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We study the empirical realization of the memory effect in Yang-Mills theory, especially in view of the
classical vs quantum nature of the theory. Gauge invariant analysis of memory in classical Uð1Þ
electrodynamics and its observation by total change of transverse momentum of a charge is reviewed.
Gauge fixing leads to a determination of a gauge transformation at infinity. An example of Yang-Mills
memory then is obtained by reinterpreting known results on interactions of a quark and a large high energy
nucleus in the theory of color glass condensate. The memory signal is again a kick in transverse
momentum, but it is only obtained in quantum theory after fixing the gauge, after summing over an
ensemble of classical processes.
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I. INTRODUCTION

The memory effect in gravitational radiation [1,2] is the
total change in the positions (or other properties) of a
system of detectors left by a burst of gravitational radiation.
Conceptually, the detectors lie at null infinity and that is
where massless gravitons end up. The effect can also be
formulated for other massless (or nearly massless) particles
like photons [3,4] or neutrinos [5]. Massless quanta exist
also in Yang-Mills (YM) theories, and color memory has
been studied in [6] in a classical perturbative approxima-
tion, for which the discussion of electrodynamics [7] can
directly be extended.
Yang-Mills fields form an integral part of the standard

model (SM), SU(3) invariance in the strong quark-gluon
sector and SUð2Þ × Uð1Þ invariance in the electroweak
sector. However, in both cases the theory is in a phase
which, apart from the photon, does not contain massless
particles to be sent to null infinity. In fact, this is the very
reason for their being the SM. The SUð3Þ sector is in the
confinement phase; massless gluons do not propagate but
develop a gap, become massive glueballs and do not go to
null infinity. The SUð2Þ × Uð1Þ sector is in a Higgs phase,
the candidate gluons develop mass via the Higgs mecha-
nism and, after mixing with Uð1Þ, become three massive

vector bosons and the single massless photon. For a lucid
comparative exposition of the SM confinement and Higgs
phases, see [8].
There is one phenomenological context in which classical

Yang-Mills fields are studied with some justification: the
wave function of a heavy nucleus when probed with a large
scale probe like an electron in deep inelastic scattering [9]. A
large nucleus probed with largeQ2 involves large occupation
numbers and hence classical fields. The realization of the
ideas in [6,7] in this context has already been studied in [10].
We wish in this paper to give a simple discussion of YM
memory in the spirit of [3,4], emphasizing the fact that any
experimental measurement of the suggested YM effect is
inherently quantum mechanical. Here the enormous non-
linear complexity of classical theory is replaced by a relative
simplicity of quantum mechanical expectation values. As a
background we first discuss the memory in electrodynamics
and explain why we feel that the “new symmetries of QED”
[7] are basically Uð1Þ invariance of classical ED, when
applied in a fixed gauge at null infinity.
Actually the place where SUð3Þ YM memory effect

empirically appears is very easy to locate and well known
in the field, just the nomenclature has to be changed. For
example, Fig. 12 of [9] shows how a passage of a large
energy nucleus creates from vacuum a transverse matrix
color field Ai, i ¼ 2, 3, also gauge equivalent to vacuum,
Fij ¼ 0. The nucleus is the analogue of a burst of YM
radiation, the color field Ai is the analogue of its memory or
of the “large” gauge transformation in [6]. More precisely,
Ai is the (square root of) the quantum expectation value of
the square of the YM field, summed over colors. Quantum
physics cannot be avoided.
A basic memory signal will be transverse momentum

kick of a test object. In Uð1Þ one is hereby done, no
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problem in measuring the kick. In YM one further has to
see how this kick is measured. These measurements are
rather indirect, as thoroughly discussed in [10]. Another
possibility would be to use the gluon radiation from the
acceleration of the test quark, as recently computed in [11].
The use of YM memory as an analogue of gravitational
wave memory is thus very limited.
The electroweak sector of the SM can also be forced out

of the Higgs phase by similar means, by large occupation
numbers and associated classical fields in the very early
Universe. The boson equilibrium occupation number at
small k is n ¼ 1=ðek=T − 1Þ ∼ T=k ∼ 1=g2 ≫ 1 since the
dominant infrared scale is the coupling of the 3D magnetic
sector of the theory, k ∼ g2T. Important physical phenom-
ena like baryon number violation rates in the SM can be
numerically studied in this setting; see for example [12,13].
A study of YM memory also for these fields should be
possible, also in an expanding universe [14,15].
In discussions of memory effect one usually thinks about

radiation propagating over huge distances, millions of
light years. In the heavy ion Yang-Mills case one clearly
must be content with much smaller distances. This is
related to the coupling not being asymptotically small at
the relevant scale of about 1 GeV. Phenomenologically the
coupling constant gðμ ¼ 1 GeVÞ ≈ 2 is actually “large” in
the usual MS renormalization scheme in the sense that
the distance scale generated by renormalization is “small”.
For Nc ¼ Nf ¼ 3,

1

ΛQCD
¼ 1

μ
exp

�
8π2

9g2ðμÞ
��

9g2

16π2

�32
81

≈ 1 fm: ð1:1Þ

Theoretically, of course one can apply much smaller values
of g2, and there is underway an intense numerical effort for
studying classical YM equations in the weak coupling
region (see, for example, [16,17]). In the SM, the corre-
sponding SUð2Þ coupling constant gðμ ¼ 100 GeVÞ ≈ 2=3
is actually small in the sense that the corresponding
distance scale is macroscopic. Including just the 2-loop
running of the SUð2Þ coupling [18], the renormalization
group integration constant is

1

Λ2

¼ 1

μ
exp

�
48π2

19g2ðμÞ
��

19g2

96π2

�483
361

: ð1:2Þ

Putting here gðμ ¼ 100 GeVÞ ¼ 2
3
gives an SUð2Þ distance

scale of about 1=Λ2 ¼ 4000 km, a macroscopic distance.
However, the standard model is in the Higgs phase so that
this is not a proper confinement radius within which the
fields would be massless.
In the following we shall limit ourselves to a summary of

the memory in Uð1Þ ED (Sec. II) and a discussion of
memory in SUð3Þ heavy ion collisions (Secs. III and IV).
Note on angular coordinates at large distances: for ED we
use two angular coordinates θA ¼ hABθB on S2, while for

the heavy ion case we use two Cartesian coordinates
xi ¼ xi, i ¼ 2, 3 transverse to the beam direction x1. We
use the mostly plus metric; its advantage is that one can
write xi ¼ xi without a sign change.

II. MEMORY IN ELECTRODYNAMICS

For ED everything follows from Maxwell’s equations,
evaluated at Iþ, future null infinity. The essence of the
phenomenon can be summarized as follows, in the spirit
of [3].
We use the coordinates t; r; θA and the metric,

gμν ¼

0
B@

−1 0 0

0 1 0

0 0 r2hAB

1
CA; gμν ¼

0
B@

−1 0 0

0 1 0

0 0 hAB=r2

1
CA;

ð2:1Þ

where hAB is the metric on the celestial sphere S2, with, for
example, θA ¼ ðθ;ϕÞ in standard spherical coordinates or
θA ¼ ðz ¼ eiϕ= tanðθ=2Þ; z̄Þ in stereographic coordinates.
Maxwell’s equations are

∇μFμν ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ Jν; ð2:2Þ

∇αFβγ þ∇βFγα þ∇γFαβ ¼ ∂αFβγ þ ∂βFγα þ ∂γFαβ ¼ 0:

ð2:3Þ

Splitting vectors in their radial and celestial sphere S2

components, Ea ¼ ðEr; EAÞ, EA ¼ hABEB=r2, the inhomo-
geneous (2.2) and homogeneous equations (2.3) are

Jt ¼ 1

r2
∂rðr2ErÞ þDAEA;

Jr ¼ −∂tEr þ ϵABDABB;

JA ¼ −∂tEA þ ϵA
Bð∂BBr − ∂rBBÞ: ð2:4Þ

0 ¼ 1

r2
∂rðr2BrÞ þDABA;

0 ¼ ∂tBr þ ϵABDBEA;

0 ¼ ∂tBA − ϵA
Bð∂BEr − ∂rEBÞ; ð2:5Þ

where the 2D epsilon tensor is (h ¼ det hAB),

ϵab ¼
ffiffiffiffiffiffi
jhj

p �
0 1

−1 0

�
≡ ffiffiffiffiffiffi

jhj
p

ηab:

ϵab ¼ 1

h
ϵab ¼

signhffiffiffiffiffiffijhjp
�

0 1

−1 0

�
¼ signhffiffiffiffiffiffijhjp ηab: ð2:6Þ

To analyze the memory we need a radial current at null
infinity, i.e.,
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Jt ¼ ρ ¼ Lðu; θAÞ
r2

¼ Jr; u ¼ t − r: ð2:7Þ

The r dependence is constrained by the total luminosity
∼Lðu; θAÞ being finite. The transverse current can be
negligible, i.e., JA ∼ 1=r3. Note that this current pattern
rigorously speaking implies that we should have massless
charged particles, since only they get to null infinity. This is
a practical issue, though. For observations null infinity is at
a finite distance.
We now expect at null infinity a typical radiation pattern

with transverse and orthogonal electric and magnetic fields.
To analyze the magnitudes it is enough to focus on the
Gauss’ law, the first equation in (2.4). Canceling a common
factor 1=r2, replacing ∂r → −∂u (at Iþ fields are functions
of t − r) and letting Er denote the leading r behavior,

Eð2Þ
r ¼ r2Er → Er the equation is

−∂uEr þDAEA ¼ L: ð2:8Þ
Integrating this over ui < u < uf gives

ErðuiÞ − ErðufÞ þDA

Z
duEA ¼

Z
duLðu; θAÞ≡ FðθAÞ;

ð2:9Þ

which we write in the form

DAMA ¼ ΔEr þ FðθAÞ; ð2:10Þ
defining the fundamental quantity, the memory vector,

MAðθAÞ ¼
Z

uf

ui

duEA: ð2:11Þ

The memory vector represents the cumulative effect on the
celestial sphere of a pulse of radiation sent to Iþ. Its
significance is based on the fact that it is measurable.
Integrating the Lorentz force equation

dpμ

dτ
¼ qFμνuν; pμ ¼ muμ; ð2:12Þ

for μ ¼ B and for small velocities over time (effectively the
same as u) the change of the transverse momentum is

Z
dt

dpB

dt
¼ ΔpB ¼ q

Z
dtEBðtÞ ¼ qMBðθAÞ: ð2:13Þ

The pulse changes the momentum of a test particle by an
amount given by the memory vector. This transverse kick is
the simplest version of the electromagnetic memory effect.
It has two parts, an ordinary kick due to the change of the
radial component of the electric field and a null kick due to
flux of charge to null infinity, see Fig. 1.
Integrating (2.10) over the celestial sphere, defining

hOi ¼ R
dΩO, one has

hDAMAi ¼ 0 ¼ hErðufÞi − hErðuiÞi þ hFi
¼ Qf −Qi þ hFi: ð2:14Þ

Here the first step is the fact that an integral of the
divergence of a vector field over S2 vanishes. Further
one uses Gauss law, the integral of r2Er gives the charge
inside the sphere. The equation thus expresses the fact that
the LðuÞ term has carried through the sphere the amount
Qi −Qf of charge.
Given the charge density Lðu; θAÞ at Iþ and the change

in the radial electric field (here a standard example is a
charged particle initially at rest and then moving with
constant velocity) one can compute the memory vector, as
concretely discussed in [3].
Note that the above discussion is entirely covariant and

in terms of fields, vector potentials with some gauge choice
have not been used. Consider, however, what happens if
one uses the coordinates u; r; θA and chooses the temporal
gauge Au ¼ 0 (equivalently, one could choose Ar ¼ 0 and
further Au ¼ 0 at a fixed value of r, r ¼ ∞, at Iþ) [4].
Then EA ¼ FuA ¼ ∂uAA − ∂AAu ¼ ∂uAA and the memory
vector and the associated kick are, from (2.13),

ΔpB ¼ qMB ¼ q
Z

duEB ¼ q
Z

du∂uAB

¼ qðABðuf; θAÞ − ABðui; θAÞÞ: ð2:15Þ
We have thus used a physical measurement to determine a
gauge choice dependent quantity. Nothing has happened to
the symmetry properties of electrodynamics; it is still Uð1Þ
gauge invariant. Interpreted as asymptotic symmetries at
null infinity these can be described as new symmetries [7],

FIG. 1. Memory effect in electrodynamics. A radiator at r ¼ 0
sends a pulse of radiation to null infinity Iþ during the time
interval ui < u < uf. The time integrated pulse of a transverse
electric field gives a total momentum kick in (2.13) to a test
charge at null infinity.
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but physically there is nothing beyond Uð1Þ gauge
invariance.
In the literature there are no suggestions of how to realize

the ED kick memory in an experimental setup. However,
even at a theoretical level it serves to elucidate some aspects
of gravitational radiation memory that have remained
unclear until recent years. In particular, it serves to under-
line the fact that there is a distinction between memory due
to sources that do not get to null infinity and sources that
do, or between ordinary and null memories respectively.
Therefore, it may be useful to outline the relation of the
above to gravitational radiation and its memory effect.
What is the “gauge invariance”, how is the gauge “fixed”,
and what are the “gauge transformations” the parameters of
which are determined by measuring the memory effect?
Gauge invariance obviously is the diffeomorphism

invariance of general relativity, and gauge fixing is finding
the metric containing gravitational radiation, exactly as the
Schwarzschild metric contains a black hole. Using the
coordinates u, r, z, z̄, where z, z̄ are the standard stereo-
graphic coordinates on the celestial sphere S2, this is the
Bondi metric [19],

gμν ¼

0
BBBBB@

−1þ 2GmðuÞ
r −1 uzðz; z̄; uÞ uz̄ðz; z̄; uÞ

−1 0 0 0

uzðz; z̄; uÞ 0 rcðz; z̄; uÞ r2γ

uz̄ðz; z̄; uÞ 0 r2γ rc̄ðz; z̄; uÞ

1
CCCCCA
;

γ ¼ 2

ð1þ zz̄Þ2 ; uz ¼
1

2γ
∂ z̄c; ð2:16Þ

uz̄ is defined similarly in terms of c̄. This metric is defined
near null infinity, u ¼ constant, r → ∞ and contains subtle
large r corrections to the flat metric, a Schwarzschild-
metric-like but time dependent mass term (which leads to
the Vaidya model) and a 1=r correction to the S2 metric,
specified by the functions cðz; z̄; uÞ; c̄ðz; z̄; uÞ. Time
dependence of the mass represents flux of gravitational
radiation to null infinity. The “gauge transformations” are
now those coordinate transformations which leave this
Bondi form invariant, zeroes in the metric remain zeroes
and 1=r terms get corrections of the same order (so that m,
c, c̄ transform). Sending a pulse of gravitational radiation or
total energy mðuiÞ −mðufÞ to null infinity will change the
functions c, c̄ by a calculable amount. This corresponds to a
change in the geodesic deviation of two objects at null
infinity. This is measurable by the gravitational memory
effect so that one thus has measured the parameters of a
gauge transformation.
What thus makes the gravitational memory effect physi-

cally significant is its direct connection to basic symmetries
of GR. In view of this it is notable that the experimental
prospects of measuring gravitational memory are quite
promising. Even though a direct detection of memory from

a single gravitational wave event by LIGO is unlikely
(the memory signal ∼10−1 of the total gravitational wave
strain), there exists the possibility of extracting the
memory effect by statistical analysis from the cumulative
data sourced by a collection of merger events. For
instance, ∼90 mergers similar to GW150914 yield an
expected memory signal-to-noise ratio hS=Ntoti ¼ 5,
whereas hS=Ntoti ¼ 3 is achieved by only ∼35 events
[20]. In light of the recent LIGO detections it seems
probable that mergers of relevant size are relatively
commonplace in the Universe, making the expected fre-
quency of future gravitational wave detections sufficient for
measuring the memory in the coming years.
Having discussed the prospects of measuring the gravi-

tational wave memory effect as well as the role of the gauge
symmetries, let us finally contrast the situation with the
Uð1Þ memory. There is clearly some analogy between
the two but also a considerable difference. In ED one has
the overall Uð1Þ gauge invariance and no need to define any
new symmetries. In gravity the relevant transformations
are a small carefully defined subset of general coordinate
transformations and motivate a new symmetry transforma-
tion at null infinity, the BMS group [21].

III. COLOR MEMORY

In nature there are no massless free colored particles;
asymptotic states have a mass and do not propagate to null
infinity. However, there is one context where one comes
close: the wave function of a large nucleus in an infinite
momentum frame, probed with some large scale phenome-
non like deep inelastic scattering at large Q2 and “small x”,
x ¼ pþ=Pþ ¼ longitudinal momentum fraction of a parton
in a nucleus. In an infinite momentum frame the fast
degrees of freedom are effectively frozen by time dilatation
and can be represented by a time independent color current.
This sources classical color fields which describe dynamics
of soft and dense small x degrees of freedom. Classical field
description is justified by large occupation numbers in p, q
phase space. However, classical fields are only an inter-
mediate stage; in physics non-Abelian gauge theory is
quantum theory, and physics comes from an ensemble
average over classical fields sourced by an ensemble of
sources.

A. Color fields

Let us first summarize the relevant color1 fields [22]. We
use the flat space light cone coordinates with the mostly
plus metric ds2 ¼ −2dxþdx− þ dxidxi, x� ¼ ðt� xÞ= ffiffiffi

2
p

,

1Color conventions are Dμ¼∂μ− igAμ, Aμ¼Aa
μTa, ½Ta; Tb� ¼

ifabcTc, Ta
bc ¼ −ifabc for adjoint representation, Fμν ¼

i=g½Dμ; Dν� ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�, under a unitary gauge
transformation UðxÞ Aμ → A0

μ ¼ UAμU† þ i=gU∂μU†, Fμν →
F0
μν ¼ UFμνU†.
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i ¼ 2, 3, x2T ¼ xixi, with the nucleus moving in the positive
x direction. In the limit of large x ∼ r the two transverse
coordinates xi are effectively the same as the S2 angular
coordinates θA (scaled by r).
The equation to be solved is

DμFμν ¼ Jν ¼ δνþρðx−; xiÞ: ð3:1Þ
Here ρ is the color current of a nucleus moving in the x
direction in the infinite momentum frame. It is crucial for
the following that there is no xþ dependence; there is no
time dependence due to infinite time dilatation. In contrast
to the Uð1Þ case, the formulation is not gauge invariant,
only gauge covariant. So we have to fix the gauge, and
the usual choice is the light cone gauge A− ¼ −Aþ ¼ 0.
Then a current with only þ component and no xþ

dependence automatically satisfies DμJμ¼∂þJþ¼0, as
required by (3.1).
However, A− ¼ 0 is not yet complete gauge fixing, and

one can fix further either Ai ¼ 0 [Eq. (3.3)] or Aþ ¼ 0
[Eq. (3.8)]. The former is called the covariant gauge (COV),
since in it automatically ∂μAμ ¼ 0, and the latter, in
unfortunate terminology, the light cone gauge (LC). In
both of these gauges F−þ ¼ F−i ¼ 0 while only Fþi is
non-zero, i ¼ 2, 3.
One can formally avoid gauge fixing A− to zero by

integrating Jþðxþ; x−; xiÞ from the matrix equation,

DþJþ ¼ ∂þJþðxþ; x−; xiÞ − igA−ðxþ; xiÞJþðxþ; x−; xiÞ
¼ 0: ð3:2Þ

This is clearly exceedingly complicated and anyway use-
less since for physical applications one also has to include
quantum fluctuations. This leads to an ensemble of color
densities ρa, the distribution of which is determined by a
renormalization group equation [9].
The covariant gauge (COV) corresponds to the gauge

fixing,

Aμ ¼ ðAþðx−; xiÞ; 0; 0; 0Þ; Aμ ¼ ð0;−Aþðx−; xiÞ; 0; 0Þ;
ð3:3Þ

for the vector potential. The absence of xþ dependence
means that ∂μAμ ¼ ∂þAþ ¼ 0, and the fact that Aμ has only
one nonzero component implies that the cross term in Fμν

disappears. With the ansatz (3.3) the field tensor, in the
ðxþ; x−; xiÞ basis, simply is

Fμν ¼

0
B@

0 0 0

0 0 ∂iAþðx−; xiÞ
0 −∂iAþðx−; xiÞ 0

1
CA ðCOVÞ:

ð3:4Þ

The only nonzero component of the field tensor thus is F−i
while Fþi ¼ 0. The latter implies that Fti ¼ −Fxi so that,
writing Fti ¼ Ei, Fij ¼ −ϵijkBk,

Ei ¼ ϵxijBj ≡ ϵijBj; ϵ23 ¼ 1; ð3:5Þ

and

F−i ¼ 1=
ffiffiffi
2

p
ðFti − FxiÞ ¼

ffiffiffi
2

p
Ei ¼ ∂iAþðx−; xiÞ: ð3:6Þ

Altogether we have Ei ¼ ϵijBj, ϵ23 ¼ 1, EiBi ¼ 0, i.e.,
mutually orthogonal color electric and magnetic fields, a
good analogy for electromagnetic radiation. The relation
of the fields to the color current is obtained by solving Aþ
from

DμFμþ ¼ DiFiþ ¼ ∂i∂iAþ ¼ ∂2
i A

þðx−; xiÞ ¼ ρðx−; xiÞ;
ð3:7Þ

i.e., by inverting the 2D transverse Poisson equation.
In the light cone gauge (LC) one asks for a potential of

the form,

Aμ ¼ ð0; 0; Aiðx−; xjÞÞ: ð3:8Þ

This is related to the previous by transforming Aþ to zero in
(3.3) by using the gauge transformation matrix,

∂−U†ðx−; xiÞ ¼ −igAþðx−; xiÞU†ðx−; xiÞ; ð3:9Þ

which is solved by the path ordered exponential,

Uðx−; xiÞ ¼ P exp

�
ig
Z

x−

0

dy−Aþðy−; xiÞ
�
Uð0; xiÞ:

ð3:10Þ

Because there is no xþ dependence, A− → U∂þU† ¼ 0, no
A− is generated. For the transverse components one has

Aiðx−; xiÞ ¼ i=gU∂iU†: ð3:11Þ

The transverse potential thus is gauge equivalent to
vacuum; the transverse field tensor vanishes

Fa
ik ¼ ∂iAa

k − ∂kAa
i þ gfabcAb

i A
c
k ¼ 0: ð3:12Þ

Altogether the field tensor is

Fμν ¼

0
B@

0 0 0

0 0 ∂−Aiðx−; xiÞ
0 −∂−Aiðx−; xiÞ 0

1
CA ðLCÞ:

ð3:13Þ
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The electric field is

F−i ¼
ffiffiffi
2

p
ELC
i ¼ ∂−Ai ¼ i=g∂−ðU∂iU†Þ

¼ U∂iAþU† ¼
ffiffiffi
2

p
UECOV

i U†; ð3:14Þ

as should. So we have symmetrically, depending on gauge,
either

ffiffiffi
2

p
ECOV
i ¼ ∂iAþðx−; xiÞ or ffiffiffi

2
p

ELC
i ¼ ∂−Aiðx−; xiÞ.

B. Memory as a transverse kick

We now have the classical color radiation fields—in a
fixed A− ¼ 0 gauge—and the next task is to formulate the
analogue of the memory equation (2.13); i.e., how a
transverse momentum kick of a test quark can be com-
puted. For this we need a generalization of the Lorentz
force and the equations of motion of a colored test particle
in a known color field, the Wong equations [23–25]. The
same equations have recently been used [11] in a study of
collisions of a nucleus with a static test quark; the emphasis
there was on the gluon radiation caused by the acceleration
of the quark.
Generalizing the electrodynamic action for a point

particle following the path xμ ¼ xμðτÞ by introducing a
color vector QaðτÞ, the Wong equations can be derived
from the action,

S ¼
Z

dτ

�
−m

ds
dτ

þ g_xμðτÞAa
μðxαðτÞÞQaðτÞ

�

¼
Z

dτL½xμðτÞ; _xμðτÞ�

¼ −m
Z

dsþ
Z

d4x

�Z
dτδ4ðxμ − xμðτÞÞgQaðxÞuμ

�

× Aa
μðxÞ: ð3:15Þ

For a given vector potential Aa
μ the equations are extremal

equations for a particle path xμ ¼ xμðτÞ. Defining first,

pμ ¼ muμ ¼ m
dxμ

dτ
; ð3:16Þ

they are (Q · F≡QaFa ¼ 2TrQF),

dpμ

dτ
¼ gQ · Fμν dxν

dτ
;

dQa

dτ
¼ −gfabcuμAb

μQc: ð3:17Þ

Here the proper time dependence of QðτÞ follows elegantly
from demanding that the extremal equations derived
from the Lagrangian in (3.15) give the correct non-
Abelian cross term in Fμν in the first equation. Note that
the equation for pμ explicitly conserves the mass shell
condition pμpμ ¼ −m2.
The equation for _Q≡ dQ=dτ also follows from the

conservation law DμJμ ¼ 0 for the current,

Jμ ¼
Z

dτQðτÞuμðτÞδ4ðx − xðτÞÞ: ð3:18Þ

In a matrix form (uμ∂μ ¼ ∂τ),

_Q − iguμAμQ ¼ uμð∂μ − igAμÞQ ¼ uμDμQ ¼ 0: ð3:19Þ

This first order matrix equation can be integrated to give

QðτÞ ¼ P exp
�
ig
Z

τ

0

dxμAμðxÞ
�
Qð0Þ: ð3:20Þ

Consider then the Lorentz force equation for μ ¼ −; i;þ.
For μ ¼ − one simply has F−þ ¼ F−i ¼ 0 and

dp−

dτ
¼ 0 ⇒

p−

m
¼ u− ¼ dx−

dτ
¼ constant ⇒ x−ðτÞ ¼ u−τ:

ð3:21Þ

The fact that the μ ¼ − component is so simple basically
follows from the time or xþ independence of the gluon
radiation burst in (3.1). The Lorentz force equation trivially
conserves p2 ¼ −2pþp− þ p2

i ¼ −m2 from which

p− dp
þ

dτ
¼ pi

dpi

dτ
: ð3:22Þ

Thus only the equation for pi is needed. In the A− ¼ 0
gauge,

dpiðτÞ
dτ

¼ m
d2xiðτÞ
dτ2

¼ gQ · Fiþ dxþ
dτ

¼ −gu−QðτÞ · ∂−Aiðx−; xkðτÞÞ
¼ −gu−

ffiffiffi
2

p
QðτÞ · Eiðx−; xkðτÞÞ;

ð3:23Þ

where we inserted xþ ¼ −x− and remember that x− ¼ u−τ.
Eq. (3.23) with the color electric field is obviously the
analogue of the simple equation ẍ ¼ eEx in the Abelian ED
case (2.13).
Together with Eq. (3.17) for QðτÞ, Eq. (3.23) is a very

complicated second order differential equation for the
transverse coordinate xiðτÞ, i ¼ 2, 3. First, we are given
a color distribution ρaðx−; xiÞ in the infinite momentum
wave function of a nucleus; one may imagine a Gaussian in
all variables. It serves as the inhomogeneous source term of
a 2D Poisson equation (3.7) for the potential Aþðx−; xiÞ.
Using this one can define the path ordered exponential
Uðx−; xiÞ in Eq. (3.10) which, via Eq. (3.11) gives the
transverse vector potential Aiðx−; xiÞ. When this back-
ground field is given one can solve the rotation of QðτÞ
from (3.20). All these equations depend implicitly on the
quantity to be solved, xiðτÞ. Assuming the test quark is
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initially at rest, xið0Þ ¼ xi0, x
i0ð0Þ ¼ 0, one can, in princi-

ple, solve xiðτÞ and piðτÞ. Yang-Mills memory then is
simply given by the total transverse kick,

Δpi ¼ piðτfÞ − pið0Þ: ð3:24Þ

The above computation was carried out in the A− ¼ 0
gauge. Transformation within the two gauges in this class is

Fiþ
COV ¼ U†Fiþ

LCU ¼ ∂iA
þ
COV ¼ U†∂−ALC

i U;

QLC ¼ UQCOVU†; ð3:25Þ

and the result, which is∼TrQFiþ, is explicitly invariant and
physical under these transformations. Restoring A− as in
(3.2) is also possible, but does not change the fact that
memory is defined in a fixed gauge. In ED, in the
formulation of [2], the gauge transformations U simply
disappear from the definition.

IV. SIMPLIFICATION IN QUANTUM THEORY

To integrate (3.23) and to use the remaining piece of
information, the τ or x− derivative of Q in (3.17), we
manipulate (3.23) as follows:

dpiðx−Þ
dx−

¼ −g½∂−ðQaðx−ÞAi
aÞ − Ai

a∂−Qa�

¼ −g
�
dðQaðx−ÞAi

aÞ
dx−

þ gfabcAa
i A

b
kQcðx−Þ

dxk

dx−

�
:

ð4:1Þ
In the present gauge A� ¼ 0 and in the sum in (3.17) only
the spatial term ukAb

k remains. In (4.1) we could replace
gfabcAa

i A
b
k ¼ −∂iAc

k þ ∂kAc
i (since Fik ¼ 0), but this com-

plicated term does not vanish.
In the quantum theory of color glass condensate (CGC)

the situation is actually much simpler. There one does not
compute the fields for a fixed color distribution ρa in (3.1),
but integrates over a distribution thereof in order to
compute expectation values; see, e.g., [9] Sec. II. These
are diagonal in color. On the average, color density
vanishes, hρai ¼ 0, and the starting point is the charge
density correlator,

hρaðx−; xiÞρbðy−; yjÞi ¼ δabδðx− − y−Þδð2Þðx − yÞλAðx−Þ;
ð4:2Þ

where λAðx−Þ is the average color charge squared of
valence quarks per color and per volume (so that its integral
over x− is the average transverse density). From this one
can compute hAþ

a ðx−; xiÞAþ
b ðy−; yjÞi and further correlators

of the type hAa
i A

b
j i. These are all diagonal, ∼δab. When

applied to (4.1), the last term in it vanishes, due to the

antisymmetry of fabc. Thus we can immediately integrate
and find

piðx−Þ ¼ m
dxi

dτ
¼ −gQaðx−ÞAi

aðx−; xiðx−ÞÞ: ð4:3Þ

We already have solved x−ðτÞ ¼ u−τ, and the transverse
coordinate xi ¼ xiðτÞ can also be solved from here. Finally,
the mass shell condition (3.22) gives, after integration
over τ,

pþðτÞ ¼ m
dxþ

dτ
¼ ðgQ · AiÞ2

2p−
þ const ¼ p2

i ðτÞ þm2

2p− :

ð4:4Þ
The above is a great simplification relative to (4.1), but in

full quantum theory the coordinates disappear and what
matters is the expectation value [9],

p2
T ¼ hpipii ¼ g2QbQbhAi

aAi
ai: ð4:5Þ

The signal of color memory is thus pT ∼ gQjAij, the
magnitude of the transverse color field in the gauge
A− ¼ 0, generated by the passing of the nucleus. This
generalizes the memory in ED, ΔpB¼qðABðufÞ−ABðuiÞÞ
in the gauge Au ¼ 0, derived in Eqs. (2.13) and (2.15).
Deriving the physical magnitude of the kick is one of the
achievements of the theory of CGC, especially for very
large nuclei. A dense system of gluons saturates and
generates a dynamical large scale, the saturation scale
Qs∼ few GeV. The physical magnitude of the kick then is,
for dimensional reasons, ∼Qs.
Since (4.5) is the main result of this article, it might be

useful to add some detail on how its magnitude is
computed, in the simplest possible way. One assumes that
the nucleus is infinitely Lorentz contracted, x− dependence
is δðx−Þ, and that the color density of the nucleus fluctuates
according to the Gaussian distribution,

W½ρaðxÞ� ¼ exp

�
−
Z

d2z
1

2λ
ðρaðzÞÞ2

�
; ð4:6Þ

where only the dependence on the transverse coordinate z
is needed. Average charge then vanishes and quadratic
correlators are given by (4.2) with x− dependence removed
(only x− ¼ 0 contributes). Physics, properties of the
nuclear wave function, is embedded in the constant λ.
According to (3.11) AiðxÞ is simply related to the Wilson
line (3.10) and the expectation value of the correlator
becomes

hTrAiðxÞAjðyÞiρ ¼
1

2
hAa

i A
a
j iρ

¼ 1

g2
hTrðU∂iU†ðxÞ∂jUU†ðyÞiρ: ð4:7Þ
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We need the magnitude of Ai at a point, so x → y,
U†U ¼ 1, and one has to compute in this limit,

hTrAiðxÞAjðyÞiρ ¼
1

g2
∂x
i ∂y

jhTrðU†ðxÞUðyÞiρ: ð4:8Þ

U is ∼ expð−igAþÞ by (3.10) and Aþ ¼ ð1=∂2
i Þρ by the

Poisson equation (3.7) so that the product UU† is expo-
nential of a linear functional of ρ and the Gaussian integral
over the weight function (4.6) can be carried out. The 2D
Poisson equation has a logarithmic divergence, though, and
cutting this away by 1=k2T → 1=ðk2T þm2Þ, the result is

hTrðU†ðxÞUðyÞiρ ¼ exp

�
−
λg2Nc

4πm2
ð1 −mrTK1ðmrTÞÞ

�

≈ exp

�
−Q2

s
r2T
4π

log
1

rTΛ

�
; ð4:9Þ

where Q2
s ¼ 1

2
λg2Nc, rT ¼ jx − yj, Λ ¼ 1

2
eγE−

1
2m and we

have taken the limit m → 0. The final step of taking the
derivatives in (4.8) leads to

lim
x→y

hAa
i ðxÞAa

i ðyÞi ¼ Q2
s

1

g2π
lim
rT→0

log
1

rTΛ
; ð4:10Þ

a result proportional to Q2
s but now divergent at small

distances. This reflects the small size of the probe, a single
quark, the kick of which one is studying. In momentum
space this would correspond to the tail at large momentum.
Dynamics at small distances or at large momenta has to cut
off the divergence, but the above outline of a computation is
offered here as an illustration of the difficulties testing
Yang-Mills memory in a nuclear environment has to face.
It is interesting to ask if the color memory effect could be

experimentally verified. The observable linked most nat-
urally with the kick (4.5) is the color dipole cross section
[10], and the prospects for its extraction in the future
Electron-Ion Collider is discussed in [26]. The detection
seems a plausible scenario, albeit in a highly convoluted
environment.
Finally, let us point out that in principle, a color rotation

of the quark could also be a signal of the memory [6].
However, in [11] it was shown that in the relevant limit of
very high energies, ϵ → 0 in Fig. 2, this rotation vanishes.

V. CONCLUSIONS

We have discussed the memory effect in Abelian and
non-Abelian gauge theories. In Abelian electrodynamics
the discussion can be entirely formulated using gauge
invariant quantities, electric and magnetic fields [3]. The
effect manifests itself as a change in the transverse
momentum of a test charge caused by the passing of the
radiation pulse. It has two components, an ordinary kick
caused by the change in the radial component of the electric
field and a null kick caused by flux of charge to null
infinity. The latter, more interesting, part requires that there
be massless charged particles since massive ones do not get
to null infinity. Such ones do not exist but could exist so this
is a useful conceptual exercise as an analogy to gravity;
there certainly massless particles carry energy to null
infinity.
The Uð1Þmemory could be analyzed entirely in terms of

gauge invariant variables. However, one can also fix the
gauge at null infinity, and one thus has a means of
determining physically a magnitude of a gauge trans-
formation [4]. This is a “large” (nonzero) gauge trans-
formation at asymptotic infinity. One can formulate this as
a symmetry of ED at infinity, but it is essentially just Uð1Þ
gauge invariance.
In the non-Abelian case there in nature are no classical

fields of the type used in the discussion of Uð1Þ memory,
QCD is in the confinement phase; gluons dress themselves
to glueballs and do not propagate to null infinity. However,
classical YM fields supplemented with their quantum
fluctuations are ubiquitous in discussions of dynamics of
large nuclei; in certain experimental conditions they
become very dense systems with large occupation numbers
so that use of classical fields is motivated. Large transverse
densities produce effectively a large energy scale,

FIG. 2. Interaction of a nuclear Yang-Mills field and a test
quark. The nucleus N is represented by a color current Jþ ¼
ρðx−; xiÞ and associated classical YM field Aþ. There is no
dependence on the LC time xþ. The field extends over the range
0 < x− < ϵ and ϵ → 0 with increasing energy. In the transverse
gauge Aμ ¼ ð0; 0; Ai ¼ i=gU∂iU†θðx−ÞÞ, fields in 0 < x− < ϵ
are given in [22]. The collision with the test quark at rest
accelerates the quark to transverse momentum pi; this is the
YM memory. Transverse coordinates are not shown in the figure.
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saturation scale, so that the coupling becomes—optimis-
tically—weak. In this framework, the theory of color glass
condensate, one can immediately find a generalization of
the key Uð1Þ memory equation (2.15), in which a physical
quantity, transverse kick, is expressed as color times gauge
potential in a certain gauge. Initially one has a linear
equation of the type in (4.3), but its expectation value
vanishes, and what matters is the quantum expectation
value of its square in (4.5).
The discussion of memory in YM theory is thus not

manifestly gauge invariant, and physical results are obtained
only after gauge fixing in quantum theory. It is thus not

useful as an analogue model of gravitational radiation.
Rather the other way round, it can be used to reinterpret
some well-known properties of the theory of CGC.
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