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A Modular Bayesian Salmonella Source Attribution Model
for Sparse Data

Antti Mikkelä,∗ Jukka Ranta, and Pirkko Tuominen

Several statistical models for salmonella source attribution have been presented in the litera-
ture. However, these models have often been found to be sensitive to the model parameteri-
zation, as well as the specifics of the data set used. The Bayesian salmonella source attribution
model presented here was developed to be generally applicable with small and sparse annual
data sets obtained over several years. The full Bayesian model was modularized into three
parts (an exposure model, a subtype distribution model, and an epidemiological model) in
order to separately estimate unknown parameters in each module. The proposed model takes
advantage of the consumption and overall salmonella prevalence of the studied sources, as
well as bacteria typing results from adjacent years. The latter were used for a smoothed es-
timation of the annual relative proportions of different salmonella subtypes in each of the
sources. The source-specific effects and the salmonella subtype-specific effects were included
in the epidemiological model to describe the differences between sources and between sub-
types in their ability to infect humans. The estimation of these parameters was based on data
from multiple years. Finally, the model combines the total evidence from different modules
to proportion human salmonellosis cases according to their sources. The model was applied
to allocate reported human salmonellosis cases from the years 2008 to 2015 to eight food
sources.
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1. INTRODUCTION

The main purpose of source attribution methods
for foodborne infections is to quantify the likely
share of disease cases that could be attributed to
a number of predefined food categories denoting
the assumed (mutually distinct) origins of bacteria
leading to infections. These categories are referred
to as “sources” in this context. Consequently, source
attribution provides guidance for risk manage-
ment. In statistical source attribution methods, a
probabilistic classifier is constructed to evaluate
a conditional probability that a reported human
infection originated from the bacterial population
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of a source, given the characteristics of the case.
Two widely used approaches to salmonella source
attribution rely either on microbial subtyping or
comparative exposure assessment (Pires et al., 2009).
The principle of the microbial subtyping approach
is to broadly partition human isolates according
to the proportions of the same subtypes found in
different sources, whereas comparative exposure
assessment partitions the proportions according to
estimated exposures from different sources (Pires
et al., 2009). Foodborne exposure is driven by the
occurrence and amounts of pathogens in food, as
well as the consumption of food. In addition to food,
the environment can also represent a source of infec-
tions, but comparative exposure assessment is more
challenging with environmental sources. Typically,
source attribution focuses on foodborne sources.

Simple subtyping-based salmonella source attri-
bution is based on point values, as in the Dutch
model (Van Pelt et al., 1999), using estimates of the
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relative proportions of types per source and the to-
tal number of reported human cases of each sub-
type, without addressing statistical uncertainty. A
frequently applied typing-based source attribution
model is that described by Hald, Vose, Wegener, and
Koupeev (2004), and its modifications (David et al.,
2013; Mullner et al., 2009). These methods aim at
providing uncertainty for the estimates through the
application of a statistical sampling model for the hu-
man case counts per subtype and, in the developed
version (Mullner et al., 2009), also for the isolate
subtypes per source. In this method, the number of
human cases of a certain salmonella subtype due to
a certain source is assigned a Poisson distribution,
with expected value defined as the product of the
annual consumption of a particular source and the
prevalence of a particular subtype in a source mul-
tiplied by the product of the source-specific param-
eter and subtype-specific parameter. The unknown
parameters are then estimated by Bayesian methods,
with some additional constrains, and assuming that
all sources were equally probable to begin with, a
priori. However, the challenge has been overparame-
terization, which leads to poor identifiability and con-
sequently poor convergence of the MCMC (Markov
chain Monte Carlo) chain for the model parame-
ters. Therefore, modified versions (David et al., 2013;
Mullner et al., 2009) of the Hald model (Hald et al.,
2004) have been introduced. These approaches aim
to handle the overparameterization by restricting the
source-specific parameters and subtype-specific pa-
rameters (David et al., 2013), as well as by exploiting
hierarchical modeling (Mullner et al., 2009). How-
ever, these models still tend to be sensitive to the pa-
rameterization and the data at hand, particularly with
sparse data.

The Bayesian source attribution model pre-
sented in this article combines both microbial sub-
typing and comparative exposure assessment with
sparse isolate data. The annual number of isolates
derived from the monitored sources was very small.
Hence, it would have been impossible to successfully
apply any of the existing models as such. Instead,
the annual relative proportions of salmonella sub-
types were estimated by borrowing strength across
different years, assuming that some stability over
years persists. The typing information was then
combined with the exposure assessment drawn from
existing food production chain models (Ranta &
Maijala, 2002; Ranta, Mikkelä, Tuominen, &
Wahlström, 2013; Tuominen, Ranta, & Maijala, 2006;
Tuominen, Ranta, & Maijala, 2007). In addition,

the full Bayesian model was modularized in order to
separately estimate the unknown parameters in each
module (exposure assessment, subtype distribution,
and epidemiological model). The model was applied
to allocate domestic sporadic human salmonellosis
cases in Finland from the years 2008 to 2015 to
the following sources: chicken meat, turkey meat,
beef, and pork. Domestic and imported foods were
treated as separate sources in the model.

2. MATERIALS AND METHODS

2.1. Estimation of the Distribution of Salmonella
Subtypes in the Sources

The distribution of salmonella subtypes was
modeled for each of the food categories on the basis
of the data sets presented in Appendices C–E of the
Supporting Information. The annual salmonella find-
ings derived from either production animals or foods
derived from these animals were combined to repre-
sent the subtype data for each source. These annual
counts of the subtypes (Xi,j,t) were modeled with a
multinomial distribution:

Xi,1,t , . . . , Xi,Ji ,t ∼ Multinomial (ui,1,t , . . . , ui,Ji ,t , Ni,t ),

i = 1, . . . , I, j = 1, . . . , Ji , t = 1, . . . , T,

where the multinomial parameters (ui,1,t , . . . , ui,Ji ,t )
indicate the relative proportions of each salmonella
subtype j present in source i in year t. The number
of all subtypes (Ji) that were considered possible for
a source i was based on all its observed subtypes in
2008–2015. Since the annual total counts per source
were very low (from 0 to 21; see Appendices C–E
of the Supporting Information), an annual sample
does not necessarily represent all the subtypes truly
existing in a given year. In addition, as some of the
salmonella subtypes are characteristic of a particular
source, successive years are likely to contain the
same subtypes, even when not found in a small sam-
ple of isolates. A time series model could be applied
to model the distribution of salmonella subtypes in
each source, but the data were too limited for sea-
sonal effects or trends. Therefore, a pooled approach
was used. A typical uninformative prior distribution
for multinomial parameters ({u}) is either Dirich-
let(1, . . . ,1) or Dirichlet(1/Ji, . . . ,1/Ji). If applied to
annual data, this would directly give the posterior
as a Dirichlet distribution with parameters Xi,j,t +
wi,j, with either wi,j = 1 or wi,j = 1/Ji. The sum of
prior parameters wi,j is directly comparable to the
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size of the data sample. With a small data set, the
sample weight of the former prior can easily exceed
the weight of the data sample, but the sample weight
of the latter prior equals just one observation. An
informative prior for a single year t was constructed
using the pooled results from exclusive years
(
∑

k�=t Xi, j,k), which were divided by their sum over
j to obtain prior parameters wi, j,t = (

∑
k�=t Xi, j,k)∑Ji

j=1(
∑

k�=t Xi, j,k)
, so

that the (informative) prior sample weight equals
one.

Some of the prior parameters could then be zero,
that is, the resulting prior could be improper. How-
ever, since all types were seen in at least some of
the years, the posterior is always a proper Dirichlet
distribution with positive parameters. Nevertheless,
model diagnostic comparisons between the prior dis-
tribution and the posterior distribution can only be
carried out when both are proper distributions. An
improper prior distribution may also lead to unrea-
sonably small posterior values for multinomial pa-
rameters, so for a final default prior, 1 was added
to each count before normalizing. Hence, wi, j,t =

(
∑

k�=t Xi, j,k)+1∑Ji
j=1(

∑
k�=t Xi, j,k)+Ji

. The effect of this prior choice (adding

of 1 or not) is discussed in Section 4.

2.2. Exposure Assessment

In addition to subtyping data, we also used in-
formation on the gross exposure to salmonella esti-
mated for each of the sources. A measure of expo-
sure (Li,t) was defined as the product of the preva-
lence of Salmonella spp. (π i,t) and the total annual
consumption (Mi,t) for the ith source. The concen-
tration of salmonella bacteria was not taken into ac-
count due to insufficient data. The gross exposures
Li,t = πi,t · Mi,t were obtained as posterior predic-
tive distributions from the existing food chain models
(Ranta & Maijala, 2002; Ranta et al., 2013; Tuomi-
nen et al., 2007) and import model (Tuominen et al.,
2006), which were separately applied to the data from
the years 2008 to 2015. The mean and standard de-
viation of these distributions are presented in Ta-
ble I. Gamma(αi,t , βi,t ) distributions were then fitted
by moment estimation to each distribution of Li,t, and
then used as a prior distribution for Li,t in the source
attribution model.

2.3. Epidemiological Model: Reported Human
Salmonellosis Cases

The reported total number of human salmonel-
losis cases by subtype s due to all studied sources in

year t (Cs,t) was modeled with a Poisson distribution
as an epidemiological model for the population:

Cs,t ∼ Poisson

(
I∑

i=1

λi,s,t

)
, i = 1, . . . , I,

s = 1, . . . , S, t = 1, . . . , T.

The expected value is a sum of the expected
number of human cases due to each source i: λi,s,t =
Li,t · ri,s,t · ai · qs , where s = 1, . . . ,S indicates the dif-
ferent salmonella subtypes detected in any studied
sources in 2008–2015, and parameter Li,t is the gross
exposure (Salmonella spp.) from source i in year t
(see Section 2.2). The parameter ri,s,t indicates the
relative proportion of salmonella subtype s in source
i in year t. The parameters ri,s,t represent the full
set of parameters for the relative proportions (in
a source i) of all listed subtypes isolated from any
studied source; therefore, ri,s,t = ui,Ind[i,s],t � 0. The
index variable Ind[i,s] determines which salmonella
subtype in a full list (vector {r}) corresponds to the
same subtype in a short (source-specific) list of sub-
types (vector {u}). If subtype s has not occurred at
all in a source i during the years 2008–2015, the
indicator variable takes the value of zero, and we
set ui,0,t = 0. The uncertainty related to the short-
listed parameters {u} was modeled in Section 2.1. The
source-specific parameters ai aim to account for the
intrinsic differences between the different sources
in their ability to cause a human salmonella infec-
tion, and the subtype-specific parameters qs similarly
for the subtypes. Conventional uninformative prior
distributions (Exp(0.001)) were assigned to the pa-
rameters ai and qs. If {L} and {r} were fixed, the
number of unknown parameters would be I + S
(source-specific parameters + subtype-specific pa-
rameters), which is larger than the number of data
points (=S) per annum. For a single year, the source-
specific and subtype-specific parameters could not be
freely estimated, even if there were no other un-
known parameters, as discussed in the papers by
David et al. (2013) and Mullner et al. (2009). In this
model, the estimation of ai and qs relies on data ({C})
from a longer time period (2008–2015). Hence, the
number of data points is considerably larger than the
number of unknown parameters (T · S > S + I), and
the estimation of {L} and {r} is separated from this.

2.4. Modular Source Attribution

Given all model parameters, the Poisson model
can be seen as a competing risk model with Poisson
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Table I. Predictive Mean (m) and Standard Deviation (SD) for the Total Amount of Meat Potentially Contaminated with Salmonella spp.
(Li,t) in Thousands of Kilograms from Domestic (dom.) and Imported (imp.) Sources, Based on the Food Chain Models (Not Accounting

for Concentrations)

Meat Type 2008 (m/SD) 2009 (m/SD) 2010 (m/SD) 2011 (m/SD) 2012 (m/SD) 2013 (m/SD) 2014 (m/SD) 2015 (m/SD)

Chicken meat (dom.) 107.6/80.2 355.3/58.9 168.8/96.5 49.6/44.8 49.9/43.3 67.6/55.4 66.1/59.3 65.8/59.0
Turkey meat (dom.) 40.2/26.4 34.7/24.2 26.4/21.2 33.4/23.0 25.7/20.7 21.7/17.8 23.4/19.4 24.3/20.0
Beef (dom.) 21.1/14.6 14.6/13.3 112.9/43.7 63.5/33.5 78.5/31.9 30.3/18.7 59.1/27.8 43.9/26.8
Pork (dom.) 152.8/56.0 154.5/55.0 395.8/154.2 167.2/76.0 277.0/135.5 443.1/439.4 117.1/78.4 133.8/72.2
Chicken meat (imp.) 11.6/5.6 13.1/6.6 15.7/9.8 6.5/3.1 7.8/3.4 11.2/4.0 13.3/4.9 14.2/5.2
Turkey meat (imp.) 3.8/1.7 3.5/1.2 4.9/1.9 2.8/2.2 3.3/2.8 3.0/2.9 2.7/1.2 3.2/1.6
Beef (imp.) 27.4/12.3 27.0/11.9 28.0/34.6 75.2/84.9 93.7/97.9 83.5/80.5 76.8/75.9 66.5/81.8
Pork (imp.) 418.4/162.2 563.2/132.2 1,150.0/354.6 726.6/579.8 407.9/316.0 524.4/181.3 1,042.0/891.2 1,158.0/938.1

Note: Due to large uncertainties, the figures are better compared relative to each other rather than as absolute numbers.

intensities (expected values) for different sources.
The relative share of source i in year t (Yi,t) is then∑S

s=1 λi,s,t/
∑I

i=1

∑S
s=1 λi,s,t , which is a function of the

model parameters. In full Bayesian modeling, the
model works as a whole and information flows freely
throughout the model. The model parameters are
given by the joint posterior distribution, which con-
sists of the data likelihood functions and the priors
(details in Appendix B of the Supporting Informa-
tion):

P({Li,t }, { ui, j,t }, {ai }, {qs}|{Xi, j,t }, {Ni,t }, {Cs,t }, {αi,t },
{βi,t})∝ P({Cs,t }|{ai }, {qs}, {ri,s,t } = f ({ui, j,t }), {Li,t })·
P({Xi, j,t }|{ui, j,t }, {Ni,t }).
({Li,t }|{αi,t }, {βi,t }) · P({ui, j,t }|{w}) · P({ai }) · P({qs})

However, this full model leads to problems
with identifiability between the parameters Li,t,
ri,s,t, ai, and qs because several combinations can
give the same value for the product of these pa-
rameters (expected number of cases). Hence, these
three modules ((1) exposure assessment, (2) sub-
type distributions, and (3) epidemiological model)
were treated as separate modules that do not fully
interact as in full Bayesian inference. This method
is described as modularization (Liu, Bayarri, &
Berger, 2009) in the Bayesian context. It may be
beneficial to keep the different modules partly
separate because the most valid data for estimating
the unknown parameters in modules 1 and 2 are
already inside each module, and hence we do not
necessarily need interaction between modules for
this estimation. The cut function (Plummer, 2015;
Spiegelhalter, Thomas, Best, & Lunn, 2004) pro-
vided in OpenBUGS software (Lunn, Jackson, Best,
Thomas, & Spiegelhalter, 2013; Lunn, Thomas, Best,
& Spiegelhalter, 2000) was used to prevent feedback

from the other modules to modules 1 and 2 but
to allow the information to propagate from these
modules to the epidemiological model (module 3)
and source attribution. This means that parameters
Li,t only depend on parameters αi and β i,t, and
not on other quantities in the model. Respectively,
parameters {u} only depend on {X}, {w}, and {N}, and
not on the other data or parameters in the model
(see Fig. 1). The Poisson mean parameter was conse-
quently written using cut functions: λ∗

i,s,t = cut(Li,t ) ·
cut(ri,s,t ) · ai · qs . The joint posterior distribution
(cut(Li,t ), cut(ui, j,t ), ai , qs |Xi, j,t , Ni,t , Cs,t , αi,t , βi,t )
then differs from the fully connected Bayesian pos-
terior distribution.

The Poisson parameter λ∗
i,s,t describes the ex-

pected number of human cases of subtype s due to
source i in year t. The predicted proportion of the
total burden of domestic human salmonellosis cases
attributed to source i in year t (Yi,t) was then formu-
lated as follows:

Yi,t =
∑S

s=1 cut (Li,t ) · cut (ri,s,t ) · ai · qs∑I
i=1

∑S
s=1 cut (Li,t ) · cut (ri,s,t ) · ai · qs

·

ft =
∑S

s=1 λ∗
i,s,t∑I

i=1

∑S
s=1 λ∗

i,s,t

· ft ,

where the coefficient ft is the annual percentage of all
reported domestic human cases that represented the
same salmonella subtypes that were also found in the
studied sources during 2008–2015 (see Section 2.1.1).
The percentage (1 – ft) of human salmonellosis cases
involving other salmonella subtypes (not previously
seen in any studied source) was attributed to other
unknown sources. The structure of the whole source
attribution model is illustrated in Fig. 1.
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Fig. 1. A directed acyclic graph of the modular Bayesian source attribution model. The full Bayesian model was separated into three
modules using a cut function (provided in OpenBUGS software).

2.5. Data

2.5.1. Salmonella Subtypes in the Sources

The salmonella subtype data were collected from
the studied sources during 2008–2015. All salmonella
isolates from foods (domestic or imported) or living
animals represented subspecies of Salmonella enter-
ica. Isolates of Salmonella enterica subspecies enter-
ica were subdivided into serotypes, and salmonella
serotypes Typhimurium, Enteritidis, and 1,4,[5],12:i
were further subdivided into phage types. The data
set also contained a few isolates of Salmonella en-
terica subspecies diarizoane, which were not further
subtyped but used as their own subtype category in
the source attribution model. According to this cate-
gorization, the total number of different salmonella
subtypes detected in either foods or food produc-
tion animals (chickens, turkeys, cattle, and pigs) dur-
ing the eight-year period was 86, of which 17 were

not detected in humans over the years 2008–2015.
Isolates from food and from the corresponding food
production animals were combined due to the lack
of data for more refined grouping. In this data set,
54 of 86 salmonella subtypes were uniquely detected
in one source. The remaining 32 salmonella subtypes
were detected in two or more sources. The number
of unique subtypes according to the source is pre-
sented in Table II. The salmonella subtypes Enter-
itidis 3, Infantis, Tennessee, and Typhimurium 120
were detected in four different sources, which was
the maximum number of sources for a single sub-
type in this data set. The salmonella subtype data set
is presented as a whole in Appendices C–E of the
Supporting Information. In addition, a minor num-
ber of Salmonella enterica subspecies enterica isolates
were not further subtyped due to an unknown rea-
son. Thus, these observations had to be ignored in
the estimation of subtype distributions. The data sets
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Table II. The Total Number of Salmonella Subtypes and the
Total Number of Unique Subtypes Derived from Domestic

(dom.) and Imported (imp.) Sources

Source of Exposure Unique Subtypes

Total
Number of
Subtypes

Chicken (dom.) 2 6
Turkey (dom.) 1 5
Beef (dom.) 9 28
Pork (dom.) 4 16
Chicken (imp.) 9 22
Turkey (imp.) 10 19
Beef (imp.) 3 11
Pork (imp.) 16 27

presented in Appendices C–E of the Supporting In-
formation do not offer information on the absolute
prevalence of salmonella in the different sources of
exposure because the sample sizes are unknown and
may vary considerably between sources and years.

2.5.2. Salmonella Subtypes in Humans

Diagnosed human salmonella infections are
recorded in the Finnish National Infectious Diseases
Register (2018). The domestic cases were separated
into their own category to be used in the source
attribution. A salmonella case is considered to be
of domestic origin if the patient has not traveled
abroad during the two-week period before the ill-
ness. Otherwise, it is classified as a foreign acquisi-
tion. Salmonella isolates derived from humans were
also subtyped (Huusko et al., 2017; Peters et al., 2017)
to be able to compare subtype distributions between
humans and sources.

A total of 2,767 domestic salmonellosis cases
were registered during 2008–2015 (395, 338, 345, 338,
407, 337, 295, and 312, respectively). In total, 67.1%
of the reported human salmonellosis cases (66.3%,
71.9%, 55.7%, 57.1%, 77.4%, 67.1%, 70.8%, and
68.6%, respectively) were confirmed to represent
salmonella subtypes that had also been found in one
or more of the studied sources during 2008–2015. The
data set included a small number of salmonella iso-
lates from humans (2008: 4, 2009: 4, 2010: 6, 2011:
2, 2012: 4, 2013: 4, 2014: 3, 2015: 8) that repre-
sented Salmonella enterica subspecies enterica, but
the phage type or serotype and phage type of these
observations were unknown. These isolates were at-
tributed to an unknown source. The total number
of domestic sporadic human salmonellosis cases that

represented the same salmonella subtypes as find-
ings from the studied sources during 2008–2015 was
1,711 (202, 215, 188, 172, 310, 219, 209, 196) when
each confirmed outbreak was included in the data set
as an index case (see Appendix F of the Supporting
Information). Of these subtypes, the most common
in humans were Typhimurium 1 and Typhimurium
NST, which together amounted to over 100 re-
ported sporadic cases during the eight-year period
(2008–2015).

3. RESULTS

3.1. MCMC Computation

The computation of the models was performed
using OpenBUGS software (Lunn et al., 2000,
2013). The models were run for 50,000 iterations
after the burn-in phase of 10,000 iterations, in
which the convergence of the MCMC chains was
achieved.

3.2. Estimated Distribution of Salmonella Subtypes
in the Sources

The size of the subtype data set was very limited
for several of the studied sources. For example, the
subtype data sets related to domestic poultry meat
included some years completely without salmonella
isolates (see Appendices C and D of the Supporting
Information), and the total numbers of observa-
tions during the eight-year period were only 16
for chicken and seven for turkey. As an example,
the posterior mean and 95% credible interval, as
well as the sample-based prior mean and the 95%
credible interval, for the occurrence of the different
salmonella subtypes in domestic chicken meat are
presented in Fig. 2. Each year, the sample-based
prior distribution takes a unique form depending on
the subtype data for other years of the surveillance
period. In 2012 and 2014, the posterior distribution
equals the sample-based prior distribution because
the annual data set did not provide any information
on the occurrence of salmonella subtypes in chicken
meat (i.e., no positives were found). The weight of
each prior distribution was set to be equal to one
observation in order to avoid the prior distribution
being too dominant compared to the annual subtype
data sets. For 2008, 2011, and 2013, the subtype data
set for chicken meat only consists of one observation.
Hence, the sample-based prior distribution and data
have the same contribution to the resulting posterior
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Fig. 2. The annual percentages of different
subtypes (X1, j,t/

∑Ji
j=1 X1, j,t ) detected from

domestic chicken meat (data) and the sample-
based prior, as well as the posterior mean and
95% credible interval for the proportion of dif-
ferent salmonella subtypes in domestic chicken
meat ({u1}). The annual sample sizes (number
of positives) are denoted with n.

distribution. The subtype sample size for chicken
meat was greatest in 2009, when eight salmonella
isolates in total were detected. In that case, the main
contribution to the posterior distribution came from

the observed data of the year. Hence, the occurrence
of the unseen subtypes (Albany, Cerro, and Ten-
nessee) in 2009 was estimated to be very small, but
higher than zero. The effect of the sample size on
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Fig. 3. The posterior mean for the annual propor-
tion of different salmonella subtypes in each of the
sources ({ui.t}). Domestic sources are denoted with d
and imported sources with i.

the width of the posterior 95% credible interval can
be seen in Fig. 2. Even one observed isolate (in 2008,
2011, and 2013) markedly narrows the posterior 95%
credible intervals because the prior distributions are
only weakly informative.

The posterior means for the annual proportion
of the different salmonella subtypes in all sources
({ui,t}) are illustrated in Fig. 3. Annually occurring
salmonella subtypes can be seen in both domestic
and imported sources. For example, the estimated
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proportion of salmonella subtype Livingstone of all
salmonella subtypes in domestic chicken meat re-
mained relatively high over the entire study period
(2008–2015).

3.3. Source Attribution

The source attribution of the reported human
salmonellosis cases from 2008 to 2015 was conducted
by using the modular Bayesian model presented in
Section 2.4. The estimated share for each source of
the reported salmonella disease burden obtained
with these methods is presented in Table III. An-
nually, from 55.7% to 77.4% (ft) of the human
cases represented the same salmonella subtypes as
isolates found in some of the studied sources during
the eight-year period. The rest of the cases (1 – ft)
were attributed to unknown sources. The proportion
(eight-year average of posterior means) of the total
salmonella disease burden attributed to different
sources was estimated to be: 14.4% domestic beef,
9.8% imported turkey meat, 10.4% imported pork,
9.3% domestic pork, 9.9% imported chicken meat,
5.7% imported beef, 5.2% domestic turkey meat,
2.2% domestic chicken meat, and 33.1% all other
sources.

A minor change in the source attribution re-
sults was seen if the type-specific parameters were
omitted from the model. The average difference in
the results (eight-year averages of posterior means)
between these two approaches was around 0.6 per-
centage units. The difference was moderately higher
(2.9 percentage units) if the source-specific param-
eters were omitted, and considerably higher (8.7
percentage units) if both parameters were omitted.
The average (all sources and years) width of the 95%
credible intervals for the relative proportions was
around 23 percentage units with the whole model.
No major difference in the average width of the
credible intervals was observed between these three
options (both parameters included or one omitted).
However, the average width of the 95% credible
intervals was smaller (13.9 percentage) if both
parameters were omitted. The estimated temporal
trends in the contribution of the different sources
obtained with the whole (both parameters included)
modular source attribution model are illustrated in
Fig. 4, and the uncertainty related to these results
is presented in Table III. The posterior means for
the predicted number of human salmonellosis cases
by subtype (all years and sources combined) were
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Fig. 4. Posterior mean for the predicted relative proportion of the total number of human salmonellosis cases attributed to each of the
sources. The results were obtained with the modular Bayesian model. Domestic sources are presented in (a) and imported sources in (b).
The sum of all eight proportions in each year is less than 100% because a share (1 – ft) of the annual cases was attributed to an unknown
source.

Fig. 5. Predicted (posterior mean) versus observed number
of cases for salmonella subtypes. Cases summed over years
(
∑T

t=1 Cs,t ) are represented by dots, and 95% credible intervals
for the predicted cases (

∑I
i=1

∑T
t=1 λ∗

i,s,t ) are shown in the vertical
gray lines.

relatively close to the observed number of human
cases, as can be seen in Fig. 5.

The posterior mean as well as the 95% credible
interval for the source-specific parameters obtained

with the modular model are presented in Fig. 6. The
value of the source-specific parameter was estimated
to be higher for imported turkey meat and imported
chicken meat than for other studied sources. Minor
changes in the ranking of the source-specific parame-
ters were observed if the subtype-specific parameters
were omitted from the model.

The highest posterior mean for the subtype-
specific parameters obtained with the full model
was for Enteritidis 8, followed by Newport, Enter-
itidis 1b, Enteritidis 1, and Virchow. All of these
salmonella subtypes were relatively common in hu-
mans during the surveillance (see Appendix F of
the Supporting Information). The lowest posterior
means for the subtype-specific parameters were for
Paratyphi B var. Java, Typhimurium 46, Minnesota,
Altona, and Tennessee, respectively. The posterior
means as well as the 95% credible intervals for all
subtype-specific parameters are illustrated in Fig. 7.

4. SENSITIVITY ANALYSIS

4.1. Prior Choice

The improper prior distribution presented in
Section 2.1 was used as another prior choice for
multinomial parameters ({u}). However, only a negli-
gible change in the subtype distributions as well as in
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Fig. 6. The posterior mean and 95% credible interval for the source-specific parameters ai obtained with the modular Bayesian model.

the results of the source attribution was observed due
to this modification. The greatest single difference
was 0.7 percentage units (percentual change 14.0%),
when the proper prior distribution provided a higher
share than the improper prior distribution for domes-
tic chicken meat in 2012 (combined approach). The
average difference (all sources and years) between
these two options was only 0.2 percentage units (per-
centual change 2.8%). As both priors correspond to
the weight of a sample size of one, only a small dif-
ference is expected.

4.2. Number of Possible Subtypes

The total collection of possible salmonella sub-
types deemed possible in each of the sources is an
issue that cannot be avoided in any source attribu-
tion approach. In this model, it was assumed that all
salmonella subtypes isolated from a particular source
in the long term (2008–2015) are possible, but other
subtypes were ruled out from this source. The ef-
fect of this choice was studied by assuming that all
salmonella subtypes (86 subtypes in total) derived
from any of the studied sources are possible in all
eight sources, that is, all subtypes have a positive
probability of occurring in all studied sources. In this
case, it is necessary to use a proper prior distribution
because several salmonella subtypes of all the listed
subtypes (86 subtypes) represented zero counts in the
whole source-specific data sets. Thus, an improper
prior distribution would lead to an improper poste-
rior distribution for the multinomial parameters. The

proper prior distribution for the multinomial param-
eters was constructed in a similar manner to the de-
fault model presented in Section 2.1. The results of
the source attribution obtained with this alternative
assumption are presented in Table IV. The average
difference in results (eight-year averages of poste-
rior means) between the default model and this al-
ternative assumption was 2.6 percentage units. The
largest relative proportion of the human cases was re-
lated to domestic beef, as observed with the default
model (more limited number of possible subtypes).
The contributions (eight-year averages) of the dif-
ferent sources were as follows: domestic beef 10.9%,
imported beef 9.3%, imported pork 8.8%, domestic
pork 8.5%, imported chicken meat 8.5%, domestic
turkey meat 8.1%, imported turkey meat 6.6%, and
domestic chicken meat 6.2% The difference between
the sources was estimated to be much smaller com-
pared to the default model.

Both assumptions provided a significantly higher
value of the source-specific parameter for imported
turkey meat and chicken meat than the other sources.
The subtype-specific parameter was estimated to be
the largest for Typhimurium 1 (sixth-largest with de-
fault model), followed by Enteritidis 8 (largest with
default model) and Newport (second-largest with de-
fault model). In general, small changes in the ranking
of the other source-specific as well as subtype-specific
parameter were observed when these two assump-
tions were compared. No marked difference was seen
in the average width (all sources and years) of the
credible intervals for the proportion of human cases
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Fig. 7. The posterior mean and 95% credible interval for the subtype-specific parameters qs obtained with the modular Bayesian model but
without outbreak-related cases (each outbreak was included in the data set as an index case only). The salmonella subtypes in the model
were: (1) Diarizoane, (2) Aarhus, (3) Agona, (4) Albany, (5) Altona, (6) Anatum, (7) Bardo, (8) Benfica, (9) Berta, (10) Bovismorbificans,
(11) Brandenburg, (12) Bredeney, (13) Cerro, (14) Coeln, (15) Corvallis, (16) Derby, (17) Dublin, (18) Eastbourne, (19) Enteritidis 1,
(20) Enteritidis 1b, (21) Enteritidis 3, (22) Enteritidis 4, (23) Enteritidis 6, (24) Enteritidis 6b, (25) Enteritidis 7, (26) Enteritidis 8, (27)
Enteritidis 21, (28) Enteritidis 33, (29) Enteritidis NST, (30) Goldcoast, (31) Hadar, (32) Haifa, (33) Heidelberg, (34) Houston, (35) Indiana,
(36) Infantis, (37) Javiana, (38) Kentucky, (39) Kisarawe, (40) Konstanz, (41) Livingstone, (42) London, (43) Mbandaka, (44) Minnesota,
(45) Montevideo, (46) Muenchen, (47) Newport, (48) Panama, (49) Paratyphi B, (50) Paratyphi B var. Java, (51) Rissen, (52) Saintpaul,
(53) Schwarzengrund, (54) Stanley, (55) Stockholm, (56) Tennessee, (57) Typhimurium 1, (58) Typhimurium 2, (59) Typhimurium 12, (60)
Typhimurium 40, (61) Typhimurium 41, (62) Typhimurium 46, (63) Typhimurium 104, (64) Typhimurium 104b, (65) Typhimurium 120,
(66) Typhimurium 126, (67) Typhimurium 135, (68) Typhimurium 193, (69) Typhimurium 195, (70) Typhimurium 208, (71) Typhimurium
NST, (72) Typhimurium NT, (73) Typhimurium U277, (74) Typhimurium U302, (75) Typhimurium U311, (76) Uganda, (77) Virchow, (78)
Worthington, (79) 1,4,5,12:i 22, (80) 1,4,5,12:i 99, (81) 1,4,5,12:i 104b, (82) 1,4,5,12:i 120, (83) 1,4,5,12:i 193, (84) 1,4,5,12:i 195, (85) 1,4,5,12:i
NT, (86) 1,4,5,12:i U302.

attributed to different sources when these two as-
sumptions were compared (default model 23.4 vs. al-
ternative model 23.5 percentage units).

4.3. Outbreaks

Source attribution was conducted by using only
sporadic human salmonellosis cases (only one index
case per confirmed outbreak was included). How-
ever, Finnish register data routinely include both
sporadic and outbreak-related human salmonellosis
cases. The effect of the outbreak cases on the at-
tribution results as well as on the estimation of the
source-specific and subtype-specific parameters was
examined in a separate run by including all (sporadic
and outbreak-related) human salmonellosis cases in
the model. The domestic outbreaks that represented
the same salmonella subtypes as findings from stud-
ied sources are presented in Table V.

The effect of the outbreak-related cases on the
attribution results was negligible. The average differ-

ence in the source attribution results was only around
0.6 percentage units (eight-year averages of posterior
means) when these two options were compared. The
change only exceeded 1 percentage unit for imported
turkey (1.8 percentage unit increase). The average
width (all sources and years) of the credible intervals
for the proportion of human cases attributed to dif-
ferent sources remained almost identical in compar-
isons (all cases 23.4 vs. sporadic cases 23.3 percent-
age units). Only a small change was observed in the
ranking of the source-specific, as well as the subtype-
specific, parameters. The average length of the cred-
ible intervals for both the source-specific and the
subtype-specific parameters slightly increased when
outbreak-related cases were included in the data set.

5. DISCUSSION

The combined salmonella source attribution
method is based on a synthesis of the micro-
bial subtyping and comparative exposure assessment
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Table V. Salmonella Outbreaks that Represented the Same
Salmonella Subtypes as Findings from Studied Sources in Finland

During the Years 2008–2015 (Infectious Diseases in Finland,
2018)

Year Serotype Phage Type

Number of
Outbreak-

Related
Cases in the

Register

Number of
Registered

Cases

2008 Newport 61 72
2009 Bovismorbificans 29 34
2010 Typhimurium 1 5 60
2011 1,4,5,12:i:- 195 22 25
2012 Agona 6 33
2013 Typhimurium 135 8 10
2015 Newport 19 27

Note: Outbreaks with weak evidence were ignored.

approaches. Previous studies have emphasized the
importance of including source-specific as well as
subtype-specific parameters in the source attribution
model (David et al., 2013; Hald et al., 2004; Mullner
et al., 2009). However, the identification of all model
parameters has proved to be impossible without ad-
ditional constructions, even when an extensive an-
nual data set is available (David et al., 2013; Mullner
et al., 2009).

In our method, data from multiple years were ex-
ploited, and the full Bayesian model was modular-
ized into three parts (exposure assessment, subtype
distribution, and epidemiological model) for sepa-
rate estimation of the unknown model parameters
in each module to avoid identifiability issues with
the parameters in the multiplicative expressions of
the Poisson mean. The advantage of this model com-
pared with the Hald model (Hald et al., 2004) and its
modifications (David et al., 2013; Mullner et al., 2009)
is that source-specific as well as subtype-specific pa-
rameters can be freely estimated without additional
constraints. The modularization technique has not
previously been used in source attribution. However,
it was seen as reasonable because the most valid in-
formation to estimate the unknown parameters was
available inside each module. This model can also
be easily connected as an extension to a production
chain model to take into account the uncertainty re-
lated to the gross exposure (Salmonella spp.) from
different sources. However, more direct information
on the exposure of consumers can also be used in the
model if such dietary data are available.
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Uncertainty related to the distribution of
salmonella subtypes is also crucial to take into
account because an insufficient annual data set
does not accurately describe the true occurrences
of salmonella subtypes in different sources. Some
source attribution models have included uncertainty
in the estimation subtype distributions, but it would
have been impossible to apply any of the previous
models to this type of subtype data set because of the
extremely limited and sparse annual data sets. For
instance, the subtype data set for domestic turkey
included less than one observation per year on
average, and several years were completely without
positive isolates. This model works without external
prior information, but observations are required
from several years in order to estimate the annual
subtype distribution with better quality by borrowing
strength across the different years.

According to the results, the largest relative
proportion (eight-year average) of human salmonel-
losis cases was attributed to domestic beef and the
second largest to imported turkey. This result is
explained by the distribution of salmonella subtypes
rather than gross exposure. The gross exposure
from domestic beef was not particularly large, and
only minor from imported turkey. However, a wide
selection of salmonella subtypes was detected in
these sources during the surveillance. In addition,
the salmonella subtype Newport (the second most
prevalent of the human subtypes that were also de-
tected in the sources), with the largest value for the
subtype-specific parameters, was uniquely iso-
lated from imported turkey, and the subtypes
Typhimurium 1 and Typhimurium NST (respec-
tively, the most prevalent and third most prevalent
of the human subtypes that were also detected in
the sources) were estimated to be relatively common
in domestic beef. The source-specific parameter for
imported turkey was also estimated to be the highest
of all source-specific parameters. The largest gross
exposure was related to imported pork. In addition,
a wide selection of salmonella subtypes (28) and
the highest number of unique subtypes (16) were
detected in imported pork. However, the share of
imported pork from the total number of disease cases
was estimated to be only the third largest (eight-year
average 10.5%) because of the differences in subtype
distributions between humans and imported pork.
In the data set, three of 16 subtypes that were
unique to imported pork represented zero counts in
the human data set over the years 2008–2015. The
source-specific parameter for imported pork was

also estimated to be the smallest of all source-specific
parameters. The smallest proportion of disease cases
was attributed to domestic chicken meat (eight-year
average 2.0%). Only a small selection of salmonella
subtypes (6) was detected in this source over the
eight-year period, and these subtypes, excluding
salmonella subtype Infantis, were not particularly
common in humans. Salmonella subtype Infantis
accounted for almost 100 human cases during the
surveillance, but there were also several other
potential sources for these cases. The source-specific
parameter for domestic chicken meat was estimated
to be the second smallest of all source-specific
parameters.

Human salmonellosis cases with salmonella sub-
types that were not isolated from the studied sources
during the surveillance were attributed to an un-
known source. The category “unknown source” in-
cluded other foods (e.g., vegetables), as well as all
other possible sources of human salmonella infec-
tions. Nevertheless, the category “unknown source”
may include subtypes that were also isolated from the
studied sources, while some subtypes truly present
in the studied sources may not have been detected.
This is an issue that cannot be entirely avoided due
to the evidence regarding all existing distinct reser-
voirs of human infections always being incomplete.
However, the total collection of possible subtypes
that may occur in the studied sources needs to be
defined or estimated in all source attribution mod-
els that exploit the microbial subtyping approach. In
this model, the total number of possible subtypes per
source was taken to be the total number of different
salmonella subtypes isolated from that source dur-
ing 2008–2015. Another option was examined by as-
suming that all salmonella subtypes isolated from any
source have a positive probability of occurring in all
sources. A considerable difference in the source at-
tribution results was seen when these two assump-
tions were compared. Comparison of the results
presented in Tables III and IV indicated that the
contribution of the sources with a small selection of
different observed subtypes (domestic chicken and
turkey meat) increases when all 86 salmonella sub-
types have a positive probability of occurring in all
sources. The weakness of the alternative assumption
(all subtypes are possible in all sources) is that a huge
amount of probability mass falls on salmonella sub-
types that have not been detected at all in the partic-
ular sources over the eight-year period, and some of
the subtypes are considered to be implausible accord-
ing to expert judgment. At the extreme, almost 90%
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(eight-year average 89.5%) of the probability mass
for the subtype distribution of domestic turkey meat
falls on salmonella subtypes that were not detected
in domestic turkey meat at all.

In Finland, register data routinely include all
(sporadic and outbreak-related) human salmonel-
losis cases. The effect of salmonella outbreaks on the
source attribution results was examined by including
outbreak-related cases in the data set. The results
hardly changed because the number of outbreaks
was relatively low (around one per year) and some
of them were relatively small. In addition, as the
source-specific and the subtype-specific parameters
were estimated based on data from multiple years,
single-year outbreaks had a smaller effect on the
estimation.

This source attribution model only exploits
phenotypic typing data (serotypes and phage types)
like the majority of previous salmonella source attri-
bution models. However, more advanced molecular
typing methods such as whole genome sequencing
are already available. Salmonella source attribution
models are also moving toward exploiting more
accurate typing data (Barco, Barrucci, Olsen, &
Ricci, 2013; Mughini-Gras et al., 2018). These meth-
ods may take into account bacterial evolution and
aim to find a correlation between the molecular
typing of human isolates and isolates derived from
the sources. More accurate attribution could then
possibly be conducted, but the determination of
the acceptable level of correlation may be difficult.
A future challenge is the exploitation of molecular
typing data together with phenotypic typing data.
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line in the Supporting Information section at the end
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