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Abstract

This paper describes the language identifica-
tion systems used by the SUKI team in the Dis-
criminating between the Mainland and Taiwan
variation of Mandarin Chinese (DMT) and the
German Dialect Identification (GDI) shared
tasks which were held as part of the third Var-
Dial Evaluation Campaign. The DMT shared
task included two separate tracks, one for the
simplified Chinese script and one for the tradi-
tional Chinese script. We submitted three runs
on both tracks of the DMT task as well as on
the GDI task. We won the traditional Chinese
track using Naive Bayes with language model
adaptation, came second on GDI with an adap-
tive version of the HeLI 2.0 method, and third
on the simplified Chinese track using again the
adaptive Naive Bayes.

1 Introduction

The third VarDial Evaluation Campaign (Zampieri
et al., 2019) included three shared tasks on lan-
guage, dialect, and language variety identification.
The Discriminating between Mainland and Tai-
wan variation of Mandarin Chinese (DMT) con-
centrated on finding differences between the va-
rieties of Mandarin Chinese written on mainland
China and Taiwan. The task included two tracks,
one for the simplified script and another for the
traditional one. The German Dialect Identifica-
tion (GDI) task was already the third of its kind
(Zampieri et al., 2017, 2018). In GDI 2019,
the task was to distinguish between four Swiss-
German dialects. The third task was that of
Cuneiform Language Identification (CLI), but we
did not participate in that as we were partly re-
sponsible for creating its dataset (Jauhiainen et al.,
2019a).

We evaluated several language identification
methods using the development sets of the DMT
and GDI tasks. Our best submissions were created

using a similar language model (LM) adaptation
technique to the one we used in the second Var-
Dial Evaluation Campaign (Zampieri et al., 2018).
In that Evaluation Campaign, we used the HeLI
language identification method (Jauhiainen et al.,
2016) together with a new LM adaptation ap-
proach, winning the Indo-Aryan Language Identi-
fication (ILI) and the GDI 2018 shared tasks with
a wide margin (Jauhiainen et al., 2018b,c). After
the second Evaluation Campaign, we had devel-
oped a new version of the HeLI method and fur-
ther refined the LM adaptation technique (Jauhi-
ainen et al., 2019b). With the HeLI 2.0 method
and the refined adaptation technique, we came sec-
ond in the GDI 2019 shared task using only char-
acter 4-grams as features. Furthermore, we had
implemented several baseline language identifiers
for the CLI shared task (Jauhiainen et al., 2019a).
One of them was a Naive Bayes (NB) identifier us-
ing variable length character n-grams, which fared
better than the HeLI method on the CLI dataset.
We modified our LM adaptation technique to be
used with the NB classifier and this fared better
than the adaptive HeLI 2.0 method on both of the
Chinese datasets. With the adaptive NB identifier,
we won the traditional Chinese track and came
third on the simplified one.

In this paper, we first go through some related
work in Section 2, after which we introduce the
datasets and the evaluation setup used in the DMT
and the GDI shared tasks (Section 3). We then use
the training and the development sets to evaluate
our baseline methods (Sections 4.1 and 4.2) and
the HeLI 2.0 method (Section 4.3), after which we
evaluate the efficiency of our LM adaptation pro-
cedure with the HeLI 2.0 and NB methods in Sec-
tions 4.4 and 4.5. Finally we introduce and discuss
the results of our official submissions (Section 5)
as well as give some conclusions and ideas for fu-
ture work (Section 6).
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2 Related work

In this section, we introduce some background in-
formation on previous studies in language identi-
fication in general, language identification in the
context of Chinese and German languages, as well
as LM adaptation.

2.1 Language identification in texts

Language identification (LI) is the task of iden-
tifying the language of a text. The same meth-
ods which are used for LI are generally also used
for dialect and language variety identification. A
comprehensive survey of language identification
in general has been published in arXiv by Jauhi-
ainen et al. (2018d).

The series of shared tasks in language iden-
tification began in 2014 with the Discriminat-
ing Between Similar languages (DSL) shared task
(Zampieri et al., 2014) and similar tasks have been
arranged each year since (Zampieri et al., 2015;
Malmasi et al., 2016; Zampieri et al., 2017, 2018).

It is notable that, so far, deep neural net-
works have not gained an upper hand when com-
pared with the more linear classification meth-
ods (Çöltekin and Rama, 2017; Medvedeva et al.,
2017; Ali, 2018).

2.2 Chinese dialect identification

In the DMT shared task, the text material in the
dataset is UTF-8 encoded. Before the widespread
use of UTF-8, different encodings for different
scripts were widely used. Li and Momoi (2001)
discussed methods for automatically detecting the
encoding of documents for which an encoding was
unknown. They present two tables showing dis-
tributional results for Chinese characters. In their
research they had found that the 4096 most fre-
quent characters in simplified Chinese encoded in
GB2312 cover 99.93 percent of all text and they
report that earlier results of traditional Chinese in
Big5 encoding are very similar with the 4096 most
frequent characters covering 99.91% of text.

Huang and Lee (2008) used a bag of words
method to distinguish between Mainland, Sin-
gapore and Taiwan varieties of Chinese. They
reached an accuracy of 0.929.

Brown (2012) displays a confusion matrix of
four varieties of the Chinese macrolanguage as
part of his LI experiments for 923 languages. The
Gan and Wu Chinese were among the languages
with the highest error rates of all languages.

Huang et al. (2014) show how light verbs have
different distributional tendencies in Mainland and
Taiwan varieties of Mandarin Chinese. Using K-
Means clustering they show that the varieties can
be differentiated.

Xu et al. (2016) describe an approach to distin-
guish between several varieties of Mandarin Chi-
nese: Mainland, Hong Kong, Taiwan, Macao,
Malaysia, and Singapore. In another study (Xu
et al., 2018), they used support vector machines
(SVM) to distinguish between Gan Chinese di-
alects.

2.3 German dialect identification
The GDI 2019 task was already the third of its kind
(Zampieri et al., 2017, 2018). In 2017, we did not
participate in the shared task, which was won us-
ing an SVM meta-classifier ensemble with words
and character n-grams from one to six as features
(Malmasi and Zampieri, 2017). We won the 2018
edition using the HeLI method with LM adapta-
tion and character 4-grams as features (Jauhiainen
et al., 2018b). We were the only ones employing
LM adaptation and won with a wide margin to the
second system which was an SVM ensemble using
both character and word n-grams (Benites et al.,
2018).

For a more complete overview of dialect iden-
tification for the German language, we refer the
reader to our recent paper where we used LM
adaptation with the datasets from the GDI 2017
and 2018 shared tasks (Jauhiainen et al., 2019b).
Our experiments using a refined LM adaptation
scheme with the HeLI 2.0 method produced the
best published identification results for both of the
datasets.

2.4 Language model adaptation
Language model (LM) adaptation is a technique
in which the language models used by a language
identifier are modified during the identification
process. It is advantageous especially when there
is a clear domain (topic, genre, idiolect, time pe-
riod, etc.) difference between the texts used as
training data and the text being identified (Jauhi-
ainen et al., 2018a,b,c). If an adaptation technique
is successful, the language identifier learns the pe-
culiarities of the new text and is better able to clas-
sify it into the given language categories. In the
shared tasks of the VarDial Evaluation Campaigns,
we are provided with the complete test sentence
collection at once. This means, that we can addi-
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tionally choose in which order we learn from the
test data and even process the same test sentences
several times before providing the final language
labels.

The LM adaptation technique and the confi-
dence measure we use in the systems described
in this article are similar to those used earlier in
speech language identification by Chen and Liu
(2005) and Zhong et al. (2007). The adaptation
technique is an improved version of the one we
used in our winning submissions at the second
VarDial Evaluation Campaign (Jauhiainen et al.,
2018b,c). For a more complete overview of the
subject, we refer the reader to our recent article
dedicated to language model adaptation for lan-
guage and dialect identification of text, where we
also introduce the improved LM adaptation tech-
nique used in this paper (Jauhiainen et al., 2019b).

3 Test setup

In the shared tasks 2019, the participants were pro-
vided with separate training and development sets.
All the tracks were closed ones, so no external in-
formation was to be used in preparing the language
identification systems. The training and develop-
ment sets were released approximately a month
before the test set release. When the test sets were
released, the participants had two days to submit
their predictions on the tracks. The texts in the de-
velopment portions could be used as an additional
training data when processing the test sets and we
did so in each case.

The evaluation measure used in both of the
shared tasks was the macro F1-score and we used
it also when comparing the different methods we
used with the development data.

3.1 DMT datasets

The scripts commonly used in mainland China
and Taiwan are different. In Taiwan, the tradi-
tional Chinese script is commonly used whereas in
mainland China, the simplified version is the offi-
cial one (Chen et al., 1996; Huang et al., 2000;
McEnery and Xiao, 2003). In order to be able
to concentrate on the non-scriptual differences of
the two varieties of Mandarin Chinese, Putonghua
(Mainland China) and Guoyo (Taiwan), the texts
used for the DMT task had been transformed to
use the same script. In the simplified track, the
Taiwanese texts originally written in the tradi-
tional script had been converted into the simpli-

fied script and in the traditional track the texts
from mainland China originally in the simplified
script had been converted to the traditional script.
The conversion had been made using a tool called
“OpenCC”.1

The texts used as the source for the datasets
were news articles from mainland China and from
Taiwan. The participants were provided with
training and development sets for both simplified
and traditional scripts. Both datasets had been
tokenized by inserting whitespace characters be-
tween individual words. Furthermore, all punctu-
ation had been removed. The average length of
words in all DMT training sets was c. 1.7 charac-
ters. The training sets contained 9,385 sentences
and the development sets consisted of additional
1,000 sentences for each variety. The test sets had
1,000 sentences as well for each variety.

3.2 GDI dataset
The GDI dataset consisted of transcribed speech
utterances in four Swiss German dialects. More
detailed information about the source of the texts
for the GDI datasets, the ArchiMob corpus, are
provided by Samardžić et al. (2016). In 2018, the
GDI dataset included additional unknown dialects,
which were left out in 2019. The sizes of the train-
ing and the development sets can be seen in Ta-
ble 1. The average length of words in the train-
ing set was 5.5 characters. The test set contained
4,743 utterances comprising 42,699 words. As of
this writing, we are not aware of the distribution
of the dialects in the test set.

Variety (code) Training Development
Bern (BE) 27,968 7,381
Basel (BS) 26,927 9,462
Lucerne (LU) 28,979 8,650
Zurich (ZH) 28,833 8,086

Table 1: List of the Swiss German varieties used in the
datasets distributed for the 2019 GDI shared task. The
sizes are in words.

The training, development, and test sets in-
cluded two files in addition to the speech transcrip-
tions. The first file included normalized forms for
each dialectal form in the data. The second file in-
cluded 400-dimensional iVectors representing the
acoustic features of the original speech data, as the
text data was transliterated speech. We did not
use either of the two additional files in our experi-
ments.

1https://github.com/BYVoid/OpenCC

https://github.com/BYVoid/OpenCC
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4 Experiments using the development
data

We set out to tackle the GDI and the DMT shared
tasks with the system based on the HeLI 2.0
method and LM adaptation that we had used for
the GDI 2017, GDI 2018 and ILI datasets between
the 2018 and 2019 VarDial Evaluation Campaigns
(Jauhiainen et al., 2019b).

For the CLI shared task, we had implemented
three new baseline identifiers, one of which, a
Naive Bayes identifier, managed to overcome the
traditional HeLI method when distinguishing be-
tween Sumerian and six Akkadian dialects (Jauhi-
ainen et al., 2019a). We were, hence, also in-
terested to see how well these baseline identifiers
would perform in the DMT and GDI tasks.

4.1 Simple scoring and the sum of relative
frequencies

The first baseline method in the CLI shared task
was the simple scoring method. In simple scor-
ing, the frequency information of individual fea-
tures in the training set is ignored and each time
a feature from a language model dom(O(Cg)) is
encountered in the text M , the language g is given
one point. The survey article by Jauhiainen et al.
(2018d) gives the following Equation 1 for simple
scoring:

Rsimple(g,M) =

l
MF∑
i=1

{
1 , if fi ∈ dom(O(Cg))
0 , otherwise

(1)

where lMF is the number of individual features in
the line M and fi is its ith feature. The language
g gaining the highest score R is selected as the
predicted language.

The second baseline implementation for the
CLI used the sum of relative frequencies of char-
acter n-grams of varying length. The method is
very similar to simple scoring but, instead of sim-
ply adding a global constant to the score each time
the feature is found in the language model, the
observed relative frequency in the respective lan-
guages training corpus is added.

In both methods, the only parameter to be de-
cided when using the development data was the
range of the character n-grams used. These char-
acter n-grams can span word boundaries and thus
long n-grams can contain several words. We ex-
perimented with a range from 1 to 20 characters

and the best attained macro F1-scores on the de-
velopment sets are listed in Tables 2, 3, and 4.

In the end, we did not submit any results using
the two first baseline methods as the third baseline
method, the product of relative frequencies, was
clearly superior to them.

4.2 Product of relative frequencies (NB)

Our third baseline method in CLI was the prod-
uct of relative frequencies. The method is ba-
sically the same as Naive Bayes using the ob-
served relative frequencies of character n-grams as
probabilities. As with the two previous methods,
these character n-grams can span word bound-
aries. Similarly to the sum of relative frequencies
method, we calculate the relative frequencies for
different n-grams from the training corpus, but in-
stead of adding them together, we multiply them
as in Equation 2:

Rprod(g,M) =

l
MF∏
i=1

c(Cg, fi)

lCF
g

(2)

The practical implementation uses the sum of
logarithms instead as computers normally cannot
handle the extremely small numbers produced by
multiplying the observed probabilities of complete
sentences. As smoothing, in case c(Cg, fi) was
equal to zero, we used 1 and multiplied the re-
sulting logarithmic value by the penalty modifier
pmod. The penalty modifier and the character n-
gram range used were optimized using the devel-
opment set. As mentioned earlier, the NB classi-
fier bested the other baseline methods as can be
seen in Tables 2, 3, and 4.

4.3 HeLI 2.0

In the HeLI method, we calculate a score for each
word using relative frequencies of words or char-
acter n-grams. The length of the character n-grams
to use or whether to use the word itself is decided
individually for each word encountered in the text
to be identified. The whole text gets the average
of the scores of the individual words, thus giving
equal value to long and short words. No informa-
tion spanning word boundaries are used.

We have recently introduced a version of HeLI
which we decided to call 2.0 as enough changes to
the HeLI method had already accumulated (Jauhi-
ainen et al., 2019b). The HeLI 2.0 differs from
the HeLI method described by Jauhiainen et al.
(2016) in three ways. Firstly, we now always use
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Method n-gram range Smoothing Splits k Epochs CMmin F1 dev
Naive Bayes with LM adaptation 1–15 1.3 max 1 0.45 0.9225
Naive Bayes 1–15 1.3 - - - 0.9215
Simple scoring 1–15 - - - - 0.8970
HeLI 2.0 with LM adaptation 1–2 + infinite 1.01 max 1 - 0.8909
HeLI 2.0 1–2 + infinite 1.01 - - - 0.8859
Sum of rel. freq. 5–15 - - - - 0.8204

Table 2: Simplified Chinese. The macro F1-scores attained by different methods on the development set. A max
in column indicating the number of splits means that k was equal to the number of lines in the evaluation data.

Method n-gram range Smoothing Splits k Epochs CMmin F1 dev
Naive Bayes with LM adaptation 1–14 1.3 4 1 0 0.9295
Naive Bayes 1–14 1.3 - - - 0.9285
HeLI 2.0 with LM adaptation 1–2 + infinite 1.12 max 1 0.42 0.9160
HeLI 2.0 1–2 + infinite 1.12 - - - 0.9145
Simple scoring 1–6 - - - - 0.9015
Sum of rel. freq. 5–15 - - - - 0.8247

Table 3: Traditional Chinese. The macro F1-scores attained by different methods on the development set. A max
in column indicating the number of splits means that k was equal to the number of lines in the evaluation data.

Method n-gram range Smoothing Splits k Epochs CMmin F1 dev
HeLI 2.0 with LM adaptation 4 1.12 9 112 0.15 0.8657
Naive Bayes with LM adaptation 2–6 1.08 40 96 0.16 0.8442
HeLI 2.0 4 1.12 - - - 0.6658
Naive Bayes 2–6 1.08 - - - 0.6475
Simple scoring 2–7 - - - - 0.5865
Sum of rel. freq. 6–15 - - - - 0.5049

Table 4: GDI 2019. The macro F1-scores attained by different methods on the development set. A max in column
indicating the number of splits means that k was equal to the number of lines in the evaluation data.

all of the possible training material and use neither
rank- nor relative frequency-based cut-off. Sec-
ondly, we changed how we calculate the smooth-
ing value. In HeLI, we used a global penalty value
for all language models. In HeLI 2.0, we calcu-
late the penalty value relative to the size of each
individual language model using a global penalty
modifier pmod.2 Thirdly, when selecting the range
of character n-grams to use in HeLI 2.0, the mini-
mum size for n can be higher than one.

In this description, we define a word as a char-
acter n-gram of infinite size generated from an
individual word. The model sizes used are opti-
mized using a development corpus as is the possi-
ble use of n-grams of infinite size. Variable nmax

is the maximum length and the nmin the minimum
length of the used character n-grams.

The corpus derived from the training data con-
taining only the word internal3 n-grams of the size
n for the language g is called Cn

g . The values

2This is the same smoothing method which we used with
the product of relative frequencies.

3The beginning and the end of a word are marked using
whitespaces.

vCn
g
(f) for the n-gram f are calculated for each

language g, as shown in Equation 3:

vCn
g
(f) =

 − log10

(
c(Cn

g ,f)

lCn
g

)
, if c(Cn

g , f) > 0

− log10

(
1

lCn
g

)
pmod , if c(Cn

g , f) = 0

(3)

where c(Cn
g , f) is the number of n-grams f in Cn

g .
The domain dom(O(Cn)) is the set of all char-

acter n-grams of length n found in the models
of any of the languages g ∈ G. Separately for
each individual word t on the line M to be iden-
tified, we determine the length n of the character
n-grams we use. The word t is divided into over-
lapping character n-grams of the length n. The
length n is the highest where at least one of the
character n-grams generated from the word t is
found in dom(O(Cn)). However, if an individual
n-gram f generated from the word t is not found
in dom(O(Cn)), it is discarded at this point. The
number of retained n-grams is ltF . The score for
individual words t on the line M is then calculated
as in Equation 4.
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vg(t) =

l
tF∑
i=1

vCn
g
(f) (4)

The whole line M is then scored as in Equa-
tion 5:

Rg(M) =

∑l
MT

i=1 vg(ti)

lMT

(5)

where lMT is the number of words in the line M .
The predicted language g of the line M is the one
having the lowest score. We optimized the penalty
modifier pmod as well as the minimum and max-
imum size of the n-grams, i.e. nmin and nmax,
using the developments set. Whether or not to use
the charcter n-grams of infinite size (words), was
also decided with the development set. The best
results attained by the HeLI 2.0 method on each
of the development sets can be seen in Tables 2, 3,
and 4.

4.4 HeLI 2.0 with adaptive language models

The fifth method we used in the experiments with
the development data was the domain-adaptive
version of HeLI 2.0. We used a similar LM adap-
tation method in the shared tasks of VarDial 2018,
clearly winning the GDI and ILI tasks. For Jauhi-
ainen et al. (2019b), we devised an improved ver-
sion of the adaptation method, which is used here.
In order to select the best material to be used in
LM adaptation, we need a confidence measure
which indicates the best identified lines. In Jauhi-
ainen et al. (2019b), we evaluated three confi-
dence measures and the score difference between
the best and the second best scoring languages,
CMBS , proved to be the best performing one. The
confidence measure is calculated as in Equation 6:

CMBS(M) = Rh(M)−Rg(M) (6)

where g is the best and h the second best scoring
language.

For the shared tasks, we get a complete set of
lines to be identified as one collection. We de-
note an individual line M , as before, and the set
of lines is denoted MC. In the adaptation algo-
rithm, we first perform a preliminary identification
using the HeLI 2.0 method for each line M of the
development or the test set MC. The number of
lines a to process simultaneously in adaptation is

the number of lines in MC divided by the num-
ber of splits k. The number of splits is optimized
using the development set. For each line, we also
calculate the confidence measure CMBS . We re-
move a most confident lines from MC and mark
them as finally identified with the given language
labels. Then we add the information from the fi-
nally identified lines to their respective language
models. Then we use the new language models to
re-identify the lines remaining in MC, again using
the a most confident lines to augment the language
models. This process is repeated until all the lines
in MC have been removed. In the iterative ver-
sion of the adaptation method, the whole adapta-
tion process is repeated several times (epochs).

For all submissions but one,4 we used a con-
fidence threshold when deciding whether the in-
formation from a line was added to the language
models, that is not all lines were always used for
adaptation. The confidence threshold, CMmin,
was also optimized for the development set.5 The
number of splits, k, and the number of epochs
were also optimized using the development set.

The best results using HeLI 2.0 with LM adap-
tation on each development set can be seen in Ta-
bles 2, 3, and 4. This was the best performing
method with the GDI development set but behind
NB with the traditional Chinese and even behind
simple scoring with the simplified Chinese.

4.5 Naive Bayes with adaptive language
models

As our NB implementation seemed to outperform
the HeLI 2.0 method in some experiments, we
implemented a method using it together with the
same LM adaptation scheme we used with HeLI
2.0 in the previous section.

The best results using the Naive Bayes with LM
adaptation on each development set can be seen in
Tables 2, 3, and 4.

5 Results and discussion

The participants were allowed to submit three sep-
arate runs to each of the two tracks of the DMT
shared task, as well as to the one track of the GDI
shared task. For each track, we submitted results
using the HeLI 2.0 with LM adaptation, the Naive

4We did not use the confidence threshold with HeLI 2.0
using LM adaptation for the simplified Chinese script.

5The confidence threshold was used with NB and LM
adaptation for the traditional Chinese script, but it got opti-
mized to zero.
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Bayes, and the NB with LM adaptation thus using
all submissions available to us. The parameters we
used with each method were the same as with the
respective development sets.

A total of seven teams provided language iden-
tification results for the DMT shared task and six
teams for the GDI shared task. Tables 5, 6, and
7 show the macro F1-scores of our submitted runs
on the test set. Additionally, the tables show the
methods and features used by the other teams to-
gether with their F1 scores. We submitted the runs
using a team name “SUKI”, which is the same we
have used in the previous years. The results of the
other participating teams were collected from the
results packages provided by the organizers after
the competition. The system description papers
of the other teams were not available at the time
of writing. The identity of other participants was
also unknown. We were, however, provided with
a short description of each system6 which we used
to provide these results.

The simplified Chinese track was won by a
team called “hezhou” by a clear margin to the
second and the third submissions. According to
their system description, the “hezhou” team used
a variety of features learned from outside sources,
such as a pretrained BERT model for Chinese
and word-embeddings trained on People’s Daily
News. Their results are interesting, but they can-
not be directly compared with the ones provided
by other teams as the track was supposed to be a
closed one.

If we discount the results of the “hezhou” team,
the two top places in all three tracks of the DMT
and GDI shared tasks were divided between our
“SUKI” team and the team ”tearsofjoy”. “tear-
sofjoy” used a two stage SVM approach in all of
their top runs. After the first stage, the most confi-
dently identified sentences were added to the train-
ing data, this step thus functioning as LM adapta-
tion scheme similar to ours. They also submitted
results using an SVM ensemble without adapta-
tion and their respective score differences are sim-
ilar to our systems with and without LM adapta-
tion.

Interestingly, the HeLI 2.0 with adaptation is
better than naive Bayes with adaptation on GDI
and vice-versa in the DMT. In DMT, the optimal
character n-gram range for NB was up to 15 char-

6As part of the submissions, the participants were asked
to provide a short description.txt file.

acters, which spans several words. In the exper-
iments with the simplified Chinese development
data, even the simple scoring method performed
better than the HeLI 2.0 method with LM adapta-
tion. The optimal maximum length of character n-
grams was 15 characters also when using the sim-
ple scoring method. In the Chinese data, 15 char-
acters span on average five words. From these re-
sults we could surmise, that the poor performance
of the HeLI method in the DMT shared task was
at least partly due to the lack of capturing features
spanning several words.

There is a notable inconsistency in our test re-
sults with the simplified Chinese. The HeLI 2.0
with LM adaptation performs almost as well as
the NB with LM adaptation. This might be due
to the fact that we had forgotten to use the con-
fidence threshold with the simplified Chinese de-
velopment set for the HeLI method and therefore
we did not use one with the test set either. It could
very well be that the use of a confidence thresh-
old was disadvantageous with both of the Chinese
test sets. Our winning submission for the tradi-
tional Chinese track used the NB with LM adapta-
tion and with a confidence threshold of 0.7

The fact that we did not come in the first place
in the GDI 2019 shared task is undoubtedly partly
due to the fact that we did not use the provided
iVector-files at all in the classification task unlike
the other top three teams. Using the information
from the iVectors together with our language iden-
tifier implementations would not have been trivial.

At the time of writing this article, the partici-
pants do not have access to the correct language
labels of the test sets, which hinders a detailed er-
ror analysis.

6 Conclusions and future work

The two varieties of Chinese used in the DMT
shared task seem to be distinguishable from each
other quite well. Whether it is due to more struc-
tural or more functional differences is left to be
determined by experts in Chinese.

We were happy to see that some of the other
teams had taken notice of the success of our LM
adaptation scheme at the ILI and the GDI 2018
shared tasks. In the GDI 2019 shared task, the use
of some sort of an LM adaptation procedure was of
paramount importance; the macro F1 scores rose

7Using a confidence threshold of 0 was the result of opti-
mization with the development set.
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Team/run Method Features F1 dev F1 test
hezhou Ensemble of BERT, LSTM, SVM, ... word-embeddings, word n-grams, ... 0.8929
tearsofjoy, run 1 SVM with LM adaptation ch. n-grams 1–4, word n-grams 1–2 0.8738
SUKI, run 1 Naive Bayes with LM adaptation ch. n-grams 1–15 0.9225 0.8735
SUKI, run 3 HeLI 2.0 with LM adaptation ch. n-grams 1–2, words 0.8909 0.8710
SUKI, run 2 Naive Bayes ch. n-grams 1–15 0.9215 0.8685
itsalexyang Ensemble of Naive Bayes and BiLSTM ch. n-grams 2–3, word embeddings 0.8530
tearsofjoy, run 2 SVM ensemble ch. n-grams 2–5, words 0.8445
Adaptcenter Ensemble of CNN and ? ? and words 0.8124
ghpaetzold RNN characters 0.7934
gretelliz92 NN with 4 dense layers TF-IDF vectors 0.7496

Table 5: Simplified Chinese. The macro F1-scores attained by submitted methods on the test set. The results of
our submissions are bolded.

Team/run Method Features F1 dev F1 test
SUKI, run 1 Naive Bayes with LM adaptation ch. n-grams 1–14 0.9295 0.9085
hezhou Ensemble of BERT, LSTM, SVM, ... word-embeddings, word n-grams, ... 0.9009
tearsofjoy, run 1 SVM with LM adaptation ch. n-grams 1–4, words 0.8844
SUKI, run 2 Naive Bayes ch. n-grams 1–14 0.9285 0.8815
SUKI, run 3 HeLI 2.0 with LM adaptation ch. n-grams 1–2, words 0.9160 0.8712
itsalexyang Ensemble of Naive Bayes and BiLSTM ch. n-grams 2–3, word embeddings 0.8687
tearsofjoy, run 2 SVM ensemble ch. n-grams 2–5, words 0.8643
Adaptcenter Ensemble of CNN and ? ? and words 0.8317
ghpaetzold RNN characters 0.7959
gretelliz92 NN with 4 dense layers TF-IDF vectors 0.7484

Table 6: Traditional Chinese. The macro F1-scores attained by different methods on the test set. The results of
our submissions are bolded.

Team/run Method Features F1 dev F1 test
tearsofjoy, run 2 SVM with LM adapt. ch. n-grams 1–5, word n-grams 1–2, iVect. 0.7593
SUKI, run 1 HeLI 2.0 with LM adapt. ch. 4-grams 0.8657 0.7541
benf SVM ens. with LM adapt. various ch. and word level TF-IDF, iVect. 0.7455
SUKI, run 3 Naive Bayes with LM adapt. ch. n-grams 2–6 0.8442 0.7451
tearsofjoy, run 3 SVM ens. ch. n-grams 2–5, words, iVect. 0.6517
SUKI, run 2 Naive Bayes ch. n-grams 2–6 0.6475 0.6460
BAM Ens. of CNN, LSTM, and KRR ? 0.6255
dkosmajac Ens. of QDA and RF textual + iVect. 0.5616
ghpaetzold RNN characters 0.5575

Table 7: GDI 2019. The macro F1-scores attained by different methods on the test set. The results of our
submissions are bolded.

to a completely different level when this was used.
The use of LM adaptation did not have such a high
importance in the DMT shared task as it did with
the GDI 2019, but it still always improved the re-
sults.

If we discount the “hezhou” submission, the re-
sults of both of the shared tasks once more indicate
that deep neural networks do not reach the same
accuracy in language identification as SVM, NB,
or the HeLI methods.

We think that the poor results of the HeLI 2.0
method on the Chinese data were partly due to the
shortness of the words and the importance of in-
formation spanning word boundaries. We would
like to experiment with giving the HeLI method
access to a larger context to verify that this indeed

is the case. We will also seek to find a way to
incorporate external information, such as that pro-
vided by the iVector-files in GDI 2019, to the task
of language identification of text.
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