
Machine Learning (2019) 108:879–911
https://doi.org/10.1007/s10994-018-5770-9

Algorithms for learning parsimonious context trees

Ralf Eggeling1,2 · Ivo Grosse3 ·Mikko Koivisto1

Received: 15 December 2017 / Accepted: 25 October 2018 / Published online: 12 November 2018
© The Author(s) 2018

Abstract
Parsimonious context trees, PCTs, provide a sparse parameterization of conditional probabil-
ity distributions. They are particularly powerful formodeling context-specific independencies
in sequential discrete data. Learning PCTs from data is computationally hard due to the com-
binatorial explosion of the space of model structures as the number of predictor variables
grows. Under the score-and-search paradigm, the fastest algorithm for finding an optimal
PCT, prior to the present work, is based on dynamic programming. While the algorithm can
handle small instances fast, it becomes infeasible already when there are half a dozen four-
state predictor variables. Here, we show that common scoring functions enable the use of new
algorithmic ideas, which can significantly expedite the dynamic programming algorithm on
typical data. Specifically, we introduce a memoization technique, which exploits regularities
within the predictor variables by equating different contexts associated with the same data
subset, and a bound-and-prune technique, which exploits regularities within the response
variable by pruning parts of the search space based on score upper bounds. On real-world
data from recent applications of PCTs within computational biology the ideas are shown to
reduce the traversed search space and the computation time by several orders of magnitude
in typical cases.
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1 Introduction

Univariate conditional distributions play a central role in various multivariate probabilistic
models, such as Markov models, hidden Markov models, Bayesian networks, and general
hierarchical graphicalmodels. Ideally, each conditional distribution either involves only a few
conditioning variables or one can assume the conditional distribution to take some simple
form, for example, a linear model. In practice, neither case may apply, and we encounter
the curse of dimensionality: the representation size of the conditional distribution, which
usually is proportional to the number of free parameters, grows exponentially in the number
of variables.

The concept of context-specific independence (Boutilier et al. 1996) provides an appealing
approach to deal with the curse of dimensionality. Context-specific independence takes place
whenfixing someof the conditioning variables to certain states, called a context, the remaining
variables provide no additional information about the response variable, that is, the response
variable is independent of the rest given the context. Examples of general-purpose model
classes that are based on the notion of context-specific independence include decision trees
(Breiman et al. 1984; Quinlan 1986; Buntine 1992; Chipman et al. 1998), decision graphs
(Oliver 1993;Chickering et al. 1997; Jaeger et al. 2006), chain event graphs (Smith andAnder-
son 2008), multi-linear functions (Chavira and Darwiche 2005), conditional independence
trees (Su and Zhang 2005), and conditional probabilistic sentential decision diagrams (Shen
et al. 2018).

When the explanatory variables are equipped with a natural linear ordering, more special-
ized models of context-specific independence are justified. Context trees (CTs) in particular
enable computationally efficient learning of a sufficient set of contexts for categorical, linearly
ordered random variables (Rissanen 1983; Volf and Willems 1994; Bühlmann and Wyner
1999) and have been applied in various scenarios that match this setting (Begleiter et al.
2004; Zhao et al. 2005; Ben-Gal et al. 2005). CTs arise from organizing the full conditional
probability distribution as a rooted tree, where each node at layer � corresponds to fixing the
states of the first � conditioning variables. Finding a CT that maximizes a given scoring func-
tion can be accomplished efficiently by pruning subtrees that are not justified by the observed
data. While context trees excel in computational efficiency, their statistical efficiency decays
when there are long-range dependencies and when the alphabet is non-binary.

To address the shortcoming of CTs, Bourguignon and Robelin (2004) proposed parsimo-
nious context trees (PCTs). PCTs generalize CTs by identifying a context with a selection
of state subsets for the explanatory variables, which yields a much wider range of admis-
sible tree structures in relation to CTs (Fig. 1). This includes the important capability of
(context-specifically) “skipping” a position partially or entirely, allowing in effect for a com-
pact representation and statistically efficient learning even in the presence of long-range
dependencies.

PCTs have found recent applications particularly within computational biology, where
modeling sequential data over discrete alphabets constitutes a recurring challenge. Seifert
et al. (2012) used PCTs for augmenting higher-order Hidden Markov models to improve
Array-CGH analysis. Another well-studied application models DNA sequence patterns that
are of importance for gene regulation (Eggeling et al. 2014a, 2015b). Here, PCTs augments
an inhomogeneous Markov model that can be viewed a Bayesian network of fixed structure
where the parents of each variable are the direct predecessors in the sequence.

Such an inhomogeneous parsimoniousMarkovmodel has several advantages for the given
application domain. First, it yields favorable predictive performance in relation to alternative
models such as Bayesian networks (Barash et al. 2003); see the study in Eggeling et al.
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Fig. 1 Difference between CT and PCT. Consider two conditioning variables, both with alphabet Ω =
{A, B,C,D}. aA traditional CT. Nodes labeled with more than one symbol and highlighted in yellow combine
events of sub-trees that have been pruned into so-called pseudo nodes (Bühlmann and Wyner 1999), ensuring
that every possible event is still represented in the tree without changing the model itself. Due to the origin
of the pseudo nodes there can be only one of them among a set siblings and subtrees below pseudo nodes are
not allowed. b A PCT for the same problem size that relaxed both aforementioned restrictions. Here, more
than one sibling node is allowed to be labeled by more than one symbol (green), and non-minimal subtrees
are allowed below any node, irrespective of its label (orange) (Color figure online)

(2014a) and Sect. 7.8 in this article. Second, it can be used for unsupervised learning tasks,
such as de novo motif discovery (Eggeling et al. 2014a, 2015b, 2017) or as component
of a mixture model (Eggeling et al. 2017; Eggeling 2018), where learning is possible only
through an iterative approach such as the EM algorithm (Dempster et al. 1977) or variants
thereof (Nielsen 2000; Fujimaki and Morinaga 2012). Third, it allows for an intuitive model
visualization through a conditional sequence logo (Eggeling et al. 2017) that is a direct
generalization of the popular sequence logo (Schneider and Stephens 1990). Finally, it can
be easily generalized to capture distal dependencies by relaxing the assumption of a fixed
Bayesian network backbone structure (Eggeling 2018).

Irrespective of the concrete application, however, structure learning of PCTs is very chal-
lenging from a computational point of view, which has been considered a drawback of the
model (Leonardi 2006). The reason for that are the relaxed structural constraints: even if
a node is labeled by the full alphabet, which stands for context-specific independence, the
node can be succeeded by a non-trivial subtree; hence the structure search cannot be stopped
once some context-specific independencies have been found, but the whole space of possi-
ble structures has to be considered. Bourguignon and Robelin (2004) proposed a dynamic
programming (DP) algorithm that is capable of finding a PCT of a given maximum depth
d so as to maximize a given decomposable scoring function without explicitly enumerating
all PCTs; a score is decomposable if it is the sum of so-called leaf scores. However, this
algorithm still has to consider each potential leaf node that could occur in a valid PCT, the
number of which grows exponentially in d .

In this article, we present techniques for enhancing the basicDP algorithm of Bourguignon
and Robelin (2004), with the aim of significantly speeding up the structure learning of PCTs.
Our central observation is that the basic DP algorithm makes essentially no assumptions
about the structure of the scoring function. Put otherwise, for the common scoring functions
used in practice, we should be able to enhance the algorithm by exploiting the particular
form of the scoring function. Indeed, we will show that we can exploit regularities in the
data to reduce the computational burden of finding an optimal PCT. There are two types of
regularities, which can be capitalized upon by two different ideas respectively.

On the one hand, there are regularities among the realizations of the conditioning variables,
which we can utilize: we store entire optimized subtrees—actually only their scores—in
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memory for possible later re-use. This idea, we call memoization, has the drawback of being
memory intensive. For that reason, we also investigate a parameterized extension of the idea
that allows us to trade time for space.

On the other hand, there are regularities within the response variable. We exploit the
regularities by devising two pruning rules, a stopping rule and a deletion rule, which allow
us to ignore subproblems that are guaranteed to not contribute to an optimal PCT. The deletion
rule resembles a simple pruning rule (Teyssier and Koller 2005) that is nowadays standard in
structure learning in Bayesian networks: while that rule concerns the “is subset of” relation
on candidate parent sets, our deletion rule concerns the “refines” relation on set partitions
of the alphabet. To effectively apply the pruning rules in practice, we derive score upper
bounds based on the properties of the considered concrete scoring functions, similar in spirit
to the bounds of Tian (2000) and de Campos and Ji (2011) for structure learning in Bayesian
networks.

We evaluate the performance of the individual techniques alone and in concert on real
world data sets from the domain of computational biology. We use two data sets as running
examples for demonstrating the detailed effects of parameter settings that control the algo-
rithmic complexity. We further present an exhaustive study on a large variety of data sets that
show a different degree of regularity among the input variables. These studies show that the
proposed ideas can be highly effective in many cases, yielding speedup of up to two orders
of magnitude for typical data sets.

This article is based on and considerably extends our preliminary work published in
two conference papers (Eggeling et al. 2015a; Eggeling and Koivisto 2016). The first paper
introduced the memoization idea, but it did not consider the parameterized extension that
allows for trading time for space. The second paper introduced pruning techniques; however,
the study was restricted to the BIC score (Schwarz 1978) and only derived a relatively
simple bound that we will refer to as the coarse bound. The present work extends this
path of research by deriving a substantially tighter bound, we will call the fine bound, and
by making the bounds applicable also for other related scoring functions such as the AIC
score (Akaike 1974). Due to these major methodological developments, the experimental
studies are completely new, covering a larger number of data sets and instantiations of the
proposed algorithms.

The remainder of this article is organized as follows. Section 2 contains a technical recap
of PCTs, including a formal definition of the model and the structure learning problem,
a description of the basic DP algorithm of Bourguignon and Robelin (2004), and a visual
interpretation. In Sect. 3, we present thememoization technique in its plain variant aswell as a
parameterized version for limited-memory usage.We then describe the pruning ideas: Sect. 4
gives the upper bounds on the scoring function; the pruning rules that rely on these bounds
are given in Sect. 5. Next, we describe the interplay of all different algorithmic ingredients in
a final algorithm in Sect. 6. We report on the case studies in Sect. 7 and conclude the article
with some discussions and final remarks in Sect. 8.

2 Parsimonious context trees

In this section, we revisit the definition of a parsimonious context tree (PCT) and a score-
and-search approach to structure learning of PCTs. We also describe the basic dynamic
programming algorithm of Bourguignon and Robelin (2004) and its interpretation as subtree
selection in a so-called extended PCT.
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2.1 Basic definitions

LetΩ be a finite set. A rooted, balanced, node-labeled tree of depth d is called a parsimonious
context tree (PCT) over Ω if the node labels satisfy the following property: for each node at
depth � < d the labels of the node’s children form a set partition of Ω , that is, the labels of
the children are pairwise disjoint nonempty subsets of Ω whose union is Ω . We call the set
Ω the alphabet and its members symbols.

We identify each node of a PCT with the sequence of labels V = V� · · · V1 of the nodes on
the unique path from the node up to, but excluding, the root; here and henceforth we write the
labels in the reversed order.Wemay interpret the nodeV as the set

⋃
j≥0

(
Ω j×V�×· · ·×V1

)
,

which consists of the sequences over Ω whose length is at least � and whose i th symbol
belongs to Vi for i = �, . . . , 1. Following this interpretation, we say that a sequence x
matches V if x ∈ V. It follows that the leaves of a PCT of depth d correspond to a set
partition of the set of all sequences overΩ whose length is at least d . Furthermore, each PCT
corresponds to a distinct partition.

Given a PCT T and its node V, we denote by T (V) the subtree of T rooted at V. We say
that the subtree is minimal if it consists of a single chain of nodes down to a single leaf, thus
all nodes labeled byΩ; we say that the subtree ismaximal if it consists only of nodes labeled
by singletons {a} ⊆ Ω , thus having |Ω|d−�(V) leaves; here and henceforth �(V) denotes the
depth of node V.

Now consider expressing the conditional distribution of a response variable y given a
sequence of explanatory variables x = xd · · · x1, where for simplicity we assume all the
variables take values from Ω . To specify a conditional distribution using a PCT T , we equip
each leaf V of T with |Ω| parameters θVa , one parameter for each a ∈ Ω . We interpret θVa

as the probability that y = a given that x matches V. To model a data set z = (xt , yt )Nt=1 we
assume that, given xt , the response yt is independent of the remainder of the data. Writing
ΘT for the parameters and leaves(T ) for the set of leaves of T , we obtain the likelihood
function

LT (ΘT ) :=
∏

V∈leaves(T )

∏

a∈Ω

θ
NVa
Va , (1)

where NVa denotes the count of the response a in data points where the explanatory variables
match V:

NVa := |{t : xt ∈ V and yt = a}|. (2)

We will further denote NV := ∑
a∈Ω NVa .

2.2 The structure learning problem

We consider a score-and-search approach to learning PCTs from given data. Suppose we are
given a scoring function S that associates each PCT T of depth d with a real-valued score
ST . An example of a practically relevant scoring function is the BIC score (Schwarz 1978),
which takes the form of a penalized maximum-likelihood score:

S BIC
T = max

ΘT

{
ln LT (ΘT )

} − |leaves(T )|
2

(|Ω| − 1) ln N .

Other scoring functions are, among others, theAIC score (Akaike 1974), the Bayes scorewith
Dirichlet prior (Heckerman et al. 1995), and a factorized normalized maximum-likelihood
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Table 1 Complexity of PCT
learning

(a) Number of valid PCTs (b) Size of extended PCT

d |Ω| = 3 |Ω| = 4 d |Ω| = 3 |Ω| = 4

1 5 15 1 7 16
2 205 72, 465 2 57 241
3 8.74 × 106 2.75 × 1019 3 400 3616
4 6.68 × 1020 5.78 × 1077 4 2801 54,241
5 2.98 × 1062 1.12 × 10311 5 19,608 813,616

(fNML) score (Silander et al. 2010). Whatever the scoring function is, the task is to find an
optimal PCT,

T∗ ∈ argmax
T

ST . (3)

Aside from the fact that multiple PCTs may achieve the optimal score, this task is practically
equivalent to the task of finding the optimal score ST∗ . For convenience, we focus on the latter
problem for the rest of the paper. We will see that an optimal PCT T∗ can be constructed by
standard routines with a small extra effort; we illustrate the basic idea in Sect. 2.4.

The main obstacle for solving the optimization problem of Eq. 3 in practice is the sheer
number of possible PCTs, which grows very rapidly with depth and alphabet size. To be
precise, for alphabet Ω and depth d , the number of valid PCTs, denoted by TΩ(d), satisfies
the recurrence

TΩ(d) =
|Ω|∑

k=1

S|Ω|,k · TΩ(d − 1)k, (4)

where Si, j denotes the Stirling number of the second kind and TΩ(0) = 1. This recurrence
holds because a depth-d PCT is obtained by joining some number k ∈ {1, . . . , |Ω|} of
arbitrary depth-(d − 1) PCTs and labeling their k roots by distinct subsets of Ω such that the
labels form a set partition of Ω (whence the factor S|Ω|,k). Table 1a shows concrete values
for TΩ(d) for small |Ω| and d .

2.3 Basic dynamic programming

Bourguignon and Robelin (2004) presented a dynamic programming (DP) algorithm that
finds the maximum score ST∗ without enumerating all distinct PCTs. The algorithm, we shall
call basic DP, relies on the decomposability of the scoring function:

Assumption 1 (Decomposability) The scoring function S is given by

ST =
∑

V∈leaves(T )

S(V),

where the leaf scores S(V) depend on T only through their label sequence, and not on other
structural properties of T .

We formulate the property of decomposability as an assumption to emphasize its crucial role
as an enabler of the algorithms we develop in the sequel. Nevertheless, decomposability is a
mild assumption, satisfied by virtually all practically relevant scoring functions. For example,
the BIC score S BIC is decomposable with the leaf scores
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S BIC(V) =
∑

a∈Ω

NVa ln
NVa

NV
− 1

2
(|Ω| − 1) ln N .

It is worth noting that a decomposable scoring function is fully specified by the leaf scores,
that is, a “local” scoring function that associates every possible leaf node with a real number
(for a given data set). Accordingly, by a leaf node, without any reference to a particular PCT,
we simply refer to a node that is a leaf in some PCT of a fixed depth. Similarly, an inner node
will refer to a node that is an inner node in some PCT of a fixed depth.

To describe the algorithm, denote by ST (V) the sum of the leaf scores in the subtree T (V)

of T rooted at an inner node V of T ; for a leaf V, put ST (V) := S(V). We have the recurrence

ST (V) =
∑

childC ofV

ST (C), (5)

and, in particular, ST = ST (�), where� is the root node of T . Exploiting this recurrence, the
algorithm of Bourguignon and Robelin (2004) optimizes the score over the subtrees rooted
at C, independently for each possible child node C, and then selects a set of children that
form an optimal partition of the parent node V.

More formally, for every node V we let S∗(V) be the maximum score over PCT subtrees
rooted at V; in particular, for a leaf V we have S∗(V) = S(V), and at the root we have

S∗(�) = max
T

ST = ST∗ . (6)

The next proposition establishes the recurrence used by the dynamic programming algorithm.
It follows directly from the recurrence in Eq. 5.

Proposition 1 (Dynamic programming recurrence) Let V be an inner node. Then

S∗(V) = max{C1,...,Cr }
partition of Ω

{
S∗(C1V) + · · · + S∗(CrV)

}
. (7)

2.4 Dynamic programming as search on extended PCT

The inner workings of the algorithm of Bourguignon and Robelin (2004) and the construction
of the optimal PCT itself can be viewed as bottom-up reduction of a data structure called
extended PCT, as illustrated in Fig. 2. In contrast to a PCT, the sibling nodes in an extended
PCT do not partition their parent node, but are labeled by all nonempty subsets of Ω . An
extended PCT thus contains all possible PCTs as subtrees.

The base case of the algorithm requires the computation of leaf scores of the extended
PCT, and the task is then to reduce the extended PCT so that a maximum-score PCT remains.
For each inner node it then (1) computes an optimal selection of children with the constraint
that the node labels form a partition of Ω , and (2) removes all children not selected and
the subtrees below. Since an inner node can be evaluated only once all of its children have
already a score attached to them, the DP algorithm amounts to a bottom-up reduction of
the extended PCT in a layer-wise fashion, as displayed in Fig. 2b. The algorithm terminates
once an optimal selection of children of the root node are computed; a possible final result
is shown in Fig. 2c.

The size of the extended PCT, which essentially determines the complexity of the DP
algorithm, grows substantially slower than the number of possible PCTs (Table 1). Yet, the
complexity of the algorithm is exponential in the maximum depth of the PCT, and over-
exponential in the alphabet size: The algorithm computes the leaf scores of (2|Ω| − 1)d
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A B C A,B A,C B,C A,B,C

C A,B B A,C A,B,C A B C A,B,C C A,B A,B,C

(c) Final PCT
(b) Second layer optimized 

(a) 

A B C A,B A,C B,C A,B,C

A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C A ... A,B,C

A B,C

C A,B C A,B

Extended PCT before optimization

Fig. 2 Basic PCT optimization. We show the bottom-up reduction of the extended PCT for a toy example of
d = 2 and Ω = {A, B,C}. a Initially only the leaf scores of the extended PCT have an exact, optimal score
assigned to them. b For each set of sibling leaves, the optimal valid selection of children is computed, the
non-contributing siblings are discarded, and the winning score is propagated upwards to become the score of
the parent. c The same principle is applied on the higher layer in order to select the optimal children of the
root, obtaining a valid PCT with optimal score

leaves of the extended PCT; in addition, it computes an optimal selection of children for∑d−1
�=0 (2|Ω| − 1)� inner nodes, each of which takes O(3|Ω|) time using a routine we describe

in Sect. 5.2.

2.5 Learning with weighted data

Suppose each data point (xt , yt ), with t = 1, . . . , N , is associated with a real-valued weight
wt ≥ 0. The weights may arise from different origins: First, scientific experiments, such
as modern high-throughput technologies in DNA sequence analysis (Orenstein and Shamir
2014),maydirectly produceweighted data. Second, it can bemore efficient to store an original
data set with many duplicates as weighted data consisting of unique data points where the
weight equals the number of occurrences in the original data set. Third, learningwithweighted
data is needed when the model is a component of a mixture model that is learned using the
EM algorithm or variants thereof (Fujimaki and Morinaga 2012); see Eggeling (2018) for a
recent application of PCTs in such a scenario.

To make the methods presented in this and later sections applicable to weighted data, it
suffices to generalize the definition of integer counts in Eq. 2 to weighted counts:

NVa :=
∑

t :xt∈V and yt=a

wt . (8)

We obtain Eq. 2 as a special case when all weights are equal to 1. It is worth noting that for
weighted data the sample size is defined as the total weight

∑N
t=1 wt instead of the number

of (weighted) data points. Thus, for example, in the penalty term of the BIC score, N is
replaced by the total weight.

3 Memoization

The basic dynamic programming algorithm of Bourguignon and Robelin (2004), described
in the previous section, only exploits the decomposability of the scoring function (Assump-
tion 1). Fortunately, the commonly used scoring functions also share other properties that
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enable further computational savings. In this section, we formalize a sufficient condition
under which two different subproblems (i.e. nodes of the extended PCT) must have equal
solutions and thus need to be solved only once; we call the resulting technique memoization.

3.1 Storing and reusing solved subproblems

For a node V of an extended PCT, write I (V) := {t : xt ∈ V} for the set of indices of data
points that match the node. We will make use of the following data locality property, which
we, again, formalize as an assumption.

Assumption 2 (Data locality) If two leaves V and V′ of an extended PCT are matched by
the same data points, I (V) = I (V′), then their scores are equal, S(V) = S(V′).

In essence, data locality means that the leaf score S(V) depends on the leaf V only through
the data subset indicated by I (V). If the property holds for the leaf scores, then, due to Eq. 7,
it also holds for the optimal scores of the inner nodes of any fixed depth:

Proposition 2 (Memoization) Let V and V′ be two nodes such that I (V) = I (V′) and
�(V) = �(V′). Then S∗(V) = S∗(V′).

Assumption 2 is fulfilled, for instance, by the BIC score, and more generally by most
practically relevant scoring functions that can be written in terms of a penalized maximum-
likelihood score. A notable exception, however, is the Bayes score with context-dependent
hyperparameters (Eggeling et al. 2014b), comparable to the family of BDeu scores for
Bayesian networks (Heckerman et al. 1995).

Proposition 2 enables the following rule for speeding up the dynamic programming algo-
rithm. Consider an inner node V of the extended PCT. Suppose there exists another node V′
at the same depth �(V′) = �(V) and the same data subset index I (V′) = I (V). Then the
optimal scores of the two nodes are equal due to Proposition 2. Thus it suffices to compute the
optimal score only once for the node that is visited first, say V, and store it in an appropriate
data structure. To this end, we use a hash map, with the pair (I (V), �(V)) as the key and
the score S∗(V) as the value. For node V′, repeated computations are avoided by calling the
value from the data structure by the key (I (V′), �(V′)). Figure 3 shows an example where
the absence of one particular pattern in the data leads to three applications of the rule so that
only 4 of 7 subtrees of a common parent node need to be explicitly computed. Note that, in
general, the rule is not limited to sibling nodes, but may well apply among more distantly
related nodes.

The effectiveness of the memoization rule is data dependent. For small data sets but deep
trees, the rule is expected to apply often, for then the number of nodes gets large while the
number of distinct data subsets that match high-depth nodes gets small. Likewise, the relative
gain is expected be the higher, the larger the alphabet is. Also, the memoization rule is likely
to apply more frequently on highly structured data than on random data.

3.2 Trading time for space

Adownside of thememoization rule is an increasedmemory consumption due to the necessity
to store the computed optimal scores of the visited nodes in the extended PCT in memory
for potential future reuse. In order to find an appropriate tradeoff between memory and
time consumption, it is reasonable to control the degree of memoization employed by the
algorithm.
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A ... B,C A,B,C

A B C A,B A,C B,C A,B,C A B C ... A,B,C A B C ... A,B,C

Fig. 3 Example of memoization. Consider the shown part of the extended PCT and assume that no data word
ends with BA. First, we do not need to compute the subtree below the second layer node corresponding to
suffix BA. More important, the first node at depth two within the first leftmost subtree represents the same data
subset as its sibling node with label {A, B} and so the subtrees below both nodes are identical (green). The
same applies for two further pairs of siblings within the same subtree (yellow and orange). The two subtrees
rooted by {B,C} (middle) and {A,B,C} (right) show an example where the same missing data word causes data
subsets among “cousins”, both labeled by {B}, to be identical. The same situation applies in principle also to
subtrees below depth-one-nodes {C} and {A,C}, as well as, {B} and {B,C} (not shown due to space limitations)
(Color figure online)

The key idea is to store the optimal score of node V only if it is likely to be re-used and
holds a promise for significant savings in running time. While there are several possibilities
to make such a decision, for instance, based on the number of (distinct) data points matching
V, we have found that the depth of V is the decisive factor: there are only a few shallow
nodes in the extended PCT and the potential savings in running time are immense when
reusing applies, since a shallow node is root of a large subtree that needs to be traversed.
On the other hand, there is a vast number of deep nodes, for which the potential savings are
comparatively small as they are parents of only very small subtrees. Hence, it is reasonable to
limit the maximum depth at which scores are stored in memory by an external memoization
depth parameter, denoted bym, which we can use to trade time against space.We empirically
investigate the effect of varying m in Sect. 7.5.

4 Score upper bounds

In this section, we present techniques to prune parts of the search space based on fast-to-
compute upper bounds on the optimal scores of subproblems (i.e. nodes of an extended PCT).
To this end, we will make yet another assumption regarding the scoring function, in addition
to Assumptions 1 and 2.

Assumption 3 (Constant leaf penalty) The leaf score takes the form of a penalizedmaximum
log-likelihood,

S(V) = L(V) − K ,

where L(V) = ∑
a∈Ω NVa ln

NVa
NV

is the maximum log-likelihood of leaf V and K is a
constant independent of V. The function L(V) naturally extends also to every inner node V.

Note that the constant K is allowed to depend on the data size and the size of the alphabet—
we only require that K is the same number for different choices of V. The assumption of
constant leaf penalty is fulfilled, for instance, by the BIC score, with K = 1

2

(|Ω| − 1
)
ln N ,

and by the AIC score, with K = (|Ω| − 1
)
. An example of a scoring function that fulfills

Assumptions 1 and 2 but not Assumption 3 is the fNML score (Silander et al. 2010): while
the fNML score takes the form of a penalized maximum log-likelihood, the penalty term is
the multinomial regret function and thus depends on the count NV.
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For the remainder of the paper, we assume Assumption 3 to be fulfilled implicitly for
every score S mentioned, which can thus be BIC, AIC, or any other scoring criteria arising
from different choices for the constant leaf penalty K .

4.1 A simple bound

First, we introduce a simple, coarse upper bound that requires no substantial pre-computations
and can thus always be used at no additional costs. Consider an inner nodeV. To upper bound
themaximum score over all possible subtrees rooted atV, we upper bound the largest possible
gain in the maximum-likelihood term on one hand, and lower bound the inevitable penalty
due to increased model complexity on the other hand.

Consider first the likelihood term.Wemake use of the observation that every PCT is nested
in the maximal PCT, which has |Ω|d leaves, each matching a single realization x ∈ Ωd of
the explanatory variables. The same holds also locally for any PCT subtree below the node
V. Hence, the likelihood term is maximized by the maximal model, which partitions the set
Ωd−�(V) into singletons. We obtain the upper bound

L UB(V) :=
∑

a∈Ωd−�(V)

L(aV), (9)

that is, the maximum likelihood obtained by any PCT subtree rooted at V is at most L UB(V).
Here, aV denotes the leaf node obtained by extending the context of node V with a single
realization a of the remaining explanatory variables. Note that L UB(V) can be computed fast
by only summing over the sequences a that occur in the data points that match V.

Consider then the penalty term. We distinguish two cases:

Case 1 Theminimal subtree is optimal. In this case, we can compute the exact score directly:
S∗(V) = L(V) − K .

Case 2 The minimal subtree is not optimal. Thus an optimal subtree makes at least one
split, and therefore has at least two leaves. In this case, the likelihood term is upper
bounded by L UB(V), while the penalty term is at least 2K .

Combining the two cases yields the following bound.

Proposition 3 (Coarse upper bound) Let V be an inner node. Denote

Scoarse(V) := max{L(V) − K , L UB(V) − 2K }.
Then

S∗(V) ≤ Scoarse(V).

While this upper bound is coarse and sometimes tight, we next consider two possibilities
to further tighten it significantly by investing more effort in pre-computations.

4.2 Refining the bound

Our finer upper bound stems from a simple observation:

A PCT with n leaves can split according to at most n − 1 explanatory variables.

For example, if a PCT has 2 leaves (implying a penalty term 2K ), then the likelihood upper
bound of Eq. 9 allowing splits according to all explanatory variables can be overly loose,

123



890 Machine Learning (2019) 108:879–911

B  B  B
C  A  B
A  C  C
C  B  B
D  C  B
D  D  B
D  B  C
B  D  B
A  C  C
B  B  C

x1x2 y

x1

x2

LUB = -6.73 L UB   = -4.68

(i) (ii) )vi()iii(

LUB      = -1.39LUB   = -3.82

N = 10
| | = 4
K = 3.45

{1,2}{2}{1}

S ne  = max{           ,              ,         ,                 } = max{-10.18, -11.58,-10.72,-11.74} = -10.18

S coarse = max{              ,        } = max{-10.18, -8.25} = -8.25 L UB      
{1,2} - 2K

LUB - K L UB   - 2K{1} L UB   - 2K{2} L UB       - 3K{1,2}

LUB - K

Fig. 4 Upper bounds for a small example data set (box)

for we actually can split according to at most one variable. To formalize this idea, for every
� = 1, 2, . . . , d and index subset J ⊆ {1, 2, . . . , d − �} let A(�, J ) denote the family of all
subsets of sequences A ⊆ Ωd−� such that Ai is a singleton if i ∈ J and Ai = Ω otherwise.
In other words, the family forms a set partition of Ωd−� into |Ω||J | disjoint sets according
to the explanatory variables indexed in J (shifted by �). For any inner node V we obtain the
upper bounds

L UB
J (V) :=

∑

A∈A(�(V),J )

L(AV) (10)

that is, the maximum likelihood obtained by any PCT subtree rooted at V is at most L UB
J (V),

provided that the subtree splits only according to variables indexed by J . As a special case
of these bounds, we obtain the coarse upper bound by setting J = {1, 2, . . . , d − �(V)}.

By maximizing the bound over the sets J we obtain the following bound for the score:

Proposition 4 (Fine upper bound) Let V be an inner node. Denote

Sfine(V) := max
J ⊆ {1,2,...,d−�(V)} L

UB
J (V) − (|J | + 1)K . (11)

Then

S∗(V) ≤ Sfine(V) ≤ Scoarse(V).

The number of likelihood-terms that have to be computed is thus 2d−�(V) instead of two for
the coarse upper bound, which may appear as a substantial additional investment. However,
the greatest additional computational effort, 2d likelihood computations, occurs solely at the
root of the extended PCT, whereas closer to the leaves the computational effort decreases
very rapidly as �(V) increases. Since the number of nodes in the extended PCT grows faster
than 2d , we may expect the amortized additional effort due to the fine upper bound to amount
only to a small overhead—a low price for potentially much tighter bounds. We empirically
study the practical effect of the fine bound on running times in Sect. 7.7.

We show an example that compares the fine and coarse upper bound for a small data set
of N = 10 over the alphabet Ω = {A, B, C,D} in Fig. 4. Using the BIC score, the value of
the constant leaf penalty is K = 3

2 ln 10 � 3.45. We consider bounding the score of the root
node and thus omit explicit reference to the argument V of the upper bound. Since there are
two explanatory variables x1 and x2, we distinguish four cases, namely (1) full independence
of y from the explanatory variables, (2) independence from x2 (but not x1), (3) independence
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from x1 (but not x2), (4) dependence on both variables. For each of these four cases, we show
the smallest possible PCT topology and themaximal possible likelihood for the data set. Note
that each L UB stems from splitting the data into a larger number of groups than the number
of leaves in the smallest possible PCT of the same case; however, for both the splits concern
exactly the same explanatory variables. We find that in this example the coarse upper bound
is too optimistic: while there is a certain dependence in the data, it requires both explanatory
variables to fully utilize it. The fine bound shows that doing so does not give a better score
than the independence model, knowledge that can be utilized for pruning the search space
(Sect. 5).

4.3 Lookahead

The upper bounds, both the coarse and the fine bound, can be computed directly for a given
node without entering the recursion. However, we can further tighten the bounds, if we do
enter the recursion for one or more steps, in effect, performing a lookahead on the data. To
this end, for every node V and number of steps q = 1, 2, . . . , d − �(V), define the q-step
lookahead upper bound as

Sq(V) := max{C1,...,Cr }
partition of Ω

r∑

i=1

Sq−1(CiV), (12)

with S0 being the base case of a flat upper bound, say Scoarse or Sfine.

Proposition 5 (Lookahead bound) Let V be an inner node and q ∈ {1, 2, . . . , d − �(V)}.
Then

S∗(V) ≤ Sq(V) ≤ S0(V). (13)

Using the lookahead bound with a large q constitutes a substantial computational effort.
Specifically, if q = d − �(V), the bound equals the optimal score and is, in essence, obtained
by traversing through all possible PCT subtrees. Hence, the choice of q could be critical for
obtaining a good trade-off between gained savings and additional invested effort in relation
to the flat bound. We will investigate this issue empirically in Sect. 7.3.

5 Pruning rules

Armed with the score upper bounds derived in the previous section, we next present pruning
rules that aim at deciding at each visited node in the extended PCT, whether the upper bounds
allow us to avoid exact solving of the corresponding subproblem.

5.1 Stopping rule

We begin with a simple pruning rule, which follows directly from the aforementioned upper
bound. The idea can be phrased as follows:

Stop the search at a node when context-specific independence can be declared already
without explicitly considering the possible subtrees.
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From this basic idea it follows that using a lookahead bound within the stopping rule is
pointless. While it may yield a tighter bound, it has to consider subtrees explicitly and solve
the alphabet partition problem at least once, which are the tasks that are to be avoided.
Formally, we have the following.

Proposition 6 (Stopping rule) Let V be an inner node, and let T ′ be the minimal subtree
rooted at V. If

S0(V) = L(V) − K ,

then S∗(V) = ST ′(V).

The correctness can be shown by contradiction. Assume T ′ does not yield the optimal score.
Then L(V) − K < S∗(V). But since S∗(V) ≤ S0(V), this violates the premise.

5.2 Deletion rule

The idea of our second rule is to identify a node with such a low score that the node cannot
appear in any optimal PCT. In an idealized form, the rule reads as follows:

Delete a child node if the best set of children it belongs to is worse than some other set
of children (to which the node does not belong).

As we wish to delete as many potential child nodes as possible and not compute their optimal
scores, we cannot assume the optimal scores of the sibling nodes are available. Thus, to
make the rule concrete, we resort to upper bounds on the scores. Likewise, we need to lower
bound the optimal score among the valid sets of children. While, in principle, various lower
bounding schemes would be possible, we have chosen to use a particularly simple lower
bound: the optimal score of the Ω-labeled child. We next describe the bounds and the rule
more formally.

Consider a node V. To efficiently check whether a child node CV can be deleted, we need
an upper bound on the score obtained by a partition of V that includes CV. To this end, let
us associate any set function f : 2Ω → R with another function f ∗ : 2Ω → R defined by
letting f ∗(∅) := 0 and, for all ∅ ⊂ B ⊆ Ω ,

f ∗(B) := max
{C1,...,Cr }
partition of B

{
f (C1) + · · · + f (Cr )

}
. (14)

We will set each value f (C) to the score upper bound of CV at a fixed node V. Observe that
in the important special case when the values f (C) are the optimal scores, the value f ∗(Ω)

equals the optimal score of node V, following Eq. 7.
Computing f ∗ for a given f may be slow if done in a brute-force fashion, for the number

of set partitions grows super-exponentially in the size of the ground set Ω . Fortunately, there
is a faster, dynamic programming algorithm that runs in O(3|Ω|) time. The algorithm is based
on the recurrence

f ∗(B) = max∅⊂C⊆B

{
f (C) + f ∗(B\C)

}
. (15)

This recurrence holds because an optimal set partition {C1, . . . ,Cr } of B must include a set
C1 ⊆ B such that {C2, . . . ,Cr } is an optimal set partition of B\C1. The algorithm requires a
constant time for each of the 3|Ω| pairs (B,C) satisfying C ⊆ B. This enables implementing
the following deletion rule in O(3|Ω|) time.
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Fig. 5 Example of the deletion rule using BIC scores. We consider a small data set of N = 10 for two
explanatory variables over the alphabet Ω = {A, B,C,D} (bottom-left box). The root of each subtree for
which exact scores have been computed already is marked in green and corresponding score displayed in
boldface below the subtree. The remaining other subtrees are associated with an upper bound on the score.
The root of a subtree which contributes to an upper bounded partition score that is greater than the exact score
of the maximal sibling node, and thus has to optimized explicitly, is displayed in orange (Color figure online)

Proposition 7 (Deletion rule) Let V be an inner node, and let ∅ ⊂ C ⊂ Ω . Let f (C ′) :=
Sq(C ′V) for all ∅ ⊂ C ′ ⊆ Ω . If

Sq(CV) + f ∗(Ω\C) < S∗(ΩV),

then the node CV does not belong to any optimal PCT.

The correctness can be shown by contradiction. Suppose CV did belong to an optimal PCT
even though the premise was fulfilled. Then S∗(CV) + f ∗(Ω\C) ≥ S∗(ΩV), leading to
Sq(CV) < S∗(CV), which violates the property of Sq being an upper bound of S∗.

We illustrate the deletion rule by a small toy example in Fig. 5. Here, we focus on the first
layer, where only for themaximal node an optimal PCT subtree is computed and thus an exact
score is available already, whereas for the other siblings only upper bounded scores exist.
Based on those scores, we compute the upper bounded scores of every possible partition and
observe that only one partition, consisting of the two child nodes AB and CD, has an upper
bounded score that is greater than the exact score of the maximal sibling node ABCD. All other
siblings cannot contribute to an optimal partition of child nodes, as even the best partition
they contribute to has an upper bounded score smaller than what is already achieved. Hence,
the corresponding subtrees do not need to be optimized explicitly and can be deleted.

The deletion rule invests a certain amount of effort for which the obtained savings need
to compensate before the rule becomes effective: In the worst case, we need to compute
the optimal partition of children twice for each inner node, once with the upper bounded
scores for excluding subtrees from further optimization, and once with the exact scores. As a
positive side note, we observe that, while we focus on upper bounds based on Assumption 3
in this work, the deletion rule is in principle independent of the used scoring function, as
long as an effective upper bound Sq ≤ S∗ can be specified.
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6 The final algorithm

We combine the presented ideas using pseudo code. Consider first the task of computing,
for all nonempty subsets B ⊆ Ω , the maximum total score over all partitions of B, in other
words, the set function f ∗ for a given set function f , as defined in Eq. 14. The procedure
Max- Partition given below completes this task based on the recurrence in Eq. 15.

Max- Partition( f )

1 g[∅] ← 0
2 for each ∅ ⊂ B ⊆ Ω in quasi-lexicographical order
3 do g[B] ← −∞
4 for each ∅ ⊂ C ⊆ B
5 do g[B]←max{g[B], f [C]+g[B\C]}
6 return g

The main algorithm, given below as procedure Max- PCT, calls Max- Partition( f )
both with exact scores and with upper bounds, as specified by the argument f . The call
Max- PCT(V) returns the optimal score S∗(V). We thus obtain the maximum score over all
PCTs of depth d by callingMax- PCT(�). Note that the pseudo-code assumes the concrete
scoring function, defined by the constant leaf penalty K , to be set by the user. The same holds
for the flat upper bound S0, which may be coarse or fine, and which also serves as base case
for lookahead upper bound Sq .

Max- PCT(V)

1 score ← L(V) − K
2 if �(V) < d and score < S0(V) // false if stopping rule applies
3 then s[Ω] ← Max- PCT(ΩV)

4 for each ∅ ⊂ B ⊆ Ω

5 do u[C] ← Sq(CV)

6 u′ ← Max- Partition(u)

7 for each ∅ ⊂ B ⊆ Ω

8 do s[C] ← −∞
9 if u[C] + u′[Ω\C] > s[Ω] // false if deletion rule applies

10 then s[C]←Max- PCT(CV)

11 s′ ← Max- Partition(s)
12 score ← s′[Ω]
13 return score

While also omitted in the pseudocode for brevity, incorporating the memoization into the
proposed algorithm is straightforward. We can add a test that checks whether the index set
I (V) has already occurred with some other node at the same depth directly when entering the
functionMax- PCT(V). If the test is positive, the score is re-used and the rest of the function
is skipped. If the test is negative and the depth of V is not larger than m, the score is stored
in a hash data structure at the end of the function with the current data subset (index set) and
the depth of V as the key.
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7 Case studies

In the empirical part of this work, we evaluate the effects of the proposed techniques for
expediting PCT learning using a Java-implementation based on the Jstacs library (Grau et al.
2012). The software is available at http://www.jstacs.de/index.php/PCTLearn.

7.1 Data

We consider the problem of modeling DNA binding sites of regulatory proteins such as tran-
scription factors, which constitutes one established application of PCTs. A data set of DNA
binding sites consists of short sequences of same length over the alphabet Ω = {A, C, G, T}
that are considered to be recognized by the same DNA-binding protein. In this application,
the task is to model the conditional probability of observing a particular symbol at a certain
position in the sequence given its direct predecessors—a task that directly fits to the setting
outlined in Sect. 1. The probability of the full sequence is, by the chain rule, simply the
product over all conditionals. Due to the nature of protein–DNA interaction, the conditional
distribution at a particular position is strictly position-specific, so we need to learn a separate
PCT for every sequence position in a data set.

We use data from the publicly available data base JASPAR (Sandelin et al. 2004), which
contains a large number of DNA binding site data sets for various organisms. For the majority
of this section, we focus on two exemplary data sets, which contain binding sites of human
DNA-binding proteins called CTCF and REST. The sequence in both data sets are rather
long (19 and 21 nucleotides), so there are quite a few PCTs of large depth to be learned. For
conveniently referring to a particular learned PCT, we introduce the abbreviations CTCF- j
for the PCT learned at the j th position of the CTCF data set, and REST- j likewise. Both
proteins are known to recognize a rather complex sequence pattern (Eggeling et al. 2015b),
which makes the structure learning problem challenging.

Figure 6 displays the position-specific marginal frequencies of both exemplary data sets
in sequence logo representation of Schneider and Stephens (1990). They slightly differ in
the length of the sequence, otherwise the properties are rather similar: both contain several
highly informative positions, where the marginal distribution clearly favors a single symbol.
But there is also an at least equally large number of positions where the marginal distribution
contains only little information. The biggest difference among both data sets is the sample
size N , that is, the number of sequences available to estimate the distributions from: for
CTCF we have N = 908, for REST we have N = 1575.

For both data sets, we now learn optimal PCTs according to the BIC score setting the
maximum depth to d = 6, except for the first six sequence positions, where the maximum

(a) (b)

Fig. 6 Sequence logos of exemplary data sets that show position-specific marginals of relative frequencies
of observations in both data sets. The height of the symbols in each stack are scaled relative to each other
according to the relative frequencies; the total height of each stack is scaled inversely proportional to the
entropy of the marginal (Schneider and Stephens 1990). a CTCF, b REST (Color figure online)
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Fig. 7 Topologies of learned PCTs for exemplary data sets CTCF (top) and REST (bottom). The i th tree refers
to the i th random variable in the sequence and the context variables are the direct predecessors. They are
ordered so that a descendent of the root at depth j refers to state of the variable at sequence position i − j . The
color of a node corresponds to the number of symbols in the node’s label: green indicates a singleton, yellow
corresponds to two, and orange to three symbols. Purple indicates the full alphabet; the node is only shown if
it is a root of a non-minimal subtree. a CTCF, b REST (Color figure online)

depth is limited by the number of available explanatory variables. We show the resulting
PCT structures in Fig. 7, hereby omitting the node labels in order to obtain a compact
representation. Each node is still colored according to the size of its label, that is, whether it
represents a singleton, the full alphabet, or a case in between.

We observe that the complexities of the optimal PCTs differ. In both data sets, there are
sequence positions where a PCT that represents full statistical independence of the variable
giving its predecessors is optimal according to the BIC score, which typically, though not
always, occurs at highly informative positions. For CTCF all optimal PCTs have splits until
at most depth three, whereas in the case of REST the allowed maximum depth of 6 is actually
used to full capacity in case of REST-11 and REST-20, one final split occurs at depth 5,
and three final splits at depth 4. The preference of REST for deeper trees, in comparison to
CTCF, may be caused by a combination a larger sample size, which allows a bit higher model
complexity, and the location of the highly informative positions in clusters, which spatially
separates low-informative positions among whose dependencies are likely to occur.

The height and shape of the optimal PCT structures suggest that the PCT optimization
for REST is generally computationally harder than for CTCF. In the following sections,
we utilize both data sets for evaluating the effectiveness of the proposed memoization and
pruning techniques.

7.2 Pruning versus memoization

In a first study, we compare the effect of memoization in its maximal variant, pruning with the
fine upper bound and one-step lookahead (q = 1), and the combination of both techniques

123



Machine Learning (2019) 108:879–911 897

8 10 12 14 16 18

1e
−0

8
1e

−0
4

1e
+0

0 CTCF

Position

Fr
ac

tio
n 

of
 v

is
ite

d 
no

de
s

Memoization
Pruning
Both

8 10 12 14 16 18 20

1e
−0

8
1e

−0
4

1e
+0

0 REST

Position

Fr
ac

tio
n 

of
 v

is
ite

d 
no

de
s

Memoization
Pruning
Both

Fig. 8 Comparison of pruning and memoization. Shown is the fraction of visited nodes of extended PCT for
different algorithm variants. The base case is the basic DP algorithm, which traverses the entire extended PCT
(about 1.22 × 107 nodes) (Color figure online)

for finding optimal PCTs of maximum depth d = 6. For each position j > 6 in both
data sets, we count the number of visited nodes, which are nodes in the extended PCT that
are explicitly created (including lookahead nodes), and plot the savings achieved by each
algorithmic variant in relation to the basic DP algorithm of Sect. 2.3 in Fig. 8. We observe
that the general pattern is similar for both data sets.

Memoization reduces the search space by approximately one order of magnitude on aver-
age, and the savings vary only little from position to position. This can be explained by the
structure of the data sets, where most positions have both high- and low-informative positions
as predecessors, so the potential for exploiting regularities in the explanatory variables is in
a similar range.

The effect of pruning, however, varies to a large degree. As a rule-of-thumb, at high-
information positions pruning yields a tremendous reduction of the search space. In one
exceptional case, CTCF-13, it is possible to prune already at the root, whichwe cannot always
expect to happen: other positions with minimal optimal tree displayed in Fig. 7(top) require
more effort to declare statistical independence. The savings at low-information positions are
not as pronounced, but for all 28 cases under consideration, pruning yields higher savings
than memoization.

It is thus no surprise that the combination of both is dominated by the effect of pruning:
Memoization contributes only small additional savings for positions where pruning is not
overly effective, such as CTCF-8 or REST-15.

Comparing the twodata sets to each other,wefind that the aggregated savings forCTCFare
higher than for REST,which confirms the speculation from the previous section. In particular,
for REST-11 and REST-15 finding optimal PCTs is relatively demanding. However, the
optimal tree structure only implies a tendency, the correlation is not perfect: REST-7 and
REST-20 seem equally challenging instances, yet the former yields a minimal optimal tree,
whereas the latter yields an optimal tree with five leaves that reaches up to depth 6.

7.3 Pruning variants in detail

In the last section,we have seen that pruningwith the fine upper bound and one-step lookahead
is very competitive and that addingmemoization on top of that yields onlymarginal additional
savings. Now, we take a closer look at pruning itself in order to evaluate how large the impact
of the different variants is. We compare the cross-combinations of (1) the coarse and fine
upper bound and (2) q-step lookahead with q ∈ {0, 1, 2}. The results are shown in Fig. 9.
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Fig. 9 Comparison of different pruning variants. Shown is the reduction of the search space in relation to basic
DP in terms of the number of visited nodes of the extended PCT. Here we compare the coarse with the fine
upper bound and different values for q, the number of lookahead steps (Color figure online)

We observe that the biggest difference among methods is achieved at seemingly “easy”
positions: the most striking example is again CTCF-13, where the difference among the best
and the worse pruning technique amounts to four orders of magnitude. Moreover, the switch
between the coarse and fine upper bound has a higher impact than changing the number of
lookahead steps. Except for a few difficult cases (CTCF-18, REST-11, REST-15) using the
fine bound has always a clearly positive effect on the reduction of the search space, and it
never increases the work load in terms of the number of visited nodes.

Lookahead, however, can have a negative effect, as it potentially increases the search space
in cases where it has little benefit on tightening the bounds. With the coarse upper bound,
lookahead clearly pays off, q = 1 and q = 2 are both almost equally good and in some cases
(CTCF-13, REST-17) substantially better than q = 0. With the fine upper bound, q = 1
performs best. For a few positions (CTCF-14, REST-9, REST-16), the one-step lookahead
substantially improves the shallow fine upper bound by more than one order of magnitude.
Furthermore, for the majority of positions q = 1 is slightly superior to q = 2, but there are
a few instances where further lookahead pays off, such as REST-9 or REST-10. The cases
q > 2, we omit from the plots for clarity, follow the trend from q = 1 to q = 2 and yield
inferior performance.

We conclude that the fine upper bound in combination with one-step lookahead is a
competitive choice. Two-step lookahead is for these data sets not substantially worse, as the
additional number of visited lookahead nodes is compensated by the tighter bound so the
parameter is robust.

7.4 The AIC score

In the previous two sections, we used the BIC score as the objective function to be optimized.
It is a reasonable choice in the domain of DNA binding site modeling due to its harsh penalty
term (Eggeling et al. 2014b), which yields sparse trees as shown in Fig. 7. Now, we repeat
the study from Sect. 7.2, but replace BIC by AIC, which is known penalize complex models
less heavily. While we refrain from showing the optimal PCTs for brevity, they are indeed
substantially more complex in terms of the number of leaves: for CTCF the mean over all
sequence positions is 11.4 and the median is 8, for REST the mean is 12.1 and the median is
13.

We again compute optimal PCTs of depth d = 6 for all algorithm variants. The results
are shown in Fig. 10. The savings for memoization are exactly the same as in the case of the
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Fig. 10 Savings with the AIC score. The plot shows the fraction of visited nodes of extended PCT for different
algorithm variants in analogy to Fig. 8, from whom it differs only in the scoring function and the range of the
y-axis (Color figure online)

BIC score, which serves as a sanity check: the memoization technique does not distinguish
between BIC and AIC, and so the results must be identical.

The results for pruning, however, dramatically change. Due to the less harsh penalty
term, total statistical independence never occurs, that is, the minimal tree is never optimal.
Moreover, context-specific independence can be declared in much fewer cases than for BIC,
and so the pruning rules are less effective. The largest saving occurs for CTCF-10, where
the AIC-optimal PCT has only four leaves, the saving being a little more than three orders
of magnitude, which is comparable to the worst cases for BIC on the same data set. There
are even instances, where the reduction of the search space is smaller than one order of
magnitude.

The comparatively poor effect of the pruning rules, however, changes the game when
pruning is combinedwithmemoization.While is some cases like CTCF-10, Rest-8, or REST-
8 pruning alone could still suffice, and in a few other cases like CTCF-14, CTCF-18, or
REST-10 memoization alone yields already the best possible result, combining the two ideas
clearly pays off for the majority of positions. It demonstrates that the memoization idea can
in principle be as valuable as pruning or be even more effective, depending heavily on the
scoring function and the complexity of the optimal model structures.

7.5 Memoization revisited

As demonstrated in the last section, the memoization technique has the merit of yielding
a certain reduction of the search space, no matter whether the scoring function favors for
sparse or complex models. However, memoization has the downside that storing solutions to
previously computed subproblems—either scores associates with data subsets or even entire
subtrees—can substantially increase the memory consumption.

We thus investigate the impact of the memoization depth m, which indicates the deepest
layer of the extended PCT for which subproblems are stored for potential re-use later on. For
measuring time consumption, we count the number of visited nodes in the extended PCT.
Since the total running time for a data set is the main factor of interest, we here take the
mean value over all positions. For measuring space consumption, we count the number of
stored nodes. Here, however, we take themaximum over all positions, since it typically is the
quantity of interest to decide whether a problem can be solved on a given machine or not.
Figure 11 displays the results.
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Fig. 11 Effect of memoization depth for finding optimal PCTs of maximum depth d = 6. Memoization depth
m = 0 disables memoization entirely, whereas m = 5 enables maximal memoization (Color figure online)

We observe that the pattern is similar for all six cases, and m = 4 gives the overall best
tradeoff between time and space complexity. For cases where pruning is rather effective,
such as BIC, space complexity may not become a critical bottleneck, so even m = 5 could
be justified. In the other cases, it might be a good idea to stop storing subproblems one layer
earlier by settingm = d−2 and to compute, if needed, the optimal partition of the leaf nodes
of the extended PCT explicitly.

7.6 Broad study

In the previous sections, we investigated two data sets in detail and used the number of
visited nodes in the extended PCT as an evaluation metric. Two open questions remain: How
do the numbers of visited nodes translate to running times?How does the algorithmic variants
perform on a larger variety of data sets, in particular with respect to the sample size?

In order to shed light on these issues, we now investigate 95 data sets with varying sample
size, from N = 102 to N = 8,734 (see Appendix for the full list). We use the BIC score
as objective function, the fine upper bound with the lookahead parameter q = 1 as pruning
method, and full memoization. The sequence length, which determines the number of PCTs
to be optimized, differs among data sets. Using d = 6, we learn all 767 PCTs and plot the
running times required for each of the four algorithmic variants in Fig. 12(left). Performing a
signed-rank test ofWilcoxon (1945) among these variants,wefind that all pairwise differences
are highly significant with p values below 10−10.

The results generally confirm the observation from the previous sections: pruning gives
larger savings than memoization, even though the difference in running times is not as large
as the difference in the number of visited nodes (Sect. 7.2). One explanation is that the
computation of the fine upper bound does have a certain computational cost, whereas mem-
oization has a memory- rather than a computation-overhead. In addition, memoization can
also give improvements in cases where pruning itself is ineffective. As a consequence, the
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combination of pruning and memoization is the significantly best choice for speeding up
PCT optimization and reducing the median running time by almost two orders of magnitude.

In Fig. 12(right), we plot for this best variant the running time against the number of visited
nodes in the extended PCT, for each of the 767 problem instances. We color each point in the
scatter plot by the size of the data set, distinguishing three size groups, roughly on a log scale:
small with N < 500, typical with 500 < N < 3000, and large with N > 3000, consisting
of 23, 52, and 20 data sets respectively (each amounting to several instances). We observe
that the running time correlates well with the number of visited nodes (Pearson correlation
coefficient ρ = 0.90).

One factor that prohibits a perfect linear correlation between running times and visited
nodes is the sample size N , which itself has a roughly linear effect on the running time. This
is because all data points need to be read and distributed among the nodes in the extended
PCT, which becomes most evident for all cases where pruning applies directly at the root
(1 visited extended PCT node) where the correlation between sample size and running time
is almost perfect (ρ = 0.99). For the remaining cases, the relationship is less perfect but
the general trend remains the same. For the four-symbol alphabet the data management, as
opposed to the alphabet partitioning, dominates the workload in each node of the extended
PCT.

7.7 Running times for different parameter values

The previous section discussed the running times for concrete selections the algorithms’
parameters. We now set these parameters, one at a time, to possible alternative values and
study the effects on the running time (Fig. 13).We observe that for every parameter there exist
some problem instances that benefit from a change of the parameter value, but nevertheless
we do observe a general trend.

When using the coarse bound instead of the fine bound (top, right), we find that for the
majority of problem instances the running time increases, and in many cases by more than
one order of magnitude. Keeping the fine bound, but disabling the lookahead instead (top,
center) also leads to an increased running time for the majority of instances. These are often
cases the minimal PCT is optimal (red), and whereas the fine bound enables pruning directly
very early in the optimization, the coarse bound does not. Increasing the lookahead from
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q = 1 to q = 2 has relatively little effect, and thus confirms the expectations gained from
analyzing the number of visited nodes (cf. Fig. 9).

When varying the memoization parameterm, we observe that for the majority of problem
instances the running times remain widely identical, especially these where the optimal
PCT has only one leaf. However, for many instances where the optimal PCT has more than
one leaf, gradually disabling memoization by reducing m increases running time. These
results also confirm the expectations from the earlier analysis: pruning and memoization
complement each other: whereas the former technique attempts to quickly identify context-
specific independencies (including complete independence), the latter allows savings also in
cases where the optimal PCT is relatively complex.

7.8 Predictive performance

Armed with the algorithmic tricks described in this paper, we are now able to study the
predictive performance of a PCT-basedmodel, dubbed iPMM (inhomogeneous parsimonious
Markov model), on a large scale. We also investigate the performance of Bayesian networks
(BNs), which have been previously proposed for the modeling complexity in transcription
factor binding sites (Barash et al. 2003). This comparison is particularly relevant as the two
model classes take into account different features in the data: iPMMs allow dependencies
only among nucleotides in close proximity, but theymodel such dependencies in a very sparse
and efficient way. BNs also allow long-range dependencies among distant positions in the
sequence, but they are potentially less effective for short-range dependencies due to their use
of conditional probability tables.
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Table 2 Number of instances for
which an iPMM predicts
better/worse than a BN

α = 0.05 α = 0.005 α = 0.0005

Better 75 70 66
Tie 11 16 22
Worse 9 9 7

To allow for a fair comparison among the structural features of bothmodel classes,we learn
globally optimal iPMMs andBNswith the same structure score (BIC) and the same parameter
estimator given the structure (posterior mean with pseudo count 1/2). For BN structure
learning, we use an implementation of the dynamic programming algorithm of Silander and
Myllymäki (2006), which is sufficient for finding a globally optimal DAG for the problem
sizes within this application domain. For evaluating the predictive performance for both
models we employ a repeated holdout approach with 90% training data and 100 repetitions.
For each data set, we compute the mean log predictive probabilities and test whether the
difference among both models is significant using the signed-rank test of Wilcoxon (1945).
The individual results for all 95 data sets under consideration are shown in the Appendix.

Table 2 summarizes these results for a few different significance levels. We find that
iPMMs describe the majority of data sets significantly better than BNs, which justifies the
use of a PCT-basedmodel. Data sets with long-range dependencies among nucleotides, which
cannot be taken into account by iPMMs, exist, but they are the exception rather than the rule.

While the absolute difference among the predictive probabilities may seem small, the
practical relevance depends on the concrete application. For scanning an entire genome with
a threshold-based approach, for instance, even small differences in the predictive probability
may have a substantial impact on the number of false positives. In addition to the general
advantages such as easy visualization as discussed in Sect. 1, iPMMs have also the conceptual
advantage over BNs that the running time grows only linear with the sequence length. Hence,
they could be used to model longer sequence patterns, while still retaining optimality with
respect to the chosen objective function.

7.9 Other types of data

Since DNA binding site data (1) concerns only |Ω| = 4 and (2) entails some highly-
informative response variables due to the inhomogeneity of the used iPMM, they may be not
fully representative for other types of data. We thus additionally investigate our algorithmic
techniques on learning PCTs from protein sequences, which are typically described using the
20-letter amino acid alphabet. However, for many applications it is common to reduce this
alphabet to smaller sizes based on, e.g., similar biochemical properties of certain amino acids
(Li et al. 2003; Peterson et al. 2009; Bacardit et al. 2009). In this study we use the alphabet
reduction method of Li et al. (2003), since it offers for each possible reduced alphabet size
an optimal clustering of amino acids into groups.

We study protein sequences from the UniProt database (The UniProt Consortium 2017).
In order to somewhat limit the number of data sets, we consider only human proteins with
catalytic activity. In addition, we data sets to these with a protein length between 250 and
500 residues, which is motivated by the median human protein length of 375 (Brocchieri and
Karlin 2005). We further exclude three selenoproteins and finally retain 1191 sequences.

For each of these sequences, we learn a PCT (thus implicitly assuming a homogeneous
model) with the basic DP algorithm and with our full algorithm with improvements enabled
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Table 3 Algorithm comparison for learning PCTs of depth d=4 on ADL data

Data set N Metric Basic Full Saving factor

A 248 VN 262,209,281 15,007,453 17.47
A 248 RT 6451 598 10.78
B 493 VN 262,209,281 24,514,291 10.69
B 493 RT 6955 1129 6.16

The metrics are the running time in seconds (RT) and the number of visited nodes in the extended PCT (VN)

and plot the required running time for three combinations of alphabet size and maximal PCT
depth in Fig. 14. We find that our algorithm speeds up structure learning also for this type
of data and model. Compared to the results on DNA binding sites, the savings rates are on
smaller on average, but also the variance in savings is decreased. This can be explained by the
observation that in homogeneous sequences the response variables rarely have an extreme
marginal distribution, so pruning at or close to the root almost never occurs, even if the
independence models was optimal.

In order to also consider an example from a non-biological domain, we evaluate the PCT
learning algorithmson theactivity of daily living (ADL)data ofOrdonéz et al. (2013), obtained
from the UCI machine learning repository (Lichman 2013). We extract the sequence of daily
activities of both users, which contain nine and ten possible states, respectively. We further
combine the states “Breakfast”, “Lunch”, “Snack”, and “Dinner” (the latter occurs only for
user B) into a single state “Meal”, thus obtaining two sequences with alphabet size seven.
We use these data for learning PCTs of depth four for both ADL data sets with our algorithm
and with the basic variant and display the results in Table 3. We again obtain a substantial
reduction of search space and running time that is comparable to the previous results on
protein sequences.

8 Discussion

We have investigated the problem of learning parsimonious context trees (Bourguignon and
Robelin 2004), which are a powerful model class for sequential discrete data, but entail the
challenge of requiring high computational effort for exact structure learning (Leonardi 2006).
Specifically, we proposed two orthogonal ideas to expedite the basic dynamic programming
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algorithm of Bourguignon and Robelin (2004) for finding a highest-scoring parsimonious
context tree.

The first idea, memoization, exploits regularities among the explanatory variables by
storing and re-using previously optimized subtrees. Empirical results on real world DNA
binding site data suggest that memoization reduces the search space by about one order of
magnitude in typical cases. The variance in the savings factor is generally moderate since
regularities among multiple explanatory variables need to coincide for the memoization rule
to apply; extreme cases with extraordinary high regularity are rare unless the dependence
among variables is actually deterministic. While memoization is rather memory-intensive
in its maximal instantiation, we have seen that the memory burden can be significantly
reduced by putting a limit on the number of stored subproblem solutions, losing only little
in search space reduction. We observed that a simple implementation of this idea works:
storing solutions only up to a certain user-specified depth provides an interpolation between
the minimal andmaximal memory requirements. Let us note that we also investigated several
alternative criteria for deciding whether the solution to a particular subproblem should be
stored for later re-use or not, such as the number of (distinct) data points matching the
corresponding node. However, no other criterion could compete with the simple depth-based
criterion.

The second idea, pruning, exploits regularities within the response variable through upper
bounds on the scoring function. Specifically, we derived local score upper bounds for scores
with a constant leaf penalty such as the BIC score or the AIC score, with an option for a few-
step lookahead. We presented two pruning rules that utilize these upper bounds: a stopping
rule and a deletion rule. Empirical results showed that pruning can be extremely effective
when the entropy in the response variable is low and the scoring function favors sparse trees,
which is typically the case for BIC. Here, pruning substantially outperforms memoization
andwhen employing both, the latter appears to offer only a negligible additional contribution.
However, the reduction of the traversed search space is less pronounced when the distribution
of the response variable has a high entropy and when the found optimal tree is large. In this
situation, the combination of pruning and memoization pays off.

The effectiveness of pruning for a given scoring function depends partially on the quality
of the score upper bounds.Wemay control and influence this aspect by algorithmic decisions
concerning the amount of effort we are willing to invest for getting tighter bounds. However,
our case studies demonstrate that it additionally depends on the size of the tree structures
favored by the scoring function: if the optimal tree is sparse, then there is more potential,
albeit no guarantee, for pruning large parts of the search space. This second aspect is beyond
our direct control in algorithm design once data set and scoring function are fixed. As a
consequence, the choice of the scoring function, a pure modeling decision, has a direct and
in fact rather predictable impact on the speed of the algorithm.

It might be noteworthy that using the BIC score for learning parsimonious context trees
was previously motivated from the perspective of predictive performance under limited
data (Eggeling et al. 2014b). The empirical results from this work now also suggest an algo-
rithmic justification for this scoring function choice, and it can be considered as a fortunate
coincidence that these two different objectives lead to the same conclusion.

While our case studies involved only two concrete scoring functions and one type of
benchmark data, we believe that the lessons learned can be somewhat generalized. Since our
score upper bounds for BIC and AIC share the same functional form, wemay assume that the
upper bounds alone are roughly equally effective in both cases. Hence, a larger leaf penalty
of a scoring function implies a larger pruning potential on average. This conclusion should
generalize also to other scoring functions, such as Bayes scores arising from different prior
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choices, albeit deriving effective upper bounds could be technicallymore challenging in these
cases. In contrast, memoization makes only weak assumptions about the scoring function
and is thus always equally effective nomatter whether model complexity is penalized heavily
or not. This interplay of pruning and memoization techniques is likely to generalize also to
other classes tree-structured probabilistic models.

One obvious limitation of the method is that the effectiveness of the proposed methods
wane with growing sample size as memoization becomes less likely to apply and also the
optimal PCTs become larger. However, we find this limitation not very significant, as the very
purpose of PCTs is to provide a sparse representation of a conditional distribution in small
data scenarios where a full Markov model would have excessively many parameters. Thus,
it may be not critical if learning the model becomes computationally infeasible in situations
where the model does not have clear advantage over computationally simpler models in the
first place.

Another limitation is that the presented methods, as such, are insufficient for handling
large alphabets. The reason is that increasing the alphabet size does not only increase the
size of the extended PCT (which could be dealt with by pruning and memoization), but also
the time needed for computing a single optimal partition for each of its inner nodes. Since
the time complexity for the latter task is already O(3|Ω|), it does not seem likely that exact
learning of PCTs on more than a dozen of symbols becomes tractable for practically relevant
instances. So if handling a large alphabet is critical for the specific application and cannot
be circumvented by some alphabet reduction method, one should resort either to heuristic
algorithms or to simpler and potentially less powerful models.

The present work also opens avenues for future research. For instance, it might be worth-
while to apply the pruning ideas for finding optimal classification and regression trees
(Breiman et al. 1984; Buntine 1992; Chipman et al. 1998) with many categorical explanatory
variables. The published exact algorithms for learning decision trees (Blanchard et al. 2007;
Hush andPorter 2010;Bertsimas andDunn2017) do not employ pruning based on score upper
bounds; the pruning strategies explored in the literature—see, e.g., Frank (2000), Lomax and
Vadera (2013), and references therein—are limited to post-processing of decision trees found
by greedy, inexact algorithms, and are thus not comparable to the methods presented in the
present paper. It also remains to be investigated whether the bound-and-prune approach could
succeed in expediting other algorithms that are based on recursive set partitioning. An exam-
ple is the DP algorithm by Kangas et al. (2014) for learning chordal Markov networks, for
which Rantanen et al. (2017) recently presented a related bound-and-prune variant; however,
the variant appears to not take full advantage of the underlying DP algorithm and yields
speedups only occasionally. A different line of research is to design heuristic, approximate
algorithms for learning parsimonious context trees that scale to large alphabets and thereby
significantly widen the applicability of the model class. We believe the techniques presented
and the insight obtained in this work constitute a fruitful starting point for devising effective
greedy and local search algorithms.
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Appendix

The following table shows the negative mean log predictive probabilities obtained by
Bayesian network (BN) and inhomogeneous parsimonious Markov model (iPMM) for 95
data sets of transcription factor binding sites. The values are normalized by number of
data points N and sequence length L . Random guessing would thus achieve a value of
− ln(0.25) � 1.3863, and smaller values indicate thus improved predictive performance.

ID Name L N BN iPMM p value

MA0079.3 SP1 11 8734 0.5379 ± 0.0005 0.5336 ± 0.0004 3.96E−18
MA0479.1 FOXH1 11 8211 0.4989 ± 0.0003 0.4946 ± 0.0003 3.96E−18
MA0095.2 YY1 12 7171 0.5354 ± 0.0005 0.5360 ± 0.0005 4.93E−06
MA0512.1 Rxra 11 5348 0.5599 ± 0.0004 0.5439 ± 0.0004 3.96E−18
MA0478.1 FOSL2 11 5318 0.4903 ± 0.0005 0.4879 ± 0.0004 2.97E−16
MA0477.1 FOSL1 11 5272 0.4726 ± 0.0004 0.4816 ± 0.0004 3.96E−18
MA0105.3 NFKB1 11 5112 0.5206 ± 0.0005 0.5152 ± 0.0004 3.96E−18
MA0003.2 TFAP2A 15 5098 0.7731 ± 0.0005 0.7719 ± 0.0005 3.67E−09
MA0506.1 NRF1 11 4624 0.4800 ± 0.0008 0.4744 ± 0.0008 3.96E−18
MA0508.1 PRDM1 15 4603 0.6713 ± 0.0007 0.6685 ± 0.0008 4.89E−18
MA0036.2 GATA2 14 4380 0.6986 ± 0.0005 0.6956 ± 0.0005 7.44E−18
MA0523.1 TCF7L2 14 4188 0.7052 ± 0.0005 0.7015 ± 0.0005 4.08E−18
MA0529.1 BEAF-32 15 3985 0.7528 ± 0.0004 0.7503 ± 0.0004 1.62E−17
MA0510.1 RFX5 15 3868 0.7389 ± 0.0006 0.7344 ± 0.0006 4.08E−18
MA0475.1 FLI1 11 3667 0.5407 ± 0.0006 0.5364 ± 0.0006 1.39E−17
MA0137.3 STAT1 11 3629 0.4478 ± 0.0008 0.4473 ± 0.0007 2.23E−02
MA0141.1 Esrrb 12 3605 0.6216 ± 0.0009 0.6206 ± 0.0008 2.15E−13
MA0503.1 Nkx2-5(var.2) 11 3429 0.5780 ± 0.0005 0.5751 ± 0.0005 1.82E−17
MA0076.2 ELK4 11 3427 0.5515 ± 0.0005 0.5510 ± 0.0006 1.39E−02
MA0537.1 blmp-1 11 3368 0.5129 ± 0.0007 0.4991 ± 0.0006 3.96E−18
MA0518.1 Stat4 14 2873 0.7010 ± 0.0006 0.6969 ± 0.0006 3.96E−18
MA0471.1 E2F6 11 2757 0.5426 ± 0.0006 0.5382 ± 0.0006 4.89E−18
MA0482.1 Gata4 11 2746 0.5337 ± 0.0005 0.5306 ± 0.0005 4.74E−18
MA0469.1 E2F3 11 2549 0.5066 ± 0.0007 0.5046 ± 0.0007 1.10E−10
MA0480.1 Foxo1 11 2490 0.5371 ± 0.0007 0.5364 ± 0.0007 4.44E−03
MA0216.2 cad 11 2303 0.5283 ± 0.0006 0.5190 ± 0.0006 3.96E−18
MA0507.1 POU2F2 13 2287 0.5645 ± 0.0008 0.5625 ± 0.0008 7.89E−12
MA0083.2 SRF 18 2277 0.7744 ± 0.0008 0.7683 ± 0.0009 3.96E−18
MA0497.1 MEF2C 15 2209 0.7323 ± 0.0007 0.7280 ± 0.0007 4.08E−18
MA0541.1 efl-1 15 2206 0.7445 ± 0.0010 0.7338 ± 0.0011 4.33E−18
MA0509.1 Rfx1 14 2138 0.6244 ± 0.0009 0.6128 ± 0.0009 3.96E−18
MA0467.1 Crx 11 2097 0.5642 ± 0.0007 0.5584 ± 0.0007 5.35E−18
MA0137.2 STAT1 15 2069 0.7729 ± 0.0010 0.7701 ± 0.0010 3.46E−14
MA0531.1 CTCF 15 1902 0.7302 ± 0.0012 0.7252 ± 0.0012 6.22E−18
MA0470.1 E2F4 11 1878 0.5526 ± 0.0008 0.5454 ± 0.0008 3.96E−18
MA0098.2 Ets1 15 1868 0.7314 ± 0.0008 0.7321 ± 0.0008 1.52E−04
MA0520.1 Stat6 15 1852 0.7232 ± 0.0007 0.7220 ± 0.0006 1.03E−07
MA0483.1 Gfi1b 11 1761 0.5271 ± 0.0007 0.5263 ± 0.0007 3.35E−02
MA0505.1 Nr5a2 15 1702 0.6775 ± 0.0013 0.6719 ± 0.0013 5.73E−17
MA0516.1 SP2 15 1686 0.7535 ± 0.0010 0.7488 ± 0.0010 6.03E−18
MA0940.1 Foxo1 13 1622 0.7565 ± 0.0010 0.7516 ± 0.0010 5.04E−18
MA0465.1 CDX2 11 1597 0.5033 ± 0.0007 0.5055 ± 0.0007 1.92E−12
MA0138.2 REST 21 1575 0.6036 ± 0.0014 0.5992 ± 0.0015 2.43E−16
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ID Name L N BN iPMM p value

MA0052.2 MEF2A 15 1473 0.6863 ± 0.0009 0.6842 ± 0.0009 1.35E−13
MA0050.2 IRF1 21 1362 0.7768 ± 0.0013 0.7765 ± 0.0013 3.00E−01
MA0142.1 Pou5f1::Sox2 15 1356 0.6975 ± 0.0013 0.6926 ± 0.0014 1.48E−17
MA0452.2 Kr 14 1296 0.6791 ± 0.0009 0.6798 ± 0.0010 1.04E−03
MA0494.1 Nr1h3::Rxra 19 1269 0.8804 ± 0.0010 0.8792 ± 0.0010 7.85E−07
MA0543.1 eor-1 15 1253 0.6947 ± 0.0015 0.6918 ± 0.0016 8.99E−11
MA0472.1 EGR2 15 1246 0.7227 ± 0.0012 0.7179 ± 0.0013 2.80E−15
MA0106.2 TP53 15 1231 0.5836 ± 0.0015 0.5768 ± 0.0016 6.44E−17
MA0501.1 MAF::NFE2 15 1090 0.5564 ± 0.0014 0.5553 ± 0.0014 7.39E−04
MA0511.1 RUNX2 15 1062 0.7556 ± 0.0012 0.7532 ± 0.0012 7.06E−07
MA0024.2 E2F1 11 1059 0.5571 ± 0.0009 0.5533 ± 0.0010 1.63E−16
MA0062.2 Gabpa 11 987 0.5441 ± 0.0018 0.5388 ± 0.0019 1.16E−13
MA0463.1 Bcl6 14 956 0.7078 ± 0.0011 0.7079 ± 0.0012 9.08E−01
MA0139.1 CTCF 19 908 0.7231 ± 0.0014 0.7171 ± 0.0014 4.46E−18
MA0513.1 SMAD2::SMAD3 13 899 0.6493 ± 0.0013 0.6474 ± 0.0013 2.13E−09
MA0014.2 PAX5 19 896 0.8474 ± 0.0017 0.8383 ± 0.0018 4.04E−17
MA0554.1 SOC1 15 888 0.6939 ± 0.0013 0.6930 ± 0.0013 2.01E−03
MA0148.1 FOXA1 11 888 0.5938 ± 0.0017 0.5911 ± 0.0017 4.71E−10
MA0485.1 Hoxc9 13 885 0.6575 ± 0.0010 0.6548 ± 0.0010 3.46E−10
MA0536.1 pnr 11 869 0.5012 ± 0.0012 0.4983 ± 0.0013 9.59E−13
MA0065.2 Pparg::Rxra 15 855 0.8386 ± 0.0015 0.8363 ± 0.0015 2.20E−08
MA0144.1 Stat3 19 821 0.8324 ± 0.0014 0.8299 ± 0.0014 3.31E−10
MA0047.2 Foxa2 12 800 0.6212 ± 0.0016 0.6125 ± 0.0016 1.52E−17
MA0150.2 Nfe2l2 15 726 0.6305 ± 0.0017 0.6310 ± 0.0018 2.35E−01
MA0527.1 ZBTB33 15 705 0.7258 ± 0.0016 0.7242 ± 0.0016 6.14E−05
MA0143.1 Sox2 15 662 0.7755 ± 0.0019 0.7748 ± 0.0019 4.26E−01
MA0517.1 STAT1::STAT2 15 620 0.6230 ± 0.0019 0.6181 ± 0.0019 4.99E−13
MA0559.1 PI 14 558 0.6916 ± 0.0021 0.6915 ± 0.0021 1.59E−01
MA0493.1 Klf1 11 526 0.5263 ± 0.0019 0.5252 ± 0.0020 3.35E−02
MA0530.1 cnc::maf-S 15 474 0.7456 ± 0.0014 0.7408 ± 0.0015 8.92E−14
MA0146.1 Zfx 20 468 0.8954 ± 0.0016 0.8962 ± 0.0017 5.60E−02
MA0112.2 ESR1 20 467 0.9214 ± 0.0018 0.9158 ± 0.0018 1.16E−14
MA0504.1 NR2C2 15 395 0.6469 ± 0.0022 0.6440 ± 0.0023 1.18E−07
MA0545.1 hlh-1 11 381 0.5632 ± 0.0019 0.5647 ± 0.0020 2.58E−03
MA0258.1 ESR2 18 357 0.8691 ± 0.0022 0.8639 ± 0.0023 1.24E−10
MA0547.1 skn-1 15 318 0.6721 ± 0.0030 0.6643 ± 0.0032 1.83E−12
MA0481.1 FOXP1 15 311 0.7310 ± 0.0016 0.7161 ± 0.0020 4.51E−14
MA0544.1 snpc-4 12 310 0.4672 ± 0.0038 0.4595 ± 0.0037 6.21E−16
MA0556.1 AP3 15 291 0.7305 ± 0.0023 0.7307 ± 0.0023 4.29E−01
MA0558.1 FLC 21 275 0.8672 ± 0.0019 0.8563 ± 0.0020 2.51E−15
MA0486.1 HSF1 15 225 0.6884 ± 0.0028 0.6894 ± 0.0029 8.72E−02
MA0538.1 daf-12 15 156 0.7136 ± 0.0042 0.6573 ± 0.0053 6.60E−18
MA0550.1 BZR1 14 153 0.7472 ± 0.0024 0.7498 ± 0.0025 1.21E−04
MA0548.1 AGL15 15 150 0.7638 ± 0.0041 0.7636 ± 0.0040 1.09E−01
MA0563.1 SEP3 11 150 0.6932 ± 0.0043 0.6932 ± 0.0043 N/A
MA1012.1 AGL27 14 142 0.5404 ± 0.0027 0.5333 ± 0.0027 4.02E−11
MA0532.1 Stat92E 15 118 0.7456 ± 0.0032 0.7506 ± 0.0035 1.01E−04
MA0060.1 NFYA 16 116 0.8515 ± 0.0045 0.8457 ± 0.0047 7.67E−04
MA0552.1 PIF1 14 114 0.7638 ± 0.0025 0.7601 ± 0.0026 4.85E−07
MA0149.1 EWSR1-FLI1 18 105 0.1386 ± 0.0068 0.1379 ± 0.0070 2.44E−02
MA0534.1 EcR::usp 15 104 0.7380 ± 0.0041 0.7388 ± 0.0041 5.91E−02
MA0535.1 Mad 15 102 0.8290 ± 0.0025 0.8387 ± 0.0030 5.88E−11
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