
StatusQuo in Requirements Engineering:
A Theory and a Global Family of Surveys

STEFAN WAGNER, University of Stuttgart, Germany
DANIEL MÉNDEZ FERNÁNDEZ, Technical University of Munich, Germany
MICHAEL FELDERER, University of Innsbruck, Austria and Blekinge Institute of Technology, Sweden
ANTONIO VETRÒ, Nexa Center for Internet & Society, DAUIN, Politecnico di Torino, Italy
MARCOS KALINOWSKI, Pontifical Catholic University of Rio de Janeiro, Brazil
ROEL WIERINGA, University of Twente, The Netherlands
DIETMAR PFAHL, University of Tartu, Estonia
TAYANA CONTE, Universidade Federal do Amazonas, Brazil
MARIE-THERESE CHRISTIANSSON, Karlstad University, Sweden
DESMOND GREER, Queen’s University Belfast, UK
CASPER LASSENIUS, Aalto University, Finland and SimulaMet, Norway
TOMI MÄNNISTÖ, University of Helsinki, Finland
MALEKNAZ NAYEBI, University of Calgary, Canada
MARKKU OIVO, University of Oulu, Finland
BIRGIT PENZENSTADLER, California State University, Long Beach, USA
RAFAEL PRIKLADNICKI, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
GUENTHER RUHE, University of Calgary, Canada
ANDRÉ SCHEKELMANN, Hochschule Niederrhein, Germany
SAGAR SEN, Simula, Norway
RODRIGO SPÍNOLA, Salvador University - UNIFACS, Brazil
AHMED TUZCU, zeb.rolfes.schierenbeck.associates GmbH, Germany
JOSE LUIS DE LA VARA, Carlos III University of Madrid, Spain
DIETMAR WINKLER, Technische Universität Wien, CDL-SQI, Austria

Authors’ addresses: Stefan Wagner, University of Stuttgart, Stuttgart, Germany, stefan.wagner@iste.uni-stuttgart.de;
Daniel Méndez Fernández, Technical University of Munich, Garching, Germany, daniel.mendez@tum.de; Michael Felderer,
University of Innsbruck, Innsbruck, Austria, Blekinge Institute of Technology, Karlskrona, Sweden, michael.felderer@uibk.
ac.at; Antonio Vetrò, Nexa Center for Internet & Society, DAUIN, Politecnico di Torino, Torino, Italy, antonio.vetro@polito.it;
Marcos Kalinowski, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, kalinowski@inf.puc-rio.br; Roel
Wieringa, University of Twente, Enschede, The Netherlands, r.j.wieringa@utwente.nl; Dietmar Pfahl, University of Tartu,
Tartu, Estonia, dietmar.pfahl@ut.ee; Tayana Conte, Universidade Federal do Amazonas, Manaus, Brazil, tayanaconte@gmail.
com; Marie-Therese Christiansson, Karlstad University, Karlstad, Sweden, marie-therese.christiansson@kau.se; Desmond
Greer, Queen’s University Belfast, Belfast, UK, des.greer@qub.ac.uk; Casper Lassenius, Aalto University, Espoo, Finland,
casper.lassenius@aa.fi, SimulaMet, Oslo, Norway, casper@simula.no; Tomi Männistö, University of Helsinki, Helsinki,
Finland, tomi.mannisto@helsinki.fi; Maleknaz Nayebi, University of Calgary, Calgary, Canada, mnayebi@ucalgary.ca;
Markku Oivo, University of Oulu, Oulu, Finland, markku.oivo@oulu.fi; Birgit Penzenstadler, California State University,
Long Beach, Long Beach, USA, birgit.penzenstadler@csulb.edu; Rafael Prikladnicki, Pontifícia Universidade Católica do Rio
Grande do Sul, Porto Alegre, Brazil, rafael.prikladnicki@gmail.com; Guenther Ruhe, University of Calgary, Calgary, Canada,
ruhe@ucalgary.ca; André Schekelmann, Hochschule Niederrhein, Krefeld, Germany, andre.schekelmann@hs-niederrhein.de;
Sagar Sen, Simula, Fornebu, Norway, sagar@simula.no; Rodrigo Spínola, Salvador University - UNIFACS, Salvador, Brazil,
rodrigoospinola@gmail.com; Ahmed Tuzcu, zeb.rolfes.schierenbeck.associates GmbH, Munich, Germany, atuzcu@zeb.de;
Jose Luis de la Vara, Carlos III University of Madrid, Madrid, Spain, jvara@inf.uc3m.es; Dietmar Winkler, Technische
Universität Wien, CDL-SQI, Vienna, Austria, dietmar.winkler@tuwien.ac.at.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

, Vol. 1, No. 1, Article . Publication date: December 2018.

ar
X

iv
:1

80
5.

07
95

1v
4

 [
cs

.S
E

]
 1

7
D

ec
 2

01
8

:2 S. Wagner et al.

Context: Requirements Engineering (RE) has established itself as a software engineering discipline over the
past decades. While researchers have been investigating the RE discipline with a plethora of empirical studies,
attempts to systematically derive an empirical theory in context of the RE discipline have just recently been
started. However, such a theory is needed if we are to define and motivate guidance in performing high quality
RE research and practice.

Objective:We aim at providing an empirical and externally valid foundation for a theory of RE practice,
which helps software engineers establish effective and efficient RE processes in a problem-driven manner.

Method:We designed a survey instrument and an engineer-focused theory that was first piloted in Germany
and, after making substantial modifications, has now been replicated in 10 countries world-wide. We have a
theory in the form of a set of propositions inferred from our experiences and available studies, as well as the
results from our pilot study in Germany. We evaluate the propositions with bootstrapped confidence intervals
and derive potential explanations for the propositions.

Results: In this article, we report on the design of the family of surveys, its underlying theory, and the full
results obtained from the replication studies conducted in 10 countries with participants from 228 organisations.
Our results represent a substantial step forward towards developing an empirical theory of RE practice. The
results reveal, for example, that there are no strong differences between organisations in different countries
and regions, that interviews, facilitated meetings and prototyping are the most used elicitation techniques,
that requirements are often documented textually, that traces between requirements and code or design
documents are common, that requirements specifications themselves are rarely changed and that requirements
engineering (process) improvement endeavours are mostly internally driven.

Conclusion: Our study establishes a theory that can be used as starting point for many further studies
for more detailed investigations. Practitioners can use the results as theory-supported guidance on selecting
suitable RE methods and techniques.

CCS Concepts: • General and reference → Empirical studies; • Software and its engineering → Re-
quirements analysis;

Additional Key Words and Phrases: Requirements Engineering, Theory, Survey Research, Replication

ACM Reference Format:
StefanWagner, Daniel Méndez Fernández, Michael Felderer, Antonio Vetrò, Marcos Kalinowski, Roel Wieringa,
Dietmar Pfahl, Tayana Conte, Marie-Therese Christiansson, Desmond Greer, Casper Lassenius, Tomi Männistö,
Maleknaz Nayebi, Markku Oivo, Birgit Penzenstadler, Rafael Prikladnicki, Guenther Ruhe, André Schekelmann,
Sagar Sen, Rodrigo Spínola, Ahmed Tuzcu, Jose Luis de la Vara, and Dietmar Winkler. 2018. Status Quo in
Requirements Engineering: A Theory and a Global Family of Surveys. 1, 1 (December 2018), 47 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
As stated by Wohlin et al. [63]: “There exists no generally accepted theory in software engineering,
and at the same time a scientific discipline needs theories. Some laws, hypotheses and conjectures
exist, but yet no generally accepted theory.” [63] What is true for the whole discipline holds
especially for its sub-disciplines, in particular for requirements engineering (RE). In a literature
survey published in 2007, Hannay et al. [20] identified 103 publications of the period 1993–2002
that report on software engineering experiments. Out of those only 24 publications used in total 40
theories to justify their research questions, explain the results or, rarely, test and modify theories.
The authors also noticed that most theory has been developed in other disciplines and only a small
number of theories detected were genuine to the software engineering discipline. This observation

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
XXXX-XXXX/2018/12-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

StatusQuo in Requirements Engineering :3

was also made by Endres and Rombach [18] in their collection of empirical observations, laws and
theories on software and systems engineering published in 2003. Moreover, most of the theories
seem to relate to management tasks rather than requirements specification, technical design,
verification and validation tasks.

The lack of a general theory of software engineering triggered the SEMAT initiative (Software
Engineering Method and Theory) which, among other things, develops and maintains the ESSENCE
standard aiming at providing comprehensive definitions and descriptions of the kernel and the
language for software engineering methods. However, until today, all attempts to collect theories
of software engineering or to develop a theory of software engineering have very little to offer
with regards to RE, and if there is some theory developed, it often relates to RE management tasks
(e.g., [2, 32]). Therefore, Daniel Méndez Fernández and Stefan Wagner started the NaPiRE initiative1
(Naming the Pain in Requirements Engineering) in 2012 which constitutes a globally distributed
family of surveys on RE. In accordance with the statement made by Stol and Fitzgerald [60] that
theory is “both a driver for, and a result of empirical research”, the goal of this initiative is to create
an empirical theory on requirements engineering practices and problems. For this, we adopt the
view that a theory is a set of constructs and general propositions and, possibly, explanations of
those propositions [56, 62].
How RE is conducted in a given context is a crucial factor in successful development projects

as the elicitation, specification, and validation of requirements are critical determinants of soft-
ware and system quality [10]. At the same time, requirements engineering is highly volatile and
inherently complex due to the involvement of interdisciplinary stakeholders and uncertainty about
many aspects that are not clear at the beginning of a project. The diversity of how requirements
engineering is performed in various industrial environments, each having its particularities in the
domains of application or the software process models used, makes it difficult for industry to define
and apply high-quality requirements engineering [45].

1.1 Problem Statement
From a researcher’s perspective, the diversity of requirements engineering contexts makes it
hard to develop general theories. Rather, we expect to develop a few general propositions and a
lot more context-specific propositions. Empirical research in RE thereby becomes a crucial and
challenging task. Empirical studies of all kinds, ranging from classical action research through
observational studies to broad exploratory surveys, are necessary to understand the practical
needs and improvement goals in requirements engineering to guide problem-driven research and
to empirically validate new research proposals [13]. Since requirements engineering, like most
sub-disciplines of software engineering, is highly human-based, we face the challenge to create a
solid empirical basis that allows for generalisations taking into account the human factors that
influence the anyway hard to standardise discipline. To address this challenge, survey research has
become an indispensable means to investigate RE across many contexts.

1.2 Research Objective
Our long-term research objective is to establish an empirically-based descriptive and explanatory
theory on the status quo of requirements engineering practice allowing us to guide future research in
a theory-based manner. According to Sjøberg et al. [56], “Theory development consists of inductive
and deductive aspects, and may be initiated from both the practical or from the theoretical realm”. In
preparation of our first NaPiRE survey conducted in Germany in 2012/13, we deductively developed

1http://www.napire.org

, Vol. 1, No. 1, Article . Publication date: December 2018.

http://www.napire.org

:4 S. Wagner et al.

an initial, engineer-focused theory of requirements engineering practice based on experience gained
during research collaborations with industry and ideas taken from the scientific literature [42].
For this article, we improved the theory based on the results of the first run of the survey and

extended it by further propositions on requirements elicitation, documentation and test alignment
to better cover the whole requirement engineering process. We reflected these changes in a new
version of the survey instrument and partially replicated the first survey in 10 countries. We report
on this partial replication in this article and call it “second run” in the following. Our goal here is to
use the results of this replication to evaluate and further improve the RE theory. In [43] important
problems, causes, and effects have been reported. Among others, poor requirements elicitation
techniques and missing completeness checks have been identified as important causes that lead to
requirements engineering problems. In this article we focus on RE standards and their application,
requirements elicitation approaches, and RE improvement options. Specifically, we want to answer
the following research questions: (i) how are requirements elicited and documented? (ii) how are
requirements changed and aligned with tests? (iii) why and how are RE standards applied and
tailored? and (iv) how is RE improved?

1.3 Contribution
In [42], we published the initial theory as well as the design of the used survey instrument and
discussed preliminary results from the first run conducted in Germany. We presented and analysed
the qualitative data regarding problems in practice from the second run of the survey without
relating it to the prior theory in [43]. In the present article, we evaluate and propose improvements
to the theory of RE practice based mostly on the quantitative analysis of the answers on the status
quo from the second run. More in particular, we present the following contributions:
(1) We substantially enhanced our initial theory after the analysis of the results gained from

the first run in Germany and using input from collaborating researchers received during
a thematic workshop held within the ISERN (International Software Engineering Network)
meeting in 2015. The resulting theory includes for each research question a set of propositions
concerning requirements elicitation, documentation, change and alignment, standards and
improvement with a focus on the involved engineers. We use the propositions in our theory
to test our results during our analysis procedure.

(2) We report the full results from 10 countries including the responses from 228 organisations
and a detailed analysis of those results via a calculation of confidence intervals with respect
to our theory. This allows a statistically sound interpretation of the answers and a validation
of the theory.

(3) Based on the quantitative results, additional qualitative answers by the respondents and
further interpretation, we propose corresponding improvements of the underlying theory in
the form of changed or new propositions and explanations.

Our contribution is thus intended to serve both RE practitioners interested in the status quo of
RE practice and RE researchers interested in theories that aim to describe real-world phenomena of
RE practice.

1.4 Outline
We structure the remainder of this article as follows: We start with a discussion of the related work
in Section 2 on theories and survey research in requirements engineering as well as the background
on the NaPiRE initiative and then present our current theory on the status quo in requirements
engineering practice in Section 3. In Section 4, we present the design of the survey which we use
to validate the theory. We discuss the results of the survey in Section 5 structured by the research
questions. Finally, we summarise and discuss implications and future work in Section 6.

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :5

2 RELATEDWORK
In this section we discuss theories on requirements engineering, survey research related to the
scope of our contribution, and introduce the NaPiRE initiative as well as previously published
material in this context in more detail.2

2.1 Theories on Requirements Engineering
Sjøberg et al. [56] proposed a number of activities to define software engineering theories, namely
(1) defining the constructs of the theory, (2) defining the propositions of the theory, (3) providing
explanations to justify the theory, (4) determining the scope of the theory, as well as (5) testing the
theory through empirical research. In our work, we follow these proposed steps.

The literature in the broader area of software engineering provides a broad spectrum on theories.
In 2009, for instance, Jacobson [25] motivated the need for a theory in software engineering
initiating the SEMAT initiative (Software Engineering Method and Theory) [24]. According to
Jacobson, software engineering is gravely hampered by (1) the prevalence of fads more typical of
fashion industry than of an engineering discipline; (2) the lack of a sound, widely accepted theoretical
basis; (3) the huge number of methods and method variants with differences little understood and
artificially magnified; (4) the lack of credible experimental evaluation and validation; and finally
(5) the split between industry practice and academic research. NaPiRE aims to improve on all
these aspects in the area of requirements engineering. Tarpit [26] is an example of a more general
theory of software engineering derived from four underlying theoretical fields, i.e., (1) languages
and automata, (2) cognitive architecture, (3) problem solving, and (4) organisation structure. Its
applicability was explored in the cases of Brooks’ law, domain specific languages and continuous
integration. Yet, it has not been applied to RE so far.
Bjarnason et al. [6] propose a theory of distances in software engineering. The theory is based

on a mapping study of RE distances [4] as well as RE and testing challenges and practices [5]. The
theory of distances in software engineering considers people-related distances but also artefact-
related distances, whereas our theory focuses on artefact-related distances but also considers other
aspects like RE documentation, standards and improvement.

Theories on requirements engineering are even more rare. The SWEBOK [7] aims to describe the
body of knowledge in software engineering including a knowledge area on software requirements.
Yet, the SWEBOK does not constitute an empirically validated theory on RE, but it is created by
consensus of the participating people. While we consider it an important effort and starting point,
our theory contains more details on the RE process and methods including explicit propositions,
which we test empirically, as well as explanations.

The handbook of software and systems engineering [18] is a rare exception reporting on empirical
observations, laws, and theories in various fields including requirements engineering. Theories
cover, for example, that requirements deficiencies – in particular, incomplete, incorrect and volatile
requirements – are the prime sources of project failures. They became part of the problem analysis
in [43] but are so far not integrated in the theory in the current article.

Besides those well known, mostly descriptive and causal, theories, there is still a lack of theories
in requirements engineering. This article provides a step towards closing this gap. In particular, we
aim for a descriptive and explanatory theory validated by a broad survey. Therefore, we discuss
work related to survey research on requirements engineering next.

2Parts of section 2.2 and section 2.3 are based on our related work discussion in [42] as the related work has not changed
significantly. It has also been used in [43].

, Vol. 1, No. 1, Article . Publication date: December 2018.

:6 S. Wagner et al.

2.2 Survey Research on Requirements Engineering
In RE survey research, there have been investigations of techniques and methods and investigations
of general practices. We will discuss the most relevant ones in the following.
Contributions that investigate techniques and methods analyse, for example, selected require-

ments phases and which techniques are suitable to support typical tasks in those phases. Cox, Niazi
and Verner [14] performed a broader investigation of all phases to analyse the perceived value of
the RE practices recommended by [57]. Studies like those reveal the effects of given techniques
when applying them in practical contexts.

A similar focus, but exclusively narrowed down to the area of RE, had the study of Kamata and
Tamai [29]. They analysed the criticality of the single parts of the IEEE software requirements
specification Std. 830-1998 [22] for project success. Palomares, Quer and Franch [51] investigated
the use of requirements reuse and requirements patterns with a survey among practitioners. They
found that reuse and patterns are done only by a minority regularly. We do not cover requirements
reuse in our survey.
Nikula, Sajaniemi and Kälviäinen [49] present a survey on RE at the organisational level of

small and medium-sized companies in Finland. Based on their findings, they inferred improvement
goals, e.g., for optimising knowledge transfer. Staples et al. [59] conducted a study investigating
the industrial reluctance to software process improvement. They discovered different reasons why
organisations do not adopt normative improvement solutions, for example, CMMI and related
frameworks (focussing on assessing and benchmarking companies rather than on problem-driven
improvements [47, 53]). Example reasons for a reluctance to normative improvement frameworks
were the small company size because of which the respondents did not see clear benefit.

Neil and Laplante [48] conducted in 2003 a survey in the USA with a focus on some aspects we
also cover here. In particular, they found that most of the respondents use scenarios and use cases
for requirements elicitation followed by focus groups and informal modelling. Separately, they
also found that 60% of the respondents do prototyping. Kassab, Neill and Laplante [30] updated
this survey in a similar manner. Brainstorming, interviews and user stories were techniques most
mentioned by their respondents, while workshops were only mentioned by roughly 20 %.
Although giving valuable insights into industrial environments, the discussed surveys do not

give a comprehensive picture as they focus on single aspects in RE, such as problems in RE
processes or RE improvements, or they focus on specific countries. To close this gap in literature,
we designed a family of surveys. The design of the survey as well as the interpretation of the
results are both conducted along an initial theory [42]. By relying on an initial theory built on the
basis of our experiences and available studies, and by bringing together different interdisciplinary
communities during replications, the family of surveys shall contribute to an empirical basis for
theories and problem-driven research in RE. The replications around the world give us a more
heterogeneous sample. If some phenomena stand out nevertheless, then they are phenomena
occurring in heterogeneous contexts, which have at least different cultures and languages.

Furthermore, there are also several literature studies available that survey the scientific literature
on specific requirements engineering activities and are related to the activities considered in this
article (i.e., requirements elicitation, requirements documentation, requirements change manage-
ment, requirements test alignment, requirements engineering process standard and requirements
engineering improvement). Dieste and Juristo [17] provide a systematic review on empirical studies
on requirements elicitation techniques, Condori-Fernandez et al. [12] a systematic mapping on em-
pirical evaluation of software requirements specification techniques, Inayat et al. [23] a systematic
review on agile requirements engineering practices and challenges, Barmi et al. [3] a systematic
mapping on requirements specification and testing alignment, Loniewski et al. [34] a systematic

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :7

review on the use of requirements engineering techniques in model-driven development and finally
Pekar et al. [52] a systematic mapping on improvement methods for requirements specification.
They provide an interesting counterpart to our view into practice.

2.3 The NaPiRE Initiative
The basic idea of NaPiREwas to establish a broad survey investigating the status quo of requirements
engineering in practice together with contemporary problems practitioners encounter. This should
provide an empirical basis for theories about RE and should lead to the identification of interesting
further research areas.
When we started NaPiRE, we were convinced that because of the diversity of RE in research

and practice, we would not be able to achieve this ambitious goal in a small team and in a single
survey. Therefore, NaPiRE was created as a means to collaborate with researchers from all over
the world to conduct the survey in different countries and in a replicated manner. This allows us
to investigate RE in different cultural environments and increase the overall sample size while
covering slightly different areas over time and while also having the possibility to observe trends.

More precisely, we started NaPiRE by establishing a first set of theory patterns based on isolated
work published in the research community. With each replication, our hope is to further strengthen
this initial theory by corroborating it based on the gathered data and modifying it where we have
no explanation for the observed phenomena (e.g. by removing initial hypotheses or by changing
them). That is to say, based on the results from each replication, we slightly adapt the questions in
the questionnaire as well as the answer options for the next replication. The conduct of NaPiRE is
generally guided by the four principles described in Tab. 1.

Table 1. Guiding principles of NaPiRE

Openness Openness begins by cordially inviting researchers and practition-
ers of any software-engineering-related community to contribute
to NaPiRE and ends by disclosing our results and reports without
any restrictions or commercial interest.

Transparency All results obtained from the distributed surveys are committed
to an open repository. This shall allow other researchers an
independent data analysis and interpretation.

Anonymity The participation in NaPiRE in the form of a survey respondent
is possible by invitation only. This supports a transparent result
set and response rate. We collect no personal data, however, and
every questionnaire obtained from the survey will be carefully
cleansed of information that might be traced back to a specific
company to ensure that no personal data will be disclosed to the
public. That is, we guarantee that no answer set can be related
to survey participants and their organisations.

Accuracy and Validity With accuracy and validity, we refer in particular to the data
collection and to the data analysis. Each question in the survey is
carefully defined according to a jointly defined theory to specifi-
cally confirm or refute existing expectations. The data analysis
is furthermore performed in joint collaboration by different re-
searchers to maximise the validity of the results.

, Vol. 1, No. 1, Article . Publication date: December 2018.

:8 S. Wagner et al.

To organize our work, e.g., on the NaPiRE instrumentation, we hold joint community workshops.
These community workshops take so far place at the annual meetings of the International Software
Engineering Research Network, which forms part of the annual Empirical Software Engineer-
ing International Week. We use these workshops biannually to organize the modification of the
questionnaires as a preparation for one NaPiRE run and the next workshop to discuss the results
obtained from the run before entering the next round. In the workshops where we prepare one
replication, we discuss to which extent our initial expectations (again, based on literature) are
reflected by the actual results from the previous run and, in cases where the results deviate from
our expectations, whether other propositions should be included instead. We jointly adapt the
questionnaire (questions and answer options) before centrally implementing the questionnaire,
organizing pilot studies with partners from the industry, and starting the distributed data collection.
At present, the NaPiRE initiative has members from 25 countries mostly from Europe, North-

America, South-America and Asia. There have been two completed runs of the survey and the
third is taking place at the time of writing this manuscript. An overview of the timeline of the
activities of NaPiRE so far is shown in Figure 1. The first was the test run performed only in
Germany and the Netherlands in 2012/13. The second run was performed in 10 countries in 2014/15.
This article reports on the results from this second run. All up-to-date information on NaPiRE
together with links to all publications, the instruments used for each replication, links to the
published open data sets, as well as the steering manifesto of the initiative is available on the web
site http://www.napire.org.

2012 2013 2014 2015 2016 2017

Start of the
NaPiRE Initiative

First Run of
the Survey in
Germany and

The Netherlands

Second Run of
the Survey in
10 Countries

Article on the
Prevention of

Incomplete/Hidden
Requirements [27]

Article on Causes
of RE Problems

[28]

Preliminary report
on Design and
First Run [41]

Main Article on
Design, Theory

and First Run [42]

Comparison of
Brazil and

Germany [44]

Main Article on Problems,
Causes and E ects from

Second Run [43]

Fig. 1. Timeline of the major NaPiRE activities

A preliminary version of the report on the first run was published in [41] and the detailed data
and descriptive analysis is available as a technical report [40]. This first run already covered the
spectrum of status quo and problems. We described the study design with the bi-yearly replications
and world-wide distribution in detail in the main article for the first run [42]. It includes a first
version of a theory of the status quo and problems in RE in the form of hypotheses. Overall, we
were able to get full responses from 58 organisations to test the theory. We could support most of
the proposed theory and discussed changes based on the data. We also made a detailed qualitative
analysis of the experienced problems and how they manifest themselves. The current article extends
and improves the theory from the first run and evaluates it using mostly quantitative analysis.

For the publications of the second run, we so far have concentrated on specific aspects and/or the
data from only one or two countries. None of these has described the full status quo nor did they

, Vol. 1, No. 1, Article . Publication date: December 2018.

http://www.napire.org

StatusQuo in Requirements Engineering :9

present or evaluate a theory. In [28], we used the Brazilian data to explore how to analyse problems
and causes in RE in detail. Thereafter, in [44], we concentrated on analysing the similarities and
differences in the experienced problems between Brazil and Germany. Our key insights in that paper
were that the dominating factors are related to human interactions independent of country, project
type or company. Furthermore, we observed a higher inclination to standardised development
process models in Brazil and slightly more non-agile, plan-driven RE in Germany.
In [27], we focused on the often mentioned problem of Incomplete and/or hidden requirements

and investigated common causes for this problem based on the Austrian and Brazilian data. The
most common causes we found were Missing qualification of RE team members, Lack of experience,
Missing domain knowledge, Unclear business needs and Poorly defined requirements.
In [61], we report on the status quo and critical problems of agile requirements engineering.

The study shows that the backlog is the central means to deal with changing requirements, traces
between requirements and code are explicitly managed, and testing and RE are typically aligned.
Furthermore, continuous improvement of RE is performed due to intrinsic motivation and RE
standards are commonly practiced. Main problems of agile requirements engineering with critical
consequences are incomplete requirements, communication flaws and moving targets.
Finally, we describe the analysis of the part of the questionnaire on contemporary problems,

their causes and effects in the corresponding main article [43]. In the current article, we use the
same data set (and therefore the same context factors such as application domains) as in [27, 28, 43].
Yet, we use a part of the data set not covered in the previous papers: the parts on the participants
use of practices in requirements elicitation, requirements documentation, requirements change and
alignment and their use of requirements engineering standards as well as their improvement.

3 A THEORY ON THE STATUS QUO IN REQUIREMENTS ENGINEERING
The basis of our family of studies is a theory on the status quo of requirements engineering practice.
We started the theory in the first round of the studies and documented it in [42]. By theory we mean
a set of constructs and general propositions and, possibly, explanations of those propositions [56, 62].
Each theory has a scope, and our scope is the world-wide practice of requirements engineering.
The theory is currently populated with general descriptive propositions about how requirements
engineering is practiced in industry [42] and about contemporary problems in requirements
engineering [43]. In this paper, we will add new propositions as well as explanations to the theory.
We removed the part of the initial theory about the expectations of practitioners on good

requirements engineering practices, as it did not give us particularly interesting insights. We moved,
however, the propositions we found useful to the part on requirements engineering standards.
Furthermore, we restructured the theory into the following parts:

• Requirements Elicitation
• Requirements Documentation
• Requirements Change and Alignment
• Requirements Engineering Standards
• Requirements Engineering Improvement

The initial theory contained hypotheses for all these parts but with differing emphasis. We
especially detailed the theory in the area of documentation to better capture what techniques are
used for what. Moreover, we added hypotheses on aligning requirements and tests which has not
been investigated in our first study. The added hypotheses are based on our joint understanding and
observations from industry. We have not added any hypotheses based on the correlation analysis
from [42] although that was its goal. The found correlations were all in the expectations on good

, Vol. 1, No. 1, Article . Publication date: December 2018.

:10 S. Wagner et al.

requirements engineering practices, which we removed from the theory, or between different
barriers for adopting RE process standards. All in all, they were not particularly insightful.
For this second, restructured and extended theory, we decided to follow the proposal on how

to document and structure a software engineering theory by Sjøberg et al. [56]. They propose
to structure such theories into the used constructs, propositions about relationships between the
constructs and, finally, possible explanations for the propositions. We describe constructs and an
overview of the propositions in this section. We then provide detailed propositions and explanations
when we analyse the results of the survey in Section 5. “The difference between a proposition
and an explanation is that the former is a relationship among constructs, and the latter is a
relationship among constructs and other categories, which are not central enough to become
constructs [. . .].” [56]

Sjøberg et al. also propose a graphical representation inspired by UML class diagrams. We use that
for an overview of the the main constructs and relationships in form of propositions in Figure 2. All
main constructs of our theory are summarised in Table 2 which also makes the scope of our theory
explicit. We expect it to be applicable world-wide and cross-domain. The selection of activities,
actors, and technologies is in line with the research questions with focus on requirements elicitation
and documentation, requirements changes and testing, RE standards, and RE improvement options.

Table 2. Main constructs and scope of the theory

Constructs Type

C 1 Requirements Elicitation Activity
C 2 Requirements Documentation Activity
C 3 Requirements Change Management Activity
C 4 Requirements Test Alignment Activity
C 5 Requirements Standard Application Activity
C 6 Requirements Standard Definition Activity
C 7 Requirements Engineering Improvement Activity
C 8 Requirements Engineer Actor
C 9 Test Engineer Actor
C 10 Requirements Elicitation Technique Technology
C 11 Requirements Documentation Technique Technology
C 12 Requirements Change Approach Technology
C 13 Requirements Test Alignment Approach Technology
C 14 Requirements Engineering Process Standard Technology
C 15 Requirements Improvement Means Technology

Scope

The theory is supposed to be applicable to contemporary re-
quirements engineering in practice world-wide. There could
be differences in different regions of the world because of cul-
tural differences or different economic environments as well as
differences in different application domains.

As suggested by Sjøberg et al., we structure the constructs into technology, activity and actors.
The main actors we describe in our theory are requirements engineers and test engineers. Most of
the theory actually relates to the requirements engineer, but we found that the test engineer might

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :11

play an important role as well. So far, we have not included explicit propositions involving the
customers or users of the system. While this would be interesting given the important part they
play in requirements engineering, the theory is already at the limit of what we could handle in a
single survey. The theory should, however, be extended with these roles in the future.

Req Elicitation Technique
Interview
Scenario
Prototyping
Facilitated Meetings
Observation

Req Documentation Technique
Structured req list
Domain/business process model
Use case model
Goal model
Data model
Non‐functional req
Textual
Semi‐formal
Formal

Technology

Req Test Alignment Approach
Req review by tester
Coverage by tests
Acceptance criteria
Test derivation from models

Req Change Approach
Product backlog update
Change requests
Trace management
Impact analysis

Activity

Req Elicitation

Req Documentation

Req Change Management

Req Test Alignment

P 1‐5

P 6‐13

P 14‐20

P 21‐24

Actor

Req Engineer

Test Engineer

Req Standard Application
Practice
Control
Tailoring

Req Eng Process Standard

P 25‐28

Req Standard Defintion
Compliance
Development
Tool support
Quality assurance
Project management
Knowledge transfer
Process complexity
Communication demand
Willigness to change
Possibility of standardisation

Req Improvement Means
Continuous improvement
Strengths/weaknesses
Own business unit/role

Req Eng Improvement

P 29-44

P 45-49

Fig. 2. Theory Overview: Constructs and index of propositions.

We classified the propositions in terms of six activities related to requirements engineering:
requirements elicitation, requirements documentation, requirements change management, requirements
test alignment, requirements engineering process standard and requirements engineering improvement.
Elicitation and documentation form core activities in requirements engineering. Furthermore,
requirements change over time, which gives rise to the activity of change management. To facilitate
requirements-based testing, we included the activity of requirements-test alignment. All activities
and related artefacts in requirements engineering are usually captured in a process standard
containing a blueprint of the (idealised) way of working in a specific setting (a company, a team or
a project). Finally, the process of requirements engineering should be regularly improved as any
other part of software development processes.

, Vol. 1, No. 1, Article . Publication date: December 2018.

:12 S. Wagner et al.

We will describe the concrete propositions classified according to these activities together with
the results and refined propositions and explanations in Section 5. Please note that all propositions
state that a technology or activity is used in practice. For all these propositions, we mean that
the technologies or activities are commonly in use. In particular, just because there are infrequent
applications in practice, we would not state that it is used. It has to cross a threshold that we will
define in the analysis procedure (Sec. 4.4).

4 SURVEY DESIGN
The overall methodology of the NaPiRE initiative and how the survey instrument has been developed
and continuously adapted has been described earlier in section 2.3, hence, we will not repeat it.
Instead, we define the research questions that drove the second run of the NaPiRE study and that
are relevant for the research methodology in this run, including the study instrument, analysis
procedures, and validity.

4.1 ResearchQuestions
In agreement with the structure of the theory presented in Section 3, we have the four research
questions listed in Tab. 3. These questions are descriptive, and each of them has an explanatory
sequel. For example, if we have an answer on RQ 1, then the subsequent question is: “Why are
requirements elicited and documented this way?” Answering these explanatory questions is part
of the analysis of results in section 5.

Table 3. Descriptive research questions. Each question has an explanatory sequel.

RQ 1 How are requirements elicited and documented?
RQ 2 How are requirements changed and aligned with tests?
RQ 3 How are RE standards applied and tailored?
RQ 4 How is RE improved?

We designed the survey in a way that we can investigate the updated theory and judge the
support for it, change existing propositions or add new ones for the next run of the survey, and
add explanations where possible.

4.2 Survey Instrument
The full instrument and codebook is openly available in the open data set [38]. We have in total
34 questions in the survey, out of which 24 are relevant for the research questions in this article,
which are listed in Table 4. The further 10 questions are about general problems in requirements
engineering. We analysed the answers to these questions in [43]. In the fourth column, for each
question, we denote whether it is an open question or a closed one and for closed questions whether
the answers are mutually exclusive single choice answers (SC) or multiple choice ones (MC). Most of
the closed multiple choice questions include a free text option, e.g., “other” so that the respondents
can express company-specific deviations from standards we ask for.

We use Likert items (an ordinal scale of 5) and defined as the maximum value “agree” and as the
minimum value “disagree” and the middle (“neutral”). The latter allows the respondents to make a
selection when they have, for example, no opinion on the given answer options.
The survey questions have been presented to respondents as listed in Table 4. At the end of

the survey, the respondents could enter their email address and freely add any other aspect that
remained not addressed in the survey. We use this information as input for future modifications of
the instrument.

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :13

Table 4. Questions (simplified and condensed). Closed questions require mutually exclusive single choice
answers (SC) or multiple choice answers (MC).

RQ No. Question Type

– Q 1 What is the size of your company? Closed(SC)
Q 2 Please describe the main business area and application domain. Open
Q 3 Does your company participate in globally distributed projects? Closed(SC)
Q 4 In which country are you personally located? Open
Q 5 To which project role are you most frequently assigned? Closed(SC)
Q 6 How do you rate your experience in this role? Closed(SC)
Q 7 Which organisational role does your company take most frequently in your projects? Closed(SC)
Q 8 Which process model do you follow (or a variation of it)? Closed(MC)

RQ 1 Q 9 How do you elicit requirements? Closed(MC)
Q 10 How do you document functional requirements? Closed(MC)
Q 11 How do you document non-functional requirements? Closed(SC)

RQ 2 Q 21 How do you perform change management in your requirements engineering? Closed(MC)
Q 12 How do you deal with changing requirements after the initial release? Closed(SC)
Q 13 Which traces do you explicitly manage? Closed(MC)
Q 14 How do you analyse the effect of changes to requirements? Closed(MC)
Q 15 How do you align the software test with the requirements? Closed(MC)

RQ 3 Q 16 What RE standard have you established at your company? Closed(MC)
Q 17 Which reasons do you agree with as a motivation to define a company standard for RE in

your company?
Likert

Q 18 Which reasons do you see as a barrier to define a company standard for RE in your com-
pany?

Likert

Q 19 Is the requirements engineering standard mandatory and practised? Closed(SC)
Q 20 How do you check the application of your requirements engineering standard? Closed(MC)
Q 22 How is your RE standard applied (tailored) in your regular projects? Closed(MC)

RQ 4 Q 23 Is your RE continuously improved? Closed(SC)
Q 24 Why do you continuously improve your requirements engineering? Closed(MC)

4.3 Data Collection
The survey has been conducted by invitation, for two main reasons: (1) to have better control over
its distribution among specific companies and (2) to improve the response rate. The responses
were anonymous allowing our respondents to freely share their experiences made within their
respective company.
For each company, we invited one respondent as a representative of the company. In case of

large companies involving several autonomous business units working each in a different industrial
sector and application domain, we selected a representative of each unit. Therefore, we call our
unit of analysis “organisation” as an umbrella for individual companies or business units of larger
companies. For the data collection, the country representatives defined an invitation list including
contacts from different companies and initiated the data collection independently as an own survey
project. The invitation list overlaps for the German invitees with the list from the first run. Yet, we
have no way to track the overlap in actual respondents to the survey.

All surveys relied on the same survey tool3 hosted and administrated by the representatives for
Germany. We conducted the survey in the countries summarised in Table 5. The data collection
took place in 2014 and 2015, during periods that varied across countries.

4.4 Data Analysis
The answers to Q 2, which asks for the main business area and application domain, were analyzed
qualitatively. We opted to ask for this information in an open question because there is no well-
established standard to classify companies that are involved in developing software, or to classify

3We implemented the survey as a Web application using the Enterprise Feedback Suite.

, Vol. 1, No. 1, Article . Publication date: December 2018.

:14 S. Wagner et al.

Table 5. Data collection phases

Area Country Data Collection Phase

Central Europe Austria 2014-05-07 to 2014-09-15
Germany 2014-05-07 to 2014-08-18

North America Canada 2014-05-07 to 2015-08-15
United States of America 2014-05-07 to 2015-05-01

Northern Europe Estonia 2014-05-07 to 2014-10-31
Finland 2015-06-01 to 2015-08-28
Norway 2014-05-07 to 2014-09-15
Sweden 2014-05-07 to 2014-09-15

South America Brasil 2014-12-09 to 2015-03-31

Western Europe Ireland 2014-05-07 to 2014-12-31

application domains. Moreover, the application domain of a software product may be different
from the domain of a company. For example, an automotive company may only buy its software,
develop embedded, safety-critical software or develop primarily its business information systems.

To reduce subjectivity of interpretation of the qualitative answers to Q 2, the answers were coded
independently by two different researchers. The interpretations were then compared, and any
differences resolved. We ended up with 50 partly overlapping codes that describe the respondents
software and company domains best.
In our preliminary publications on this run of the survey, we compared countries and regions

[27, 44]. Therefore, we initially also analysed the complete dataset as a whole as well as divided by
country and region. Yet, in our first analyses, we found very little differences in the results between
countries. Hence, we decided to look into whether the dataset can be considered as coming from
one sample.

We conducted a preliminary analysis of the answers collected and checked themwith the Kruskal-
Wallis (K-W) test [16], which determines whether three or more samples originate from the same
distribution (in our context, a sample is a country). The K-W test is a non-parametric test, i.e., it
does not assume that the data comes from a distribution that can be completely described by two
parameters, mean and standard deviation, as in the case of the normal distribution. If the samples
come from the same distribution, the K-W test will show no difference among them4, which in our
case means that answers to the survey questions are consistent throughout the countries.

We applied the K-W test with a confidence level α = 0.05: When the p-value is less than 0.05, the
hypothesis that the samples originate from the same distribution is rejected. This happens when
the answers to a survey question differ significantly depending on the country. We performed
the test for each survey question and each corresponding answer option, for a total of 94 tests, as
reported in Appendix B (The p-values less than 0.05 are highlighted in bold.). The null hypothesis
had to be rejected in 27 answer options. In 67 tests, the null hypothesis could not be rejected. IF we
would correct for multiple testing, this would even be more often the case. In addition, we observe
in Tables 24 and 25 in Appendix B, that there is no question in which the null hypothesis was
rejected for all its answer options: In many questions, only one or rarely two options for a question
lead to rejecting the null hypothesis.

4Unless the populations have symmetrical distributions with the same centre: However, being 10 groups in our case, it is
reasonable to assume that it is highly improbable to happen.

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :15

Therefore, given that (1) in our preliminary publications on this run of the survey, we found
very little differences in the results between countries, and (2) the K-W test was rejected only in
1/3 of the answer options, most of them being unrelated, we deemed it reasonable to assume in the
theory and the further analyses all requirements engineering practice (related to software projects)
world-wide and not country-specific, at least with respect to the countries involved in the survey at
present. Including further countries, especially countries with stronger cultural differences, might
change that in the future.
This fundamental assumption of our theory, however, does not tell us more about the general

population. In such cases of unknown theoretical distribution, resamplingmethods, and in particular
bootstrapping techniques, have been reported to be more reliable and accurate than inference
statistic from samples [1, 35]. In addition, non-parametric bootstrap inference is distribution
independent (as also non-parametric tests): as a consequence, parametric or sample size assumptions
(e.g., assumptions of normality of distribution and of homogeneity of variance) are not necessary
as it is not necessary to estimate the mathematical characteristics of the sampling distribution for a
sample-based estimate or a test statistic.
We built our analysis on the bootstrapping procedure, i.e., we bootstrap from the sample (we

use 1,000 replacements) to statistically infer about the available population [35]. In our case, we
estimate the means and compute bootstrap 95 % confidence intervals in the following way:

• for binary answers (i.e., either the answer is checked or not), we encode a checked option
with 1 and 0 otherwise, and then apply bootstrapping to estimate both mean and confidence
interval;

• for multiple option questions, we consider separately each option, and follow the procedure
of binary answers

• for Likert item questions, we compute the mean on the encoded values for the scale options
(from 1 to 5), and then apply bootstrapping to estimate both mean and confidence interval.

It is disputable whether it is reasonable to calculate a mean for Likert items, because they are
widely considered to be on an ordinal scale. We agree with this in principle. Yet, it is an issue that
has been often debated and using an “interval assumption permits calculation of means, CIs, and
other useful statistics.” [15] They go on to suggest: “Researchers very often do calculate means for
response data from Likert items. However, before doing so they should think carefully about the
strong equal-steps assumption they are making—-difficult though that is—-and bear in mind that
assumption when they report and interpret the mean.” To support this interpretation, we will also
provide median values and provide diagrams with the full distributions.
Our propositions, at present, are almost all in the form that a technology, activity or reason

for applying or not applying a technology or activity exists in the population. Hence, one way
to analyse the data would be, if there is a single answer stating the presence of it, we accept the
proposition. Yet, the goal of the survey is to build a basis for practice and future research to be able
to judge what is commonly used in practice. Hence, we decided to introduce a threshold above
which we consider something commonly used. To some degree such a threshold will always be
arbitrary. There is no precise understanding of common. Another way to look at it is that we would
not consider infrequent use as common use. For this, we can base our quantification on Mosteller
and Youtz [46], who found that the median value meant when scientists speak of infrequent is
17.3 %. We agreed to round this value and that we would consider everything above 20 % to be in
common use. In particular, we will accept propositions for which the data shows that the confidence
interval is 20 % or higher. In other words, we want to be 95 % confident that more than 20 % of the
population would give the corresponding answer.

, Vol. 1, No. 1, Article . Publication date: December 2018.

:16 S. Wagner et al.

Similarly, we handle Likert items. We consider a proposition as supported if the median as well
as the lower boundary of the CI are both above 3 (the neutral answer) for positive propositions or
below for negative propositions. As we have the neutral answer explicitly, we might also have cases
where the median is exactly 3 and the CI also includes it. In that case, we see the corresponding
proposition as not supported. Furthermore, as there is also no indication for the opposite of the
proposition, we would remove those propositions from the theory for the time being.

Afterwards, we look for explanations for the propositions that we can accept. The explanations
either come from (1) existing theories or empirical results from other studies, (2) additional infor-
mation that we could extract from the answers to open questions in our survey or (3) our own
reasoning based on our experiences and discussions among the authors.

4.5 Validity Procedures
Themainmechanism to increase the validity of our results were the input and feedback continuously
provided by all participating researchers in the joint communities workshops described in section 2.3.
As for this replication, we started the replication design by a series of Skype calls, each with the
main organizers and a regional subset of the other researchers. In those Skype calls, we discussed
the theory, potential changes and how the questions for the propositions should look like. We
then organized a session with many of the participating researchers and several not involved in
the NaPiRE project to review the theory in the 2015 community workshop of the International
Software Engineering Research Network (ISERN). For this, we brought print-outs of the general
theory overview and all the propositions together with potential explanations. We had roughly 20
empirical researchers present who gave written feedback on all aspects they found interesting. This
resulted in various minor changes to state the theory more concisely and consistently. Furthermore,
we used an “other” answer option with the possibility to enter free text to capture if we missed an
important answer option. We include a discussion of these answers together with the other results.
As for the data collection, we conducted, again, a pilot phase with two practitioners to test the

accuracy (and understandability) of the questionnaire, but also the anticipated analysis methods
covering both quantitative analyses and qualitative ones.

5 DETAILED THEORY AND SURVEY RESULTS
In the following, we first summarise the information about the study population, before describing
the concrete theory, results and relation to existing evidence for each of the research questions. Since
we base our analysis on the same data set that we used in [43], we reuse some of the descriptions
and summarise the most important characteristics of our study population. The full data set is
openly available [38].

5.1 Study Population
In total, 354 organisations spread across 10 countries agreed to answer the survey. Out of these, 228
(63 %) completed the survey by going through all of its questions and successfully reaching its end
(not necessarily answering each question). Table 6 shows the number of completed questionnaires
and the completion rate per country. The completion rates vary mostly between roughly 60 % and
80 %. This indicates for us that the completion of the questionnaire is reasonably doable. We do not
have an explanation why the completion rate in Sweden was particularly low.
The results reported in this article consider the completed datasets only. The domains were

provided by the respondents in free text format (see Table 4, question Q2) and coded by the
researchers. The tag cloud for the coded business domains can be seen in Figure 3.

This figure shows the frequency of each domain code and highlights the most frequent ones. Of
the 228 organisations, 215 provided answers for their business domain. We found a huge variety in

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :17

Table 6. Study population including response rates, total obtained, completed datasets, and completion rates.

Response Total Completed Completion
Area Country Rate Questionnaires Questionnaires Rate

Central Europe Austria 72.0 % 18 14 78 %
Germany 36.8 % 50 41 82 %

North America Canada 75.0 % 15 13 87 %
USA 36.2 % 25 15 60 %

Northern Europe Estonia 25.7 % 9 8 89 %
Finland 37.5 % 18 15 83 %
Norway 70.8 % 17 10 59 %
Sweden 51.8 % 59 20 34 %

South America Brazil 35.3 % 118 74 63 %

Western Europe Ireland 39.7 % 25 18 72 %

Total 354 228 64 %

crosscutting (60)

public (28)

sector (28)

enterprise (20)

finance (26)

planning (20)

resource (23)

automotive (15)

healthcare (14)

management (16)

business (9)

energy (11)

insurance (11)

logistics (8)

telecom (9) transportation (8)

aerospace (5)

education (5)

gas (5) geoprocessing (4)

informed (5)

intelligence (4) oil (5)

process (5)

aviation (3)

communication (3) construction (3)

defence (3) e-commerce (3)

entertainment (3) games (3)

human (3)

shipping (3)

workforce (3)

agriculture (2)

chemicals (2)

customer (2)

electronic (2)

railway (2) relationship (2)

scientific (2) software (2)

automation (1)

e-

government (1)

funerary (1)

goods (1) industrial (1)

networking (1)

pulp (1)

steel (1)

Fig. 3. Tag cloud of the business domains of the responding organisations.

business domains, ranging from embedded software systems to consulting. Many organisations
were actively working with products and/or services that can be used in several business domains
(e.g. cloud computing and web applications, custom software development, enterprise resource
planning products, IT consulting services).
Additionally, we identified a very large number of different business areas and application

domains with few data points in each one. Therefore, considering the number of organisations
active in several business areas and application domains and the large variety of different areas and
domains reported, we decided to characterise the responding organisations independent of their
business areas and application domain, i.e., in terms of the characteristics ’size’ and ’process model
used’ (see also Sect. 4.4) in Table 7. Concerning size, we grouped organisations as small, medium,
and large-sized according to the number of employees (software and other areas).

, Vol. 1, No. 1, Article . Publication date: December 2018.

:18 S. Wagner et al.

Table 7. Sizes of responding organisations.

Central North Northern South Western
Size Europe America Europe America Europe Total

Small (≤ 50 employees) 4 11 20 26 8 69
Medium (51 to 250 employees) 1 0 12 17 3 33
Large (≥ 251 employees) 29 16 34 28 7 114

Total 34 27 66 71 18 216

We can observe that the datasets include relatively large samples of both, small and large-sized
organisations. Considering the distributions of size per region, except for South-America, the
responding large-sized organisations slightly outweigh the small and medium-sized organisations.
Note that not all respondents answered this question.
Regarding the process models used, respondents answered a multiple choice question with the

following options: RUP [33], Scrum, V-Model XT, Waterfall, XP, and Other (in this case informing
us textually which process model they use). We grouped these process models into agile (Scrum
and XP), plan-driven (RUP, Waterfall and V-Model XT), and mixed (for those organisations that
indicated that they use agile and plan-driven process models or variations therein). Out of the 228
organisations that completed the questionnaire, 196 selected one of the five predefined options for
their process model. See Table 8.

Table 8. Software process models used in responding organisations.

Central North Northern South Western
Model Europe America Europe America Europe Total

Agile 4 13 35 32 8 92
Plan-driven 13 4 8 19 2 46
Mixed 12 8 19 14 5 58

Total 29 25 62 65 15 196

Again, the dataset includes relatively large samples of both, agile and plan-driven organisations.
Considering the distribution per region, except for Central Europe, the responding organisations
following agile process models in the respondents environment outweigh the plan-driven ones.
The number of organisations using mixed process models (or more than one) is large.

We therefore could obtain a balanced characterisation of small, medium and large organisations
of different regions using both, plan-driven and agile development methods.

5.2 StatusQuo in Requirements Elicitation and Documentation
One of the core activities in requirements engineering is eliciting the requirements from relevant
stakeholders. To characterise the status quo, we want to understand what elicitation techniques
are employed in practice. In our theory from the first run, we expected practitioners, especially
in large companies, to conduct workshops as the central technique to elicit requirements. The
first run, however, showed that other elicitation techniques are also widely in use [42]. Therefore,
we widened the choice of elicitation techniques as shown in Table 9. To make it consistent with
common terminology, we adopted the elicitation techniques as described in the SWEBoK [7]. Table 9
also notes whether the corresponding proposition was supported in the first run or if it is a new
proposition for this run.
The answer possibilities in the questionnaire correspond directly to the propositions. The pro-

portion of how often the elicitation techniques from the propositions have been selected by our

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :19

Table 9. Propositions about the status quo in requirements engineering elicitation prior to the survey

Supported in Survey
No. Propositions first run or new question

P 1 Requirements are elicited via interviews. New Q 9
P 2 Requirements are elicited via scenarios. New Q 9
P 3 Requirements are elicited via prototyping. New Q 9
P 4 Requirements are elicited via facilitated meetings (including workshops). Supported Q 9
P 5 Requirements are elicited via observation. New Q 9

respondents is shown in Fig. 4 together with an error bar that represents the 95 % confidence
interval (CI). The N in the caption denotes the number of participants that answered this question.
We will report the proportion P of the participants that checked the corresponding answer and its
95 % confidence interval in square brackets in the following. The most frequently used techniques
are interviews with P = 0.73 [0.67, 0.79] and facilitated meetings with P = 0.67 [0.61, 0.73] closely
followed by prototyping (P = 0.58 [0.52, 0.64]) and scenarios (P = 0.41 [0.34, 0.47]). Observations
reached only a P = 0.29 [0.23, 0.35]. Yet, it is still larger than the threshold of 0.2.

	

	

	

	 	 	 	

	

	

Prototyping

Interviews

Scenarios

Observation

Facilitated meetings
(including workshops)

0.73

0.67

0.58

0.41

0.29

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Fig. 4. How do you elicit requirements? (N = 228)

Additional answers for “others” included “Created personas and presented them to our stake-
holders”, “Questionnaires”/“Surveys” , “Analysis of existing system” and “It depends on the client.”
Especially some kind of surveys/questionnaires are mentioned several times. This could be a
candidate for an additional proposition for the next theory.
We therefore have support for all corresponding propositions P1 to P5. All five mentioned

elicitation techniques are used in practice. For interviews, facilitated meeting and prototyping, each
is used by more than half of the respondents. Scenarios and observations are less often used but
are still not niche techniques.

Comparing the confidence intervals, we can also generalise that interviews, facilitated meetings
and prototyping are the three top techniques. Their intervals overlap so that we cannot distinguish
them in general. They are, however, significantly more used than scenarios and observations which
again overlap.
For explanations of the propositions, we do not have any additional insights from the open

answers. It is often stated in the literature that it is important to include different viewpoints

, Vol. 1, No. 1, Article . Publication date: December 2018.

:20 S. Wagner et al.

during requirements engineering (supporting early work by Sommerville et al. [58]). Interviews
and facilitated meetings are probably the easiest ways to collect many viewpoints. Prototyping and
scenarios are ways to represent the system. There it depends on the number of people a requirements
engineer shows them, how many viewpoints they get. The value of prototypes and scenarios to
trigger requirements from different stakeholders (including non-technical end users) has been
reiterated by Mannio and Nikula [36] who developed an iterative requirements elicitation method
combining these two approaches. Observations, finally, are probably often the most difficult and
time-consuming way to get an understanding of different viewpoints. We formulate the viewpoint
aspect as explanation E 1 in Tab. 10. Furthermore, we include the theory of Mannio and Nikula [36]
as E 2 that prototypes and scenarios are helpful for a shared understanding of the requirements
among stakeholders. Overall, Tab. 10 shows that we could leave all propositions unchanged and
summarise the explanations.

Table 10. Propositions about elicitation with explanations after the survey

No. Propositions Changed

P 1 Requirements are elicited via interviews.
P 2 Requirements are elicited via scenarios.
P 3 Requirements are elicited via prototyping.
P 4 Requirements are elicited via facilitated meetings (including workshops).
P 5 Requirements are elicited via observation.

No. Explanations Propositions

E 1 Interviews, scenarios, prototyping, facilitated meetings and observations allow the requirements
engineers to include many different viewpoints including those from non-technical stakeholders

P1–P5

E 2 Prototypes and scenarios promote a shared understanding of the requirements among stakeholders P2, P3

The second major activity is the documentation of the elicited requirements. Here, we stated
propositions along two dimensions: (1) the type of document such as structured requirements
lists or use case models and (2) the level of formality. Possible requirements document types are
structured requirements lists, use case models, domain/business process models, goal models and data
models because they are often mentioned in practice and/or research. The level of formality is either
textual free form with no constraints, textual with constraints such as the user story template (“As a. . . ,
I want to. . . , so that. . . ”), semi-formal such as UML diagrams or formal with a mathematical basis
and formal semantics. Furthermore, we briefly go into non-functional requirements and expect
them to be documented in a non-quantified and textual way. The propositions of our theory related
to requirements documentation are given in Table 11. They are all new in relation to the theory
from the first run.

Table 11. Propositions about the status quo in requirements engineering documentation prior to the survey

Supported in Survey
No. Propositions first run or new question

P 6 Structured requirements lists are documented textually in free form. New Q 10
P 7 Use case models are documented textually in free form. New Q 10
P 8 Use case models are documented semi-formally (e.g. using UML). New Q 10
P 9 Domain/business process models are documented semi-formally (e.g. using UML). New Q 10
P 10 Goal models are documented semi-formally (e.g. using UML). New Q 10
P 11 Goal models are documented formally. New Q 10
P 12 Data models are documented semi-formally (e.g. using UML). New Q 10
P 13 Non-functional requirements are documented in a non-quantified and textual way. New Q 11

In the questionnaire, the respondents could choose multiple items from the description tech-
niques with a degree of formality. As shown in Fig. 5, the three most frequent ways to document

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :21

		 	 	

	 	 	 	

	 	 	 	 	

		 	 	 	

		 	 	 	

	 	 	 	

	 	 	 	 	

		 	 	 	

	 	 	 	

		 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	

	

Free-form textual structured requirements lists

Semi-formal (UML) use case models

Free-form textual domain/business process models

Textual structured requirements lists with constraints

Semi-formal (UML) data models

Free-form textual use case models

Textual use case models with constraints

Free-form textual goal models

Semi-formal (UML) domain/business process models)

Textual domain/business process models with constraints

Formal data models

Free-form textual data models

Formal domain/business process models

Textual goal models with constraints

Textual data models with constraints

Formal structured requirements lists

Formal use case models

Semi-formal (UML) structured requirements lists

Semi-formal (UML) goal models

Formal goal models

0.42

0.39

0.38

0.35

0.33

0.31

0.30

0.26

0.23

0.20

0.18

0.16

0.15

0.14

0.14

0.12

0.10

0.08

0.06

0.05

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 5. How do you document functional requirements? (N = 228)

requirements are free-form textual structured requirements lists (P = 0.42 [0.36, 0.49]), semi-formal
use case models (P = 0.39 [0.33, 0.46]) and free-form textual domain/business process models
(P = 0.38 [0.31, 0.44]). But also textual requirements lists with constraints – e.g., user stories –
(P = 0.35 [0.29, 0.41]), semi-formal data models (P = 0.33 [0.28, 0.39]), free-form textual (P = 0.31
[0.25, 0.37]) as well as constraint textual use cases (P = 0.30 [0.24, 0.36]) were mentioned often.
Free form textual goal models (P = 0.26 [0.20, 0.32]) are very close to the threshold. None of the
documentation techniques seems to be clearly dominating.

All other documentation techniques fall below our threshold by including 0.20 in their CI. Semi-
formal domain/business models (P = 0.23 [0.17, 0.28]), domain/business model with constraint text
(P = 0.20 [0.15, 0.25]), formal data models (P = 0.18 [0.13, 0.24]) and free-form textual data models
(P = 0.16 [0.11, 0.21]) all are around 20 %. The remaining techniques are then clearly below 20 %:
Formal business/domain models have P = 0.15 [0.11, 0.20], textual goal models with constraints
have P = 0.14 [0.10, 0.19], textual data models with constraints have P = 0.14 [0.10, 0.19] and
formal structured requirements lists have P = 0.12 [0.08, 0.16]. Rarely used are formal use case
models (P = 0.10 [0.06, 0.13]), semi-formal structured requirements lists (P = 0.08 [0.05, 0.12] as
well as semi-formal (P = 0.06 [0.03, 0.09]) and formal goal models (P = 0.05 [0.02, 0.07]).

Proposition P 6, which states that structured requirements lists are documented textually in
free form, is clearly supported by our data. Yet, we see textual requirements with constraints on
the same level. Hence, we will update our proposition to also include this kind of requirements
documentation. An explanation for this could be that there are many requirements where text is
sufficient be it free-form or constrained. Especially in agile projects and user stories, more than text

, Vol. 1, No. 1, Article . Publication date: December 2018.

:22 S. Wagner et al.

is often not needed, because “the main purpose of a story card is to act as a reminder to discuss the
feature.” [11] We use this as explanation E 3 in Table 12.

Table 12. Propositions about requirements documentation and explanations after the survey

No. Propositions Changed

P 6 Structured requirements lists are documented textually in free form or textually with constraints. ✓
P 7 Use case models are documented textually in free form or textually with constraints. ✓
P 8 Use case models are documented semi-formally (e.g. using UML).
P 9 Domain/business process models are documented textually in free form. ✓
P 10 Goal models are commonly used in a textual form. ✓
P 11 Goal models are not documented semi-formally or formally. ✓
P 12 Data models are documented semi-formally (e.g. using UML).
P 13 Non-functional requirements are documented textually either quantified or non-quantified. ✓

No. Explanations Propositions

E 3 Free-form and constraint textual requirements are sufficient for many contexts such as in agile
projects where they only act as reminders for further conversations.

P 6, P 7, P 9–11

E 4 Use case models and data models might not often be shared with non-technical stakeholders.
Hence, requirements engineers can use well-known semi-formal description techniques such as
entity-relationship diagrams or UML to document them.

P 8, P 12

E 5 The quantification depends on the type of non-functional requirement. Performance is rather doc-
umented quantitatively while maintainability is rather documented non-quantitatively.

P 13

We also have good support for propositions P 7 and P 8. Documentation in the form of semi-
formal use case models was the second most popular answer. Also free-form textual descriptions of
use cases were mentioned by 31 % of the respondents. Yet, we again have the textual documentation
with constraints on a similar level. Hence, we will extend P 7 to include this kind of documentation.
Formal use cases, in contrast, are significantly less used. For the textual description, we can use E 3
again as explanation. For the semi-formal description, we believe that those documents might not
be shared with non-technical stakeholders. Then the engineers might tend to use UML which is
now widely taught in degree programs (E 4).

Proposition P 9 stated that domain/business process models are documented semi-formally, e.g.
using UML or some other standardized notation such as BPMN. This is not well supported in our
data. The CI goes below the 20 % threshold. In contrast, the most often mentioned way to document
domain or business process models was free-form textual with 38 %. Hence, we will replace P 9
with “Domain and business process models are documented textually in free form.” It seems that
E 3 also holds for domain and business process models.
Both propositions P 10 and P 11 have no support in the data. They state that goal models are

either formally or semi-formally documented. However, these two options were chosen by very
few of the respondents. Both CI are below 20 %. Instead, goal models are actually most often
documented in a free-form textual way (26 % of the respondents). The CI only touches our 20 %
threshold. The confidence interval is not overlapping with the intervals of formal and semi-formal
documentation. Therefore, we will replace these propositions with two new proposition on goal
models: “Goal models are commonly used in a textual form.” and “Goal models are not documented
semi-formally or formally.” An explanation for these new proposition could be again E 3.
Proposition P 12 states that data models are documented semi-formally. This is well supported

by the data. The corresponding answer is the most frequently chosen one for data models. Also
considering the confidence intervals it is beyond the threshold. Furthermore, the semi-formal
way of documentation is used significantly more often then the other ways to document data
models. Data models are probably not often directly discussed with (non-technical) customers and
users and, hence, requirements engineers can use well-known semi-formal techniques such as
entity-relationship diagrams or corresponding UML class models. This is E 4 in Table 12.

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :23

Finally for RQ 1, we briefly touched upon the topic of non-functional requirements (such as secu-
rity or performance requirements). As shown in Fig. 6, we found that about half of the respondents
(P = 0.54 [0.47, 0.60]) use quantified textual documentation for non-functional requirements. Only
about 38% state that they document non-functional requirements not in a quantified way (P = 0.38
[0.31, 0.44]). Answers for Other included “on our user stories”, “user story acceptance criteria” or
“both of the above”. It was chosen with P = 0.09 [0.05, 0.13].

0.00	 0.10	 0.20	 0.30	 0.40	 0.50	 0.60	 0.70	

	

	 	 	 	 	

	 	 	 	 	

	

Other

We use non-quantified textual requirments

We use quantified textual requirements 0.54

0.38

0.09

Fig. 6. How do you document non-functional requirements? (N = 210)

Therefore, we have support for proposition P 13 that non-functional requirements are documented
in a non-quantified and textual way. Yet, most respondents seem to quantify their non-functional
requirements. Even the confidence intervals do not overlap. We therefore accept proposition P 13
but replace it with “Non-functional requirements are documented textually either quantified or
non-quantified.” An explanation could be that the respondents primarily thought about performance
requirements that are often quantified (E 5). Yet, other non-functional requirements such as security
or maintainability are much harder to quantify. In further studies, we need to distinguish here more
clearly.
Cox, Niazi and Verner [14] found that for documentation, making a business case of a project

was most valuable. This adds probably a more general dimension to requirements documentation
that we have not covered. Similarly, for elicitation, they found assessing system feasibility to be
most valuable. Our results fit together in that they found that valuable techniques are to specify
requirements quantitatively. We can also support Nikula, Sajaniemi and Kälviäinen [49] that
requirements documentation is often done textually (natural language).

We have some contradicting results to Neil and Laplante [48]. They found that most respondents
use scenarios & use cases and many use focus groups and informal modelling, while interviews and
prototypes are far less used. In contrast, we saw scenarios as significantly less used than interviews,
facilitated meetings and prototyping. A reason might be that scenarios and use cases were very
popular when Neil and Laplante did their study, and the popularity might have declined over
the last 15 years. Yet, we can support their findings that most requirements documentations are
informal or semi-formal.

Their update in 2014 [30] came much closer to our results. Now, they also found interviews and
prototyping to be widely used techniques, while scenarios were not as dominant as in their earlier
study. A contradiction is still that workshops are only at a bit more than 20 % while 67 % of our
respondents mentioned them. A reason might be that [30] included further detailed elicitation
techniques that could also be seen as facilitated meetings, such as card sorting or group work.

, Vol. 1, No. 1, Article . Publication date: December 2018.

:24 S. Wagner et al.

In guidelines derived from a systematic literature review of empirical studies on elicitation
techniques, Dieste and Juristo [17] state that especially unstructured interviews are more effective
and output more complete information than introspective techniques or sorting techniques.

Marvin et al. [37] asked requirements engineering practitioners with a questionnaire and found
“that use of goals in practice is inconsistent, informal, and rarely utilises formal modelling ap-
proaches.” This is fully in line with our results of goals only being used informally.

5.3 StatusQuo in Requirements Engineering Changes and Alignment
Requirements have to be continuously updated to guarantee project success and customer satisfac-
tion. For the state of practice in change management, we therefore expected already in the initial
study that a requirements change management is established after a requirements specification (ex-
pected to be complete) was formally accepted. Due to the importance of requirements changes, we
added several propositions, which are shown in Table 13. With regard to requirements changes, we
added propositions that product backlogs are updated due to requirements changes after the initial
release as well as that requirements changes after the initial release are reflected only in change
requests. With regard to traceability, we added propositions that trace between requirements and
code as well as between requirements and design documents are explicitly managed. Furthermore,
we add propositions that for analysing the effect of requirements changes, impact analysis on code
is done, but impact analysis between requirements is not performed.

Table 13. Propositions about the status quo in requirements changes before the survey

Supported in Survey
No. Propositions first run or new question

P 14 A requirements change management is established after formally accepting a re-
quirements specification.

Supported Q 21

P 15 Product backlogs are updated because of requirements changes after the initial re-
lease.

New Q 12

P 16 Requirements changes after the initial release are reflected only in change requests. New Q 12
P 17 Traces between requirements and code are explicitly managed. New Q 13
P 18 Traces between requirements and design documents are explicitly managed. New Q 13
P 19 For analyzing the effect of changes to requirements, impact analysis on the code is

done.
New Q 14

P 20 For analyzing the effect of changes to requirements, impact analysis between re-
quirements is not done.

New Q 14

In the survey, we first asked how the respondents perform change management in their re-
quirements engineering process. As shown in Fig. 7, most respondents have a continuous change
management (P = 0.38 [0.31, 0.44]) or a change management approach that applies after formally
accepting a requirements specification (P = 0.33 [0.27, 0.40]). Not considering change management
in RE (P = 0.17 [0.11, 0.21]) or not having change management during RE (P = 0.16 [0.12, 0.22])
are less frequently applied. The latter two options are also considering the confidence intervals
significantly less used.
Proposition P 14 stating that requirements change management is established after formally

accepting a requirements specification is supported by the survey data. P 14 can be explained by
E 6 in Table 14. Given the high proportion and CI of continuous change management, we will add
a further proposition: “Organisations use continuous change management.” This new proposition
could be explained by the continuous nature of change in agile development processes. Both other
answer options lie below the threshold although both CI include it.

Second, we asked how the respondents deal with changing requirements after the initial release.
The answers are shown in Fig. 8. The most common way to do so is to update the product backlog

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :25

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	

	 	 	 	 	

	

We have a change management approach that applies after formally
accepting a requirements specification.

We do not consider a change management in RE.

We have a change management that applies during RE.

0.38

0.33

0.17

0.16

 We have a continuous change management.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 7. How do you perform change management in your requirements engineering? (N = 215)

Table 14. Propositions about requirements changes and explanations after the survey (Q 12, Q 13, Q 14, Q 21)

No. Propositions Changed

P 14 A requirements change management is established after formally accepting a requirements speci-
fication.

P 14a Organisations use continuous change management. ✓
P 15 Product backlogs are updated because of requirements changes after the initial release.
P 16 Requirements changes after the initial release are reflected only in change requests.
P 17 Traces between requirements and code are explicitly managed.
P 18 Traces between requirements and design documents are explicitly managed.
P 19 For analyzing the effect of changes to requirements, impact analysis on the code is done.
P 20 For analyzing the effect of changes to requirements, impact analysis between requirements is not

done.

No. Explanations Propositions

E 6 In many development processes, requirements are fixed at some point(s) in time. A formal change
management is only needed afterwards.

P 14

E 7 In agile development process, change is continuous. P 14a
E 8 Requirements change during a development project and also after the initial release. Many organ-

isations only work with change requests in issue trackers. Agile organisations work with some
kind of product backlog (as in Scrum) and change it regularly between iterations.

P 15, P 16

E 9 Explicit traces make impact analysis more effective and efficient. P 17, P 18
E 10 Despite traces between requirements and code, the effect of changes is most directly seen on the

code level.
P 19, P 20

(P = 0.38 [0.32, 0.44]). But also working only with change requests is very common (P = 0.33 [0.27,
0.39]). Regular changes in the requirements specification are much less used (P = 0.19 [0.14, 0.25]).
In fact, the confidence interval of the latter does not overlap with the two most popular answers.
Answers for Other (P = 0.10 [0.06, 0.14]) include “all methods, depends on the project” and “we
mix product backlog and change requests.”

Hence, proposition P 15 on the product backlog update is supported by the data. Proposition P 16
on requirements change only done by change requests is similarly well supported. Propositions
P 15 and P 16 can be explained by E 8.

As can be seen in Fig. 9, traces between requirements and code (P = 0.45 [0.38, 0.51]) as well as
between requirements and design documents (P = 0.43 [0.36, 0.49]) are often explicitly managed. It
is not common that traces are not managed at all (P = 0.21 [0.16, 0,27]). For theOther answer, several
respondents mentioned traces between tests and requirements: “Traces between requirements
and functional/system tests are most common for us.” Propositions P 17 and P 18 state that traces

, Vol. 1, No. 1, Article . Publication date: December 2018.

:26 S. Wagner et al.

	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	

	

Other

We regularly change the requirements specification.

We only work with change requests.

 We update our product backlog. 0.38

0.33

0.19

0.10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 8. How do you deal with changing requirements after the initial release? (N = 216)

between requirements and code and between requirements and design documents are explicitly
managed. The data supports these propositions. Their confidence intervals are similar but do not
overlap with the interval of the answer “none.” Explanation E 9 relates to these proposition in
context with the next question on impact analysis. As many respondents do impact analysis, explicit
traces may make this activity more effective and efficient.

	

	 	 	 	 	 	

	 	 	 	 	

Traces between requirements and code

Traces between requirements and design documents

None

0.45

0.43

0.21

0.00 0.10 0.20 0.30 0.40
0

0.600.50

Fig. 9. Which traces do you explicitly manage? (N = 228)

Figure 10 shows that impact analysis between requirements is done by themajority of respondents
(P = 0.58 [0.51, 0.64]). Impact analysis on the code is still done by many respondents with P = 0.41
[0.35, 0.47]. No analysis of the effect of requirements changes is done only with P = 0.16 [0.11,
0.21].

Propositions P 19 and P 20 state that both impact analysis on the code and between requirements
is done. Our data supports both propositions. They are the most often given answer and their
confidence intervals do not overlap with the “no analysis” answer. The explanation E 10 discusses

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :27

	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

		

We do impact analysis between requirements.

We do impact analysis on the code.

We do not analyse the effect of changes to requirements.

0.58

0.41

0.16

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Fig. 10. How do you analyse the effect of changes to requirements? (N = 228)

that despite that we saw in the question before many traces to the code, the impact of changes can
still be seen best at the code level. Hence, we need both kinds of impact analyses. Yet, we notice
that the two answers also have none-overlapping intervals. Hence, there are significantly more
analyses between requirements.

In addition, we added propositions on the status quo in aligning tests with requirements, which
is critical to guarantee quality when requirements change and which gained increasing interest in
the last years [5]. These propositions are shown in Table 15 and address the alignment measures
of tester participation in requirements reviews, check of the coverage of requirements with tests,
definition of acceptance criteria for requirements, as well as test derivation from system models.

Table 15. Propositions about the status quo in aligning tests with requirements before the survey

Supported in Survey
No. Propositions first run or new question

P 21 To align tests with requirements, testers participate in requirements reviews. New Q 15
P 22 To align tests with requirements, the coverage of requirements with tests is checked. New Q 15
P 23 To align tests with requirements, acceptance criteria are defined for requirements. New Q 15
P 24 To align tests with requirements, tests are derived from system models. New Q 15

Figure 11 shows that the three most frequent answers were that this is done via defining
acceptance criteria (P = 0.53 [0.46, 0.60]), checking requirements coverage of tests (P = 0.50 [0.43,
0.56]) and testers participating in requirements reviews (P = 0.47 [0.41, 0.53]). Much more seldom
are tests derived from system models (P = 0.18 [0.13, 0.23]). Only few of the respondents do not
align tests and requirements (P = 0.06 [0.03, 0.09]).
The corresponding propositions P 21 to P 24 state that all the four possibilities besides not

aligning requirements and tests are common in practice. Proposition P 24 on system models cannot
be supported by our data. Only 18 % of the respondents derive tests from system models. We will
replace this proposition with: “Deriving tests from system models is not used to align requirements
and tests.” Propositions P 21, P 22 and P 23 are supported in the data. Their confidence intervals
strongly overlap and they are all used by about half of the respondents.

Table 16 explains these propositions by the circumstance that several organizational and artefact-
based measures are necessary to fully align tests with requirements. The lack of support for the old
P 24 could be explained by the lack of existing system models that are complete or formal enough
to derive tests (E-12).

, Vol. 1, No. 1, Article . Publication date: December 2018.

:28 S. Wagner et al.

	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	

	

We define acceptance criteria for requirements.

 We check the coverage of requirements with
tests.

Testers participate in requirements reviews.

 We derive tests from system models.

We do not allign test and requirements.

0.53

0.50

0.47

0.18

0.06

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Fig. 11. How do you align the software test with the requirements? (N = 228)

Table 16. Explanations for the propositions about aligning tests with requirements

No. Propositions Changed

P 21 To align tests with requirements, testers participate in requirements reviews.
P 22 To align tests with requirements, the coverage of requirements with tests is checked.
P 23 To align tests with requirements, acceptance criteria are defined for requirements.
P 24 Deriving tests from system models is not used to align requirements and tests. ✓

No. Explanations Propositions

E 11 To fully align tests with requirements, organizational and artifact-based measures are necessary
to link requirements and tests.

P 21–P 23

E 12 Often, there are no system models that are complete or formal enough to derive tests. P 24

Requirements changes are most critical if not propagated and traced accordingly. Defining test
scenarios and test cases based on requirements (and updates according to requirement changes)
can help to (a) better understand requirements and (b) check the expected behavior of the system
in later testing phases. These test cases can be seen as “definition of acceptance criteria”, i.e., if
test cases are successfully executed and the requirement and/or requirement change has been
understood and implemented correctly. Furthermore, test cases can be used to check whether or
not requirements and/or requirement changes are in line with customer expectations. Thus, we can
support the results of [14] to propose test cases as criteria for acceptance tests. The activity “define
acceptance criteria” can be seen as part of a change management process to elicit most valuable and
correct requirements – a common answer in our survey. In model-driven software engineering [8],
models often represent the foundation for software design, less frequently for code generation or
test case generation.

In practice, models seem not to be complete or formal enough to derive test cases. However, in
research there is a strong focus on model-based testing and formal approaches when it comes to the
alignment of requirements specification and testing as a recent systematic mapping study shows [3].
However, limitations in practice often include the high effort for creating and maintaining models
as foundation for deriving code and test cases. Thus, there is a trade-off between required efforts
for model handling and benefits regarding frequent changes that need to be considered on business
level. The straight-forward application of test cases in context of requirements and requirement
changes can be seen as a first step in context of RE improvement.

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :29

5.4 StatusQuo in Requirements Engineering Process Standards
We generally expect a company to have established a standardised way of working regardless of
whether it is explicitly captured in a specific reference model or not. When launching NaPiRE, we
worked based on the assumption that companies have established an explicit standard, mainly
because we launched NaPiRE in Germany where we observed a strong standardisation in industry
(e.g. in the automotive sector).

Also based on our observations, however, many companies have established their own standards
and we generally expect a company-specific RE standard to be immature compared to standards
for other disciplines due to the inherently complex nature of RE. We rely, for example, on the
observations of Hall, Beecham and Rainer [19] and suppose the standards to define coarse processes
rather than, for instance, well defined artefact models that support traceability [55].
In consequence, we expect the application of their standards to be neither practiced nor to be

mandatory. This was actually one observation from our first NaPiRE run. Both form our new
propositions as indicated in Tab. 17.

Table 17. Propositions about the status quo in the application and tailoring of requirements engineering
process standards before the survey

Supported in Survey
No. Propositions first run or new question

P 25 Requirements engineers use their own RE standard. New Q 16
P 26 The RE standard is neither mandatory nor practiced. New Q 19
P 27 The application of the RE standard is controlled via analytical quality assurance. Supported Q 20
P 28 The RE standard is tailored at the beginning of a project by the project lead based

on experiences.
Supported Q 22

In the survey, we asked our respondents what RE company standard is established in their
context. The proportions of answers with their CI is shown in Fig. 12. Most respondents stated that
they use a standard predefined by the development process (P = 0.36 [0.30, 0.43]). Also an internal
standard that defines the process including roles and responsibilities (P = 0.34 [0.28, 0.40]), an
internal standard that defines deliverables, milestones and phases (P = 0.34 [0.28, 0.40]), as well as
an internal standard that defines artefacts and offers document templates (P = 0.33 [0.27, 0.39]) are
common in our sample. Predefined standards according to a regulation like ITIL are less common
in our sample (P = 0.25 [0.19, 0.30]). Using no standard at all or other standards tends not to be the
case (P = 0.06 [0.03, 0.09]).
Proposition P 25 stating that requirements engineers use their own RE standard is supported

by the data which indicates that an internal standard that defines the process including roles and
responsibilities, an internal standard that defines deliverables, milestones and phases, as well as an
internal standard that defines artefacts and offers document templates are common. They all have
confidence intervals that are well beyond the threshold and do not overlap with the confidence
interval of “None.” Yet, we notice that all of them overlap with the answer “A standard that is
predefined according to a regulation.” Hence, this is reason for doubt whether an internal standard
is more common in the population of software development organisations. Yet, as the answer about
regulation goes below the 20 % threshold, we do not define a new proposition for it.
Proposition P 25 can be explained by that RE practices generally need adaptation to fit the

particularities of the context [64] (E 13). This explanation, however, is certainly still true for a broad
range of phenomena, ranging from the adaptation of general RE strategies in dependency to the
overall project setting to the choice of modelling techniques in dependency to the domain and
the organizational culture of the development teams. Hence, it generally supports what has been

, Vol. 1, No. 1, Article . Publication date: December 2018.

:30 S. Wagner et al.

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	 	 	

A standard that is predefined by the development process (e.g., Rational
Unified Process, Scrum)

An own standard that defines the process including roles and responsibilities

An own standard that defines the coarse process with deliverables, milestones,
and phases

An own standard that defines artefacts and offers document templates

A standard that is predefined according to a regulation (e.g., ITIL)

None

0.36

0.34

0.34

0.33

0.25

0.06

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Fig. 12. What RE company standard have you established at your company? (N = 228)

commonly accepted in the RE research community [50]. A more detailed investigation that distils
which context factors exactly affect which phenomena in which way is therefore necessary and in
scope of future replications.

Table 18. Propositions about the application and tailoring of requirements engineering process standards
with explanations after the survey

No. Propositions Changed

P 25 Requirements engineers use their own RE standard.
P 25a Requirements engineers use a standard that is predefined by the development process. ✓
P 26 RE standards are practised regardless whether they are mandatory or not. ✓
P 27 The application of the RE standard is controlled via analytical quality assurance.
P 27a The application of requirements engineering standards is checked by project assessments ✓
P 27b The application of requirements engineering standards is checked by constructive quality assur-

ance (e.g. via checklists or templates).
✓

P 28 The RE standard is tailored at the beginning of a project by the project lead based on experiences.

No. Explanations Propositions

E 13 Requirements engineering differs quite strongly over domains and contexts and, thus, needs to
adapt to these to be effective.

P 25, P 26

E 14 Many practiced development processes prescribe or are associated with a specific way of perform-
ing requirements engineering.

P 25a

E 15 The project lead knows the specific of the domain and project context best. P 28

The most frequent answer, however, was that a standard predefined by the development process
is established. We add this as new proposition P 25a to our theory. An explanation could be that
many respondents use development processes such as Scrum or V-Model XT that contain or are
associated with a specific way of dealing with requirements engineering (E 14). For example, Scrum
or other agile projects are usually expected to have some kind of product owner, a backlog and
user stories.
With regards to whether a requirements engineering standard is mandatory or practised (see

Fig. 13), most respondents answer that the standard is mandatory and practised (P = 0.37 [0.30,
0.43]) or practised but not mandatory (P = 0.35 [0.29, 0.42]).
Proposition P 26 stating that requirements engineering standards are neither practised nor

mandatory is not supported by the data. Quite to the contrary, it seems that the standards are
practised in most organisations regardless whether they are mandatory or not. The two answers
that the standard is practised have overlapping confidence intervals that do not cross the other

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :31

	 	 	

	

	 	 	

	 	 	 	

	 	 	

It is mandatory and practiced.

It is practiced but not mandatory

No

It is mandatory but not practiced.

0.37

0.35

0.15

0.13

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 13. Is the requirements engineering standard mandatory and practised? (N = 203)

two answer possibilities. Only P = 0.15 [0.10, 0.20] stated that their standard is neither mandatory
nor practised. Even less (P = 0.13 [0.08, 0.17]) answered that the standard is mandatory but not
practised. Hence, we replace P 26 by “Company standards are practised regardless whether they
are mandatory or not.”
Furthermore, we asked the respondents how the application of requirements engineering stan-

dards is checked (see Fig. 14). The most common way to do so is via project assessment with P =
0.41 [0.23, 0.48]. Moreover, constructive quality assurance (P = 0.35 [0.29, 0.42]) but also analytical
quality assurance (P = 0.28 [0.22, 0.34]) are common in our sample. Not checking requirements
also occurs bot not commonly (P = 0.18 [0.13, 0.23]).

	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	
	

	

	 	 	 	 	 	 	 	 	 	

Via project assessments

Via constructive quality assurance, e.g., via checklists
or templates

 Via analytical quality assurance, e.g., as part of quality gates

It is not checked.

0.41

0.35

0.28

0.18

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 14. How do you check the application of your requirements engineering standard? (N = 215)

Proposition P 27 stating that the application of the RE standard is controlled via analytical
quality assurance can be supported by the data. Yet, project assessments and constructive quality
assurance are applied more frequently in our sample than analytical quality assurance. With 28 %
of the respondents stating that they use analytical quality assurance, we will keep the proposition
in the theory but add additional propositions for the other two methods: “The application of
requirements engineering standards is checked by project assessments.” and “The application of

, Vol. 1, No. 1, Article . Publication date: December 2018.

:32 S. Wagner et al.

requirements engineering standards is checked by constructive quality assurance (e.g. via checklists
or templates).”
With regards to how requirements engineering standards are applied in regular projects (see

Fig. 15), tailoring based on experience is most common in our sample with P = 0.38 [0.32, 0.44].
Not considering a particular tailoring approach (P = 0.24 [0.18, 0.29]), having a tailoring approach
that continuously guides the application of the standard (P = 0.20 [0.14, 0.26]) as well as having
tool support for tailoring requirements engineering standards (P = 0.19 [0.13, 0.24]) are moderately
applied.

	 	 	 	 	 	 	 	
	

	 	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

	

At the beginning of a project, the project lead / requirements engineer
tailors the standard based on experiences

We do not consider a particular tailoring approach

We have defined a tailoring approach that continuously guides
the application of the standard in our project

 We have tool support for tailoring our requirements engineering
standard

0.38

0.19

0.20

0.24

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 15. How is your requirements engineering standard applied in your regular projects? (N = 215)

Proposition P 28 on RE standard tailoring by the project lead based on experience is clearly
supported by the data. It is the most common answer and has a confidence interval that does not
overlap with the other remaining answers. This could be explained by the project lead having the
best knowledge of the domain and context of the project (E 15).
Table 19 summarises all our propositions on reasons and barriers for defining a requirements

engineering process standard. We expect that there is a high diversity in reasons why companies
establish a process standard. Our first NaPiRE run confirmed nine propositions which we kept. We
reversed six that were not supported and kept one although it was not supported.
In the followingM denotes the mean of the corresponding data. Main motivations to define a

company standard for RE (see Fig. 16) are better quality assurance of artefacts (median = 4,M = 4.3
[4.2, 4.4]), higher efficiency (median = 4,M = 4.3 [4.1, 4.4]), seamless development by integration
of RE into the development process (median = 4,M = 4.3 [4.1, 4.4]), knowledge transfer (median
= 5, M = 4.3 [4.1, 4.4]), support of project management and planning (median = 4, M = 4.2 [4.1,
4.3]) and support of progress control (median = 4, M = 4.0 [3.9, 4.2]). Still more agreement than
disagreement have better tool support (median = 4, M = 3.7 [3.5, 3.9]), support of distributed
development (median = 3,M = 3.6 [3.4, 3.8]), compliance to regulations and standards (median =
3, M = 3.5 [3.3, 3.7]), support of benchmarks and/or comparison of different projects (median =
3, M = 3.5 [3.3, 3.7]) and formal prerequisite for project acquisition in the participant’s domain
(median = 3,M = 3.1 [3.0, 3.3]).

The results support our theory only partially. We have clear support with a median and lower
boundary of the mean CI above 3 for the positive propositions P 30, P 31, P 34, P 35 and P 37–P 39.
We do not have clear support for P 33 and the negative propositions P 29, P 32 and P 36 as their
medians are all 3 and the confidence intervals of the means are all at 3.0 or above. Hence, we remove
them from the theory for now. It might be possible to reintroduce them with more specific context.

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :33

Table 19. Propositions about the reasons and barriers for defining a requirements engineering process standard
before the survey

Supported in Survey
No. Propositions first run or new question

P 29 Compliance to regulations and standards (like CMMI) does not motivate a standard. Opposite not supported Q 17
P 30 Seamless development by integrating RE into the development process motivates a

standard.
Supported Q 17

P 31 Better tool support motivates a standard. Supported Q 17
P 32 Formal prerequisites for project acquisition do not motivate a standard. Supported Q 17
P 33 Support of distributed development motivates a standard. Not supported Q 17
P 34 Support of progress control motivates a standard. Opposite not supported Q 17
P 35 Better quality assurance of artefacts motivates a standard. Supported Q 17
P 36 Support of benchmarks does not motivate a standard. Opposite not supported Q 17
P 37 Support of project management and planning motivates a standard. Supported Q 17
P 38 Higher efficiency motivates a standard. Supported Q 17
P 39 Knowledge transfer motivates a standard. Supported Q 17
P 40 Higher process complexity barriers defining a standard. Supported Q 18
P 41 Higher demand for communication barriers defining a standard. Opposite not supported Q 18
P 42 Lower efficiency does not barrier defining a standard. Opposite not supported Q 18
P 43 Missing willingness to change barriers defining a standard. Supported Q 18
P 44 Missing possibilities of standardisation does not barrier defining a standard. Opposite not supported Q 18

6%

5%

6%

4%

5%

9%

12%

13%

20%

18%

24%

84%

82%

80%

80%

77%

73%

56%

53%

50%

50%

35%

9%

14%

14%

16%

18%

19%

31%

35%

30%

32%

41%

Compliance to regulations and standards

Seamless development by integrating Requirements
Engineering into the development process

Better tool support

Formal prerequisite for project acquisition in
your domain

Support of distributed development

Better support of progress control

Better quality assurance of the artefacts (e.g.,
within quality gates)

Support of benchmarks and / or comparison of
different projects

Support of project management and planning

Higher efficiency

Knowledge transfer

100 50 0 50 100
Percentage

Response I disagree I somewhat disagree Neutral I somewhat agree I agree

Fig. 16. Which reasons do you agree with as a motivation to define a company standard for RE in your
company? (N = 228)

For example, there is some indication in the data that in organisations working for the public sector,
in the automotive, avionics or finance domain, compliance to regulations and standards are more
important motivators than for other organisations.

, Vol. 1, No. 1, Article . Publication date: December 2018.

:34 S. Wagner et al.

Table 20. Propositions about the reasons and barriers for defining a requirements engineering process
standards and explanations after the survey

No. Propositions Changed

P 29 Compliance to regulations and standards (like CMMI) does not motivate a standard. ✓
P 30 Seamless development by integrating RE into the development process motivates a standard.
P 31 Better tool support motivates a standard.
P 32 Formal prerequisites for project acquisition do not motivate a standard. ✓
P 33 Support of distributed development motivates a standard.
P 34 Support of progress control motivates a standard.
P 35 Better quality assurance of artefacts motivates a standard.
P 36 Support of benchmarks does not motivate a standard. ✓
P 37 Support of project management and planning motivates a standard.
P 38 Higher efficiency motivates a standard.
P 39 Knowledge transfer motivates a standard.
P 40 Higher process complexity barriers defining a standard.
P 41 Higher demand for communication barriers defining a standard. ✓
P 42 Lower efficiency does not barrier defining a standard.
P 43 Missing willingness to change barriers defining a standard.
P 44 Missing possibilities of standardisation does not barrier defining a standard. ✓

No. Explanations Propositions

E 16 An RE standard can help to integrate RE activities and artefacts with other development activities and artefacts. P 30
E 17 It is more efficient to build or acquire tool support for RE if the activities and artefacts are standardised. P 31
E 18 Standardised RE artefacts make it easier to check if they are created and, hence, support progress control. P 34
E 19 If RE artefacts are standardised, standardised QA can be used such as checklists or automatic checks. P 35
E 20 If the project lead can rely on a standardised RE, the planning can rely on the standardised activities and artefacts. P 37
E 21 A standardised RE allows the project participants to become experts in it and, therefore, become more efficient. P 38
E 22 The RE standard codifies good practices and experiences which can be transferred to new projects and project

participants.
P 39

E 23 An RE standard might force projects to a more complex RE process than necessary for the concrete context. P 40
E 24 Using RE process standards is considered more efficient (see also P 38). P 42
E 25 People in general are resistant to change. P 43

Main barriers to define a company standard for RE (see Fig. 17) are higher process complexity
(median = 4,M = 3.6 [3.4, 3.8]) and missing willingness for changes (median = 4,M = 3.6 [3.4, 3.8]).
Higher demand for communication (median = 3, M = 3.2 [3.0, 3.4) and missing possibilities for
standardisation (median = 3, M = 3.0 [2.8, 3.1]) are more mixed. For lower efficiency (median = 2,
M = 2.5 [2.3, 2.7]), we even have more respondents disagreeing than agreeing.
Propositions P 40 to P 44 state whether specific barriers exist in practice or not. Our results

support all propositions apart from P 41 and P 44 that higher demand for communication or missing
possibilities of standardisation barriers defining a standard. Both are on average close to the neutral
answer. Similarly as above, we will remove them for now from the theory and will look for further
context factors where they might have stronger agreement.
In Table 20 we provide explanations affecting all supported propositions on motivations and

barriers on defining RE standards. We derived several of the explanations from answers to various
open questions in the questionnaire and added existing work where appropriate. We may expect
that standardisation of RE activities and artefacts would support a process integration as standards
make explicit all relevant concepts and dependencies in the elements of a process (e.g., which
information in use case models is required to support testing activities) [39] (E 16). It is reasonable
to have similar positive expectations for planning, quality assurance, and progress control of the
artefacts, because a certain (context-specific) standardisation of the RE artefacts allows for the
definition of quality criteria or certain degrees of completion of artefacts (E 18, E 19). Standardisation
of RE, however, is generally considered difficult, because practices considered useful in one context
could be perceived completely alien to the culture and needs of the next. Hence, standardisation of
RE might enforce practices that do not fit the context, thus, making the RE process more complex

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :35

22%

21%

28%

33%

49%

63%

61%

45%

35%

20%

15%

18%

26%

32%

32%

Higher process complexity

Higher demand for communication

Lower efficiency

Missing willingness for changes

Missing possibilities of standardisation

100 50 0 50 100
Percentage

Response I disagree I somewhat disagree Neutral I somewhat agree I agree

Fig. 17. Which reasons do you agree with as a barrier to define a company standard for RE in your company?
(N = 228

than necessary – especially when relying on universal standardisation norms [54] (E 23). This
might be also one reason why one of the major challenges in software process improvement is
coping with people’s resistance to change [31] (E 25).

There is little existing research on requirements engineering standards. We have some support
for the finding of Nikula, Sajaniemi and Kälviäinen [49] that the majority of organisations explicitly
define their individual RE process. To our knowledge, there is also no systematic literature review
on requirements engineering standards.

5.5 StatusQuo in Requirements Engineering Improvement
Process improvement is important for any software engineering practice but for an activity as
volatile and complex as RE, we expect this to be essential. We skipped a more general question
of how requirements engineering improvement is done because we already had support from the
previous run that improvement is done continuously. Our propositions are shown in Tab. 21. The
new propositions resulted from our observation in the first NaPiRE run that RE process improvement
is conducted by dedicated roles and based on own established principles and approaches.
In the survey, we asked whether the organisations improve their RE continuously and who is

responsible for this improvement. The results in Fig. 18 show project teams commonly improve
requirements engineering with P = 0.42 [0.36, 0.49]. Requirements engineering is to a large extent
also improved via an own business unit or role (P = 0.37 [0.30, 0.44]). No improvement is less
common (P = 0.16 [0.11, 0.20]), and improvement via external consultants is rare (P = 0.05 [0.02,

, Vol. 1, No. 1, Article . Publication date: December 2018.

:36 S. Wagner et al.

Table 21. Propositions and explanations about requirements engineering improvement prior to the survey

Supported in Survey
No. Propositions first run or new question

P 45 Requirements engineering is continuously improved. Opposite not supported Q 23
P 46 A continuous improvement is done to determine strengths and weaknesses. Supported Q 24
P 47 Requirements engineering is improved via an own business unit / role. New Q 23
P 48 RE is improved by an internally defined standard. New Q 23

0.08]). Proposition P 45, which states that requirements engineering is continuously improved, is
supported by the data. Furthermore, proposition P 47 on RE improvement via an own business unit
or role is also supported by data from Q 23 shown in Fig. 18.

	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	

Yes, our project teams improve requirements engineering.

Yes, we improve our requirements engineering via an own business unit / role.

No

Yes, we improve our requirements engineering via external
consultants.

0.42

0.37

0.16

0.05

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Fig. 18. Is your requirements engineering continuously improved? (N = 216)

Table 22. Propositions about requirements engineering improvement and explanations after the survey

No. Propositions Changed

P 45 Requirements engineering is continuously improved.
P 46 A continuous improvement is done to determine strengths and weaknesses.
P 47 Requirements engineering is improved via an own business unit / role.
P 48 RE is improved by an internally defined standard.
P 49 RE is improved using external normative standards. ✓

No. Explanations Propositions

E 26 Many companies have realised the importance of requirements engineering and of continuous
improvement of development processes and methods. Working on it continuously helps to not
forget strengths and weaknesses of the current RE approach.

P45, P 46

E 27 RE improvement is performed by internally defined standards and best supported by an own busi-
ness unit or role.

P 47

E 28 External normative standards are often considered too complex and elaborate to apply. P 48

There are no studies investigating RE improvement directly comparable at this level of granularity.
Yet, a systematic mapping study [52] adds that quality assessment plays an important role for
improving software requirements specifications.

At this point, we wanted to dig deeper and understand the reasoning behind doing a continuous
improvement. As shown in Fig. 19, the most common and often applied improvement measure
is to determine strengths and weaknesses with P = 0.75 [0.69, 0.81]. Sometimes improvement
is driven by customers (P = 0.25 [0.18, 0.31]). Rarely, improvements are conducted to obtain

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :37

a certain certification (P = 0.12 [0.08, 0.17]) or due to a regulation like CMMI, Cobit or ITIL
(P = 0.06 [0.03, 0.10]). Additional other reasons include better efficiency, improvement of quality in
project development and adoption of an agile method that has inspection as one of the principles
and using them to promote continuous improvement. Proposition P 46 stating that continuous
improvement is done to determine strengths and weaknesses is supported by the data. E 25 explains
both propositions P 45 and P 46.

0.06	

0.00	 0.10	 0.20	 0.30	 0.40	 0.50	 0.60	 0.70	 0.80	 0.90	 1.00	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

 It helps us to determine our strenghts and weaknesses and act
accordingly

An improvement is expected by our customer

We conduct the improvement to obtain a certain
certification.

An improvement is demanded by a regulation (e.g., CMMI, Cobit,
or ITIL)

!"%&

!"&'

!"('

Fig. 19. Why do you continuously improve your requirements engineering? (N = 195)

Finally, we asked whether the participants use a normative external standard such as CMMI for RE
for the improvement. We found that most use an internally defined (company-specific) standard for
improvement (P = 0.63 [0.56, 0.70]) but there are also many applying external standards (P = 0.37
[0.29, 0.44]) although, as we saw above, certification is not a major reason for improvements. We
have support for P 48 that RE is improved by an internally defined standard. Yet, the data suggests
that we should add a new proposition that RE is also improved using external normative standards.
An explanation for P 48 is suggested by many textual answers to the follow-up question why an
external standard is not used. We got answers such as “There is no need for using an external
standard. Therefore, we decided to use a lightweight internal standard.”, “Simplicity :-)” or “we
use very lean improvement process; less effort”. We interpret this such that external normative
standards are often considered too complex and elaborate to apply. We document this as explanation
E 28.

Staples et al. [59] had already found that smaller companies show a reluctance against normative
improvement approaches. We can confirm this and extend it to also include larger companies. The
reluctance seems to be a more general phenomenon.

6 CONCLUSION
In this section we first present a summary of the results and relate them to existing evidence.
We then discuss the impact and implications of the presented work, present limitations of the
performed study, and finally discuss directions of future work.

6.1 Summary of Results
Surprisingly for us, we found no strong differences among surveyed countries and regions. The
detailed analysis is not in the main results as we wanted to focus then on answering our research
questions based on the evaluation of our theory. Nevertheless, initially it was one of the aspects we

, Vol. 1, No. 1, Article . Publication date: December 2018.

:38 S. Wagner et al.

wanted to investigate in more detail. Some comparisons are published in [44]. Yet, with the sample
we have now, we cannot support significant difference between countries and regions.

6.1.1 Requirements Elicitation and Documentation (RQ 1). Most of the respondents state to
document requirements textually in free form or with some constraints. Only for use cases and
data models, semi-formal approaches are used. Semi-formal and formal goal models seem to
be niche. Non-functional requirements are more often quantified than not (maybe because of
performance-related non-functional requirements classes).

6.1.2 Requirements Change and Alignment (RQ 2). Change management is either continuous
or after formally accepting a requirements specification. Less then 20 % change the specification
itself regularly. Most respondents update their backlog or only work with change requests. Most
respondents do impact analysis between requirements, many do impact analysis in the code. For
that, many respondents use traces between requirements and code and requirements and design
documents. To align tests with requirements, many respondents define acceptance criteria, cover
requirements with tests and let testers participate in requirements reviews. Only 18 % derive tests
from system models.

6.1.3 Requirements Engineering Standards (RQ 3). Almost all respondents have an RE company
standard. There is a similar share of different kinds of standards in the organisations of our
respondents. A standard is also practised by most of the organisations. In many organisations, the
standard is tailored at the beginning of the project by the project lead based on experience. Several
methods are in use to check the application of the standard. There are various reasons to define
an RE standard. Better quality assurance and higher efficiency are common motivations while it
is least often a formal prerequisite for project acquisition. Main barriers for defining a standard
are higher process complexity because of the standard, missing willingness for change and higher
demand for communication.

6.1.4 Requirements Engineering Improvement (RQ 4). Most organisations improve their require-
ments engineering continuously either by the project teams themselves or by an own business
unit/role. The motivation for the improvement is overwhelmingly internally driven: It helps the
organisations to determine their strengths and weaknesses and to act accordingly. Improvements
for certifications and demanded by regulations are rarely the motivator.

6.2 Comparison to Last Run
In our theory from the first run [42], we covered some aspects that we did not include in this run of
the survey. Hence, we cannot compare the new results with the old results on expectations on good
requirements engineering and details of problems with their requirements engineering standards.
Furthermore, we published the discussion of common problems and their causes and effects based
on the second run separately [43].
Overall, we have 22 propositions that were already covered in the first run of the survey. They

were presented together with their outcome from the first run in section 5 with the theory of their
respective research questions. Either we ran the same proposition in the first run, or in case it was
not supported there, we might have had the opposite proposition. For the majority of propositions,
the second run confirms the results of the first run. We have 14 propositions that were supported
in both runs directly. For three propositions, we had the opposite proposition not supported in the
first run and could support them now in the second run.

There are two further types of situations: (1) The proposition P 33, that the support of distributed
development motivates a standard, was not corroborated by the data in the first run. Based on
our own experience, we nevertheless kept the original proposition. Yet, the data of the second

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :39

run now did not clearly support it either with an average close to neutral. (2) For P 29, P 36, P 41
and P 44, we had the opposite in the first run which was not supported by the data. We changed
them for the second run but could also not support them. They received also no clear agreement
or disagreement with averages close to neutral. We decided to remove these unclear propositions
from the theory for now as is reflected in the revised theory after the survey in section 5.

6.3 Impact/Implications
We hope the impact of our work is twofold: First, practitioners can use our results to compare their
own experiences and practices to the status quo in practice more generally. This might help them
for introspections of their processes and techniques, lead to improvement initiatives and maybe to
try out new techniques.

Second, we have now a theory that (in parts) unified previously isolated ones and that has been
validated by two successive survey runs. Hence, it constitutes the most solid foundation to how
requirements engineering is done in practice so far. Therefore, we believe it can be the starting
point for a variety of further research. Researchers working on specific techniques can check the
usage of their techniques in practice and reflect on this usage. In particular, semi-formal and formal
goal models are rarely used despite a considerable attention in research. Hence, it should be further
investigated whether this is caused by deficiencies in these methods or just insufficient knowledge
on the side of the practitioners. Many other aspects of the theory (and extensions of the theory)
should be investigated with further surveys and, especially, with other research techniques such as
interviews and case studies. This would help to better understand why the status quo is like it is
now.

6.4 Limitations
6.4.1 Conclusion Validity. We were not able to construct a random sample systematically cov-

ering different types of organisations and requirements engineers, as we do not have general
information about how the population as such looks like. To deal with this limitation, we used
bootstrapping and only employed confidence intervals instead of null hypothesis testing to evaluate
the propositions of our theory.
Moreover, the choice of the thresholds we used (20 % and above “neutral”) is to some degree

arbitrary. They are based on our first run and discussions in the NaPiRE team. Yet, there could be
reasonable cases for other numbers.

6.4.2 Internal Validity. A limitation that we always have with survey research is that surveys
can only reveal stakeholders’ perceptions on current practices in a cross-sectional manner. These
perceptions might further be distorted and not fully represent reality. Also related to that, the
different respondents might have interpreted different terms and concepts in the questionnaire
differently in dependency to their organizational environment; for instance, the notion of "RE
standard [process/approach]". We tried to minimize the resulting threats to validity via the joint
community workshops described in section 2.3 and the subsequent industrial pilot studies, yet,
we cannot completely eradicate the possibility of misinterpretations, misconceptions or simple
bias. We believe that we need to live with this limitation for now to establish an empirical basis
that afterwards can be complemented with other research methods to analyse those perceptions in
more detail.

The analysis of the “other” options in the closed questions did not reveal any frequent answers
that we missed in our answer options. It might still be the case that the respondents were not
motivated to spend the time to fill in free-text answers. Yet, we believe that we could minimise this
threat.

, Vol. 1, No. 1, Article . Publication date: December 2018.

:40 S. Wagner et al.

6.4.3 Construct Validity. Furthermore, requirements engineering is a broad field which we
cannot realistically cover in a single survey. While we aimed to be rather broad in our questions,
many details could not be completely covered, such as more detailed techniques for requirements
elicitation or other stakeholders such as customers or users. This is one of the reasons why we set
up NaPiRE to be regularly repeated. We use this to shift the focus on different aspects to refine our
theory while we are able to retest other parts of the theory at the same time. A specific unfortunate
omission for this run of the survey was that we did not include user stories explicitly (only as
part of textual requirements lists with constraints) although we incorporated several other agile
concepts such as the product backlog explicitly.

6.4.4 External Validity. Being only able to participate by invitation might introduce the threat
that the participants are biased in the sense that they are somehow known tomembers of the NaPiRE
team. Yet, in some countries, we used specific mailing lists for which we had clear knowledge
that our invitation criteria are met. Furthermore, as discussed above in the design, we weight the
benefits of control over the list of invitees as higher than this risk.
Finally, a bigger shortcoming is that we still cannot claim to cover requirements engineering

as done in the whole world. While we have a large and geographically distributed sample with
response rates between 25 and 75 %, our respondents primarily come from Europe, North and South
America. This probably covers a considerable part of the world’s software companies. Nevertheless,
to be able to really generalize and potentially see differences, we would need to cover Asia, Africa,
and Australia as well. Especially Asia has now a strong software industry and potentially stronger
cultural differences to our current sample. For example, the level of trust in organizations differ
depending on whether it is in a individualist or collectivist society [21].

6.5 Future Work
We are committed to further runs of the survey in the NaPiRE initiative. In parallel to this analysis,
we are finalising the third run of the survey which will significantly add details on the handling
of different types of quality requirements or the relationship between the software teams and the
customers. Future studies should include even more theory considering the customer and user. If
possible, it would also be interesting to compare difference across application domains.

In addition, as we have so far concentrated on purely descriptive propositions, we now move to
more causal propositions on the relationship between different factors, such as different elicitation
practices and problems. Furthermore, we are planning studies that employ other research methods,
as discussed above, to get other viewpoints on the perceptions that we capture with our surveys.
Finally, we will also integrate our theory with other related theories like the theory of distances
in software engineering [6] as both theories do not conflict and the used concepts overlap only
partially.

ACKNOWLEDGMENTS
The authors would like to thank all practitioners who took the time to respond to our survey
as well as all colleagues who have supported the NaPiRE initiative along the way, including the
International Requirements Engineering Board for their financial support during the analysis of
the recent (third) run. Tayana Conte is supported by CNPq (311494/2017-0). Dietmar Pfahl was
supported by the institutional research grant IUT20-55 of the Estonian Research Council. Rafael
Prikladnicki is partially funded by Fapergs (process 17/2551-0001205-4) and CNPq. For the work of
Dietmar Winkler, the financial support by the Austrian Federal Ministry of Science, Research and
Economy and the National Foundation for Research, Technology and Development is gratefully
acknowledged.

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :41

REFERENCES
[1] Herman J. Adèr, Gideon J. Mellenbergh, and David J. Hand. 2008. Advising on research methods: A consultant’s companion.

Johannes van Kessel Publishing, Huizen, Netherlands.
[2] Naveed Ali and Richard Lai. 2016. A method of requirements change management for global software development.

Information and Software Technology 70 (2016), 49 – 67. https://doi.org/10.1016/j.infsof.2015.09.005
[3] Zeinab Alizadeh Barmi, Amir Hossein Ebrahimi, and Robert Feldt. 2011. Alignment of requirements specification and

testing: A systematic mapping study. In Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 476–485.

[4] Elizabeth Bjarnason. 2013. Distances between requirements engineering and later software development activities: a
systematic map. In REFSQ 2013: Requirements Engineering: Foundation for Software Quality. Springer-Verlag, Berlin
Heidelberg, 292–307.

[5] Elizabeth Bjarnason, Per Runeson, Markus Borg, Michael Unterkalmsteiner, Emelie Engström, Björn Regnell, Giedre
Sabaliauskaite, Annabella Loconsole, Tony Gorschek, and Robert Feldt. 2014. Challenges and practices in aligning
requirements with verification and validation: a case study of six companies. Empirical Software Engineering 19, 6
(2014), 1809–1855.

[6] Elizabeth Bjarnason, Kari Smolander, Emelie Engström, and Per Runeson. 2016. A theory of distances in software
engineering. Information and Software Technology 70 (2016), 204–219.

[7] Pierre Bourque, Richard E Fairley, et al. 2014. Guide to the software engineering body of knowledge (SWEBOK): Version
3.0. IEEE Computer Society Press, Washington, DC, USA.

[8] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-Driven Engineering in Practice. Morgan & Claypool.
[9] A. Brand, L. Allen, M. Altman, M. Hlava, and J. Scott. 2015. Beyond Authorship: Attribution, Contribution, Collaboration,

and Credit. Learned Publishing 28 (2015), 151–155.
[10] Manfred Broy. 2006. Requirements Engineering as a Key to Holistic Software Quality. In Proc. 21th International

Symposium on Computer and Information Sciences (ISCIS 2006). Springer-Verlag, Berlin Heidelberg, 24–34.
[11] Mike Cohn. 2004. User Stories Applied for Agile Software Development. Addison-Wesley.
[12] Nelly Condori-Fernandez, Maya Daneva, Klaas Sikkel, RoelWieringa, Oscar Dieste, and Oscar Pastor. 2009. A systematic

mapping study on empirical evaluation of software requirements specifications techniques. In Empirical Software
Engineering and Measurement, 2009. ESEM 2009. 3rd International Symposium on. IEEE, 502–505.

[13] Nelly Condori-Fernández, Maya Daneva, and Roel Wieringa. 2012. Preliminary Survey on Empirical Research Practices
in Requirements Engineering. Technical Report TR-CTIT-12-10. University of Twente, Centre for Telematics and
Information Technology (CTIT).

[14] Karl Cox, Mahmood Niazi, and June Verner. 2009. Empirical Study of Sommerville and Sawyer’s Requirements
Engineering Practices. IET Software 3, 5 (2009), 339–355.

[15] Geoff Cumming and Robert Calin-Jageman. 2017. Introduction to the New Statistics. Routledge.
[16] Wayne W. Daniel. 2000. Applied nonparametric statistics (revised ed.). Duxbury, Pacific Grove, CA, USA.
[17] Oscar Dieste and Natalia Juristo. 2011. Systematic review and aggregation of empirical studies on elicitation techniques.

IEEE Transactions on Software Engineering 37, 2 (2011), 283–304.
[18] Albert Endres and Dieter Rombach. 2003. A Handbook of Software and Systems Engineering: Empirical Observations,

Laws and Theories. Pearson Education Limited, Harlow, England.
[19] Tracy Hall, Sarah Beecham, and Austen Rainer. 2003. Software Process Improvement Problems in Twelve Software

Companies: An Empirical Analysis. Empirical Software Engineering 8, 1 (2003), 7–42.
[20] Joe E. Hannay, Dag I. K. Sjøberg, and Tore Dyba. 2007. A Systematic Review of Theory Use in Software Engineering

Experiments. IEEE Transactions on Software Engineering 33, 2 (2007), 87–107.
[21] Lenard Huff and Lane Kelley. 2003. Levels of organizational trust in individualist versus collectivist societies: A

seven-nation study. Organization Science 14, 1 (2003), 81–90.
[22] IEEE. 1998. IEEE Recommended Practice for Software Requirements Specifications – IEEE Std 830-1998. Technical Standard

IEEE Std 830-1998. The Institute of Electrical and Electronics Engineers, Inc.
[23] Irum Inayat, Siti Salwah Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin Shamshirband. 2015. A systematic

literature review on agile requirements engineering practices and challenges. Computers in human behavior 51 (2015),
915–929.

[24] Ivar Jacobson, Bertrand Meyer, and Richard Soley. 2009. The SEMAT initiative: A call for action. Dr. Dobb’s Journal 10
(2009).

[25] Ivar Jacobson and Ian Spence. 2009. Why we need a theory for software engineering. Dr. Dobb’s Journal (2009).
[26] Pontus Johnson and Mathias Ekstedt. 2016. The Tarpit–A general theory of software engineering. Information and

Software Technology 70 (2016), 181–203.
[27] Marcos Kalinowski, Michael Felderer, Tayana Conte, Rodrigo Spinola, Rafael Prikladnicki, Dietmar Winkler, Daniel.

Méndez Fernández, and StefanWagner. 2016. Preventing Incomplete/Hidden Requirements: Reflections on Survey Data

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1016/j.infsof.2015.09.005

:42 S. Wagner et al.

from Austria and Brazil. In Proc. Software Quality. The Future of Systems- and Software Development, 8th International
Conference (SWQD 2016). Springer-Verlag, Berlin Heidelberg, 63–78.

[28] Marcos Kalinowski, Rodrigo Spinola, Tayana Conte, Rafael Prikladnicki, Daniel Méndez Fernández, and Stefan Wagner.
2015. Towards Building Knowledge on Causes of Critical Requirements Engineering Problems. In Proc. 27th International
Conference on Software Engineering and Knowledge Engineering (SEKE). KSI Research Inc. and Knowledge Systems
Institute Graduate School, 1–6.

[29] Mayumi Itakura Kamata and Tetsuo Tamai. 2007. How Does Requirements Quality Relate to Project Success or Failure?.
In Proc. 15th International Requirements Engineering Conference (RE’07). IEEE, Washington, DC, USA, 69–78.

[30] Mohamad Kassab, Colin Neill, and Phillip Laplante. 2014. State of practice in requirements engineering: contemporary
data. Innovations in Systems and Software Engineering 10, 4 (2014), 235–241. https://doi.org/10.1007/s11334-014-0232-4

[31] Marjo Kauppinen, Matti Vartiainen, Jyrki Kontio, Sari Kujala, and Reijo Sulonen. 2004. Implementing requirements
engineering processes throughout organizations: success factors and challenges. Information and Software Technology
46, 14 (2004), 937–953.

[32] Alessia Knauss, Daniela Damian, Xavier Franch, Angela Rook, Hausi A. Müller, and Alex Thomo. 2016. ACon: A
learning-based approach to deal with uncertainty in contextual requirements at runtime. Information and Software
Technology 70 (2016), 85 – 99. https://doi.org/10.1016/j.infsof.2015.10.001

[33] Philippe Kruchten. 2003. The Rational Unified Process: An Introduction. Addison-Wesley Professional.
[34] Grzegorz Loniewski, Emilio Insfran, and Silvia Abrahão. 2010. A systematic review of the use of requirements engi-

neering techniques in model-driven development. In International Conference on Model Driven Engineering Languages
and Systems. Springer, 213–227.

[35] Clifford E Lunneborg. 2001. Bootstrap inference for local populations. Drug information journal 35, 4 (2001), 1327–1342.
[36] M. Mannio and U. Nikula. 2001. Requirements Elicitation Using a Combination of Prototypes and Scenarios. Technical

Report. Telecom Business Research Center Lappeenranta.
[37] Alistair Mavin, Philip Wilkinson, Sabine Teufl, Henning Femmer, Jonas Eckhardt, and Jakob Mund. 2017. Does

Goal-Oriented Requirements Engineering Achieve Its Goal?. In IEEE 25th International Requirements Engineering
Conference (RE). IEEE.

[38] Daniel Mendez, Stefan Wagner, Markus Kalinowski, Michael Felderer, Priscilla Mafra, Antonio Vetro, Tayana Conte,
Marie-Therese Christiansson, Desmond Greer, Casper Lassenius, Tomi Männistö, Maleknaz Nayebi, Markku Oivo,
Birgit Penzenstadler, Dietmar Pfahl, Rafael Prikladnicki, Guenther Ruhe, Andre Schekelmann, Sagar Sen, Rafael
Spinola, Jose-Luis de la Vara, Ahmet Tuzcu, and Roel Wieringa. 2018. NaPiRE Data Set 2014. (2 2018). https:
//doi.org/10.6084/m9.figshare.5845083.v1

[39] Daniel Méndez Fernández and Birgit Penzenstadler. 2015. Artefact-based Requirements Engineering: the AMDiRE
Approach. Requirements Engineering 20, 4 (2015), 405–434.

[40] Daniel Méndez Fernández and Stefan Wagner. 2013. Naming the Pain in Requirements Engineering – NaPiRE Report
2013. Technical Report TUM-I1326. Technische Universität München.

[41] Daniel Méndez Fernández and Stefan Wagner. 2013. Naming the Pain in Requirements Engineering: Design of a Global
Family of Surveys and First Results from Germany. In Proc. 17th International Conference on Evaluation and Assessment
in Software Engineering (EASE’13). ACM, New York, NY, USA, 183–194.

[42] Daniel Méndez Fernández and Stefan Wagner. 2015. Naming the Pain in Requirments Enginering: A Design for a
global Family of Surveys and First Results from Germany. Information and Software Technology 57 (2015), 616–643.
https://doi.org/10.1016/j.infsof.2014.05.008

[43] Daniel Mendez Fernandez, Stefan Wagner, Marcos Kalinowski, Michael Felderer, Priscilla Mafra, Antonio Vetrò, Tayana
Conte, Marie-Therese Christiansson, Desmond Greer, Casper Lassenius, Tomi Männistö, Maleknaz Nayebi, Markku
Oivo, Birgit Penzenstadler, Dietmar Pfahl, Rafael Prikladnicki, Guenther Ruhe, André Schekelmann, Sagar Sen, Rodrigo
Spinola, Ahmet Tuzcu, Jose Luis de la Vara, and Roel Wieringa. 2017. Naming the pain in requirements engineering.
Empirical software engineering 22, 5 (2017), 2298–2338.

[44] Daniel Méndez Fernández, Stefan Wagner, Marcos Kalinowski, André Schekelmann, Ahmed Tuzcu, Tayana Conte,
Rodrigo Spinola, and Rafael Prikladnicki. 2015. Naming the Pain in Requirements Engineering: Comparing Practices
in Brazil and Germany. IEEE Software 32, 5 (2015), 16–23. https://doi.org/10.1109/MS.2015.122

[45] Daniel Mendez Fernandez, Stefan Wagner, Klaus Lochmann, Andrea Baumann, and Holger de Carne. 2012. Field Study
on Requirements Engineering: Investigation of Artefacts, Project Parameters, and Execution Strategies. Information
and Software Technology 54, 2 (2012), 162–178. https://doi.org/10.1016/j.infsof.2011.09.001

[46] Frederick Mosteller and Cleo Youtz. 1990. Quantifying probabilistic expressions. Statist. Sci. (1990), 2–12.
[47] Nannette P. Napier, Lars Mathiassen, and Roy D. Johnson. 2009. Combining Perceptions and Prescriptions in Require-

ments Engineering Process Assessment: An Industrial Case Study. IEEE Transactions on Software Engineering 35, 5
(2009), 593–606.

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1007/s11334-014-0232-4
https://doi.org/10.1016/j.infsof.2015.10.001
https://doi.org/10.6084/m9.figshare.5845083.v1
https://doi.org/10.6084/m9.figshare.5845083.v1
https://doi.org/10.1016/j.infsof.2014.05.008
https://doi.org/10.1109/MS.2015.122
https://doi.org/10.1016/j.infsof.2011.09.001

StatusQuo in Requirements Engineering :43

[48] Colin J. Neill and Philip A. Laplante. 2003. Requirements Engineering: The State of the Practice. IEEE Software 20, 6
(2003), 40–45. https://doi.org/10.1109/MS.2003.1241365

[49] Uolevi Nikula, Jorma Sajaniemi, and Heikki Kälviäinen. 2000. A State-of-the-practice Survey on Requirements Engi-
neering in Small-and Medium-sized Enterprises. Research Report 951-764-431-0. Telecom Business Research Center
Lappeenranta.

[50] Bashar Nuseibeh and Steve Easterbrook. 2000. Requirements Engineering: A Roadmap. In Proceedings of the Conference
on the Future of Software Engineering. ACM, 35–46.

[51] Cristina Palomares, Carme Quer, and Xavier Franch. 2017. Requirements reuse and requirement patterns: a state of
the practice survey. Empirical Software Engineering 22, 6 (2017), 2719–2762.

[52] Viktor Pekar, Michael Felderer, and Ruth Breu. 2014. Improvement methods for software requirement specifications: a
mapping study. In Quality of Information and Communications Technology (QUATIC), 2014 9th International Conference
on the. IEEE, 242–245.

[53] Fredrik Pettersson, Martin Ivarsson, Tony Gorschek, and Peter Öhman. 2008. A practitioner’s guide to light weight
software process assessment and improvement planning. Journal of Systems and Software 81, 6 (2008), 972–995.

[54] Fredrik Pettersson, Martin Ivarsson, Tony Gorschek, and Peter Öhman. 2008. A PractitionerâĂŹs Guide to Light Weight
Software Process Assessment and Improvement Planning. Journal of Systems and Software 81, 6 (2008), 972–995.

[55] Balasubramansiam Ramesh and Matthias Jarke. 2001. Toward Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering 27, 1 (2001), 58–93.

[56] Dag I. K. Sjøberg, Tore Dybå, Bente C. D. Anda, and Jo E. Hannay. 2008. Building theories in software engineering. In
Guide to advanced empirical software engineering. Springer-Verlag, Berlin Heidelberg, 312–336.

[57] Ian Sommerville and Peter Sawyer. 1997. Requirements Engineering: A Good Practice Guide. John Wiley and Sons, Inc.,
Hoboken, New Jersey.

[58] Ian Sommerville, Peter Sawyer, and Stephen Viller. 1998. Viewpoints for requirements elicitation: a practical approach.
In Proc. 3rd International Conference on Requirements Engineering: Putting Requirements Engineering to Practice (ICRE’98).
IEEE, Washington, DC, USA, 74–81. https://doi.org/10.1109/ICRE.1998.667811

[59] Mark Staples, Mahmood Niazi, Ross Jeffery, Alan Abrahams, Pyatt Byatt, and Russel Murphy. 2007. An exploratory
study of why organizations do not adopt CMMI. Journal of Systems and Software 80, 6 (2007), 883–895.

[60] Klaas-Jan Stol and Brian Fitzgerald. 2015. Theory-oriented software engineering. Science of Computer Programming
101 (2015), 79–98.

[61] Stefan Wagner, Daniel Méndez-Fernández, Marcos Kalinowski, and Michael Felderer. 2018. Agile Requirements
Engineering in Practice: Status Quo and Critical Problems. CLEI Electronic Journal 21, 1 (2018).

[62] Roel J. Wieringa. 2014. Design Science Methodology for Information Systems and Software Engineering. Springer-Verlag,
Berlin Heidelberg.

[63] Claes Wohlin, Darja Šmite, and Nils Brede Moe. 2015. A General Theory of Software Engineering. Journal of Systems
and Software 109 (2015), 229–242. https://doi.org/10.1016/j.jss.2015.08.009

[64] Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, and Sarah C. Gregory. 2018. The Problem of Consolidating RE
Practices at Scale. In International Working Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2018). Springer.

A LIST OF CONTRIBUTORS AND ROLES
Table 23 introduces the details of the authorships with respect to the roles taken in the NaPiRE
project and in context of this particular manuscript. To this end, we introduce a role concept based
on the classification scheme as discussed by Brand et al. [9]. In our context, we distinguish the
following roles5:

• Conceptualisation∗: Ideas; formulation or evolution of overarching research goals and aims.
• Project Administration∗: Management and coordination responsibility for the research activity
planning and execution.

• Methodology∗: Development or design of methodology; creation of models.
• Instrument Design: Development / re-design of the instrument used in this replication.
• Data Collection: Data collection as national representative in the respective country using
the provided infrastructure.

• Data Analysis: Application of analysis techniques to study and interpret the data.

5Those roles marked with an ∗ are the exact same as introduced in [9].

, Vol. 1, No. 1, Article . Publication date: December 2018.

https://doi.org/10.1109/MS.2003.1241365
https://doi.org/10.1109/ICRE.1998.667811
https://doi.org/10.1016/j.jss.2015.08.009

:44 S. Wagner et al.

• Data Curation∗: Management activities to annotate (produce metadata), scrub data and
maintain research data (including software code, where it is necessary for interpreting the
data itself) for initial use and later reuse.

• Data Visualisation∗: Preparation, creation and/or presentation of the published work, specifi-
cally visualisation/ data presentation.

• Writing - Original Draft∗: Preparation, creation and/or presentation of the published work,
specifically writing the initial draft (including substantive translation).

• Data - Review & Editing∗: Preparation, creation and/or presentation of the published work by
those from the original research group, specifically critical review, commentary or revision –
including pre- or post-publication stages

The first two authors are the initiators and coordinators of the overall initiative. Further, we
formed a group of lead authors for this particular manuscript (the first seven authors) to do the
data analysis and / or the writing process.

Table 23. Authorship details

Author C
on

ce
pt
ua

li
sa
ti
on

Pr
oj
ec
tA

dm
in
is
tr
at
io
n

M
et
ho

do
lo
gy

In
st
ru

m
en

tD
es
ig
n

D
at
a
C
ol
le
ct
io
n

D
at
a
A
na

ly
si
s

D
at
a
C
ur

at
io
n

D
at
a
V
is
ua

li
sa
ti
on

W
ri
ti
ng

-D
ra
ft

W
ri
ti
ng

-R
ev

ie
w

&
Ed

it
in
g

S. Wagner X X X X X X X X X
D. Méndez Fernández X X X X X X X X X X
M. Felderer X X X X X X
A. Vetrò X X X X X
M. Kalinowski X X X X X X X
R. Wieringa X X X X
D. Pfahl X X X
T. Conte X X
M.-T. Christiansson X X
D. Greer X X X
C. Lassenius X X X
T. Männistö X X X
M. Nayebi X X
M. Oivo X X X
B. Penzenstadler X X
R. Prikladnicki X X
G. Ruhe X X
A. Schekelmann X X
S. Sen X X
R. Spinola X X
A. Tuzcu X
J. L. de la Vara X X
D. Winkler X X

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :45

B RESULTS OF K-W TESTS

, Vol. 1, No. 1, Article . Publication date: December 2018.

:46 S. Wagner et al.

Table 24. Kruskall-Wallis test for evaluating country effect on results: part 1

No. Question Option p-value

Q1 What is the size of your company? 0.035
Q3 Does your company participate in globally distributed projects? <0.001
Q5 To which project role are you most frequently assigned? 0.053
Q6 How do you rate your experience in this role? 0.173
Q7 Which org. role does your

company take most
frequently in your
projects?

Customer 0.116
Product development 0.010
Contractor 0.003
Other 0.743

Q8 Which process model do
you follow (or a variation
of it)?

Waterfall 0.690
V-Modell XT 0.105
Scrum 0.418
Extreme Programming (XP) 0.276
Rational Unified Process 0.034
Other 0.195

Q9 How do you elicit
requirements?

Interviews 0.010
Scenarios 0.038
Prototyping 0.555
Facilitated meetings (including workshops) 0.012
Observation 0.002

Q10 How do you document
functional requirements?

Free form textual (Domain/Business Process Models) 0.743
Free form textual (Use Case Models) 0.135
Free form textual (Goal Models) 0.561
Free form textual (Data Models) 0.629
Free form textual (Structured Requirements Lists) 0.654
Textual with constraints (Domain/Business Process Models) 0.500
Textual with constraints (Use Case Models) 0.975
Textual with constraints (Goal Models) 0.176
Textual with constraints (Data Models) 0.226
Textual with constraints (Structured Requirements Lists) 0.495
Semi-formal (UML) (Domain/Business Process Models) 0.046
Semi-formal (UML) (Use Case Models) 0.041
Semi-formal (UML) (Goal Models) 0.972
Semi-formal (UML) (Data Models) 0.100
Semi-formal (UML) (Structured Requirements Lists) 0.853
Formal (Domain/Business Process Models) 0.572
Formal (Use Case Models) 0.015
Formal (Goal Models) 0.068
Formal (Data Models) 0.914
Formal (Structured Requirements Lists) 0.518

Q11 How do you document non-functional requirements? 0.304
Q12 How do you deal with changing requirements after the initial release? 0.550
Q13 Which traces do you

explicitly manage?
Traces between requirements and code. 0.001
Traces between requirements and design documents. 0.558
None. 0.180

Q14 How do you analyse the
effect of changes to
requirements?

We do impact analysis between requirements. 0.023
We do impact analysis on the code. 0.255
We do not analyse the effect of changes to requirements. 0.070

Q15 How do you align the
software test with the
requirements?

Testers participate in requirements reviews. 0.130
We check the coverage of requirements with tests. 0.061
We define acceptance criteria for requirements. 0.022
We derive tests from system models. 0.557
We do not allign test and requirements. 0.532

, Vol. 1, No. 1, Article . Publication date: December 2018.

StatusQuo in Requirements Engineering :47

Table 25. Kruskall-Wallis test for evaluating country effect on results: part 2

No. Question Option p-value

Q16 What RE standard have
you established at your
company?

A standard that is predefined according to a regulation (e.g.. ITIL) <0.001
A standard that is predefined by the development process (e.g.. Rational
Unified Process. Scrum)

0.215

An own standard that defines the coarse process with deliverables.
milestones. and phases

0.192

An own standard that defines the process including roles and responsi-
bilities.

0.610

An own standard that defines artefacts and offers document templates 0.095
None 0.029

Q17 Which reasons do you
agree with as a motivation
to define a company
standard for RE in your
company?

Compliance to regulations and standards (like CMMI) 0.140
Seamless development by integrating Requirements Engineering into
the development process

0.344

Better tool support 0.361
Formal prerequisite for project acquisition in your domain 0.572
Support of distributed development 0.284
Better support of progress control 0.680
Better quality assurance of the artefacts (e.g.. within quality gates) 0.169
Support of benchmarks and / or comparison of different projects 0.466
Support of project management and planning 0.753
Higher efficiency 0.456
Knowledge transfer 0.827

Q18 Which reasons do you see
as a barrier to define a
company standard for RE
in your company?

Higher process complexity 0.694
Higher demand for communication 0.549
Lower efficiency 0.002
Missing willingness for changes 0.074
Missing possibilities of standardisation 0.066

Q19 Is the requirements engineering standard mandatory and practiced? 0.015
Q20 How do you check the

application of your
requirements engineering
standard?

Via project assessments 0.092
Via analytical quality assurance. e.g.. as part of quality gates 0.366
Via constructive quality assurance. e.g.. via checklists or templates 0.252
It is not checked. 0.204

Q21 How do you perform
change management in
your requirements
engineering?

We have a continuous change management. 0.010
We have a change management approach that applies after formally
accepting a requirements specification.

0.701

We have a change management that applies during RE. 0.070
We do not consider a change management in RE. 0.009

Q22 How is your RE standard
applied (tailored) in your
regular projects?

We have defined a tailoring approach that continuously guides the
application of the standard in our project

0.161

We have tool support for tailoring our Requirements Engineering stan-
dard

0.164

At the beginning of a project. the project lead / requirements engineer
tailors the standard based on experiences

0.018

We do not consider a particular tailoring approach 0.025
Q23 Is your RE continuously improved? 0.035
Q24 Why do you continuously

improve your
requirements
engineering?

It helps us to determine our strenghts and weaknesses and act accord-
ingly

0.604

An improvement is expected by our customer 0.330
We conduct the improvement to obtain a certain certification. 0.004
An improvement is demanded by a regulation (e.g.. CMMI. Cobit. or
ITIL)

0.010

Q25 Do you use a normative, external standard for your improvement? 0.002

, Vol. 1, No. 1, Article . Publication date: December 2018.

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objective
	1.3 Contribution
	1.4 Outline

	2 Related Work
	2.1 Theories on Requirements Engineering
	2.2 Survey Research on Requirements Engineering
	2.3 The NaPiRE Initiative

	3 A Theory on the Status Quo in Requirements Engineering
	4 Survey Design
	4.1 Research Questions
	4.2 Survey Instrument
	4.3 Data Collection
	4.4 Data Analysis
	4.5 Validity Procedures

	5 Detailed Theory and Survey Results
	5.1 Study Population
	5.2 Status Quo in Requirements Elicitation and Documentation
	5.3 Status Quo in Requirements Engineering Changes and Alignment
	5.4 Status Quo in Requirements Engineering Process Standards
	5.5 Status Quo in Requirements Engineering Improvement

	6 Conclusion
	6.1 Summary of Results
	6.2 Comparison to Last Run
	6.3 Impact/Implications
	6.4 Limitations
	6.5 Future Work

	Acknowledgments
	References
	A List of Contributors and Roles
	B Results of K-W tests

