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Abstract 

The loss of ozone to terrestrial and aquatic systems, known as dry deposition, is a highly 

uncertain process governed by turbulent transport, interfacial chemistry, and plant 

physiology. We demonstrate the value of using Deep Neural Networks (DNN) in 

predicting ozone dry deposition velocities. We find that a feedforward DNN trained on 

observations from a coniferous forest site (Hyytiälä, Finland) can predict hourly ozone 

dry deposition velocities at a mixed forest site (Harvard Forest, Massachusetts) more 

accurately than modern theoretical models, with a reduction in the Normalized Mean 

Bias (0.05 vs. ~0.1). The same DNN model, when driven by assimilated meteorology at 

2°x2.5° spatial resolution, outperforms the Wesely scheme as implemented in the GEOS-

Chem model. With more available training data from other climate and ecological zones, 

this methodology could yield a generalizable DNN suitable for global models.  

Plain Language Summary 

Ozone in the lower atmosphere is a toxic pollutant and greenhouse gas. In this work, we 

use a machine learning technique known as “deep learning”, to simulate the loss of 

ozone to earth’s surface. We show that our deep learning simulation of this loss process 

outperforms existing traditional models, and demonstrate the opportunity for using 

machine learning to improve our understanding of the chemical composition of the 

atmosphere.   
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1. Introduction 

The uptake of atmospheric ozone (O3) at the Earth’s surface, commonly referred to as 

dry deposition, is a key process controlling the concentration of ozone in the lower 

atmosphere. On the global scale, dry deposition is responsible for 20-25% of all ozone 

loss in the troposphere (Lelieveld & Dentener, 2000). As exposure to surface ozone is 

globally responsible for 250,000 premature deaths per year (Cohen et al., 2017), and 

tropospheric ozone is a short-lived greenhouse gas which contributes ~20% of the 

radiative forcing of CO2 (IPCC, 2013), it is important to understand the processes 

contributing to the lifetime and distribution of ozone in the troposphere.  

In nature, dry deposition varies with changes in turbulent transport, surface chemistry, 

and plant physiology, though this complexity is challenging to describe on relevant 

spatial scales with current generation models (Wesely & Hicks, 2000; Wu et al., 2018). 

Instead, models typically calculate dry deposition as a linear function of concentration 

and a transfer velocity: 

𝐹 = −𝑉𝑑[𝑂3] 

Where F is the total flux out of the atmosphere (negative indicating a downward flux), 

Vd is the “dry deposition velocity” and [O3] is the ozone concentration in the lowest 

layer of the atmosphere.  

Modern parameterizations for calculating Vd are all largely based on a “resistor-in-

series” framework as in Wesely (1989) (Hardacre et al., 2015). This resistor analogy 

attempts to parameterize the complex nonlinear processes governing dry deposition 

based on observed relationships, turbulent transport theory, heuristic assumptions 

regarding plant physiology, and a set of a priori estimated look up table values (e.g. 
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Zhang et al., 2002). The continuous development of these models has led to them 

becoming highly parameterized, and the large number of lookup table values and 

approximations within them limits their physical interpretability. Despite these 

elaborate parameterizations, recent work has shown that global models which use 

these schemes struggle to reproduce observations to within a factor of 1.4 (Clifton et al., 

2016; Hardacre et al., 2015; Silva & Heald, 2018).  

These current generation parameterizations of ozone dry deposition are conceptual and 

empirical schemes that do not directly represent the physics of the process. Thus, a 

machine learning solution potentially offers an effective alternative to improve dry 

deposition velocity predictions, with little loss of process-based knowledge. Machine 

learning methods have gained popularity in recent years as high quality methods to 

make rapid and accurate predictions from data in the earth and environmental sciences. 

Keller and  Evans (2018) demonstrate the potential of using a Random Forest algorithm 

to replace gas-phase chemistry in a global chemical transport model. Nowack et al. 

(2018) use a Ridge regression technique to linearly parameterize ozone-temperature 

relationships for climate models, and find that their machine learning model can predict 

global ozone fields quite well at a fraction of the computational cost of traditional non-

parameterized methods. Rasp et al. (2018) demonstrate the value of deep learning in 

predicting highly nonlinear subgrid processes in climate models, wherein their DNN 

produces consistent results 10 times faster than traditional models. In this work, we 

explore how a machine learning approach can be applied to the simulation and 

prediction of Vd, specifically focusing on the use and application of DNNs due to 

successful applications of the method in a computationally efficient manner. We further 

justify our machine learning model choice in section 4.3.  
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In this work we present the first parameterization of ozone dry deposition velocities 

using a DNN. We train a model using data from a coniferous forest site in Hyytiälä, 

Finland, and evaluate the model fidelity against observations at the largely deciduous 

Harvard Forest in the northeastern United States.  

2. Data Sources 

Two datasets of Vd were used in this work, observations at Hyytiälä Forest in southern 

Finland, and at Harvard Forest in the northeastern United States. 

The Hyytiälä Forest site is part of the SMEAR II research station (Keronen et al., 2003; 

Zhou et al., 2017; https://www.atm.helsinki.fi/SMEAR/). The site is located in a 

coniferous boreal forest with a climate characterized by cold winters and mild humid 

summers. The ozone dry deposition velocity data record (Junninen et al., 2009; 

https://avaa.tdata.fi/web/smart/smear) used in this work extends from 2001-2013, 

with observations averaged to hourly intervals (Rannik et al., 2012). This results in 

55995 total observations of Vd and associated meteorological and physical parameters 

for model development. This is the primary dataset used for model training, validation, 

and testing in this study.  

The Harvard Forest data were collected at the Harvard Forest Environmental 

Measurements Site is a component of the Harvard Forest LTER and part of the 

AmeriFlux network. It is surrounded by a mixed deciduous/coniferous forest (Munger 

et al., 1996; Munger & Wofsy, 2018; http://harvardforest.fas.harvard.edu). The climate 

is similar to Hyytiälä, except summers are warmer, and winters more mild. The data 

record used here is from 1992-2005, with observations at an hourly time resolution. 

https://www.atm.helsinki.fi/SMEAR/
https://avaa.tdata.fi/web/smart/smear
http://harvardforest.fas.harvard.edu/
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This dataset contains 38363 observations that we use as a test for model 

generalizability in Section 4.2. 

We trained the models in this work using surface observations common to both sites: 

wind speed, sensible heat flux, air temperature, relative humidity, photosynthetically 

active radiation, and time (month and hour). 

3. Deep Learning 

The deep learning model was developed and trained with open source software in the R 

programming language, using the Keras API (keras.io, Chollet & others, 2015) and the 

TensorFlow libraries (Martín Abadi et al., 2015; http://tensorflow.org), all facilitated by 

the RStudio Interface to Tensorflow (Chollet & Allaire, 2018), 

https://tensorflow.rstudio.com). The model we used in this work was a so-called 

“Multilayer Perceptron” or “Feedforward Deep Neural Network” category of machine 

learning models, as they are the most basic form of DNNs.  

Deep Neural Networks consist of interconnected layers that transform the input data 

(here, environmental parameters) into the desired output (ozone dry deposition 

velocities). Each layer consists of a number of nodes, which is a weighted sum of the 

output values of the previous layer plus a bias term, all within a nonlinear function 

known as an activation function. The weights and the bias within each node are the 

values that are optimized by model training, using a method known as stochastic 

gradient descent, by iterating on small samples (batches) of data for a given number of 

iterations (epochs). The activation function is used in part to improve the ability of the 

DNN to capture nonlinearities within the data. For a DNN such as the one used here, the 

total number of trainable parameters per layer is calculated as (n+1)m, with n weights 

http://tensorflow.org/
https://tensorflow.rstudio.com/


 

 
© 2018 American Geophysical Union. All rights reserved. 

(equal to the number of inputs to the layer) plus one bias term repeated m times (equal 

to the number of outputs from the layer). We describe our selection process for the 

hyperparameters (number of nodes and layers, activation function, etc) in the following 

section. For more details on deep learning, see Goodfellow et al. (2016). 

3.1 Hyperparameter Selection and Dataset Preprocessing 

In designing DNNs, there are many preprocessing decisions that need to be made prior 

to training the model, and no common set of rules or heuristics governing the decision 

making process (Goodfellow et al., 2016; Islam & Murase, 2001). In general, we focus on 

keeping the number of free and tunable parameters in our model as small as possible, as 

opposed to optimizing every detail. 

We use the RMSprop stochastic gradient descent optimizer (Tieleman & Hinton, 2012) 

in this work, with the Keras default parameters (Chollet & others, 2015). For these 

default parameters, the initial learning rate was set to 0.001, the decay factor used was 

0.9, and no gradient clipping was applied to the norm or the absolute gradient value. 

This optimizer improves performance over a basic stochastic gradient descent method, 

without adding substantial computational overhead (Goodfellow et al., 2016; Tieleman 

& Hinton, 2012). The batch size used for training was 64, which was an empirically 

chosen as a tradeoff between computational speed and model convergence. We used a 

rectified linear unit (ReLU) nonlinear activation function (Glorot et al., 2011) due to 

both its accelerated convergence over traditional (e.g. sigmoidal) activation functions, 

appropriateness for neural network regression of a real valued number (real valued 

output), and its popularity in the literature (Chollet & Allaire, 2018). We additionally 

add 20% dropout to each layer for each epoch to reduce model overfitting (Chollet & 
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Allaire, 2018). The loss metric to be minimized is the Mean Squared Error (MSE), which 

is typical for DNN continuous real number regressions.  

We use a simple heuristic to bound the number of layers in the neural network by the 

number of iterations that an independent regression may need to obtain convergence 

(less than 10% error). For this purpose, we use an iterative “boosted” linear model from 

the XGBoost library (Chen & Guestrin, 2016). A boosted model is a machine learning 

algorithm that iteratively reduces bias in a model estimate. We investigated the 

improvement of the boosted model with each additional iteration, using the 

observations at Hyytiälä Forest. Once the MSE of the boosted model improved by less 

than 10%, we selected that iteration number as the number of layers in our model. For 

the Hyytiälä Forest dataset, that number was 3.  

We posit that the number of nodes in the each layer of the network (neurons) must be 

at most as many as the number of independent and orthogonal dimensions within the 

dataset (Angus, 1991; Seuret et al., 2017).  While it is possible to estimate independence 

in a variety of ways, we simply choose the number of significant principal components 

as the number of independent dimensions (Seuret et al., 2017). This is because the 

dimensionality of the optimum estimate for a linear model is its principal components, 

and a non-linear model for the same estimation problem must admit fewer dimensions 

(Jain et al., 2000).  In this case, more than half of the variance was explained with the 

first 16 eigenvalues, and more than 90% explained with the first 32. We chose 16 in this 

work to keep the total number of trainable parameters a full order of magnitude lower 

than the size of the training dataset. 

We normalize all the data to have mean of zero and standard deviation of one using the 

mean and standard deviation of the test (Hyytiälä Forest) data, as is typical to ensure 
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that model parameters are well behaved during the training and to improve 

convergence (Goodfellow et al., 2016). Once the data are processed by the DNN, the 

output is rescaled for interpretation.  

4. Results and Discussion 

4.1 Model Training 

The model was trained for 500 epochs (iterations of a batch of data) using the 

specifications in section 3 on observations from the Hyytiälä Forest dataset. Following 

typical DNN training and evaluation techniques (Chollet & Allaire, 2018; Hastie et al., 

2001), we randomly split the dataset into training (70%), validation (10%), and test 

(20%) subsets. The model parameters were trained using the training dataset and both 

hyperparameter selection and overfitting is assessed by evaluating the trained DNN on 

the independent validation subset. If the DNN performs substantially better on the 

training data as compared to the validation data, it is likely that the model is overfit. 

Using this method, we tuned the hyperparameters to what is summarized in section 3. 

Once satisfactory performance was achieved on the training and validation sets, a final 

evaluation was completed using the test subset of data. Model summary statistics are 

shown in Table 1, with the MSE, correlation, and the normalized mean bias (NMB). 

Broadly, the DNN model is trained to capture the majority of the variability in the 

training dataset, and reduces the mean disagreement between the model and 

observations to near zero. From Table 1, it is apparent that the validation dataset 

evaluation statistics are very similar (within 0.01) to those of the training dataset, 

consistent with little overfitting. As expected, the model errors on the training and 

validation datasets are more optimistic than the test dataset (Hastie et al., 2001), 

however the results are still quite good compared to other models of ozone dry 
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deposition velocities. Over similar mixed forests, current models of dry deposition have 

NMB of ~0.1 to 0.4 (Wu et al., 2018), higher than the test data performance of this 

model. 

 
MSE R NMB 

Training 0.02 0.82 0.04 
Validation 0.02 0.81 0.05 
Test 0.07 0.56 0.05 

 

Table 1. Summary Statistics for the DNN model of Hyytiälä Forest ozone dry deposition 

velocities, including the mean squared error (MSE), Pearson correlation coefficient (R), 

and normalized mean bias (NMB).  

4.2 Model Generalizability 

The DNN model applied to the Hyytiälä test data has predictive skill, with performance 

as good or better than many theoretical parameterizations (Silva & Heald, 2018; Wu et 

al., 2018). However, the overall generalization error (error on the test set) of the DNN 

model as it applies to all mixed forests similar to Hyytiälä is likely underestimated in 

this situation because all of the data are not i.i.d. (independent and identically 

distributed random variables). In time series data from natural dynamical systems like 

ozone dry deposition velocities, the test data are not fully independent from the training 

data, even when randomly sampled. In this case, an improved test for the generalization 

of the DNN model is to use a source of data observed at a different location. We use 

observations at the Harvard Forest site for this purpose.  

We evaluated the model trained in section 4.1 on the observations at the Harvard Forest 

site (1992-2005). Monthly average deposition velocities are shown in Figure 1 for the 

observations and the DNN.  Broadly, the DNN reproduces the observations well, 
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indicating that the model is generalizable. The general seasonal variability is captured 

by the DNN, with an overall hourly correlation of 0.35 (0.5 in the summer months, 0.2 in 

the winter). This correlation is higher than many global models (Silva & Heald, 2018) 

but 5-10% lower than current generation point models (Wu et al., 2018). The bias of the 

DNN is relatively very small, with the absolute NMB ~0.1. This is as good or better than 

most current generation models and much higher than global models (Hardacre et al., 

2015; Silva & Heald, 2018; Wu et al., 2018).  

 

Figure 1.  Monthly average Vd over Harvard Forest from 1992-2005. Observations are in 

black, and the DNN is in blue. The shaded regions represent ±1 standard deviation 

across years.  
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4.3 Comparison with Other Models 

While machine learning parameterizations are currently interesting and novel 

methodological approaches, that alone does not warrant their use. Since DNNs are 

fundamentally “black box” models that lack interpretability, their use needs to be 

justified further than purely a demonstration of predictive skill. We justify the added 

value in using a DNN by comparison with several more interpretable approaches 

including: a simple linear model, a Random Forest, and a Ridge regression.  

Using the same training, validation, and test split set as for the DNN parameterization, 

we trained a simple linear model, a Random Forest (Liaw & Wiener, 2002), and a Ridge 

regression (Friedman et al., 2010). Table 2 shows summary statistics over Harvard 

Forest. We include the correlation, the MSE, and the relative computational time of 

model prediction.  

Overall, the Random Forest and DNN outperform the linear and Ridge regression, likely 

due in part to how Vd responds nonlinearly to the input variables used here. While the 

correlation and MSE summary statistics are very similar for both the DNN and Random 

Forest regression, the Random Forest prediction time is 27% slower than the DNN. 

Though the model prediction time is not perfectly optimized, these results are 

consistent with previous work demonstrating rapid computation from DNNs (Rasp et 

al., 2018), and slower implementations of Random Forests (Keller & Evans, 2018).  

Given the computational challenges many models already face, the lack of process-based 

information currently available in models of Vd, and the great potential for DNN model 

portability and retraining (Chollet & Allaire, 2018) we believe that the application of a 

DNN for this purpose is well justified.  
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Model R MSE Time 

DNN 0.35 0.20 1.00 

Linear 0.22 0.52 < 0.01 
Random 
Forest 0.36 0.19 1.27 
Ridge 0.33 0.43 0.07 

 

Table 2. Summary Statistics (Pearson correlation coefficient, R, Mean Squared Error, 

MSE, and Computational time of model prediction relative to the DNN) for the DNN 

parameterizations, the linear model, a Random Forest Regression, and a Ridge 

regression of ozone dry deposition velocities at Harvard Forest.  

4.4 Applicability in 3-D Models 

Due to coarser spatiotemporal resolution and potential errors in meteorological fields 

(Gelaro et al., 2017), it is not immediately clear how the DNN developed here would 

perform in a regional-global scale 3D model. To explore this we evaluate the value of the 

developed DNN at the Harvard Forest site using assimilated meteorology, and compare 

it with a global model (GEOS-Chem v9-02, www.geos-chem.org) parameterization of dry 

deposition (Silva & Heald, 2018) using that same meteorology.   

We use the Modern Era Retrospective Meteorological ReAnalysis (MERRA) meteorology 

of the driving variables of the DNN regridded to match the GEOS-Chem spatial 

resolution of 2˚x2.5˚, with all three-hourly fields linearly interpolated to the hourly 

resolution to directly match the date and time of the observations.  
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Seasonal average hourly deposition velocities at Harvard Forest are shown in Figure 2 

for the observations, the DNN driven by MERRA (DNN-MERRA), and the Wesely (1989) 

deposition scheme as implemented in the GEOS-Chem model. The DNN-MERRA 

parameterization reproduces the observations better than the Wesely (1989) 

parameterization, with substantially lower summertime bias, and the overall seasonal 

cycle well represented. The DNN-MERRA NMB (0.12) is lower than the Wesely 

parameterization NMB (0.3) while the hourly correlation is similar (~0.35). The DNN-

MERRA NMB is in line with the test data evaluation from Hyytiälä Forest, while the 

correlation is lower, indicating that the model captures less of the observed variability 

when generalized to the Harvard Forest location and when meteorology is degraded to 

the 2°x2.5° spatial resolution. Overall, this test suggests that the DNN-MERRA model 

outperforms current parameterizations, and could potentially be applied effectively in 

regional and global scale models. 

 

Figure 2.  Monthly average Vd over Harvard Forest from 1992-2005. Observations are in 

black, the DNN driven by MERRA meteorology (DNN-MERRA) is in green, and the 



 

 
© 2018 American Geophysical Union. All rights reserved. 

Weseley parameterization as implemented in the GEOS-Chem model (Weseley) is in 

orange. The shaded regions represent ±1 standard deviation across years.  

4.5 Data Requirements 

As with all machine learning methods, the DNN in this work excels at reproducing 

observations that are within the bounds of the data it is trained on. There is no 

guarantee that the model will perform well over a vastly different vegetation type or 

meteorological scenario. Thus, more long-term observations over varied regions are 

necessary if this methodology were to be applied globally.  

In defining the parameters of the DNN in section 3.1, we required the somewhat 

arbitrary condition that we have at least an order of magnitude more data than free 

parameters in our model. To achieve this with the DNN as structured here, we require at 

least 12,330 observations. At the Hyytiälä site, there are generally 3500 – 6500 

observations taken each year, which would require ~5 years of observations to achieve 

the constraint on total observations used in this work. 

Instead of constraining the total number of observations, one could instead propose to 

require the generalization error to reach a certain threshold value. We use a limited set 

of the Hyytiälä Forest data (the year 2008) to train a DNN with the same parameters as 

in section 3.1. We explore the generalization loss over Harvard Forest as a function of 

the number of months observed, with the goal is to evaluate at what point the 

generalization loss approaches the loss of the fully trained DNN (loss = 4.1). We explore 

all possible months as a start date, and range from 1 to 12 months of continuous data 

throughout the year, with the DNN retrained on each combination of months. Figure 3 

shows that after approximately 6 months of continuous data collection (~2800 
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observations) a generalization loss of within 50% of the fully trained DNN is reached, a 

value that should outperform the Weseley parameterization as implemented in GEOS-

Chem (Silva & Heald, 2018). In this specific case, training on months containing data 

from summers is more effective at reducing the generalization loss than winter months. 

As more continuous months of data are used the loss begins to approach the fully 

trained DNN. The final value using just one full year is still far from the overall loss, 

indicating that more than a year of data is valuable for model accuracy and 

generalizability. This points to the high value of long-term observations in varied 

regions, many of which currently have limited data availability (Silva & Heald, 2018). 

Figure 3.  The generalization loss at Harvard Forest as a function of continuous months 

of training data from Hyytiälä Forest in the year 2008. The horizontal line is the 

generalization loss when all data from all years are used. Boxplots are plotted in the 

style of Tukey (see McGill et al., 1978), with the middle bars corresponding to medians, 
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with the lower and upper hinges corresponding to the 25th and 75th percentile, 

respectively. The vertical whiskers extend to the hinge to the most extreme value within 

1.5*the IQR defined by the hinges. 

5. Conclusions 

We present the first parameterization of ozone dry deposition velocities using a deep 

learning framework. The DNN parameterization in this work outperforms other 

statistical models in terms of speed and accuracy, and it is also less biased compared to 

observations relative to the commonly used physical parameterization of Wesely 

(1989). With continued data collection and improved data availability, particularly from 

long-term measurement sites, machine learning methods like deep learning are likely to 

continue to grow in their applicability and performance, and present valuable 

opportunities for reducing model bias and uncertainty for highly parameterized model 

processes. 
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