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“Why was I chosen?' 
 
'Such questions cannot be answered', said Gandalf. 'You may be sure that it 
was not for any merit that others do not possess. But you have been chosen, 
and you must therefore use such strength and heart and wits as you have.” 

― J.R.R. Tolkien, The Fellowship of the Ring 

 
“I think it's much more interesting to live not knowing than to have answers 
which might be wrong. I have approximate answers and possible beliefs and 
different degrees of uncertainty about different things, but I am not 
absolutely sure of anything and there are many things I don't know anything 
about, such as whether it means anything to ask why we're here. I don't have 
to know an answer. I don't feel frightened not knowing things, by being lost 
in a mysterious universe without any purpose, which is the way it really is as 
far as I can tell.”  

― Richard P. Feynman 

 



 

4 
 

ABSTRACT 

Toxicology is the scientific pursuit of identifying and classifying the toxic 
effect of a substance, as well as exploration and understanding of the adverse 
effects due to toxic exposure. The toxic effects on human health, biosphere, 
and ecosystem are essential to maintain public safety in the short and long 
term. The modern toxicological efforts have been driven by the human 
industrial exploits in the production of engineered substances with advanced 
interdisciplinary scientific collaborations. These engineered substances must 
be carefully tested to ensure public safety. This task is now more challenging 
than ever with the employment of new classes of chemical compounds, such 
as the engineered nanomaterials. Toxicological paradigms have been 
redefined over the decades to be more agile, versatile, and sensitive. On the 
other hand, the design of toxicological studies has become more complex, 
and the interpretation of the results is more challenging. Toxicogenomics 
offers a wealth of data to estimate the gene regulation by inspection of the 
alterations of many biomolecules (such as DNA, RNA, proteins, and 
metabolites). The response of functional genes can be used to infer the toxic 
effects on the biological system resulting in acute or chronic adverse effects. 
However, the dense data from toxicogenomics studies is difficult to analyze, 
and the results are difficult to interpret. Toxicogenomic evidence is still not 
completely integrated into the regulatory framework due to these drawbacks. 
Nanomaterial properties such as particle size, shape, and structure increase 
complexity and unique challenges to Nanotoxicology. Furthermore, human 
endeavors in engineering new nanomaterials with unique properties must be 
assisted with agile safety nets of toxicogenomics to reduce production costs 
and ultimately ensure public safety. 

This thesis presents the efforts in the standardization of toxicogenomics 
data by showcasing the potential of omics in nanotoxicology and providing 
easy to use tools for the analysis, and interpretation of omics data. This work 
explores two main themes: i) omics experimentation in nanotoxicology and 
investigation of nanomaterial effect by analysis of the omics data, and ii) the 
development of analysis pipelines as easy to use tools that bring advanced 
analytical methods to general users. These tools are defined and fine-tuned 
by the knowledge from the investigative studies and contain the best 
practices to ensure reproducibility of the results. An important feature of the 
omics studies is the reporting of the data and related experimentation such 
that an independent researcher can interpret it thoroughly. For these 
purposes, the scientific community has defined standard formats of minimal 
information required to report the data (MIAME). However, there are areas 
of improvement in data sharing and reporting. In this work, I explored a 
potential solution that can ensure effective interpretability and 



 

5 
 

reproducibility. DNA microarray technology is a well-established research 
tool to estimate the dynamics of biological molecules with high throughput. 
The analysis of data from these assays presents many challenges as the study 
designs are quite complex and contain large cohorts of data points. I 
explored the challenges of omics data processing and provided 
bioinformatics solutions to standardize this process. With the application of 
omics data in toxicology and other fields, it is becoming ever more essential 
to ensure that the information from the high-throughput data is interpreted 
correctly. The responses of individual molecules to a given exposure is only 
partially informative and more sophisticated models, disentangling the 
complex networks of dynamic molecular interactions, need to be explored. 
However, this is a technically demanding task. An analytical solution is 
presented in this thesis to tackle down the challenge of producing robust 
interpretations of molecular dynamics in biological systems. It allows 
exploring the substructures in molecular networks underlying mechanisms 
of molecular adaptation to exposures. I also present here a multi-omics 
approach to defining the mechanism of action for human cell lines exposed 
to nanomaterials. The proposed approach can be used to infer long term 
functional response from relatively short-term exposures. All the 
methodologies developed in this project for omics data processing and 
network analysis are implemented as software solutions that are designed to 
be easily accessible also by users with no expertise in bioinformatics. Our 
strategies are also developed in an effort to standardize omics data 
processing and analysis and to promote the use of omics-based evidence in 
chemical risk assessment. 
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1 INTRODUCTION 

Toxicology is the study of toxins/poisons and their harmful effects on human 
health or the environment. It is, in fact, an effort to characterize chemicals 
and other xenobiotic substances present in the environmental or specific 
exposure. However, such chemicals can be useful in some specific 
formulations, type of exposure, and exposure durations. Known toxins have 
shown promise as a drug for effective treatment of specific ailments (Cury 
and Picolo, 2006), while drugs in specific dosage, incorrect exposure, or due 
to the genetic makeup of recipient can be extremely toxic and life-threatening 
(Nakayama et al., 2009). Furthermore, pollutants or side products of modern 
human activities can, in turn, produce acute and chronic toxicity (Roux et al., 
2002). These different dimensions of human contact with chemicals and 
other xenobiotics require a cautious and meticulous approach to characterize 
and classify toxic substances, toxicological effects, and mode of action; thus 
toxicity testing is an important area of research. However, the need for 
toxicity testing has not always been apparent. The early 20th-century boom 
in the chemical industry led to the production of various substances for 
human consumption and some serious, tragic events (Paine, 2017) resulted 
in the establishment of toxicity testing in animals for evidence of safety to 
determine whether the substance is a risk to public health. Toxicity testing 
standards have been refined over the last century for food additive and 
cosmetics, drugs, and environmental pollutants such as pesticides, industrial 
chemical waste, and residues from other products (Ridings, 2013). These 
standards have been placed into effects by various initiatives such as Food 
and Drug Administration (FDA), U.S. Environmental Protection Agency 
(EPA), Organization for Economic Cooperation and Development (OECD), 
and European Chemical Agency (ECHA). 

Over the decades, the limitations of traditional toxicity screening methods 
have been realized, and improvement in experimental techniques have 
allowed for further reform in testing strategies. Traditional animal assays 
focus on apical endpoints in the whole organism, requiring the sacrifice of 
many animal subjects in a battery of tests. The 3Rs framework (refine, 
reduce, and replace) was proposed by William Russell and Rex Burch in 1959 
to refine the use of animals without discouraging the scientific pursuit. 
Refinement is defined by the use of methods and technique to minimize the 
pain and suffering of test subjects, by the introduction of less intense 
experimental procedures. This concept led to a reduction of negative effects 
but also the enhancements in the welfare of the animals by improving their 
living conditions. Reduction is defined as improvements in the designs of 
scientific studies to reduce animal test subjects. Replacement is defined as 
the replacement of vertebrates by invertebrate subjects or absence of sentient 



 

17 
 

animal testing by employing in-vitro methods, microbiological studies, or 
early stage development embryos. Advanced techniques in high content and 
high throughput screening of in vivo and in vitro samples have allowed for 
testing approaches that are more cost and time effective. The modern testing 
strategies are capable of evaluating molecular mechanisms in a variety of 
different scenarios, such as neurotoxicity effects in tissue-specific fashion 
(Figure 1). 

 

Fig. 1 - Traditional toxicology strategy of apical endpoint assessment versus 
the modern strategy of understanding molecular mechanisms. 

 

Access to mechanistic information from toxicity studies have opened new 
avenues of predictive toxicology, and scientific perspective has quickly 
changed to a mode of action based approaches. Toxicity pathways are 
enabling to build a toxicological landscape as a toxome (Bouhifd et al., 2014; 
Bouhifd et al., 2015) that can be used to classify and predict toxic substances 
efficiently. The combined scientific effort in omics data generation and 
analysis from different molecular species is revolutionizing the regulatory 
framework. This information is giving a possibility to build a complete 
picture of the biological mechanisms involved in toxicological response and 
is allowing for new ways to model this information for predictive toxicology. 

However, there is some translational gap between the information 
obtained from the experimental data and its implementation in regulatory 
decision making. This thesis presents the scientific efforts to alleviate some 
of those limitations.  

Data generated from omics experiments have defined formats that are 
specific to the raw data and do not entertain the biological relevance of the 
dataset. This raw data format includes only limited information concerning 
the experimental specifications used in generating the data, thus 
jeopardizing the reproducibility in follow up studies. The scientific 
community has proposed solutions for collecting and sharing omics assay 
raw data and associated metadata with sample description, study design, and 
experimental setups. MIAME (Minimum Information About a Microarray 
Experiment) standard was defined to record and report the minimum 
information required for interpretation of microarray data (Brazma et al., 



INTRODUCTION 

18 
 

2001). MAGE-OM (Microarray Gene Expression Object Model) defined in 
UML (Unified modeling language), and MAGE-ML defined in XML are 
MIAME-compliant formats with a structured approach to facilitate the 
exchange of microarray data (Spellman et al., 2002). MAGE-TAB 
(MicroArray Gene Expression Tabular) (Rayner et al., 2006) is a simplified 
spreadsheet-based format proposed as an alternative to intensively complex 
MAGE-ML format. ISA-TAB (Investigation/Study/Assay TAB-delimited) was 
modeled on MAGE-TAB as a general purpose framework to communicate 
complex metadata from experiments that employ a combination of 
technologies such as genomics, transcriptomics, proteomics, metabolomics, 
(Rocca-Serra et al., 2010). ISA-TAB-Nano (Investigation/Study/Assay 
Nanomaterial TAB-delimited) (Thomas et al., 2013) extends the ISA-TAB 
format with the information of the material. Public repositories such as GEO 
(Barrett et al., 2013) have been established to promote reporting and 
exchange of experimental data. However, there is no widely accepted 
repository for the ISA-TAB-Nano format reporting of data, limiting its 
usability. These formats are all designed to report the raw data and ensure 
independent inspection and interpretation to facilitate reproducibility as well 
as the exchange of data. One major lacking feature of these reporting formats 
is the absence of data analysis information. It can be argued that the 
complete interpretation of data is not possible without understanding 
intermediate analysis results. The analysis results must be reported with 
complete clarity of the methodology employed in analyzing the data along 
with the rationale for its use. The data analysis must be made independently 
reproducible by sharing the tools and bioinformatics scripts employed, thus 
ensuring that efforts from third parties can effectively produce the desired 
results from the very same data, or in a similarly designed independent 
study. This thesis presents an effort to report the data and analysis results 
from toxicogenomics study of nanomaterials. 

One of the major concerns with omics data is the reproducibility of data 
and analytics. We propose here a solution for standardization of omics data 
analysis generated from microarray experiments by using state-of-the-art 
methods for data analysis in a standardized analysis workflow that is 
intuitive and easy to use. Such a solution can bring the technology closer to 
all users and enables to generate reproducible results.  

Exploration of publicly available microarray data and results brings to 
light that raw omics data can be very noisy and may contain a poor 
estimation of signal for some arrays, and samples. Identification of these 
poor samples as outliers and removal can improve the signal-to-noise ratio 
(Kauffmann and Huber, 2010). Systemic data biases in large microarray 
datasets must be addressed by using data normalization methods before any 
quantitative comparison of microarray features (Bilban et al., 2002). The 
unwanted variation can be observed in the integrated microarray datasets 
due to batch effects (Lazar et al., 2013). These batch effects represent non-
biological variation that may be biased towards particular conditions leading 
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to unreliable comparisons. Exploration and diagnosis of data must be 
performed to identify batch effects, and appropriate adjustment methods 
must be used for correction. 

Increasing interest is devoted to the possibility to merge multiple omics 
data sets and re-analyze them together to increase statistical power. In such 
cases, the evaluation and correction of technical batch effects become crucial. 
Without proper processing of the raw assay values, it is impossible to 
investigate, identify, and remove the noise. Neglecting this step can result in 
type one and type two errors that could go unnoticed. Most tools for omics 
data analysis place a barrier of required computational expertise that either 
disqualifies some researchers or place them at the risk of producing 
erroneous results with faulty assessments. Reliability and robustness of the 
toxicogenomics data analysis results can be achieved in part by ensuring that 
noise in the assay data is estimated and avoided systematically. 

Preprocessing of microarray data must check for biases and imbalances 
discussed above. The scientific community has actively pursued this 
challenge providing various packages for data correction (Lazar et al., 2013). 
The most effective methods and guidelines have been greatly debated by 
comparing the performances of the proposed methods resulting in a set of 
best practices to ensure robustness and reliability of analysis results. 
Following topics discuss these best practices in brief. 

The applicability of any set of tools in an efficient workflow is determined 
by the ease of communication between them, at the very least. R statistical 
programming language is one of the widely accepted and actively used 
platforms for development and dissemination of tools that enable 
bioinformatics analysis of biological assay datasets. The statistical toolset 
provides the appropriate platform for the development and implementation 
of complex algorithms. The vast library of packages in Bioconductor and 
CRAN public resources catered to the biological research is a testament to R’s 
importance. The R language platform has been used to develop numerous 
packages for omics analysis, which have been tested and evaluated by the 
scientific community. Thus, I chose the R language platform for 
identification of gold standard tools and implementation of widely accepted 
best practices in omics data analysis. 

Likewise, effective interpretation of omics data often represents an 
additional challenge. Molecular mechanisms of toxicity are not just sets of 
molecules dysregulated in a toxic response, but their complex patterns of 
interaction. A biological system is incomplete without the understanding of 
its molecular relationships, which can be successfully modeled by means of 
graph theory. It is not trivial to infer these relationships and reconstruct the 
system information from omics measurement data, and it is not always 
simple to be orientated among multiple methodological solutions. I 
demonstrate in this thesis the capabilities of a solution that ensures robust 
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inference of gene-gene co-expression network. The end-user can accomplish 
this task via an intuitive and easy to use graphical interface.  

The multi-disciplinary nature of omics methods and analytics is often 
regarded as an additional obstacle for their widespread use in multiple 
toxicology research environments and, consequently, hampers their full 
implementation in regulatory assessment. The work presented in this thesis 
also addresses this critical issue, by the development of software solutions 
that can help scientists with no specific knowledge in computer science to 
successfully transform omics data into sensible biological knowledge while 
ensuring robustness and reproducibility. Finally, I showcase here a multi-
omics study to model the dynamics of mechanistic information from multiple 
molecular species and its effectiveness in toxicity evaluation. 
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2 TRADITIONAL TOXICOLOGY 

Traditional toxicology estimates toxic response by exposing test subjects (in 
vivo or in vitro) with different dosages of a substance for different time 
durations and observe the apical endpoint as a phenotypic change producing 
an adverse effect. The dosage of a substance resulting in death of 50% of the 
population in a defined period is known as LD50 (Lethal Dose, 50%) 
(LeBeau, 1983) and the concentration of the substance in mg/l capable of 
killing 50% of the population is known as LC50 (Lethal Concentration, 50%). 
These bioassays involve groups of animal replicates exposed to different 
concentration of the substance. The mortality rates are observed for different 
exposures, these data points are plotted as a graph, and LC50 is inferred 
from the graphical representation. No-Observed-Adverse-Effect-Level 
(NOAEL) (Crump, 1984) is the highest tested level of the substance that does 
not produce any adverse effects. It is a measure of the dose-response 
assessment that denotes the statistically or biologically significant maximal 
level of dose with no adverse effects. Reference Dose (RfD) (Barnes and 
Dourson, 1988) for oral exposure and Reference Concentration (RfC) for the 
inhalation exposure are the corrected NOAELs by a uncertainty/safety factor 
(Dankovic et al., 2015) to balance for various aspects of experimental values, 
such as interspecies variability and variability in human response. However, 
statistical drawbacks in NOAELs led to the development of alternative 
approaches. A benchmark dose approach (BMD) is used to measure dose-
response by modeling dose levels against the response level to identify the 
point of departure (POD. Dose-response model fitted on experimental data is 
used to measure benchmark dose (BMD) (Filipsson et al., 2003) which is a 
significant increase in risk (10 % response) compared to background risk. 
BMDL is the corresponding 95% lower limit. BMD methodology can be 
performed at much lower sample size while NOAEL, requires many more 
data points to be sampled to precisely identify the corresponding dose to 
LOAEL (Lowest-Observed-Adverse-Effect-Level) and NOAEL. BMD is not 
dependent on specific dose concentrations, and it can be reliably identified 
from the shape of the dose-response model curve (Davis et al., 2011). BMD is 
accepted as the preferred method by EPA. 

Measurements from these bioassays have been successfully used over the 
decades to estimate toxicity. However, the traditional toxicology approach 
neglects the intermediate molecular and cellular changes leading to 
observable phenotypic changes occurring in the exposed individuals. Thus, 
we are left in the dark concerning the molecular mechanism of action of the 
exposure. Hence, every substance to come in human contact must be tested 
for its toxicity by means of bioassays and a battery of tests, this is not 
sustainable, as these testing methods are expensive, time-consuming, and 
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require many test subjects. There is a need for predictive methods for early 
identification of possibly toxic substances to reduce testing. Quantitative 
structure-activity relationship (QSAR) (Dunn, 1988; Phillips et al., 1990; 
Dearden, 2003) methods can be used to classify substances based on their 
activity and their physicochemical properties. Prediction from these methods 
suffers from a lack of absolute correlation of the biological response with the 
molecular descriptors. The biological response evidence is experiment 
dependent and can change upon many factors. The adverse outcome of toxic 
exposure is the result of a substance interacting with the biological system in 
a specific manner by perturbing biological molecules and pathways; thus the 
prediction cannot be accurate in the absence of information from within the 
biological system. Although the categorization and grouping of similar 
toxicants can be employed to predict activity in the absence of test data (van 
Leeuwen et al., 2009). The read-across technique takes advantage of the 
groups to suggest toxicological effects and can utilize toxicogenomics data 
from different apical endpoints to extrapolate predictions (in vitro, in vivo) 
(Schultz et al., 2015). Furthermore, the concept of integrated testing can be 
utilized to address the drawbacks by combining complementary pieces of 
evidence (Ahlers et al., 2008). 
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3 TOXICOGENOMICS 

Application of genomic technologies such as genome sequence analysis, gene 
expression profiling, proteomics, and metabolomics in toxicological 
assessment is referred to as Toxicogenomics. Highly dense information 
generated from these techniques is combined with the toxicological effects on 
the phenotype of the exposed biological systems. Toxicogenomics has the 
potential to be more sensitive and allows for more accurate prediction of 
adverse effects due to toxic exposure (Krewski et al., 2010). 

Toxicogenomics developed as the tools of pharmacogenetics began to be 
applied to toxicology questions. One of the first intuition of the potential 
utility of toxicogenomics was the discovery during the Korean War, as 
soldiers of specific ethnic backgrounds developed severe hemolysis during 
anti-malarial treatment with primaquine (Alving et al., 1960). The acute 
hemolytic anemia is observed in individuals with glucose-6-phosphate 
dehydrogenase deficiency (G6PDd) depending on the dose administered 
(Beutler, 1994). To date, genotyping can be done to determine this risk. 
Currently, in drug development, toxicogenomics is used to investigate, for 
instance, the mechanisms of toxicity and to predict the hazard of new drugs, 
while in clinical medicine toxicogenomics is used to identify patients at risk 
for adverse drug reactions (Rouquié et al., 2015). Toxicogenomics is also 
used in the context of occupational exposure as a genetic variation may 
predispose some workers to develop disease due to specific workplace 
exposures (Ventura et al., 2018). Genetic polymorphisms studies provide 
some information on the risk of disease or toxicity with specific occupational 
exposures and known potentially significant gene-environment interaction. 

Stratification of individuals by genetic variations is vital to understand the 
genotype-specific health risk and predisposition to adverse effects. Genetic 
variants are known to be associated with opiate metabolism and toxicity 
(Kosarac et al., 2009), genotype information can identify predisposition of 
risk to organophosphate toxicity (Costa et al., 2013). Trichloroethylene (TCE) 
is an industrial solvent used as a chemical intermediate for the production of 
other compounds; it is known to cause several adverse effects, it is a human 
carcinogen; it is hepatotoxic, nephrotoxic, neurotoxic, immunotoxic; and 
causes fetal malformation (Chiu et al., 2013). There are known genetic risk 
factors that are found to induce hypersensitivity dermatitis reactions (Dai et 
al., 2015). Industrial exposure to asbestos produces adverse effects in 
association with genetic factors that increase susceptibility to lung cancer 
(Liu et al., 2015b) and genetic factors may also play a role in malignant 
pleural mesothelioma (MPM) susceptibility (Tunesi et al., 2015). 
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Toxicogenomics can be used in preventing medication toxicity and 
understanding the mechanism of toxic response to medication. Many drugs 
on the market are labeled with information regarding genetic polymorphisms 
and their association with adverse effects (Schuck and Grillo, 2016). Patient 
genotype data can be used to understand cases of acute toxicity after 
medication, toxic response due to chronic exposure to the drug in the 
presence of specific genetic polymorphisms. Drug metabolism is affected by 
the polymorphism that influences the drug metabolizing enzymes which 
could cause the patient to poorly metabolize the drug or be susceptible to 
adverse effect due to high drug dosage (Shenfield, 2004). Use of 
toxicogenomics in the context of medication toxicities should enable to 
determine the cause of adverse effects. Scientific studies have showcased the 
effectiveness and benefit of pharmacogenetic testing (Jorgensen et al., 2019), 
and the implementation of such testing clinics has been evaluated (Verbelen 
et al., 2017). Still, there is room for improvement in establishing 
pharmacogenetic testing as generally accepted service offered in clinics 
(Haga and Kantor, 2018). 

Toxicological evaluation of chemical exposure to an adverse outcome is 
traditionally performed by observing the apical endpoints such as a 
phenotypic change in the organism or cell death, but this does not provide 
the understanding of the molecular basis of the perturbed biological system. 
Evaluation of the effects of toxins exposure on the transcriptome became 
possible with the development of DNA microarray technologies in the 1990s 
(Schena et al., 1995); thus, the toxicogenomics field progressed rapidly. 
Profiling the molecular behavior during steady state and the perturbed state 
affords us a picture of the molecular mechanisms of action that produce the 
adverse outcome. Signatures of molecular response can be identified and 
used to predict the toxicity of a chemical or an adverse effect of a drug by 
using the profile of known toxic substances. Omics studies are conducted in 
animal models with traditional apical endpoints; alternately, the in vitro 
study designs use cell and tissue cultures (Collins et al., 2017; LeCluyse et al., 
2012) to identify the adverse response that alters the biological steady state 
and disrupts the biological pathways by modelling the molecular response in 
defined durations of exposure and dosages (Adeleye et al., 2015). The 
progressive approach of toxicology utilizes the molecular profile to identify 
the adverse events and significant perturbation of the defined pathway of 
toxicity (Brockmeier et al., 2017). The in vitro screening assay data and 
results are assimilated in various repositories, such as ToxCast, which can be 
utilized for predictive toxicology by means computational methods (Knudsen 
et al., 2015). Technological advancements have made it possible to observe 
the molecular changes in the whole genome and evaluation of manifold 
substances can be performed simultaneously / in parallel to generate a large 
amount of data in short time allowing to generate better response profiles 
from in vivo and in vitro studies. In turn, these profiles can be used to 
characterize chemicals and drugs against known substances, which can help 
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to identify toxic chemicals and drug response and efficacy at a faster pace to 
keep up with modern demands of the drug development cycle and chemical 
products. Most popularly, the genome-wide evaluation of molecular 
alterations is performed at the gene expression level, where the mRNA 
expression is observed to portray the changes in the molecular mechanisms 
that can be used to predict the phenotypic changes and adverse outcomes. 
Transcriptomics benefits from experimental techniques that are cost effective 
and take less time to generate the high density of data; thus it has been 
exploited in different biological studies like disease mechanism, preclinical 
studies, drug discovery, and toxicology. Genome-wide evaluation can be 
performed for other molecular species to get a different set of mechanistic 
information. Epigenomics deals with DNA structure modification, DNA 
protein interaction, and RNA expression (Friedman and Rando, 2015). 
Global patterns of methylation and chromatin modification can be used to 
understand the regulatory mechanisms behind changes in gene expression 
that preserve longer (Limonciel et al., 2018). Proteomics technologies, such 
as mass spectrometry and protein microarrays, can be used to identify 
proteins and protein complexes, functional characterization and proteome-
wide changes in toxic exposure and epidemiological effects (Merrick and 
Witzmann, 2009). Metabolomics technologies allow measuring the small 
molecules that are produced from the metabolic processes. It can be 
performed in biofluids extracted from the subject, thus providing a non-
invasive method of performing repeated measurements to get metabolite 
dynamics in the exposure-response curve (Bouhifd et al., 2013). 

Transcriptomics has played an important role in the preclinical studies 
and drug development by giving an insight into the molecular mechanisms 
involved and the mode of action for drug efficacy and possible adverse effects 
in a dose and time-dependent manner. Gene expression profiles also allow 
for the identification and characterization of biomarkers in the preclinical 
studies (Joseph, 2017; Te et al., 2016). Furthermore, these profiles can be 
used to identify molecular signatures or fingerprints for classification of 
chemicals toxicity by the specific adverse outcome in specific organs (Kim et 
al., 2015).  

Extensive resources for archival and reporting of gene expression data 
have been established over the years, providing expression signature 
information of compounds for toxicological and pathological endpoints. 
These resources can be used to characterize also novel compounds and drugs. 
The Connectivity Map (Lamb, 2007) is an extensive reference catalog of gene 
expression data generated from perturbation studies performed with 
chemicals and genetic reagents on cultured human cells. This compendium 
of gene expression data is used to define functional connections between 
disease-gene-drug, which can be used to characterize novel chemicals and 
identify new drug candidates. The Library of Integrated Network-based 
Cellular Signature (LINCS) L1000 (Liu et al., 2015a) is a resource housing 
expression profiles induced by compounds. It allows for the discovery of 
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compound signatures and profiling of compounds for their drug-like 
qualities and toxicity. The Japanese Toxicogenomics Project consortium 
(TGP) has developed a large-scale toxicogenomics database of gene 
expression profiles and traditional toxicological data generated from in vivo 
and in vitro studies for exposure to 170 compounds at multiple dosages and 
time points. The Open TG-GATEs (Igarashi et al., 2015) (Toxicogenomics 
Project-Genomics Assisted Toxicity Evaluation System) has applications in 
drug safety assessment as toxicity assessment is required to be performed in 
test animals and cell cultured during the preclinical stage of drug 
development. Reference gene expression data from TG-GATEs provides the 
mechanistic understanding of specific toxicities to identify biomarker 
signatures, and it can be exploited for predictive toxicology. 

Data from gene expression consortiums have been used to develop 
computational methods and tools with predictive capabilities to characterize 
novel chemicals and drugs. 

Computational approaches and statistical methods have been used 
effectively in clustering gene expression profiles with clusters found to be 
significantly correlated with histopathological and clinical chemistry 
evidence of toxicity (Waring et al., 2001) to show the applicability of 
transcriptomics in diagnostics. Predictive Toxicogenomics Space (PTGS) 
(Kohonen et al., 2017) is an effort to predict unanticipated harmful effects of 
chemicals and drug molecules. PTGS is generated by applying a compacting 
modeling approach on the gene space of the Connectivity Map, and the 
resulting component space is fused with the cytotoxicity data from NCI-60 
tumor cell line screens. MANTRA 2.0 (Carrella et al., 2014) is a tool from the 
prediction of drug mode of action, and for drug repurposing, it uses gene 
expression profiles from Connectivity Map. It infers a network of drugs by 
obtaining a ‘prototype’ ranked list (PRT) of differentially expressed genes 
from drug treatment studies performed in multiple cell lines and at different 
drug dosage. Gene Set Enrichment Analysis (GSEA) is used to compute the 
similarity between PRT from two drugs, represented inversely as a property 
of the edge connecting the two drugs such that similar drugs are closer than 
the dissimilar ones. Exploration of various methodologies for prediction of 
drug sensitivity has been performed by DREAM (Dialogue on Reverse 
Engineering Assessment and Methods) in collaboration with NCI (National 
Cancer Institute) as a benchmark study which highlighted Bayesian multitask 
MKL (multiple kernel learning) as the best performing algorithm out of 44 
drug sensitivity prediction algorithms (Costello et al., 2014). 

Toxicogenomics gives a tremendous advantage over traditional toxicity 
(Chepelev et al., 2015), modern toxicological studies generate data at higher 
throughput, this allows for modeling of data to create profiles for 
characterization of novel substances. It gives better mechanistic information 
(Tyner, 2017) of the molecular behavior during toxic exposure allowing for 
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accurate toxicological assessment, and it is much more cost effective in 
comparison to traditional toxicology. 

The advent of high content and high throughput omics techniques has 
made it possible to infer a snapshot of the perturbed biological system, thus 
opening new possibilities of better and more accurate predictive methods. 
One important class of substances that can benefit from the Toxicogenomics 
approach are nanoparticles. The unique properties of nanoparticles (Murty et 
al., 2013) have been used to design better composite substances leading to 
their introduction in various products such as cosmetics, toys, electronics, 
sports goods, personal care products, textiles, food, and beverages. Carbon 
nanotubes (CNT) exhibit remarkable elasticity and tensile strength due to the 
smaller diameter and larger surface area. CNTs can be used to attribute 
strength as an additive to a composite material. Carbon black has been used 
as an additive to reinforce rubber in tyre manufacture. Titanium dioxide 
nanoparticles exhibit high ultraviolet (UV) absorption and are transparent 
and are employed in the formulation of sunscreens, on the contrary, bulk 
Titanium/titania/ titanium white is used as white pigment/dye and does not 
exhibit UV absorption properties. Gold nanoparticles exhibit optical and 
electrical properties that are employed in nanobiotechnology for cellular 
imaging, and it can be functionalized and employed in therapeutics to deliver 
drugs. Toxicogenomic assessment of nanomaterial toxicity can identify their 
mode of action, which can be correlated with the nanomaterial intrinsic 
properties (Kinaret et al., 2017a). The systematic effect association with 
nanomaterial intrinsic properties can be used for the designing and creation 
of nanomaterials that avoid triggering any adverse effects while retaining 
their unique properties and making them safe by design (Simeonova and 
Erdely, 2009). 

The omics data can be corrected, filtered, modeled, and transformed to 
highlight biologically significant events. The highly interpretive and 
predictive nature of toxicogenomics data makes it challenging to report the 
findings and describe the data in a manner that is meaningful and conclusive. 
Thus, bringing to light the question of data reproducibility, as it can be quite 
challenging to obtain the same results in repeated measurements or similarly 
designed studies because of the complexity and many experiment variables. 
Furthermore, the data is generated by different techniques which have many 
different instrumentations and methodologies and generate data in a variety 
of different raw data format, making the analytical process a further 
complicated step. These raw data sets can be analyzed by many different 
computational methods and tools, which are proposed by researchers with 
proof of concept evidence that speaks to the merit of these alternative 
choices. It becomes evident that streamlined workflows are needed to ensure 
ease of data processing and maintain reproducibility of results. 
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4 SYSTEMS TOXICOLOGY 

The focus of Toxicogenomics is understanding the mechanism of action of 
various types of biomolecules as a constituent of resulting adverse effect due 
to toxic exposure. While traditional toxicology investigates the apical 
endpoints in relation to the intrinsic properties of the toxic substance. 
Systems toxicology approach assimilates the mechanistic information from 
the omics experimentation with the relevant intrinsic properties and utilizes 
data modeling for a more comprehensive understanding of the toxicological 
response. 

Systems toxicology is the application of systems biology in evaluating the 
adverse biological effects of xenobiotics. Adverse response to a substance can 
be studied with a study design that takes into account system-level effects in 
different tissues to understand the tissue-specific responses as well as 
common effect. Furthermore, the assays performed in a different set of time 
points after exposure can be used to add another dimension of information 
that can determine acute and long-lasting effects. The information from the 
different conditional assays can be used to understand the effect on the 
biological system. 

In a systems toxicology frame, for instance, the intrinsic properties of the 
exposure can be combined with the complex alterations taking place in the 
exposed biological systems to build comprehensive predictive models (Wang 
et al., 2018). 

Systems toxicology models the network of interactions between the 
molecules to represent the emergent response of the biological systems due 
to the correlated mechanisms of the molecules likely to be involved in the 
same biological pathways and processes, thus more accurately representing 
the response of the perturbed system (Wu et al., 2018). 

At the turn of the century, there was recognition and need for improving 
the toxicity testing as the traditional methods are very costly and come at the 
expense of animal health and welfare (Hartung, 2011) and do not have 
suitable predictive features. Computational toxicology in modern 21st 
century incorporates aspects of bioinformatics, chemo-informatics, with the 
growing need for biokinetics modeling such as the use of physiologically 
based pharmacokinetic time models (Lipscomb et al., 2012). These 
approaches also make use of the existing databases that contain the latest 
information, some of which are publicly available. 

Systems toxicology models the cascade of events underlying the direct 
action of the xenobiotic exposure and toxicity endpoints. It can further model 
the indirect response of the xenobiotic exposure that might lead to an 
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adverse outcome and can be observed as the emergent mechanisms from the 
systemic response and signal cascade. 

Nascent Toxicogenomics evaluates the molecular features as a set of 
independently acting responses that represent stress of toxicity exposure at 
the various dosage and exposure durations. This forms a straightforward 
path from exposure to expression profile with respect to the adverse effect. In 
order to properly understand the molecular mechanisms, the biological 
system must be modeled to represent molecular interactions that can be 
combined with toxicological parameters and adverse effect (Barel and 
Herwig, 2018; Mulas et al., 2017; Ventura et al., 2018; Yamane et al., 2016). 

4.1 PATHWAYS BASED TOXICITY EVALUATION 

Mechanistic information from high throughput and high content 
screening techniques allow for the representation of the toxicity 
systematically by using pathways. The concept of the pathway of toxicity 
emerged where instead of focusing on apical endpoints in organisms, 
changes could be observed at the cellular and molecular level that would be 
predictive of adverse outcomes. These evaluations could be performed 
without the use of animals while also allowing for much higher throughput, 
thus keep in pace with the thousands of chemicals that are being introduced 
each year. 

Pathways of Toxicity (PoT) (Kleensang et al., 2014) can be used to get a 
defined set of pathways encompassing various molecular events that can be 
employed in toxicity regulation decision making. A human toxome (Bouhifd 
et al., 2015) comprising of PoTs can then be used to combine information 
from adverse effects to identify whether a substance is triggering a specific 
pathway and should thus be assessed for its potential toxicity. These 
pathways are different in nature from cellular pathways that have been 
described by the use of omics technologies such as KEGG (Kanehisa and 
Goto, 2000), Reactome (Fabregat et al., 2018), Wiki Pathways (Slenter et al., 
2018), Gene Ontology (Ashburner et al., 2000). PoTs are more specific to the 
concept of toxicity mechanism, which involves information about exposure 
and adverse outcome from resources, such as ToxCast (Richard et al., 2016).  

The adverse outcome pathway concept was introduced in 2010 (Ankley et 
al., 2010) as a structured format for the purpose of connecting toxicity 
pathways with adverse outcomes. The AOP consist of two components, the 
key events as nodes in the pathway, and key event relationships as edges. The 
key events represent a change in biological state, and two specialized key 
events are identified: a molecular initiating event is the initial interaction of a 
chemical with the biological system which is the first step in the pathway, 
followed by the mediating events of molecular or cellular response and ends 
with an adverse outcome at an organ, organism, or population level, if a 
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human health or an ecological risk assessment is being considered. The final 
adverse outcomes of this pathway are of regulatory interest and have been 
measured in traditional studies. Unlike the mode of action framework, AOPs 
are not specific to chemicals, so a particular AOP is relevant for multiple 
chemicals and is not specifically designed. 

The organization for economic cooperation and development (OECD) 
started an AOP development program for harmonization of AOP definition 
and to support the development and use AOP framework. The AOPs 
intended to be part of the OECD development program are incorporated into 
a knowledge base AOP-KB central repository. The information is collected in 
a central repository and made available (Villeneuve et al., 2014).  

The high density of data generated from toxicogenomic experimentation 
allows for a comprehensive description of the toxicity response by virtue of 
the mechanistic information that it provides, which informs the PoTs with 
cellular and molecular events that further bring this data closer to the 
regulatory assessment.  
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5 NANOTOXICOLOGY 

Nanotoxicology is the regulatory process of assessing nanoparticle toxicity 
(Marquis et al., 2009). These nanoparticles are of great interest to various 
industries because of their unique properties. Nanoparticles are defined 
generally as particles that have at least one dimension lesser than 100 
nanometers. Substances that do not have any significant physical and 
chemical properties in bulk are capable of some intriguing properties at the 
nanoscale (Murty et al., 2013). Nanoparticles have existed in nature and have 
been present in the environment. Humans have been interacting and 
employing nanoparticles since ancient times without a deeper understanding 
of their functions. A good example is colloidal gold, which is a colloidal 
solution of gold nanoparticles, used throughout human history to color 
objects. Nanoparticle nature of the colloidal gold and scientific reasoning of 
the red color as the optical property was described in the 1850s by Michael 
Faraday. Thus, establishing the phenomenon of color production due to the 
scattering of light by nanoparticles and the effect of nanoparticle size on 
color hue. Advancements in nanotechnology have not only resulted in 
broadening the understanding of nanoparticles already present in nature but 
have also led to the possibility to design and create nanomaterials. These 
engineered nanomaterials such as carbon nanotubes, which are hexagonal 
planar sheet circularized into a hollow cylindrical structure, are known to 
have mechanical, electrical, thermal, and optical properties of interest. They 
have a wide range of applications such as composite polymers, transistors, 
and biomedicine (Meredith et al., 2013) Human interaction with these 
nanoparticles can be accidental or occupational, for example, exposure 
during the manufacturing process. The nanoparticle-human interaction can 
be through dermal routes, ingestion, or more likely by inhalation of particles 
suspended in the air leading to trachea and lung exposure (Morimoto et al., 
2013). 

5.1 NANOPARTICLE INTERACTION WITH THE BIOLOGICAL SYSTEM 

Nanoparticle exposure leading to toxic response is manifested due to its 
physical properties such as size, shape, surface area, as well as its chemical 
properties such as hydrophobicity and surface charge. (Podila and Brown, 
2013). Size of nanoparticles plays a major role in the nano-bio interactions as 
it determines invasiveness of the particles and their final resting place (Jiang 
et al., 2008) (Chen et al., 2015). The nanoparticles can be in the size range of 
viruses and can interact with the same host response machinery. The shape 
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of the nanoparticle can also determine its invasiveness and site of deposition 
(Truong et al., 2015). Nanoparticles are taken up by cells through the process 
of phagocytosis or pinocytosis (Geiser, 2010), leading to acute responses 
such as inflammation or chronic responses by triggering early onset of 
complex diseases such as asthma (Meldrum et al., 2017), cancer or 
translocation to other organs leading to neurological and cardiovascular 
diseases (Simeonova and Erdely, 2009). Thus, nanotoxicology is vital for 
maintaining public health and safety. 

5.2 NANOTOXICOLOGICAL IDIOSYNCRASIES 

Regulation of nanotechnology is an area of active pursuit with increasing 
concern for public health and environmental effects due to the rapid influx of 
nanomaterial-based products. The Registration, Evaluation, Authorisation, 
and Restriction of Chemicals (REACH) regulation in Europe are concerned 
with the regulation of nanomaterial safety as it is covered under the 
definition of ‘substance’, but this is still early stages and there remains the 
need for refinement nanotoxicology regulation. Toxicity assessments 
measures from the bulk materials cannot be directly applied to the 
nanomaterials as they have different sets of characteristics and 
physicochemical properties that lead to the manifestation of nano-bio 
interactions. Determination of nanoparticle toxicity requires a very cautious 
systems toxicology approach to understand the perturbed molecular 
mechanisms in correlation with nanoparticle properties such as size, shape, 
and surface area. Omics technologies facilitate the systems toxicology 
approach of understanding the perturbed mechanisms by experimental 
measurement of different molecular species (Fröhlich, 2017). In contrast to 
traditional assessment methods that employ high dose exposure to elicit an 
observable phenotypic change, omics experiments can be performed at low 
doses to identify biomarkers of nanoparticle effect in the absence of the 
phenotypic change. The low dose assessment is more appropriate for 
nanoparticles because it helps to avoid agglomeration. The high density is 
likely to affect the dispersion of nanoparticles leading to the aggregate 
formation, thus affecting the cellular response. It is possible to identify the 
adaptive response of a system exposed to nanoparticles in low doses to 
replicate the precursor state of toxicity, which is a more realistic exposure 
scenario. The nanoparticle activity in the biological system is also defined by 
the formation of the corona around the nanoparticle due to absorption of 
proteins on the surface (Lundqvist et al., 2008). The functional and 
interactive properties attributed to the nanoparticle due to this corona 
formation changes in different environments and conditions (Lundqvist et 
al., 2011). Thus, it is imperative that true nano-bio interaction must be 
understood by measuring the molecular activity within the biological system.  
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Mechanistic information from the toxicogenomics assessment of 
nanoparticle can be used to characterize the nanoparticle, and this 
information can be used to predict the possible toxicity of new, untested 
materials in existence or development. It enables better designing paradigm 
of engineered nanomaterials, which will be safe by design. Advancements in 
omics techniques for gene expression can enable low cost and rapid 
assessment of toxic materials. Transcriptomics experiments have been 
performed for in vivo and in vitro studies to identify the dose-dependent 
response as perturbed molecular mechanisms and biomarkers that might not 
have been identified with traditional methods (Costa et al., 2018). 
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6 CO-EXPRESSION PATTERN OF THE MOLECULAR 

MECHANISM 

Research in genomics has transformed with the advent of high throughput 
and high content technologies such as DNA microarray and next-generation 
sequencing. These technologies are capable of generating high-density data, 
opening new possibilities of modeling complex biological events. In this 
frame, biological systems are explained as complex patterns of relationships 
between different parts of the molecular machinery, which produce a 
systemic effect during normal biological functions and adverse conditions, 
for instance, due to an external stimulus (Currie et al., 2014). 

Systems can be modeled as networks that can be explored with graph 
theory (Barabási et al., 2011). In this setup, the set of vertices/nodes 
represent the biological entities, and the edges between the vertices represent 
their interactions. This information can be modeled as a simple undirected or 
directed network, where the network connections represent information flow 
channeling from one node to another, forming a signaling cascade. The 
connections can be given weight to represent the significance of the 
relationship between two specific entities and develop system-wide dynamics 
of connectivity and interaction. 

Biological networks generally follow the power law distribution of 
connectivity and contain hubs with a high degree while most vertices have a 
low degree, making them robust to random failures but susceptible to 
targeted attacks (Cooper et al., 2006). Random failures are not likely to 
produce a significant effect, but a major hub node disruption is of concern 
(Jeong et al., 2001). 

Gene expression profiles derived from transcriptomics data can be used to 
understand the interaction between the genes by the measure of coherence in 
their expression (Huang et al., 2010). This modeling of expression profile as 
a network represents the biological pathways and processes active in the 
biological system in specific conditions (van Noort et al., 2003). The gene co-
expression networks can be inferred by partial correlation or mutual 
information under the assumption that co-expressed genes are most likely 
also co-regulated and participate in the same biological functions (Michalak, 
2008). Researchers have been actively pursuing the space of gene co-
expression network inference, which has led to the development of numerous 
inference methods over the years, and it continues to be a field of interest. 
Various algorithms for inference of co-expression networks have shown good 
performance, but, the choice of algorithm is usually determined empirically. 
Multiple recent studies have shown that in fact, the network inference 
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process benefits from combining multiple algorithms able to highlight 
specific types of relationships within the network (Marbach et al., 2012). The 
“wisdom of crowds” approach to integrating the prediction from algorithms 
that infer gene relationship by different methods Regression, Mutual 
information, Correlation, Bayesian networks, and other mixed approaches 
resulted in robust and high-confidence networks. Mutual information and 
Correlation based methods are more conducive to inference of feed-forward 
loop defining the relationship of a gene (G) and two transcription factors (T1, 
and T2) where one transcription factor T1 regulates the gene G and the other 
transcription factor T2 which in turn regulates the gene G. The Regression 
and Bayesian network based methods are more accurate in the prediction of 
linear cascade relationships (Marbach et al., 2012) where transcription factor 
T1 regulates transcription factor T2 which in turn regulates gene G. The 
inherent biases from each type of approach is complemented with the other 
approaches to overcome the limitations of individual predictions. 

Once inferred, biological networks can be studied by looking at their 
intrinsic properties derived from the network topology. These properties can 
be used to identify the most important genes in a gene co-expression 
network. As stated above, few genes have high connectivity while most of the 
genes have low connectivity (Albert et al., 2000). This means that all genes 
are not of equal importance in the network, there are hub genes that when 
disrupted will have a significant impact in the connectivity of local 
community of genes and distant parts of the network. Disruption of these 
hub genes can disturb the network in the most drastic manner and might 
break the network dynamics, so they are extremely important in the network 
structure while other genes with low connectivity can be disrupted with 
minimal to no change in the network behavior. This may be used to assume, 
for instance, that more toxic chemical insults tend to affect more central 
genes in the network (Chen et al., 2017; Gopalacharyulu et al., 2009). 
Centrality measures can be used to understand which nodes are important 
and essential in a network, on the basis of different network properties, for 
instance, on the number of connections that every gene has in the network. 
In addition to the number of connections, connecting pathways can also be 
used to identify important vertices by looking at their betweenness centrality. 
If many direct connectivity paths are flowing through a particular vertex, 
then it is essential for the communication channels to persist. These essential 
genes by their nature are likely to be more central in the network then to the 
periphery. This can be evaluated by measuring closeness. Importance can 
also be assigned not only by high connectivity but also by the quality of the 
connected neighbors. A vertex connected to a neighbor with a high degree 
itself is important because it is associated with high degree vertices. Multiple 
high centrality neighbors further increase the importance of the vertex, 
which can be measured with eigenvector centrality (Griffiths et al., 2007). 
Centrality measures are important in identifying network bottlenecks 
vertices with high centrality (such as high degree or betweenness), which are 
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more likely to be essential molecules. This is also stated by the centrality-
lethality hypothesis by which essential vertices are central and are more 
likely to produce lethal phenotypes upon their disruption (Yu et al., 2007). A 
challenge in the application of network models to interpret complex 
biological events is translating the intrinsic network properties into biological 
importance. This is evidently dependent on the intrinsic network properties 
used to identify hub genes. Focusing on any specific centrality property is 
likely to lead to a biased assessment. A solution could be to integrate multiple 
centrality properties to increase the robustness of the assessment (Fei et al., 
2017). Other biological measures of gene importance, such as the differential 
expression in specific experimental pairwise comparisons, can be added to 
temper the hub nature with biological information. 

Networks are gaining popularity in systems biology research, but there 
are different avenues of interpreting the biological significance of the 
network models. Gene co-expression network from biological perturbations, 
such as toxic exposure, has been used to suggest hub genes as possible 
biomarkers (Zhang et al., 2013). These hub genes represent better dynamics 
than genes identified solely by the differential expression studies. In 
association, standard enrichment analysis is performed on the differentially 
expressed genes to find significantly enriched known manually curated 
pathways (Zhang et al., 2017). However, a better approach could be to 
identify structural units that represent a closely connected set of genes co-
expressing in this perturbed state. This can be accomplished by searching for 
subnetworks, defined as sub-communities of closely related nodes with 
unique signature and importance (Ideker et al., 2002). These subnetworks 
are more likely to represent homogenous biological mechanisms and 
molecular events (Chen and Yuan, 2006). Gene co-expression networks are 
extremely dense and represent broad systems information from multiple 
molecular events, and thus, we cannot understand the biological significance 
of the whole network. Subnetworks drill down and focus on natural subunits 
and bring forth underlying biological significance. Categorization of 
subnetworks by annotations such as gene ontology can highlight significantly 
enriched known biological mechanisms. 

Subnetworks/modules are in concept better solutions for defining 
molecular events occurring in a perturbed biological state of toxic exposure. 
They are free from any bias of known manually created pathway and thus are 
better representatives of the biological system inferred/reconstructed from 
the gene expression profiles. This present a novels opportunity to 
characterize subnetworks with molecular events for designing AOPs that are 
better representations of the molecular machinery of the perturbed system 
and can have an impact on toxicity assessment. 
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7 AIMS OF THE THESIS 

Toxicogenomics studies have evolved with the implementation of 
experimental methods with a large amount of data. Which makes it possible 
to design more complex studies and use the computation methods to model 
the data. This requires tools and methods for data processing and analysis to 
obtain predictive toxicological results. There are two areas of much-required 
attention in current toxicogenomics approach, first is the study design phase 
which has various diverse approaches that incorporate different technologies 
and have different set of questions and expected results, these designs have 
no defined standards but mostly follow a general set of guidelines that have 
been accommodated from successfully performed and published studies. 
Another area is the processing, modeling, and analysis of large data from 
omics experiments, there are different computation methods and data 
processing techniques that are interchangeably used sometimes to similar 
effects while sometimes a different set of analytical steps produces different 
results, some methods turn out to be more sensitive than others while some 
methods are more prone to type I and type II errors than others and require 
more careful quality control of processed data. Different desired results raise 
the complexity of this process. It is essential to attain a proper 
standardization of toxicogenomics data processing and analysis to ensure 
reproducibility of quality of the results for predictive and deterministic 
toxicology results. Our focus is towards standardization of toxicogenomics 
data analysis with a set of easy to use graphically interactive tools which 
ensure reproducibility and quality of results. These tools are designed for all 
types of researchers with varying levels of expertise in toxicogenomics 
experimentation and data analysis. 

1. Effective exchange of toxicogenomics data and reporting of analysis 
results from the study of nanomaterial toxicity. 

2. Strive to standardize omics data processing with required quality checks 
and diagnosis of data to avoid type I and type II errors. 

3. Research and development of a standardized systems biology approach 
to obtain robust gene expression networks. 

4. Develop a methodology to identify important genes in gene networks by 
using features of graph theory. Identification of responsive subnetworks 
and their characterization by functional annotation. 

5. Promote the usability of omics data by the integration of analysis 
methods into an analysis pipeline as easy to use tools. 

6.  Analysis and biological interpretation of toxicogenomics data from 
nanomaterial study by using systems biology and multi-omics approach 
to understand complex biological mechanisms, formulate MOA 
(Mechanism of Action), and AOPs (Adverse Outcome Pathways). 
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8 MATERIALS AND METHODS 

Materials and Methods Publication(s) 

Omics Data Preprocessing I, II, IV 

Batch Effect Mitigation I, II, IV 

Network Inference III, IV 

Centrality based Gene Ranking III 

Responsive Subnetwork  III, IV 

Functional Characterization I, II, IV 

Integrative Analysis / Multi-omics I, IV 

 

8.1 OMICS DATA PREPROCESSING 

DNA microarray raw data files were transformed and imported into the R 
environment by using read.maimages(), justRMA(), and 
read.metharray.exp() functions from limma (Ritchie et al., 2015), affy 
(Gautier et al., 2004), and minfi (Aryee et al., 2014) R packages respectively. 

Preprocessing of the microarray raw data was performed by using a 
carefully designed analysis workflow with well-defined steps 1) Quality 
Control, 2) Filtering, 3) Normalization, 4) Batch Correction, and 5) 
Differential Analysis. 

8.1.1 QUALITY CONTROL 
Quality control reporting of imported raw data is performed by using 
yaqcaffy (Gatto, 2017), arrayQualityMetrics (Kauffmann et al., 2009), and 
shinyMethyl (Fortin et al., 2014) R packages. Quality of the samples was 
estimated by inspecting the QC report, and poor quality samples were 
marked for removal. 

8.1.2 FILTERING 
Filtering of imported raw data is performed by estimating the expression 
distribution of negative control probes and thus identifying a significant 
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expression score cutoff as base background noise. This cutoff score based 
evaluation was performed for each feature across all the samples, and the 
feature is expected to be consistently expressed above the background noise. 
However, a cushion for outliers was provided by specifying a minimum 
percentage of samples needed for the qualification of each microarray 
feature. A similar approach is used for Illumina methylation arrays where a 
p-value is obtained by using detectionP() function from minfi (Aryee et al., 
2014) R package, which compares the methylated + unmethylated signal 
versus the background signal (negative control positions). A significant p-
value threshold was used to qualify positions across the majority of samples. 

8.1.3 NORMALIZATION 
Normalization of Agilent array data was performed by using functions from 
limma (Ritchie et al., 2015) R package. Affymetrix array data normalization 
and annotation was done in step with the import of raw data to the R 
environment by using justRMA() function from affy (Gautier et al., 2004) R 
package. Illumina methylation array data was normalized by using the 
functions from minfi (Aryee et al., 2014) R package. 

Distribution of signal in samples from different microarrays was observed 
by means of following diagnostic plots 1) Box plot displays signal distribution 
in each sample. 2) Density plot displays the density of the signal in each 
channel or beta values (M/M+U) for methylation arrays. 3) Mean difference 
plot displays the log intensity ratios (difference) versus log intensity average 
(mean) for two-color channel data. Distribution of signal should be 
consistent in different arrays and channels after normalization. 

8.1.4 BATCH CORRECTION 
Batch effects are technical sources of variation associated with the samples 
processed in batches during various preparation techniques and is also a 
result of pooling data from multiple experiments for meta-analysis. Technical 
variation in the normalized data is represented by Multidimensional Scaling 
(MDS) plot, which is a 2-dimensional scatterplot that displays the distance 
between each pair of samples computed as Euclidean distance of the top 
features. Sample annotation provided as the phenotype data is represented 
as heatmap generated by using confounding() function from the swamp R 
package, it displays the linear correlation between the annotations. 
Correlation between the technical variation in the data and sample 
annotation is represented as a heatmap generated by using prince() and 
prince.plot() functions from the swamp R package, it displays the principal 
components of variation in the data and their correlation the sample 
annotations. The technical variation information from prince plot was used 
to identify possible batches as non-biological annotations with high influence 
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on variation. Correlation between the possible known batches and the 
biological variables of interest was inferred from the confounding plot. 
Independent batch variables were selected for correction of noise. 

Hidden sources of variation were identified as surrogate variables by 
using sva() function from sva (Leek et al., 2012) R package. These surrogate 
variables might represent the technical batches or biological annotation (e.g., 
subtypes). The batch surrogate variables were identified by observing their 
correlation with principal components of variation by means of an updated 
prince plot and the correlation with the known variables was observed from 
the updated confounding plot with the added surrogate variables. 

Batch correction was performed by using the ComBat() function from sva 
R package for correction known/unknown batches. The cross-batch 
correction effects were avoided by iteratively applying ComBat() function for 
one batch variable at a time, while the rest of batch variables were added to 
covariates of interest, a constant biological variable of interest is maintained 
in all iterations. Diagnosis of corrected data was performed by using the post-
correction prince plot and MDS plot. 

8.1.5 DIFFERENTIAL ANALYSIS 
Differential analysis was performed by using functions from the limma R 
package. The linear model for limma was specified with the biological 
variable of interest and covariates. The batch variables identified from the 
previous steps were specified as covariates along with the biological 
covariates. Some dataset did not require explicit correction batch variables 
since the grouping of samples in the MDS plot aligned very well with the 
biological variables of interest. However, the corrected or uncorrected batch 
variables were specified in the limma linear model as covariates. The 
annotation from the biological variable of interest user was used to define the 
contrasts for differential analysis. 

8.2 NETWORK INFERENCE 

A robust gene co-expression network was reconstructed from the gene 
expression profile data as a consensus of the networks inferred by combining 
different inference algorithms from minet R package (Meyer et al., 2008). An 
ensemble of network inferences was generated by using the combination of 
method, estimator, and disc options from minet() function, which resulted in 
96 valid possible combinations. Different scales of statistical association 
measures from the various inference algorithms were accounted for by using 
a two-level ensemble process to combine the inferred networks. At the first 
level inferences from the same algorithm were merged by summarizing the 
co-expression measure between all pair of genes across the networks with 
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median, mean or max. The summarized gene-gene co-expression measures 
from the level one ensembles were used to obtain ranks for gene pairs or 
edges, the ranks from the various level one ensembles were summarized to a 
single rank list by using Borda() function from TopKLists (Schimek et al., 
2015) R package. The summarized rank list was used to form the final 
consensus network by using one of the following described approaches. The 
first approach iteratively adds ranked edges starting with the top-ranked 
edge from the ranked list until all the genes in the network have at least one 
edge. An alternate approach defines a cutoff as an n% of top-ranked edges 
from the ranked list. Thus, the final consensus is composed of most 
confidently inferred ranked gene-gene pair co-expression. 

8.3 CENTRALITY BASED GENE RANKING 

Ranking of genes in the network inferred from expression profile was 
performed by using the centrality property scores to define the importance of 
a node in the network. Node centrality scores were computed by using the 
degree(), betweenness(), eigen_centrality(), and closeness() functions from 
igraph (Csardi and Nepusz, 2006) R package. These different centrality 
properties were combined by using a rank based approach. A rank list was 
generated for each centrality measure, and these different ranks were then 
reduced to single unified rank by using Borda() function from TopKLists 
(Schimek et al., 2015) R package. Thus, combining the influence of all the 
properties in the final ranked gene list. A differential expression score based 
rank list was also be added for condition-specific information. 

8.4 RESPONSIVE SUBNETWORK 

Responsive subnetwork was obtained by a three step process of 1) Module 
detection, 2) Characterization & Functional Assessment, and 3) 
Reconstruction/Merging.  

8.4.1 MODULE DETECTION 
Module detection was performed by using cluster_walktrap(), 
cluster_spinglass(), cluster_louvain(), and cluster_fast_greedy() functions 
from igraph (Csardi and Nepusz, 2006) R package. 

8.4.2 CHARACTERIZATION & FUNCTIONAL ASSESSMENT 
Characterization of detected modules was performed by inspecting the 
median rank of the genes in the module by centrality, differential p-value, 
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and differential logFC; median rank of edges in the module; and module size. 
The comparison of module statistics within and across different modules was 
performed by reporting it as a radar chart by using chartJSRadar() function 
from radarchart (Ashton and Porter, 2016) R package. Functional 
assessment of the detected modules was performed by enrichment of Gene 
Ontology (GO) annotations represented by the module genes. Semantic 
similarity between sets of enriched GO terms from two different modules was 
computed by using mgoSim() from GOSemSim (Yu et al., 2010) R package. 
This semantic similarity was used to compute a GO specific Jaccard index as 
a measure of similarity between the modules based on their enriched 
functional annotations. The computed similarity matrix was plotted as a 
heatmap by using heatmap.2() from gplots (Warnes et al., 2016) R package 
to identify functionally similar modules. 

8.4.3 RECONSTRUCTION/MERGING 
Reconstruction/Merging of the modules was performed to define a singular 
responsive subnetwork by combining two or more modules based on the 
module characteristics and functional similarity. The final responsive 
subnetwork itself was characterized by observing its module characteristic in 
the previously described manner and by inference of the summarized 
functional annotations. 

8.5 FUNCTIONAL CHARACTERIZATION 

Functional characterization of network modules was performed by using 
gene ontology (GO) annotations from organism-specific R Bioconductor 
annotation libraries. The participant genes from the modules were used to 
perform enrichment analysis using Fisher’s exact test. The hierarchical graph 
based structure of gene ontology was used to cluster and summarize the 
annotation. The clustering of functional annotations from the summarized 
annotation was represented as a tileplot (Supek et al., 2011) by using the 
treemap() function from treemap (Tennekes, 2017) R package. The 
functionally related annotations were summarized to a singular visual tile, 
and these major tiles were labeled with the most significant gene ontology 
term in each cluster. 

The functional similarity between the GO terms was computed by using 
mgoSim() function from GOSemSim (Yu et al., 2010) R package. The GO 
term similarity was converted to a reciprocal distance matrix, and hclust() 
function was used to perform clustering on this distance matrix. A defined 
set of clusters was obtained by cutting the cluster tree with function cutree(). 
This clustered annotation was further summarized by selecting the most 
significant GO term from each cluster as the cluster representative. 
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8.6 INTEGRATIVE ANALYSIS / MULTI-OMICS 

SMITE (Wijetunga et al., 2017) toolkit was used to perform integrated omics 
analysis, where the combined differential influence from all the omics layers 
(mRNA, miRNA, and DNA methylation) was used to rank the genes. The 
adjusted p-value and fold change from mRNA differential analysis were 
directly assigned to each gene. Epigenetic effects were represented by 
mapping the miRNA and DNA methylation information to the regulatory 
regions in the gene structure. Gene promoter was defined as a region of -1 kb 
and +1 kb flanks from the transcription start site. Gene body was defined as a 
region from TSS +1 kb to the transcript termination site. Differentially 
methylated CpGs were associated with gene promoter and body while the 
miRNA was associated with the gene body of its known target genes (top 10% 
scoring targets from targetScan (Agarwal et al., 2015)). A summarization of 
miRNA and CpG values was performed to integrate multiple values from 
each region to obtain region-specific values. The summarized methylation 
differential values for each gene region were obtained by using Stouffer’s 
method (weighted by the distance of the CpG from TSS) to integrate values 
from all CpGs associated with that region. The miRNA differential values 
were similarly summarized by using the Sidak method. These new integrated 
p-values from miRNA and methylation were logit transformed and rescaled 
to the range of minimum and maximum logit transformed mRNA expression 
p-values, thus, avoiding any biased effects in the downstream analysis. Gene 
scoring was performed by using the differential p-values from all layers. This 
gene score was then incorporated into the known Reactome52 protein 
interaction network (Croft et al., 2011) where the nodes were assigned gene 
scores, and the edges were assigned an average of the scores from the 
connected nodes. This annotated network was used to identify modules by 
using Spinglass algorithm followed by annotation of these enriched modules 
with KEGG pathways. 

8.7 DEFINING MECHANISM OF ACTION 

Mechanism of action was defined on the basis of the biological pathways 
associated to functional genes obtained by combining genes from all 
identified functional modules. These functional genes were segregated by the 
direction of regulation information from multiple omics layers. A concordant 
set of functional genes was defined as 1) Concordantly upregulated with the 
upregulated gene, hypomethylation in promoter or downregulation of 
targeting miRNAs. 2) Concordantly downregulated with the downregulated 
gene, hypermethylation in promoter or upregulation of targeting miRNAs. 
While a discordant set of functional genes was defined as complementary to 
the concordant set defined before. These three set of functional genes 1) 
Whole set of functional genes, 2) Concordant subset of functional genes, and 
3) Discordant subset of functional genes were used to perform enrichment of 
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KEGG pathways by using enrichKEGG() function from clusterProfiler (Yu et 
al., 2012) R package with an adjusted p-value threshold of 0.05. 
Furthermore, the direction of regulation was assigned to each enriched 
KEGG pathway as the median expression fold change of the genes in the 
pathway. These set of upregulated and downregulated KEGG pathways was 
used to compute the distance between different exposures as a measure of 
functional congruence. The following function was used to compute the 
distance by separately computing Jaccard index on common upregulated 
jacc_up(A,B) and common downregulated jacc_down(A,B) pathways 
between A and B exposures. 

             

8.8 BIOINFORMATICS TOOL IMPLEMENTATION WITH GRAPHICAL 
USER INTERFACE 

The R programming language/infrastructure, R libraries (CRAN, 
Bioconductor, and GitHub), and R shiny (Chang et al., 2017) web framework 
was used to create bioinformatics tools with graphical user interface (GUI). 
The steps for preprocessing and analysis of microarray data were 
incorporated into a guided workflow which can be executed from the 
bioinformatics tool eUTOPIA. The sets for network based exploration of gene 
expression profile and identification of the functional response module to 
define the biological response were defined as an analysis pipeline which can 
be executed form the bioinformatics tool INfORM. The graphical interface 
implementation has a standard R shiny architecture which is separated into a 
user side code UI and server-side code Server. Both UI and Server code is 
implemented in the R programming language and uses R shiny library along 
with other R libraries that extend the shiny web framework with customized 
UI widgets, javascript functionalities. These tools were developed in the 
scope of this doctoral study; they are actively maintained with continued 
support to future usability. 

8.8.1 EUTOPIA 
eUTOPIA incorporates the step for preprocessing of the microarray data 
from different platforms. Some components from the UI and Server are 
switched on/off depending on the microarray platform of choice to present 
an optimized and curated pipeline for each platform. The graphical interface 
layout is vertically split into two persistent panels. The smaller left panel is 
designed to execute steps in the pipeline while the larger right panel is used 
to display the data representations as tables and plots. The right panel 
contains a nested tabbed view where the tabs in the main panel correspond 
to the workflow steps in the left panel and displays the corresponding results 



 

45 
 

from the execution of each step as plots and tables. The processing of user 
input is handled by the R function in Server while functions for more 
complicated processes with custom implementation such as filtering, batch 
correction, and differential analysis are defined in a separate R source file. 
Some additional files are the GIF file displayed during the execution of steps 
in the GUI, R markup file used to compile and export the PDF analysis report 
with the plots from the GUI, and the list of unreliable cross-hybridizing 
methylation (Chen et al., 2013).  

8.8.2 INFORM 
The analysis pipeline for the network based exploration of gene expression 
profile and identification of the functional response module is implemented 
as a set of functions that can be executed individually with required 
parameters to perform computations or generate plots for the data. These set 
of functions are defined in an R source file and can be used to perform the 
complete analysis from the command line. However, the UI and Server 
implementation of INfORM in R shiny web framework streamlines this 
process, and the user can perform the complete analysis by a single click of 
the button after uploading the necessary input files. The simple visual layer is 
separated into two distinctly marked panels “Upload” to upload the data and 
setup the analysis and “Display Area” to display the data and results by 
means of the tables and plots. Further customization of the analysis setup 
can be performed by adjusting the advanced parameters from the hidden 
panel in “Upload”. The Server code effectively executes the different 
components of the pipeline sequentially from the processing of the uploaded 
data to the detection of modules and functional annotation by using the 
functions from the R source file. The user defines the final response module, 
and thus it is not an automated task executed by the pipeline implemented in 
the GUI. An additional R markup file is used as a template to generate the 
PDF for the tileplot representation of the summarized functional annotation. 
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9 RESULTS 

9.1 STANDARDIZATION IN OMICS REPORTING 

The MIAME compliant format is the prescribed standard for sharing omics 
data with the research community. It is an established prerequisite for any 
data to be published in peer-reviewed scientific journals. These reporting 
formats are supported by many public resources, which are great platforms 
for archiving the omics data files and preserving them for future use by other 
researchers. However, these reporting formats present very minimal 
information about the experiment, study design, data analysis methodology, 
tools/programming scripts employed in the analysis, and interpretation of 
the results. The research articles report the biological study with limited 
focus on data analysis and main emphasis in the interpretation of the final 
results, to describe the biological findings or discoveries of biological 
phenomena. The guidelines for research articles have been improved with 
more journals requesting analysis code/programming scripts for 
reproducibility of analysis performed. In our efforts to ensure clarity and 
completeness of reporting the omics data, we encountered the concept of 
data articles. We employed this new type of focused publication (article I) for 
reporting the study design, omics assay strategy, omics data, analysis 
methodology, and to a great extent the intermediate analysis result (Figure 
2).  

The data from the multi-omics study of nanomaterial exposure effect on 
human cell lines (article IV) was described along with the experimental 
procedures, analysis methodologies, and the results. This information is 
collated and provided in a comprehensible format of a scientific article which 
is expressed by the author towards independent researchers (article I). There 
are three sets of microarrays for 1) mRNA, 2) miRNA, and 3) DNA 
methylation each.  

mRNA 

mRNA expression assay was performed for 96 samples by using the Agilent 
SurePrint G3Human GE 8×60K array. 

miRNA 

miRNA expression assay was performed for 91 samples by using the Agilent 
SurePrint G3 Unrestricted Human miRNA_V21 8×60K array. 

DNA methylation 

DNA methylation assay was performed for 99 samples by using the Illumina 
HumanMethylation450 BeadChip array. 
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The analysis source code and the programming scripts implemented for 
data analysis were shared with great detail to ensure reproducibility of 
analysis results. The data article has a unique focus towards more 
comprehensive data reporting and thus provides an ideal platform for 
sharing the technical information that has been neglected in the research 
articles of the same datasets. The higher comprehension of this reported data 
is ensured by this reporting format of a scientific journal that is agnostic to 
any specific data format and can be understood by a generic independent 
researcher.  

 

Fig. 2 - Omics data reporting strategies MIAME, research articles, and data 
articles have contrasting information content capabilities. Data articles are 
capable of providing holistic information. 

9.2 REPRODUCIBILITY AND ROBUSTNESS OF TOXICOGENOMICS 
DATA ANALYSIS 

9.2.1 DATA PREPROCESSING 
Standardization of toxicogenomics data analysis is much needed to ensure 
the reproducibility and quality of result for implementation in toxicological 
evaluations. 

In this thesis, I engaged in the effort of implementing the best practices 
for DNA microarray omics data analysis into a robust and user-friendly 
workflow to avoid serious pitfalls in the omics data processing. I was able to 
crystallize the following analysis steps as essential in the successful 
processing of DNA microarray omics data; i) I recognized the need for the 
quality assessment of samples from the raw assay data. I identified the tools 
for Quality Control of samples for identification and reporting of poor 
quality samples. ii) In step with quality control of samples, I also recognized 
the need for assessment and identification of poor quality probes in the raw 
data. False estimations in the analysis must be avoided by Probe 
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Prefiltering to drop poor quality probes. iii) I identified the 
Normalization of raw data as the minimum requirement before the 
application of statistical methods. The data must be normalized before 
performing quantitative comparisons to avoid false estimates of positive 
effects and negative effects. iv) I identified Batch Effect Mitigation as a 
critical step in microarray data processing during the phase of exploring and 
establishing the best practices required to avoid pitfalls. Batch-wise 
processing of samples during sample preparation and omics assay introduces 
non-biological noise that affects the quantitative comparison of sample 
groups due to batch effects. The latent noise can be estimated by identifying 
the sources of variation in the data. The variation in the data is determined as 
principal components obtained by orthogonal transformation of assay data. 
The batch effect can be estimated by observing the association of the 
technical variables with the principal components representing high 
variation. The identified batches must be adjusted to reduce their effect 
before any quantitative comparison is performed. The batch parameters are 
estimated by using the empirical Bayesian method of determining priors 
from the standardized data followed by adjustment of estimated batch effect. 
The adjustment of multiple batches must be performed iteratively to ensure 
that specific batch effects are estimated while the effect of other biological 
and batch variables is preserved. v) Differential analysis of the biological 
molecules is performed between groups of samples to observe the positive or 
negative effect in a perturbed biological state. This comparison is facilitated 
by advanced linear model methodology implemented in limma; it is a very 
robust method of modeling assay data of biomolecules locally and globally to 
account for variance. The set of biomolecules with significant positive or 
negative effect are qualified by specifying the scale of comparison as log 
transformed and significance as a probability value. However, it is advised to 
perform multiple testing correction and obtain adjusted probability values to 
account for false positive results due to the chance of testing a large number 
of biomolecules. 

I ensured reproducibility of the results by implementing these best 
practices as pipeline/workflow (Figure 3) that requires minimal setup, 
presents the results of the data processing steps with meaningful graphical 
representation to understand and appreciate the processing effect, and is 
easy to execute. I created an effortlessly efficient solution for generic end 
users by implementing this robust workflow with an easy to use graphical 
interface developed in R shiny web development framework.  
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Fig. 3 - Microarray data preprocessing and batch effect mitigation decision-
making approach in eUTOPIA. 

9.2.2 MOLECULAR SYSTEMS ANALYSIS 
The data from omics assays is usually employed to identify the significantly 
perturbed biomolecules. However, the perturbed biological state can rarely 
be defined by the action of the independent individual biomolecules. The 
complex biological system can be inferred by modeling the patterns of 
biomolecular activity in response to external stimuli. The biological system 
level activity can be used to identify the altered molecular mechanisms that 
define the effects on the biological system. Biological systems can be inferred 
as molecular networks that represent their coherent behavior in specific 
molecular mechanisms and possible molecular interactions. 

Network Inference 

Reconstruction of a molecular system model from gene expression profiles 
and exploration of system dynamics by graph theory is an area of great 
interest. There are many methods that have been proposed for inference of 
network from gene expression data. However, there is lack of consensus 
regarding the best choice of inference method since they have comparable 
performances and can be complementary. The power of these different 
methods can be used in combination to ensure the robustness of network 
inference (Marbach et al., 2012). 

Robustness by consensus 
I employed the multiple mutual information based network inference 
algorithms from minet R package to infer a robust gene co-expression 
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network from perturbed gene expression profiles to ensure that the inferred 
network is not biased by choice of inference algorithm. Evidence from 
multiple inferences increases the confidence of inferred gene-gene 
connections. The robustness attributed to the consensus network is in terms 
of its accuracy to represent co-expression between molecules.  

Different network inference scenarios were obtained by combining 
various options of network inference algorithms ARACNE (Margolin et al., 
2006), MRNET (Meyer et al., 2007), MRNETb (Meyer et al., 2010), CLR 
(Faith et al., 2007); entropy estimators (pearson, spearman, kendall, 
mi.empirical, mi.mm, mi.shrink, mi.sg); and discretization methods 
(equalfreq, equalwidth, globalequalwidth). 

Summarizing co-expression scores 
I performed the algorithm specific consensus by combining the inferences 
from all the networks computed by a specific algorithm. I further evaluated 
the accuracy of the consensus networks by using the NetBenchmark (Bellot et 
al., 2015) R package. The AUPR20 scores generated by NetBenchmark 
highlight that network accuracy was better for higher consensus networks, 
and the accuracy progressively improved with the assimilation of more 
network inferences. Variability in the performance by algorithms was 
observed as, CLR, MRNET, and MRNETb inference algorithms had better 
accuracy scores than ARACNE. 

I tested different measures mean, median, and max for summarization of 
the co-expression scores. The most robust summarization across all inference 
algorithms was obtained by mean, while the median was quite similar to 
mean. Summarization by max performed best for ARACNE, but it performed 
poorly for the rest. 

Consensus by the significance of evidence 
Algorithm specific consensus network inferences contain consolidated 
evidence of robust molecular relationships inferred by each algorithm. 
However, the scale and distribution of score defining these interactions vary 
by the algorithms, which makes it difficult for further consolidation (Figure 
4). 
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Fig. 4 - Different scale and distribution of co-expression score inferred by 
different inference algorithms hinder the summarization of co-expression 
scores across inference algorithms. 

I defined an alternative approach to represent the significance of 
molecular relationships inferred by each algorithm consensus in isolation to 
the molecular co-expression scores by transforming the scores to ranks. 
Thus, we were able to isolate the significance of the connections from the raw 
measure of co-expression, allowing to avoid the imbalances of co-expression 
score inferred by different algorithms. The rank of the connections 
represents their prediction accuracy, which is used to incorporate the 
connections with accuracy. The rank wise significance of molecular 
connections from various algorithm consensus’ is consolidated into a single 
consensus rank list by using the widely accepted Borda method. 

Finally, the reconstruction of the perturbation modulated molecular 
system is accomplished by rank wise selection of the top molecular 
connections from the consolidated rank list until all the molecules are 
represented in the inferred network by at least one connection (Figure 5). 
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Fig. 5 - Robust network inference by consensus from different inference 
algorithms. 

I have evaluated the efficiency of the consensus network creation process 
by the exploration of simulated expression data from a biological source 
network of E. coli (Ma et al., 2004). A simulated network dataset Syntren300 
was obtained from R package grndata (Bellot et al., 2014), this dataset is 
created by using the SynTReN simulator (Van den Bulcke et al., 2006). This 
dataset contains a binary true network of 300 genes (subgraph from the 
biological source network) and the corresponding simulated expression 
dataset. Evaluations of different levels (set size) of consensus networks can 
be used to observe the robustness of the consensus network creation process 
(Figure 6). 
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Fig. 6 - The consensus creation strategy of INfORM was evaluated on a 
simulated expression dataset syntren300. The accuracy measure AUPR20 is 
on the y-axis, and different levels of consensus are represented by the darker 
shade of the box. Different compositions of consensus are reported in the x-
axis margin. The overall consensus highlighted by the dotted outline 
consolidates all individual inferences. The accuracy of consensus inferences 
is better than the individual inferences, and the overall consensus effectively 
maintains high accuracy. 

I evaluated the performance of the rank based inter-network consensus by 
inspecting the number of true positive (TP) edges in final ensemble network 
(inter algorithm), level I ensemble networks (intra algorithm), and individual 
network inferences. The intersection of TP edges was inspected across the 
spectrum of networks inferred by each algorithm along with its level I 
ensemble and the final ensemble. In our benchmark experiments, the 
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intersection of TP was more consistent within MRNETb and CLR inferences. 
MRNET level I consensus consisted of more TP edges than the individual 
inferences, thus highlighting the consensus benefits. ARACNE level I 
ensemble compiled more TP edges than all the individual inferences and 
even the final ensemble. However, the f-measure for ARACNE level I 
ensemble is very low which means that it has an even higher number of false 
positive (FP) edges and thus by itself will not be the accurate reconstruction 
of the biological system. Overall comparison of TP edges in all level I 
ensembles and the final ensemble highlights the robust nature of the 
ensemble which is able to correct for low accuracy of some algorithms 
(ARACNE) (Figure 7). 

 

Fig. 7 - UpSet plot for the intersection of true positive edges inferred by 
different level-I ensembles and the final level-II ensemble 

Modular component of the inferred network 

Biological networks of interacting molecules contain hub nodes of high 
importance that influence the communication of many molecules with the 
smaller and larger chain of interactions. Moreover, modular subunits exist 
within the networks, which consist of closely connected molecules that are 
more interactive with their neighbor nodes compared to the rest of the 
network. These modules define a specific expression of the system in a given 
biological condition. The module detection can be performed by various 
algorithms, thus posing a question of the best choice of method to ensure 
more accurate results. I investigated the performance of module detection 
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algorithms by identifying modules from a test ensemble network 
(syntren300) by different methods walktrap, spinglass, greedy, and louvain 
(Csardi and Nepusz, 2006). The similarity is computed by means of the 
jaccard index between the set of genes in pairs of modules. Clustering was 
performed on the similarity matrix of modules detected from all methods. 
The heatmap representation highlights the similarity cluster formed by 
individual modules from different methods, thus suggesting a high level of 
similarity in the module detection methods (Figure 8). 

 

Fig. 8 - Benchmarking the possible divergence in the performance of 
Walktrap, Spinglass, Louvain, and Greedy methods. Their performance was 
found to be fairly complementary. 

Response module 

Gene networks are complex structures that are difficult to navigate through. 
Their biological significance is concealed behind the high density of nodes 
and edges. It is imperative to identify not only the genes but also the network 
dynamics that best describe/explain the biological query at hand. In the 
scope of this thesis work, I explored the idea of identifying the core 
responsive subnetwork that highlights the network dynamics of biological 
significance. The targeted assessments bring forth the mechanisms that are 
hidden in the overall network due to dilution by non-relevant genes and 
network dynamics. I defined an approach for response module detection by 
using the top ranked genes in the network. The genes in the overall network 
are ranked by different centrality measures (betweenness, degree, 
eigenvector, clustering coefficient) and differential expression score. These 
individual ranks of significance are aggregated by the Borda method, and the 
median aggregate rank list is used to identify the top ranked genes in the 
network (Figure 9). 
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Fig. 9 - Different network centrality properties highlight different genes of 
importance depending on the network dynamics of interest. 

I identified the most important genes by using a selection cutoff of top n 
ranked genes from the aggregated ranked list. The nodes representing the 
selected genes are used to draw a constellation by finding connections 
between all pairs of selected gene nodes. All the shortest between each pair of 
nodes are identified, and finally, the accumulated information of paths is 
used to infer the responsive subnetwork (Figure 10). 

 

Fig. 10 - Responsive subnetwork definition by tracing constellations between 
most important genes by network centrality and biological scores. 

This analysis approach proved to be beneficial in the study of Carbon 
Nanomaterial (CNM) toxicity response (Kinaret et al., 2017a). In that 
context, we studied the effects of 6 different CNMs on THP-1 macrophage 
cell line as well as the lung tissue of mice (Kinaret et al., 2017a). This system 
biology study observes the effect of nanomaterial exposure in relation to their 
intrinsic properties (length, diameter, surface area, and aspect ratio) and 
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compares the molecular response from in vivo experimental assay in mouse 
lung tissue versus the in vitro assay in cell lines derived from Human THP-1 
macrophages. 

Genes expression information from Mouse in vivo and Human in vitro 
assay was integrated for the selected set of 3868 orthologous genes 
(Ensemble database). The genes that exhibit a strong response to geometric 
properties of the CNMs are selected for further analysis. The gene co-
expression networks were inferred for individual Human and Mouse datasets 
as well as the integrated orthologous datasets. The responsive subnetwork is 
identified by drawing a constellation of shortest paths between the top 
ranked genes in the network that form a subnetwork, representing the 
biological system that is composed of and is under the influence of the top 
ranked genes in the network. Functional characterization of this subnetwork 
explains the molecular mechanisms, events, components, and pathways with 
active involvement in producing the adverse outcome. 

We observed that the initial set of differentially expressed gene sets were 
widely divergent and had minimal overlap while the congruence of functional 
annotation after network analysis was much higher. Our results suggest that, 
even though the significantly enriched genes from the in vivo and in vitro 
assays are different, they are still involved in the same biological functions. 
Thus, we hypothesize that the in vitro study at the functional level is able to 
reproduce the results from the in vivo study (Figure 11). 

 

Fig. 11 - Congruency of carbon nanomaterial exposure response in Human 
cell line and Mouse lung tissue. 

I further refined the responsive subnetwork detection methodology to 
incorporate the network topology based modular structure. Modules can be 
detected in the network as a segregated cluster of nodes that are more closely 
connected locally than the rest of the network. These modules derived from 
the gene co-expression relationships are highly likely to represent coherent 



RESULTS 

58 
 

biological molecular mechanisms (Gene Ontology). However, the discovered 
modules represent the generally representative molecular functions and need 
some measure of distinction to identify the biologically significant modules. 
In this refined methodology, I characterized the modules by the median gene 
ranks in each module by different properties i) centrality, ii) differential 
p.value, iii) differential logFC, and also by the iv) median edge rank obtained 
during consensus network creation. Furthermore, these modules can be 
functionally congruent (GO semantic similarity) and can be represented as a 
singular functional response. Thus, the module characterization scores and 
the functional congruence is used to define the final response module that 
best represents the biological query of interest (Figure 12). 

 

Fig. 12 - Responsive subnetwork definition by characterization of modules by 
node and edge importance, as well as the functional similarity between 
detected modules. 

Molecular mechanisms 

The modular nature of a network of molecular interaction can be associated 
with known biological mechanisms based on the functional annotation of 
molecules. Enrichment of gene ontology associated with the molecules can be 
used to ascertain the biological mechanisms. Modules from larger molecular 
networks inferred from expression assays represent the active biological 
pathways and functions in the perturbed biological condition. The enriched 
biological pathways characterize these natural modules present in the 
reconstructed biological system. Thus, I postulate that, by characterizing 
these modules, it is possible to interpret the mechanism of action of exposure 
(Figure 13). Response to toxic substances can be characterized by this 
approach, making it possible to define adverse outcome pathways. 
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Fig. 13 - Functional characterization of subnetwork by GO annotation. 

INfORM was used to analyze the data from a publicly available gene 
expression dataset obtained from NCBI Gene Expression Omnibus 
(GSE13355) (Nair et al., 2009; Swindell et al., 2011). It is a study on psoriasis 
patient with samples from lesional skin areas, normal skin areas, and healthy 
donors. 

The summarized GO annotation tileplot (Figure 14) generated from 
the responsive subnetwork highlighted following biological mechanism 
‘immune response’ (Liang et al., 2017), ‘keratinization’ (Iizuka et al., 2004), 
and ‘proteolysis’ (Dubertret et al., 1984). These GO terms are of relevance to 
psoriasis pathogenesis. 
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Fig. 14 - GO (Gene Ontology) terms summarized by clustering on the basis of 
their similarity to minimize redundant annotation information and highlight 
the important clusters of terms.  

9.2.3 SOFTWARE IMPLEMENTATION 

Omics preprocessing 

This thesis presents eUTOPIA, a software solution for analysis of microarray 
omics data. eUTOPIA makes the microarray data analysis accessible to the 
experimental researchers or to an end user who does not have expertise in 
statistical and computational tools to perform analysis. The tools employed 
in microarray analysis require a certain measure of expertise in statistics and 
computational methods, it discourages users from approaching the analysis 
or more worryingly leaves the novice users susceptible to pitfalls of failure in 
making necessary checks and corrections. eUTOPIA bridges this knowledge 
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gap by allowing the user to engage with each analytical step through a 
graphical interface that guides them forward and gives the feedback via a 
meaningful graphical representation of data. Ultimately, enabling a novice or 
an expert user to perform microarray data analysis with reproducible results 
and allow for more focus on the biological interpretation of results. The user 
can familiarize with eUTOPIA’s functionality by following the user guide, 
which is provided as a supplementary to the published article II. The user 
guide highlights different components and features of eUTOPIA by 
showcasing the analysis of Agilent 2-color sample data. 

Molecular networks 

INfORM is an easy to use graphical tool that can be used to execute multi-
step workflow for network based analysis of gene expression profile with a 
single click of a button (Figure 15). Its workflow is configured with a set of 
default parameters that were determined with a careful evaluation strategy 
(Figure 6-9). The user can confidently proceed with the analysis with 
minimal analytical setup and configuration. This allows the user to spend 
more time interpreting the results and less time struggling with the analytical 
steps. While the whole analytical setup is customizable and a more 
experienced user with specific requirement and ideas can alter the analytical 
setup to their needs. 
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Fig. 15 – INfORM workflow execution is a simplified process that enables the 
user to build a network, identify modules of interest, define the response 
module, and interpret biological significance with minimal technical input. 

 

9.3 MULTI-OMICS BASED APPROACH TO MODELING AOPS 

I present here a study that we performed to observe the effect of 10 different 
carbon nanomaterials (4 different types). Three different cell lines 
representative of human lung resident cells, A549 (Human alveolar 
epithelium), BEAS-2B (bronchial epithelium), and THP-1 (differentiated 
macrophages), were exposed to the carbon nanomaterials and the response 
was observed by assay of mRNA expression, miRNA expression, and DNA 
methylation (Figure 16). 
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Fig. 16 - Multi-omics study design for observation of 10 carbon nanomaterial 
exposure on three cell lines derived from human lungs by assay of mRNA 
expression, miRNA expression, and DNA methylation. 

These three different molecular profiles of carbon nanomaterial exposure 
response were chosen to define the gene regulatory model that can help in 
the interpretation of acute response as well as in inferring long term 
response. The relationship between different molecular layers was defined as 
the inverse correlation of mRNA expression information with the DNA 
methylation in the gene promoter, in addition to the inverse correlation with 
miRNA expression. Thus, we were able to define a model where the gene is 
concordantly upregulated, its promoter is hypomethylated, and a possible 
targeting miRNA is downregulated, vice-versa the concordant 
downregulation is defined by gene underexpression, hypermethylation of 
promoter, and overexpression of miRNA (Figure 17). 
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Fig. 17 - Multi-omics model of concordant gene response by using coherent 
information from mRNA expression, miRNA expression, and DNA 
methylation to obtain a singular gene score. 

The concordance model describes the molecular feature relationships 
between mRNA, miRNA, and methylation. This relationship information, 
along with the weights of influence was specified in R SMITE analysis 
pipeline to summarize the p.values of significance from individual molecular 
assay to obtain a single gene score. We used the summarized gene score to 
obtain a weighted Reactome protein interaction network. Modules are 
detected in this weighted network by using the spinglass algorithm and were 
tested against random permutations to obtain significantly enriched 
modules. The total set of genes in the enriched modules were tested 
evaluated against the defined concordance model and segregated into 
concordant genes and discordant genes. Functional annotation enrichment 
was performed with KEGG pathways for both gene sets. Finally, we were able 
to obtain characteristic mechanism of action of for each CNM in each cell line 
(Figure 18) that can be used to hypothesize long term effect by concordant 
pathway maps and possible acute response by discordant pathway maps. By 
using this multi-omics model, we were able to observe and interpret the long 
term effect from a short exposure of 48 hours. This is a significant result for 
the in vitro toxicity exposure studies. 
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Fig. 18 - Identification of the functional mechanism of action by concordant 
and discordant genes from significantly enriched modules identified in 
weighted Reactome protein network. 

The MOA derived from the KEGG based pathway analysis of functional 
genes along with concordance information from the integration of multiple 
omics layers is used to understand the finer differences between the 
responses of the cell lines A549 (alveolar epithelium), BEAS-2B (bronchial 
epithelium), and THP-1 (macrophages). Overall exposure response was 
strongest in BEAS-2B cells, THP-1 cells also exhibited a strong response, 
while A549 cells were least responsive. The overall MOA in BEAS-2B is found 
to be strongly biased toward upregulation while it was more balanced in 
A549 and THP-1 cells. We observed distinct cell line specific MOA in 
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response to the same CNM exposures, which can be explained by the 
different steady-state transcriptional patterns of the individual cell lines. The 
different type of cells have different mechanisms for recognizing foreign 
substances. 

Evaluation of altered pathways suggests higher alteration potential of 
nanotubes with the exception of SES_SW which was observed to produce no 
effect on A549 cells, while the spherical CNMs with small aspect ratio was 
found to have a low potential to alter pathways.  
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10 DISCUSSION 

Toxicology is an area of science that has a direct and immediate effect on 
human safety and thus has been under constant pressure for advancement 
and improvement. It is a discipline that is strictly regulated to ensure the 
application of best practices in evaluating the toxicity of new substances 
introduced into the environment and specifically designed for human 
consumption. The reform of toxicity assay practices under the proposed 
ideology of 3R is one of the most important steps forward towards modern 
science. The continued pursuit of reducing the cost of toxicological assay and 
the efforts to enrich the understanding of toxic exposure response from a 
biological system has motivated the incorporation of high-throughput omics 
technologies. Toxicogenomics evaluation in nanotoxicology is a recent 
development and not yet well established as a robust source for regulatory 
evidence. There have been scientific studies that showcase the potential of 
the omics in nanotoxicology (Fadeel et al., 2013; Rydman et al., 2014; 
Kinaret et al., 2017b; Serra et al., 2019). However, there is a shroud of 
uncertainty regarding its capability to generate conclusive and reproducible 
results. This is a major hurdle in the field of toxicogenomics and 
nanotoxicology. This challenge must be addressed by efforts towards 
standardization of omics data processing and reporting (Sauer et al., 2017). 
Microarray omics data has rapidly become one of the most standardized and 
streamlined omics assay technologies that can be generated with swiftness 
and is cost-effective (Marzancola et al., 2016). A number of well established 
computational methods and guidelines are available for processing omics 
data. These methods have evolved in parallel with the experimental 
techniques and experimental designs for better omics evaluation of the 
biological systems. The analysis methodology and data processing guidelines 
have been streamlined with defined steps. I identified a set of ‘state-of-the-
art’ tools and computational methods widely accepted and employed by the 
scientific community that facilitate the standard analytics of microarray 
omics data. Microarrays allow for complex study designs with large cohorts 
of samples generated over multiple sets of experiments. Thus, exposure of a 
substance can be estimated in different aspects such as tissues, doses, and 
time. However, integration of data from multiple experiments also adds to 
potential noise due to varying levels of expressions in different experiments, 
and this noise can contribute to the variability of the genes and could inflate 
or deflate the expression thus giving rise to type I and type II errors. Large-
scale integrated analysis of omics data must avoid the bias and noise by 
identifying the batches of data formed due to technical effects or biological 
effects over a subset of the samples (Chen et al., 2011). On the contrary, there 
is a chance of overcorrection the data leading to positive bias, and caution 
must be observed while adjusting the data. It is not trivial to identify and 
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remove true batches while avoiding general pitfalls, diagnosis of data must be 
performed to observe the variation associated with the sample annotations 
and the effect of variation adjustment must be observed to determine the 
most appropriate strategy. Microarray data processing and analysis is a 
technically challenging task that requires computation expertise to execute 
analytical tools, build a seamless workflow for productivity, and generate 
meaningful representations of the data. There is a need for a guided user 
experience that lifts the burden of obligatory computational expertise from 
the user and enables them to process data with confidence. I designed an 
easy to use tool eUTOPIA for analysis of omics data. It incorporates the state-
of-the-art tools and data analysis guidelines as a stepwise guided workflow 
that is accessible via an intuitive graphical interface. 

The toxicological assessments have relied on the identification of 
significant biomolecules that can be attributed with the responsibility of 
producing the observed response and can be used as molecular markers 
(Timbrell, 1998). However, any biological response can seldom be explained 
by the activity of individual molecules. Over time Toxicogenomics has 
evolved into systems toxicology by the implementation of methods that infer 
system level activity due to combined molecular activity in the observed 
biological response (Waters and Fostel, 2004). Nanotoxicology and 
toxicogenomics studies, in general, must exploit the power of the dense high 
throughput and high content data generated from the modern omics 
techniques and technologies. It is trivial to estimate the behavior of a single 
molecule, rather the interaction of molecules in a functionally activate 
biological system must be estimated to understand the molecular 
mechanisms. Gene networks reconstructed from the transcriptomic data 
represent the statistical association in the molecular dynamics. Specific 
functional networks can be created by selecting the significantly altered 
molecules in the perturbed state compared to the steady state (Barel and 
Herwig, 2018). Graph theory can be used to identify hub genes which are 
bottlenecks that upon disruption can break network dynamics resulting in 
loss of communication between different parts of the network. In terms of 
systems toxicology, this could result in the disruption of biological pathways, 
thus producing an adverse effect. I created a tool INfORM for analysis of 
gene expression profiles by inferring a robust gene expression network to 
ensure reliability. This approach allows to confidently define gene-gene 
connections by observing evidence from multiple inferences. INfORM 
enabled the user in identifying the responsive subnetwork, and it also 
characterizes the network by identifying the most significant biological 
functions in the responsive subnetwork. 

Toxicology has adopted the concept of networks in describing the 
biological events from the toxic response. The regulatory bodies for 
assessment of toxic substances such as OECD have defined programmes for 
describing the toxic response as AOPs. Gene co-expression networks 
reconstructed from the transcriptomic data represent the statistical 
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association in the molecular dynamics. Specific functional networks can be 
created by selecting significantly altered molecules in response to toxic 
exposure. The specific coherent molecular mechanisms can be observed as a 
modular structure in networks which represent the cluster of molecules in 
close correlation in contrast to the whole (Zhuang et al., 2015). The nature of 
these molecular mechanisms can be understood by using known functional 
annotations. The biological interpretation of functional annotation is 
essential for understanding the molecular mechanisms, events, components, 
and pathways with active involvement in producing the adverse outcome. 
Nanotoxicology can adopt the module structure information from the 
biologically active gene networks to assist in the definition and identification 
of adverse outcome pathways (Hardt et al., 2018). 

The next avenue to enhance the biological characteristic of the 
toxicological response is the assessment of different biomolecules involved in 
the regulatory machinery (Jayapal, 2012). The information from individual 
molecular layers can be complemented and corroborated with the other 
layers to obtain a better interpretation of the biological response (Zhu et al., 
2012). The generally accepted model of gene regulation defines gene 
upregulation or over-expression in combination with hypomethylation in 
gene promoter and under-expression of gene targeting miRNA. While gene 
downregulation or under-expression is defined as a combination of 
hypermethylation in gene promoter and over-expression of gene targeting 
miRNA, this regulatory model is well accepted and confirmed by many omics 
studies explaining the molecular interactions and the biochemical process 
involved. We exploited this regulatory model to identify the significantly 
altered genes from gene expression data along with the methylation 
(Reamon-Buettner et al., 2008) and miRNA information. Thus, enabling us 
to identify the biological pathways related to ENM exposure as the 
mechanism of action produced by exposure of human cell line to ENM. 
Exposure of different cell types to the same nanomaterial resulted in the 
different mechanism of action map, and this observation can be explained by 
the different steady state functional activity of the cell types and the specific 
roles of the cells. The acute and long-term effects can be inferred by the 
accordance of the regulatory model. The mRNA dynamics represent the 
immediate response of the perturbed biological system, while the DNA 
methylation dynamics represent long term response. 

Another important aspect of the biological system is the study of temporal 
changes. Biological studies employ the omics technologies to obtain a 
snapshot of the biological system in a particular time point, this information 
can be extended to cover multiple time points, and the effect on the biological 
system can be observed over time. Over time the effort and interest to 
observe the temporal have resulted in a steady increase of timecourse data in 
public repositories. However, there is still a need for more efforts towards 
timecourse experiments and data modeling in Toxicogenomics. A cursory 
glance at GEO brings this to light. There are 3064 GSE (GEO Series) records 
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filtered by keyword toxic, out of which 455 (14.85%) GSE have at least two 
timepoints, while only 368 (12%) GSE records have at least three time points 
(Chen et al., 2019). The timecourse data can be modeled as dynamic 
networks (Kim et al., 2014) to understand the temporal change in nodes and 
edges to enrich the understanding of biological response in systems 
toxicology. 

This thesis project contributed to improve the analysis of the omics data 
in the context of nanotoxicology studies by standardizing the data processing 
along with the implementation of robust and easy to use tools. 
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11 CONCLUSIONS 

The toxicological evaluation of possible xenobiotic substances is outlined by 
different regulatory bodies such as Food and Drug Administration (FDA), 
U.S. Environmental Protection Agency (EPA), Organization for Economic 
Cooperation and Development (OECD), and European Chemical Agency 
(ECHA). The regulatory guidelines do not yet specify the analytical results 
from omics experiments as a piece of essential information for xenobiotic 
evaluation. My work presented in this thesis addresses the apparent areas of 
concern that have a hindered the usability of omics data in toxicology 
decision making. I target the core concern of reproducibility and reliability in 
omics analysis with my effort to standardize the data processing of 
microarray omics data. High throughput omics data is quite dense and must 
be processed appropriately in order to obtain accurate results. However, this 
cannot always be achieved to similar levels of satisfaction because there is 
lack of standardization. I incorporated the best practices and the state-of-
the-art tools for omics data processing in a stepwise guided workflow. It 
enables the end user to perform consistent and reproducible analysis of the 
different datasets and repeat analyses of the same datasets.  

I further addressed the challenge of estimating and interpreting the 
system level molecular mechanisms that explain the biological activities and 
events that are involved in the toxicological exposures. A straightforward 
approach to toxicogenomic assay data analysis is to estimate the set of 
significantly perturbed biomolecules and their associated biological 
functions. However, the biological system is in a constant flux of molecular 
interactions where the dynamics of a single molecule is not the sole 
contributor to the functional response. It is essential to interpret the 
dynamics of the biological system resulting from the correlated effect of 
individual dynamics. However, the inference of molecular relationships is 
subject to the choice of the algorithm, and it is a technically challenging 
approach which requires an understanding of graph theory. I implemented a 
methodology of combining the pieces of evidence from multiple network 
inference algorithms to obtain a robust gene network. Thus, ensuring the 
effective and accurate interpretation of the system level toxicological 
response. The interpretation of molecular mechanisms can be further 
enhanced by modeling the dynamics of different molecular species in the 
accepted regulatory model. This thesis showcases a study to determine the 
mechanism of action of nanomaterials in human cell lines derived from lung 
tissue. The information from different molecular signals mRNA, miRNA, and 
DNA methylation was used to create concordant dynamic model to explain 
the mechanisms of actions are concordantly expressed and could be used to 
model a consistent response in the short term and long term, alternately it 
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also allows to interpret the discordant response that might explain the short 
term acute response with mRNA or the long term chronic response with DNA 
methylation. The mechanistic information from the toxicological response is 
represented by a chain of biological events known as AOPs. I defined an 
approach to obtain the mechanistic information from the biological systems 
by that can be used to defined better AOPs by identifying the modules that 
represent specific biological functions. 

The bioinformatics tools described in this thesis are designed to enable 
the general researchers in the processing and analysis of omics data by using 
state-of-the-art methods and best practices. These tools are accessible to the 
user via an intuitive and easy to use graphical interface that promotes the 
usability of these omics data processing and network analysis tools. 
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