ, η) =
1 + λη + cλ+ c̄η

1− λη
. (3.3)

In conclusion, w = Ψ(λ0, 0) = 1 + cλ0 and so |w − 1| 6 k. This is the first

disk in (3.1).

In the second case, when c0 = 2i, we are led to

p(λ, η) = 2i+ cλ− c̄η, |c| 6 1.

This time, we have

Ψ(λ, η) =
1− λη

1− icλ+ ic̄η + λη
.

In this case, 1/w = 1/Ψ(λ0, 0) = 1 − icλ0 and we now have |1/w − 1| 6 k.

This is the second disk in (3.1). So far we covered the cases of genuine

three-point (extremal) problems. Obviously, Wλ0 is a convex set, we will

show that by taking the convex hull in (3.1) we also cover cases when the

three-point problem degenerates to a two-point problem.
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It may happen that a sub two-point problem is already extremal but only

for the pair (λ0, 0) and (0, λ̄0) – otherwise Φ would depend only on one

variable. From now on we assume that two-point problem corresponding

to these nodes is extremal, that is we have equality in (3.2). In such a

situation Φ has to be a Möbius transformation along an embedded analytic

disk through the two nodes. By changing coordinates by an automorphism

of D2 we may arrange things so that the embedded disk is the diagonal

{(λ, λ) : λ ∈ D} and the function is identity on the diagonal. This leads to

the following situation in terms of the new holomorphic function Φ̃ : D2 → D

Φ̃(λ, λ) = λ, Φ̃(ζ̄, ζ) = 0 with ζ =
w − 1

w + 1
.

We will show that necessarily |Re ζ| 6 |ζ|2. Indeed, all such functions are

of the following form (see [3, (11.81)])

Φ̃(λ, η) =
tλ+ (1− t)η − θ(λ, η)λη

1− ((1− t)λ+ tη) θ(λ, η)
,

where t ∈ [0, 1] and θ ∈ H∞1 (D2). From Φ̃(ζ̄, ζ) = 0 we find that

tζ̄ + (1− t)ζ = θ(ζ̄, ζ)|ζ|2,

and conclude with

|Re ζ| 6 |tζ̄ + (1− t)ζ| = |θ(ζ̄, ζ)| · |ζ|2 6 |ζ|2.

In terms of w, we arrive at

1− k2 6 Rew 6 1, (3.4)

where we also used the fact that | Imw| = k|w|. Condition (3.4) corresponds

exactly to the contribution of the convex hull in (3.1) as claimed. With all

the cases analysed we concluded the proof of the lemma.

�

4. Holomorphic amplification

Let (Ω, σ) be a measure space with its L p(Ω, σ) spaces of complex-

valued measurable functions. We will consider analytic families of measur-

able functions in Ω parametrised by two variables. That is, jointly measur-

able functions (x, (λ, η)) 7→ Φ(λ,η)(x) defined on Ω×D2 outside of a measure

zero set E ⊂ Ω, for each fixed x ∈ Ω \ E the map (λ, η) 7→ Φ(λ,η)(x) is
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analytic in D2. The family is said to be non-vanishing if E can be chosen

so that Φ(λ,η)(x) 6= 0 for all x ∈ Ω \ E and for all (λ, η) ∈ D2.

We may use the holomorphic dependence to amplify a priori norm esti-

mates in such families, see [6, Interpolation Lemma]. With our application

in mind, we will carry this out in the following setting.

Proposition 4.1. Suppose {Φ(λ,η) ; (λ, η) ∈ D2} is a holomorphic family of

measurable functions, such that there is an exceptional set E with σ(E) = 0

and for every (λ, η) ∈ D2,

Φ(λ,η)(x) 6= 0 and Φ(λ,η)(x) = Φ(η̄,λ̄)(x), for x ∈ Ω \ E. (4.1)

Let 0 < p0 <∞ and assume that

Φ(0,0) ≡ 1, and ‖Φ(λ,η)‖p0 6 1.

Then, for every |λ| < 1 and for every complex exponent t ∈ C satisfying

|t| = p0

|λ|
and Re t > p0, (4.2)

we have ˆ
Ω

∣∣∣Φ t
(λ,0)

∣∣∣ dσ 6 1.

The choice of the continuous branch used here is determined by log Φ(0,0) ≡
0.

The proof goes along the lines of [7, Lemma 4.1]. The key difference is

that we will make use of the three-point Nevanlinna-Pick problem analysed

in Section 3 instead of the Schwarz lemma used in [7].

Proof. By considering the analytic family Φ p0
λ we may restrict our attention

to the p0 = 1 case. Observe that our assumption ‖Φ(0,0)‖1 6 1 implies

σ(Ω) 6 1. Actually, by the maximum principle for analytic L 1-valued func-

tions, we may further assume the strict inequality

σ(Ω) < 1. (4.3)

Otherwise Φ(λ,η) would be constant in the parameter (λ, η), as we have

‖Φ(λ,η)‖1 6 1 for all (λ, η) ∈ D2. We may also assume in the proof that

0 < c 6 |Φ(λ,η)(x)| 6 C < ∞ uniformly for all (x, (λ, η)) ∈ Ω × D2, as the

reduction of the general situation to this is done similarly to [6, Section 2].
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We choose an arbitrary positive probability density ℘, uniformly bounded

away from 0 and ∞,

‖℘ ‖1 =

ˆ
Ω
℘(x) dσ(x) = 1.

By Jensen’s inequality using the convexity of x 7→ x log(x) and (4.3) we have

I :=
´

Ω ℘(x) log℘(x) dx > 0. For a fixed ℘ , we consider the holomorphic

function Ψ in the bidisk D2

Ψ(λ, η) =
1

I

ˆ
Ω
℘ log Φ(λ,η) dσ .

Again by Jensen’s inequality we have the bound

Re Ψ(λ, η)− 1 =
1

I

ˆ
Ω
℘ log

|Φ(λ,η)|
℘

dσ 6
1

I
log

(ˆ
Ω
|Φ(λ,η)|dσ

)
6 0.

Thus Ψ maps the bidisk into a half-plane Re Ψ(λ, η) 6 1, while Ψ(0, 0) = 0

by our assumption Φ(0,0) ≡ 1. Furthermore, by our symmetry assump-

tion in (4.1) Ψ(λ, η) = Ψ(η̄, λ̄). At this stage we appeal to the three-point

Nevanlinna-Pick problem of Problem 3.1 and deduce that for any |λ| < 1,

1−Ψ(λ, 0) ∈ W|λ|.

From now on we assume that the exponent t ∈ C satisfies (4.2) (with p0 = 1).

That is,

|t| = 1

|λ|
and Re t > 1.

For such t, we have 1 − 1/t ∈ ∂W|λ|. Moreover, the tangent line to the

the convex set t · (1 −W|λ|) at the point 1 is vertical. In other words, we

have Re(tw) 6 1 for any w ∈ 1 −W|λ|. These statements follow from the

description of W|λ| in Lemma 3.2. In particular,

Re (tΨ(λ, 0)) =
1´

℘ log℘
Re

(
t

ˆ
℘ log Φ(λ,0) dσ

)
6 1. (4.4)

Equivalently, we have

ˆ
Ω
℘ log

∣∣∣Φt
(λ,0)

∣∣∣
℘

dσ 6 0.

By specialising the choice of ℘, that is, choosing ℘(x) :=
∣∣Φ(λ,0)(x)t

∣∣ (´
Ω

∣∣Φt
(λ,0)

∣∣)−1
,

we obtain our assertion in the form

log

(ˆ
Ω

∣∣∣Φt
(λ,0)

∣∣∣ dσ

)
6 0.

�
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5. Proof of the main result

Towards the proof of Theorem 1.2, we first prove a more technical version

with various normalisations. In particular, we assume that the Beltrami

coefficient µ is supported in the set AR = {z : |z| > R} for some R > 1.

Theorem 5.1. Given δ > 0 and 0 6 k < 1, let µ be measurable, |µ(z)| 6
(1 − δ)kχAR(z), with some R > 1. Let f ∈ W 1,2

loc (C) be the homeomorphic

solution to ∂f(z) = µ(z)∂f(z) normalised by fixing 0, 1,∞. We have
ˆ
|z|=1

∣∣∣∣∣
(
z
f ′(z)

f(z)

)t∣∣∣∣∣ |dz| 6 C(δ)

R− 1
, (5.1)

for any t ∈ C with |t| = 2
k and Re t > 2. Here C(δ) < ∞ is a constant

depending only on δ. The complex powers in 5.1 are defined in terms of the

holomorphic branch of log(zf ′/f) which vanishes at z = 0.

Proof. We embed f in a two-parameter holomorphic motion by setting for

(λ, η) ∈ D2,

µλ,η(z) =

{
λ
k µ(z) for |z| > 1,

η
k µ(1/z̄) for |z| < 1.

Let fλ,η denote the unique solution to the Beltrami equation fz = µλ,ηfz

normalised so that f(0) = 0, f(1) = 1 and f(∞) = ∞. The uniqueness of

the solution implies that fk,0 = f .

We apply Proposition 4.1 to the family

Φ(λ,η)(z) := z
(fλ,η)

′(z)

fλ,η(z)
, (λ, η) ∈ D2, z ∈ S1. (5.2)

Since fλ,η is conformal on S1, this is a non-vanishing holomorphic family.

We record the following symmetry of the construction,

fλ,η(z) =
1

fη̄,λ̄(1/z̄)
, z ∈ C.

This, in turn implies

Φ(λ,η)(z) = Φ(η̄,λ̄)(z), z ∈ S1. (5.3)

Standard quasiconformal estimates give the following global L2-bounds,

(R− 1)

ˆ
|z|=1

∣∣∣∣∣ f ′λ,η(z)fλ,η(z)

∣∣∣∣∣
2

|dz| 6 C(δ) <∞. (5.4)

This is derived exactly as in [4, (4.18)]. The point is that fλ,η are (1 − δ)-
quasiconformal for all (λ, η) ∈ D2.
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Observe that Φ(0,0) ≡ 1 since f0,0(z) = z. We now use Proposition 4.1

with p0 = 2, Ω = S1 and dσ(z) = c(δ)(R−1)|dz| to deduce the conclusion of

the theorem. A final remark is in order on the choices of complex logarithms.

In Proposition 4.1 we used the holomorphic flow to define complex logarithm.

This is consistent with the statement of Theorem 5.1 as can be seen by

considering the continuous function

(z, λ) 7→ log

(
z

(fλ,0)′(z)

fλ,0(z)

)
on the simply connected region {z : |z| < R} × {λ : |λ| < 1}. �

In order to compare the growth of complex powers of f ′ with that of zf ′/f

we need to control the growth of log(f(z)/z). The growth is quite slow, for

a bounded function f ∈ S, we have [8, Section 4]∣∣∣∣log
f(z)

z

∣∣∣∣ = O

(√
log

1

1− |z|2

)
, |z| → 1.

This would suffice for our purposes but it turns out that in our case, when

f has a quasiconformal extension, log(f(z)/z) is even bounded.

Lemma 5.2. Let f : D → Ω be a conformal map in the class Sk. Then

log(f(z)
z ) is a bounded function. The bound only depends on the constant k.

Proof. Embed f in the holomorphic motion by solving the Beltrami equation

for λ ∈ D
∂̄fλ =

λ

k

∂̄f

∂f
∂fλ, fλ(0) = 0, f ′λ(0) = 1.

For a fixed z ∈ D, consider the holomorphic function g(λ) = log fλ(z)
z . From

distortion properties of quasiconformal maps the real part is bounded from

above and below (independently of z),

−C(|λ|) 6 Re g(λ) = log

∣∣∣∣fλ(z)

z

∣∣∣∣ 6 C(|λ|).

It follows automatically that the imaginary part also satisfies a similar

bound. Indeed, let ρ =
√
k and Dρ = {z : |z| < ρ}. The function g

maps Dρ into a strip Sρ = {z : − C(ρ) < Re z < C(ρ)} with g(0) = 0.

In view of the Schwarz-Pick lemma, g contracts in the hyperbolic metric

dSρ(0, g(k)) 6 dDρ(0, k) = dD(0,
√
k). We deduce that∣∣∣∣log

f(z)

z

∣∣∣∣ = |g(k)| 6 C(k),
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with a different constant.

�

We are ready to deduce Theorem 1.2.

Proof of Theorem 1.2. Consider a conformal map f : D→ Ω with a k-quasi-

conformal extension. By composing with a similarity transformation, we

may assume that f ∈ Sk. Let t ∈ C with |t| = 2
k and Re t > 2. By Lemma

5.2 ˆ
|z|=r

|f ′(z)t||dz| 6 C(k, t)

ˆ
|z|=r

∣∣∣∣∣
(
z
f ′(z)

f(z)

)t∣∣∣∣∣ |dz|
We continue the inequality by applying Theorem 5.1 for the function f(rz)/f(r).

For a small δ > 0 we have

6 C(k, t)(1− r)−δ|t|
ˆ
|z|=r

∣∣∣∣∣
(
z
f ′(z)

f(z)

)(1−δ)t
∣∣∣∣∣ |dz|

6 C(k, t, δ)(1− r)−1−δ|t|.

This shows that βf (t) 6 1 + δ|t|, and letting δ → 0 proves the Theorem. �

Integration in polar coordinates (and the fact that Bk(t) is convex in every

direction) gives the following corollary.

Corollary 5.3. Let f : D → C be a conformal map with k-quasiconformal

extension. Then we haveˆ
D

∣∣(f ′)t∣∣ <∞ for |t| < 2

k
, Re t > k|t|.

Remark 5.4. For any t ∈ C with |t| = 2
k there exist a conformal map f with

k-quasiconformal extension such thatˆ
D

∣∣(f ′)t∣∣ =∞.

Namely, it is sufficient to consider Example 2.3 with σ = 1− 2
t .

6. Example: welding of radial stretchings

It will be instructive to analyse Examples 2.3 from the point of view of

holomorphic motions. We will embed them in a motion parametrised by the

bidisk as in the proof of Theorem 5.1. Again, it will be more convenient

to work with upper and lower half planes C+ and C− instead of the unit

disk and its exterior. Set the Beltrami coefficient µ(z) = z/z̄, z ∈ C+. We
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now describe the holomorphic motion fλ,η solving the normalised Beltrami

equation with coefficient

µλ,η(z) =

{
λµ(z) for z ∈ C+,

ηµ(z̄) for z ∈ C−,
for (λ, η) ∈ D2. Along the diagonal (λ, λ) ∈ D2 the solution is the radial

stretching/twisting map

fλ,λ(z) =
z

|z|
|z|

1+λ
1−λ .

In general, the solution fλ,η will be given in C+ by fλ,λ followed by a (con-

formal) complex power map and in C− by fη,η followed by another complex

power map. We have to choose the complex powers in such a way that the

map in C+ and in C− matches on the real line. Explicitly, with the notation

σ+ = 1+λ
1−λ , σ− = 1+η

1−η and 1/σ = 1
2(1/σ+ + 1/σ−),

fλ,η(z) =

(
z

|z|
|z|σ±

)σ/σ±
for z ∈ C±.

The stretching/twisting behaviour of the motion fλ,η (at the origin) is de-

scribed by the complex exponent σ(λ, η) where

1

σ(λ, η)
=

1

2

(
1− λ
1 + λ

+
1− η
1 + η

)
.

Remark 6.1. Observe that σ : D2 → U satisfies the conditions of Problem

3.1 and σ is equal to Ψ from (3.3) with the choice of c = 1 (general val-

ues of c may be covered by reparametrising the motion). That is, we see

that the first disk in Lemma 3.2 is a ‘physical example’, in the sense that it

appears from holomorphic functions built from holomorphic motion of con-

formal maps (through the constructions in the proofs of Theorem 5.1 and

Proposition 4.1). Conjecture 1.1 amounts to saying that this first disk is

the only allowable region for such physical examples. Our method does not

capture subtler properties of conformal maps and, in particular, is unable

to rule out the ‘non-physical example’ of the second disk in Lemma 3.2.

7. Twisting estimate for quasidisks

As an application of our main result, we give a geometric multifractal

dimension estimate on the size of twisting for a quasidisk. Let Ω ⊂ C be a

bounded L-quasidisk and consider points x ∈ ∂Ω which twist at a prescribed
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rate γ ∈ R. The fact that Ω is the image of the unit disk under a global

L-quasiconformal map is equivalent to the fact that (any) conformal map

f : D → Ω has a k-quasiconformal extension. The precise relation of the

constants involved are [18, 25]

k =
L2 − 1

L2 + 1
.

We now recall the notion of rate of twisting from Section 2 in terms of the

conformal map f : D→ Ω. Let x = f(ζ), ζ ∈ ∂D and consider the limit

lim
τ→1

arg(f(τζ)− f(ζ))

log |f(τζ)− f(ζ)|
. (7.1)

If this limit exists and is equal to γ ∈ R, then we say that x ∈ ∂Ω is

γ-spiralling (or twisting).

Theorem 7.1. Let f : D→ Ω be a conformal map (onto) with k-quasiconformal

extension. The set F ⊂ ∂Ω of γ-spiralling points has Hausdorff dimension

at most

dimH F 6 2− 2
√

1− k2

k
|γ|. (7.2)

The reader may contrast this with [7, Corollary 5.4] which gives a similar

multifractal estimate for twisting points. That bound applies to arbitrary

quasiconformal maps, and therefore gives a weaker result when applied to the

map f . By Proposition 2.2, the maximal pointwise twisting for a quasdisk

is |γ| = k/
√

1− k2. Theorem 7.1 is effective in the sense that it shows this

extremal twisting can only happen on a set of dimension zero.

Proof of Theorem 7.1. Let E = f−1(F ) be the pre-image of γ-spiralling

points and fix an ε > 0. By definition of (7.3) we may select for any ζ ∈ F
a radius rζ ∈ (0, ε) such that

arg(f(τζ)− f(ζ))

log |f(τζ)− f(ζ)|
∈ (γ − ε, γ + ε), (7.3)

for τ > 1 − rζ . Let us denote the arcs of ∂D with center ζ and length

rζ by Iζ . Vitali’s covering lemma allows us to select a countable disjoint

subcollection {Iζi} such that E ⊂ ∪ 5Iζi . For each ζi, we associate a “top-

half” of a Carleson box Qi as follows. Let Qi = {z : z/|z| ∈ Ii and 1− ri 6
|z| 6 1 − ri/2}, where ri = rζi and Ii = Iζi for short. Now we show that
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arg f ′ has to be big (in absolute value) on each Qi. From Koebe distortion

and quasisymmetric properties of f we have that, for z ∈ Qi∣∣∣∣Re

(
log f ′(z)− log

f((1− ri)ζi)− f(ζi)

ri

)∣∣∣∣ 6 C(k).

From this, by an argument exactly as in Lemma 5.2, we deduce that the

imaginary part also satisfies a similar bound∣∣arg f ′(z)− arg(f((1− ri)ζi)− f(ζi))
∣∣ 6 C(k), z ∈ Qi.

Combined with (7.3) we conclude that

arg f ′(z) 6 (γ − ε) log r̃i + C(k), z ∈ Qi,

with the notation r̃i = |f((1− ri)ζi)− f(ζi)|. We also assume here γ > 0 for

simplicity (the case γ < 0 is similar, we just have to consider s < 0 below).

For s > 0,ˆ
Qi

|(f ′)2+is| =
ˆ
Qi

|f ′|2 exp(−s arg f ′) > C(k)r̃
2−(γ−ε)s
i .

Summing it up over Qi, we obtain∑
i

(r̃i)
2−(γ−ε)s 6 C(k)

ˆ
∪Qi
|(f ′)2+is| 6 C(k)

ˆ
D
|(f ′)2+is| <∞,

as long as |s| < 2
√

1−k2
k , see Corollary 5.3. The sets {f(5Ii)} provide a cover

of F , each with diameter comparable to r̃i. This shows that dimH F 6

2 − (γ − ε)s. Finally, taking the limits s → 2
√

1−k2
k and ε → 0 proves the

theorem.

�
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