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Abstract

We study the role of real oil prices on the directional predictability of excess
stock market returns in the U.S. and ten other countries using probit models.
Previous studies have shown that oil price shocks have adverse effects on stock
returns. We extend this literature by focusing on the sign component of excess
returns. Our findings indicate that real oil prices are useful predictors of the
direction of stock returns in a number of markets over and above commonly
used predictors, but results vary substantially between countries. Interestingly,

we find only limited evidence of asymmetric effects of oil price shocks.
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1 Introduction

In this paper, we study the predictive ability of real oil prices on the sign of
excess stock market returns in the U.S. and ten other markets. Several previous
studies have suggested that shocks in oil prices have effects on both macroeconomic
variables and stock returns. Hamilton (1983) found a negative impact of oil prices
on the real economy, and since then, the topic has received wide attention (see, e.g.,
Serletis and Elder (2011) and references therein). As there is a close relationship
between stock return predictability and business-cycle fluctuations (see, e.g., Rapach
and Zhou (2013) for a review on the topic), examining the relationship between oil
price shocks and asset prices has been a natural extension to the literature.

Chen et al. (1986) were among the first to study whether oil price risk is priced
in U.S. stock markets, and their results suggested no reward for oil price risk. On
the other hand, Jones and Kaul (1996) found that oil price changes have significant
effects on stock returns in Canada, Japan, U.K., and the U.S., but the reaction in
the Canadian and U.S. stock markets is accounted for by the impact of the shocks on
current and expected real cash flows. More recently, Driesprong et al. (2008) have
shown that oil prices predict stock market returns worldwide, with the evidence
being especially strong in developed countries and the world market index (see also
Park and Ratti (2008)). Nandha and Faff (2008) studied the effects of oil prices
on global industry indices and found that positive oil price shocks have a negative
impact on stock returns in all sectors, excluding oil, gas, and mining industries (see
also Arouri (2011)).

The evidence on the sign of the effect of oil prices on stock returns is mixed.
Some studies have reported a negative relationship between oil price changes and
stock returns, whereas others have suggested positive effects or even that no statisti-
cally significant relationship exists (see, e.g., Phan et al. (2015b) and the references
therein). Oil price changes also seem to have different effects on stock markets in
oil importing and exporting countries (see, e.g., Phan et al. (2015a)).

We add to the existing literature by studying the relationship between oil prices



and stock returns in eleven developed countries using probit models. Different as-
pects of the oil price—stock return relationship have previously been uncovered using
various different methodologies,! but our paper is the first one where the focus is
on the signs of the returns instead of the actual magnitudes. In a slightly different
vein, Engemann et al. (2011) studied the effect of oil price shocks on the probability
that an economy enters a recession by using a hidden Markov model. Their study
is methodologically perhaps the closest one to ours so far, since we also examine
the effect of lagged oil price changes, but we are interested in the probability of a
positive excess return in the stock markets using binary time series models.

The main motivation for the focus on the sign predictability of stock returns is
that sign predictability may exist even in the absence of mean predictability (see,
e.g., Christoffersen and Diebold (2006) and Chevapatrakul (2013)). Forecasts based
on the binary dependent variable models have also been shown to outperform those
obtained by continuous dependent variable models (see e.g. Leung et al. (2000),
Nyberg (2011) and Pénka (2014)). The directional forecasting performance is also
important in terms of asset allocation as pointed out by Pesaran and Timmermann
(2002), who also study various methods in order to take into account possible pa-
rameter breaks in forecasting financial returns. For further discussion on the benefits
of our focus and methodology, we refer to Nyberg and Pénka (2015), who study the
role of the U.S. markets in predicting the direction of excess stock market returns
in ten other markets.

Our findings indicate that real oil prices are useful predictors for the direction of
stock returns in a number of stock markets both in- and out-of-sample, even after
accounting for the predictive ability of a set of commonly used predictors of stock

returns. However, we also find that the overall level of sign predictability of returns

!Sadorsky (1999) used vector autoregressive (VAR) models and found evidence that also oil price
volatility has effects on real stock returns, whereas Kilian and Park (2009) employed VAR models
and found that U.S. real stock returns react differently to demand and supply driven oil price
shocks. Narayan and Sharma (2011) used generalised autoregressive conditional heteroskedastic
(GARCH) and threshold models and found strong evidence of lagged effects of oil price on daily
firm and industry returns. Recently, Martin-Barragan et al. (2015) studied correlations between oil
and stock markets using a wavelet-based approach. Finally, Du and He (2015) found extreme risk
spillovers between crude oil and stock markets using Value at Risk (VaR) as a measure of market
risk, and Sim and Zhou (2015) studied the topic using a novel quantile-on-quantile approach.



and the predictive power of oil price changes vary substantially between markets.
Finally, both increases and decreases in real oil prices seem to affect the direction of
return, but in some markets we find evidence of possible asymmetry.

The rest of the paper is organised as follows. In Section 2, we present the
econometric framework used in the study. In Section 3, we introduce the data and
discuss the set of predictors. In Sections 4 and 5, we report the in-sample and
out-of-sample results, respectively. The possible asymmetric effects of real oil price

changes are examined in Section 6. Finally, Section 7 concludes the study.

2 Econometric methodology

Throughout this paper, our focus is on the directional component of the excess
stock market returns. Let us denote a one-month excess market return for market

. o om n . . -
J as rj = 15, — 1, where r7, is the nominal return and rj; is the risk-free rate.
The excess return series can be transformed into binary time series of positive and

negative returns as follows

1,if the excess portfolio return r;; is positive,
Yjt = (1)
0, otherwise.

The conditional expectation and probability are denoted as F;_1(-) and P,_;(+), re-
spectively, and the information set 2,,_; includes information on the past returns
and predictive variables. As y;;|€2;,_; follows a Bernoulli distribution, the condi-
tional probability of the positive excess return can be written as pj; = Pi1(yj =
1) = Ei_1(yj1), and the conditional probability of negative return (i.e. y;; = 0) is
the complement probability 1 — p;;. In this paper, we consider a univariate probit

model
pjt = (1), (2)

where ®(-) is the cumulative distribution function of the standard normal distribu-
tion and 7j; is a linear function of the variables in €2;; ;. To complete the model,

we consider the basic and most commonly used static model specification

Tje = Wj + w;‘,tqﬂja (3)



where x;;_; includes the predictive variables and w; is the constant for market j.

The parameters of the model can be estimated using maximum likelihood (ML)
methods.? For more details on the estimation and the calculation of Newey-West
type robust standard errors, we refer to Kauppi and Saikkonen (2008), who also
introduce dynamic extensions to the static probit model (3). These extensions have
subsequently been considered in the context of directional predictability of stock
returns by Nyberg (2011) and Pénké (2014). However, findings from both of these
studies indicate that the parsimonious static probit model performs well compared
to the extended models. Therefore, as the focus of this study is on the predictive
ability of real oil prices, we limit ourselves to the static probit model (3).

We employ a number of different measures to evaluate the in-sample and out-
of-sample predictive performance of the probit models. These are the pseudo-R? of
Estrella (1998), the quadratic probability score (QPS), and the success ratio (SR),
which is simply the percentage of correct forecasts. In addition to these conventional
measures, we also employ the Area Under the receiver operating characteristic Curve
(AUC). The AUC is a useful measure of overall predictive ability of a given model
and it has recently gained popularity in economic applications (see, e.g., Nyberg and
Ponké (2015) and the references therein). The AUC is of particular interest in our
application, since the level of predictability of stock returns is typically rather low.
Therefore, a statistically significant improvement over 0.5 implies sign predictability

that may also lead to economic gains in trading strategies (considered in Section 5).

3 Dataset

In this study, we use the same dataset with the sample period 1980M3-2010M12, and
the same eleven markets as Rapach et al. (2013) and Nyberg and Pénké (2015), who

focus on the predictive ability of lagged U.S. stock returns for other markets. The
markets are Australia (AUS), Canada (CAN), France (FRA), Germany (GER), Italy

2Tn line with the issues related to the choice of the estimator of the conventional predictive
regressions in predicting stock returns (see, e.g., Westerlund and Narayan (2012, 2015) and the
references therein), a possible extension to this study could be based on some alternative estimation
approach to the method of maximum likelihood (see, e.g., Elliott and Lieli (2013) and the references
therein).



(ITA), Japan (JPN), the Netherlands (NED), Sweden (SWE), Switzerland (SUI),
the United Kingdom (U.K.), and the United States (U.S.). Canada is the only net
exporter of oil in our dataset, so results might be different from the other countries.

The binary dependent variables (RI;;) are transformed from the excess market
returns (RM,;) as in (1). The real oil price (OIL;;—1) is the main predictor of
interest? and the explanatory variables in our baseline models include the three-
month interest rate (3MTH,;_1), dividend yield (DY};_1), and the lagged excess
stock market return (RM;,_1). We also consider the CPI inflation (INF};_;), term
spread (7'S;;—1), and the growth rates in the real exchange rate (REX,;1) and

industrial production (I Pj;_1), as well as the lags of the binary returns R, ;.

4 In-sample results

In this section, we focus on the in-sample results of static probit models, and in
particular, the additional predictive power of the change in real oil prices over and
above commonly used predictors of stock returns. Our baseline model includes
three predictors, also employed by Rapach et al. (2013); the 3-month interest rate
(B3MTH,;—4), the dividend yield (DY}, 1), and the lagged stock return (RM;;_1).

The in-sample findings of the baseline probit models indicate that the three pre-
dictors perform rather differently between markets. The three-month interest rate
has a statistically significant coefficient (at least at the 10% level) in five countries
whereas the dividend yield is statistically significant only in models for the U.S. and
the Netherlands. Overall, the level of predictability is rather modest, as is typical
in stock return applications. The results for the success ratios also confirm these
findings, as they show statistically significant predictive power (at the 10% level) in
only three out of eleven markets.*

The results for the benchmark probit models augmented with the lagged real oil

price are presented in Table 1. The real oil price variable has a statistically significant

3Following Park and Ratti (2008), Kilian and Park (2009), and Rapach et al. (2013), among
others, we employ real instead of nominal oil prices, employed in e.g. Hamilton (2011), Aloui et al.
(2012), and Phan et al. (2015¢). The main difference is that the magnitude of the changes in the
real oil price series is smaller.

4The full details of the results from the baseline probit models are available upon request, but
the success ratios and AUCs are reported in the final panel in Table 1.



coefficient (at least at the 10% level) for four out of eleven markets (Italy, the
Netherlands, Sweden, and Switzerland). However, the AUC implies improvement
in predictive power in ten out of eleven markets when we include the real oil price
variable. Similarly, the success ratios imply statistically significant predictability in
six markets compared to only three when the real oil price variable was left out.
Since the findings in Table 1 suggest that the predictive power of RM;; 1,
DY, 1, and 3MTH,,_; varies substantially between the markets, we consider the
following model selection approach. Instead of using the same three predictors for
each market, we select the best predictors among the set of variables described in
Section 3 separately for each market using the Akaike information criterion (AIC).
These models are then augmented with the real oil price variable, thus allowing us
to study whether real oil prices have predictive ability over the 'best’ predictors.®
The findings in Table 2 indicate that the selected predictors and the level of
directional predictability of the excess stock returns vary substantially between the
markets. For Australia, Italy, and Japan the selected models include only one predic-
tor, whereas for the U.S. there are five predictors. In general, we find improvement
in the in-sample fit compared to the results in Table 1. The real oil price variable
shows once again a statistically significant coefficient (at least at the 10% level) for
four out of eleven markets. However, the AUC (and success ratio) is improved in ten
(nine) out of eleven markets and is statistically highly significantly different from
the 0.5 benchmark. In conclusion, our in-sample findings generally suggest that the

real oil price growth is a useful predictor of the direction of stock market returns.

5 Out-of-sample results

We study the robustness of our in-sample findings by examining out-of-sample fore-
casts for the period 1995M1-2010M12. Following Nyberg and Pénka (2015), we use
the rolling window and concentrate on one-month-ahead (h=1) forecasts. The re-
sults are presented in Table 3 and they indicate that for eight out of eleven markets,

models including the lagged change in the real oil price outperform the correspond-

5If we include the real oil prices in the model selection in a similar way as the other predictors,
it gets selected into the models in six out of eleven markets.



ing models excluding it. Moreover, for seven out of eleven markets we reject the null
of AUC = 0.5 at least at the 10% level, implying sign predictability of the returns.

In order to study the economic value of our forecasts, we employ simple trading
strategies follow the approach used, e.g., in Nyberg and Pénkd (2015). The static
probit models including the oil price variable produce a higher annual return than
the model excluding real oil prices (buy-and-hold strategy) in six (seven) out of
eleven markets.® There is substantial variation in the trading profits in different
markets, as the annual trading returns for the model including the oil price variable
range from 0.25% for the Japanese to 16.15% for the Swedish markets. Overall,
the out-of-sample findings in terms of sign predictability of excess returns are not
particularly strong, but they nevertheless lend support to the findings from the

previous literature on the adverse effects of oil price changes on future stock returns.

6 The asymmetric effects of oil prices

In this section, we focus on the possible asymmetric effects of oil price increases and
decreases in the context of sign predictability of stock returns using binary dependent
variable models. Previous studies have suggested that the effect of oil price shocks on
real activity and stock returns is asymmetric and non-linear. Recently, Narayan and
Gupta and Jiménez-Rodriguez (2015) have found evidence of non-linearity between
oil price shocks and stock market returns. Kilian (2009) and Kilian and Park (2009)
have also suggested that the effect of oil price shocks depends on whether it is driven
by demand or supply, and on the state of the economy (Reboredo (2010)).

The asymmetric effects of positive and negative oil price shocks can be studied
in a number of ways. Mork (1989) and Mork et al. (1994) propose capturing the

effects of positive and negative changes in oil prices:

OIL;,if the real oil price growth is positive,
OlILpos; = (4)

0, otherwise,

and similarly for negative real oil price changes. Another alternative is the non-

6For the case of Australia, all the models suggest a full weight in stocks for the whole period
and the results are therefore the same.



linear oil price index (NOPI), proposed by Hamilton (1996). This variable takes
into account only positive shocks in oil prices, and is defined as:

NOPI; = max[0,In(OIL;) — max[in(OILi—1),In(OILi—3), ...,In(OI L;—15)]]. (5)
This measure has been used in a number of later studies, e.g. Park and Ratti (2008),
Engemann et al. (2011), and Hamilton (2011), but it has been also criticized by
Kilian (2009) of being based on behavioral arguments rather than economic theory.

Results based on models including the aforementioned three variables are re-
ported in Table 4. The model for each market includes the same set of predictors
as in Table 2 and the given asymmetric oil price variable.” Similarly to Park and
Ratti (2008), we find only little evidence on asymmetric effects on stock returns
of positive and negative real oil price changes, although there is some variation in
results between markets. For instance, the negative oil price changes have a sta-
tistically significant (at least at the 10% level) effect on Swedish markets, whereas
the positive changes have an effect for German and Dutch markets. For Italy, both
positive and negative changes are important. Overall, the coefficients for both the
positive and negative changes are negative, except for the case of the positive real
oil price changes on Canadian markets, where the coefficient is positive. This can
be partly explained by the fact that Canada is a net exporter of oil. Finally, we do
not find the non-linear oil price variable (NOPI) to have predictive power for the
direction of stock markets except in the Italian market.

In addition to the in-sample results, we also present the out-of-sample AUC for
each model in Table 4. These findings indicate that including the transformed real
oil price variables in the models lead to lower out-of-sample AUCs in most studied
markets. Exceptions include Germany, where including positive oil prices leads to
a higher out-of-sample AUC than when the original variable is included (compare
with Table 3). A similar result is obtained for Sweden with the model including the

negative real oil price variable and for Japan including the NOPI.

”As the NOPI variable compares the current oil price to 12 lagged values, we lose 11 observations
compared to previous sections. However, the out-of-sample period is the same as previously.



7 Conclusion

In this paper, we have extended the previous literature on the oil price-stock market
relationship by studying the predictive power of changes in real oil prices on the sign
of excess stock returns in the U.S. and ten other markets. To achieve this, we have
used probit models that have not been employed previously in the context of our
application. Our findings indicate that real oil prices are indeed useful predictors of
the direction of stock returns in a number of markets, even after controlling for the
predictive power of commonly used predictors. Finally, we find only little evidence
of asymmetric effects of oil price increases and decreases, but are unable to make

general conclusions, because the results vary between markets.
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