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Colloidal stability of negatively charged nanodiamonds (ND) has been realized with the help of double hydro-
philic block copolymers poly(ethylene oxide)-block-poly(dimethylaminoethyl methacrylate)-dodecyl (PEO-b-
PDMAEMA-C12). The polymers were synthesized through RAFT polymerization of DMAEMA with a PEO
macromonomer carrying trithiocarbonate and dodecyl end-groups. The NDs and the polymers were complexed
by mixing them in different ratios. In addition to the amount of polymers, the effect of the detailed structure of

the polymer was of interest and thus, also polymers with different lengths of the PEO-block were synthesized, as
well as a block copolymer without the dodecyl end-group. The composition of the polymer, as well as the
complexation conditions were varied to find the route to stable nanoparticles. The optimized complexation
method gave colloidally stable ND particles with positively charged PDMAEMA coronas. The colloids were stable
at room temperature and also in saline solutions up to 0.154 M NaCl.

1. Introduction

Nanodiamonds (NDs) are an intriguing class of carbon nanomater-
ials with a diamond-like inner structure, rich surface chemistry and size
in the submicron domain [1-7]. They have surfaced as a viable material
to be used in place of and in conjunction with other carbon based na-
nomaterials especially in engineering [8,9] and biomedicine [10,11].
The useful properties of NDs for these applications include versatile and
modifiable surface [5], electric insulation, high thermal conductivity
[12], good mechanical- and chemical resistance [9], biocompatibility
[13] and natural non-bleaching fluorescence [14,15]. These are a result
of the diamond-like properties of the ND cores combined with the
variable surface functionalities accessible by different ND production
processes [16]. A number of different ways to prepare NDs are avail-
able, including so called static high pressure high temperature (HPHT),
dynamic detonation methods, laser ablation, microwave plasma, che-
mical vapor deposition (CVD) and ultrasound cavitation [7]. Of these,
the most often used are the HPHT and detonation methods.

Detonation methods are a cost effective approach for producing NDs

in large scale [17]. In the most utilized detonation synthesis, two ex-
plosives having a combined oxygen balance under zero (mainly trini-
trotoluene (TNT) and hexogen (RDX)) are detonated in a closed
chamber yielding nanoscale sp> carbon soot. The soot is then collected
and purified to yield the end product called detonation nanodiamond.
With further processing the surfaces of the detonation NDs can be
functionalized in multiple ways [5], leading to e.g. carboxylate- or
amine functionalized diamonds. However, diamonds produced by de-
tonation may also have very complex surface functionalities. This
combined with their large surface to volume ratio leads to a tendency of
NDs to bind to each other by different mechanisms forming tight core
agglutinates, core aggregates, intermediate aggregates and agglutinates
[18]. Aggregated NDs lose many of the attractive properties stemming
from their small size and make the production of heterogeneous pro-
ducts or stable colloidal solutions a challenging task [2].

Studies of breaking the different aggregates of NDs have been re-
ported by many groups [3,4,18-22]. By either grinding [18], sonicating
[21,22] or annealing [20,23], a colloidal dispersion of small ND par-
ticles is achievable. However, the long term stability [24],
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Scheme 1. RAFT polymerization (I) and end-group removal (II).

redispersibility and usability without further functionalization is diffi-
cult to achieve. To enhance these properties, methods to stabilize and
functionalize NDs have been studied. Most of the approaches involve
covalent functionalization of NDs with surface groups that enable
longer term stability or bring additional functionality [25]. Azide-al-
kyne cycloaddition reactions on azide functionalized NDs have been
shown to be a viable method to attach various moieties [26,27]. By
attaching PEO or poly(methyl ether methacrylate) with NDs Zhang
et al. demonstrated enhanced dispersibility in water [28].

The properties of NDs can also be enhanced by physical adsorption
to the surface of NDs. For example doxorubicin has been complexed
with negatively charged NDs in order to bind and release a drug upon
varying the salt concentration [29]. Covalent and non-covalent ap-
proaches have also been combined interestingly by attaching proteins
by electrostatic interactions to NDs followed by covalent protein im-
mobilization [30]. Proteins bovine- and human serum albumin have
been shown to complex fluorescent NDs and to prevent their aggrega-
tion in aqueous dispersions and be used for enhanced intracellular de-
livery [31]. According to the same report, block copolymers such as
poly(ethylene glycol)-block-poly(dimethylaminoethyl methacrylate-co-
butylmethacrylate) can also be used for this purpose. Hybrid ND:poly
(ethylene imine) polyelectrolyte complexes have been utilized as vec-
tors for siRNA delivery [32].

Polymeric dispersants can be often utilized to prevent colloid ag-
gregation/instability. They function by adsorbing at the surface of the
suspended particle and providing a protective layer that reduces par-
ticle-particle attraction and/or enhances solvent-particle interaction.
PEO has been used to provide steric stabilization especially in the
biomedical field [33,34]. Polyelectrolytes, on the other hand, are cap-
able of providing electrostatic stabilization and may also enable charge
inversion when oppositely charged moieties are used for complexation.
PDMAEMA is a weak polycation that has been used with graphene to
form colloidally stable multilayer structures sensitive to pH [35], to
form pH-triggered antibiotic release systems when complexed with
gelatine [36] and has also been used with carboxylated NDs to enhance
their stability in biological fluids [31]. In addition, the polyelectrolyte
is pH and temperature sensitive [37].

Knowing that amphiphilic PDMAEMA based block copolymers have
been studied already [31], we wanted to take a step further in evalu-
ating the effect of different structural units on the ND-polymer inter-
action. Multicomponent PEQO-b-PDMAEMA-C12 polymers comprising of
hydrophilic, hydrophobic and polyelectrolyte blocks are shown to en-
hance the stability and dispersibility of NDs in aqueous media. PEO-
block lengths as well as the presence of the C12-group in the polymers
were varied and their effect on the resulting polymer:ND complex
properties and their colloidal stability were studied. The work de-
monstrates a promising approach for colloidally stable nanodiamond
powder derived hybrid materials for bio- and materials applications.

2. Experimental
2.1. Materials

Carboxylated detonation nanodiamond powder with diamond

186

content > 97%, water content ~2% and 0.07-0.1% of impurities
(uDiamond® Molto Vox, Carbodeon Oy, Finland) was used as received.
All solvents were used as received unless otherwise mentioned. Chain
transfer agents (CTA) poly(ethylene oxide) methyl ether 2-(dode-
cylthiocarbonothioylthio)-2-methylpropionate (PEO17-CTA M,
1100 g/mol and PEO105-CTA M, 5000 g/mol, Sigma-Aldrich), poly
(methyl methacrylate) (PMMA, SEC standard grade, Fluka), di-
methylformamide (DMF, 99.9%, Sigma-aldrich), sodium chloride
(NaCl, 99.9%, Fischer) and lithium bromide (LiBr, 99%, Fluka) were
used as received. Monomer 2-(dimethylamino)ethyl methacrylate
(DMAEMA, 99% stabilized, Acros organics) was run through an anhy-
drous alumina column (Al,03, 99%, Merck) and distilled in a vacuum to
remove inhibitors. Azobisisobutyronitrile (AIBN, 98%, Fluka) was re-
crystallized from methanol (99.9%, Sigma-Aldrich) and dissolved in
1,4-Dioxane (99%, VWR).

For preparation of aqueous solutions and dispersions, deionized
ultrapure water with ~18 mQQ resistance was used. Glassware used to
prepare light scattering samples and dilutions were carefully washed
with methanol prior to measurement.

2.2. Synthesis of PEO-b-PDMAEMA block copolymers (I) and end-group
removal (II)

The polymers were synthesized by RAFT polymerization reported
earlier (Scheme 1, step I) [38]. Generally, 1 g of DMAEMA (6.35 mmol)
and 46.2mg of PEO-CTA (0.042 mmol) were weighed into a 25mL
round bottom flask followed by addition of 1 mL AIBN/dioxane solution
(AIBN 0.0042 mmol/mL, 0.0042 mmol) and 4 mL of dioxane. Dissolved
reagents were freeze-thawed three times under < 3 mbar vacuum to
remove oxygen followed by addition of nitrogen atmosphere to the
flask. The polymerization was initiated by immersing the flask into an
80 °C oil bath with magnetic stirring. The reaction was left to stir in the
bath for 6 h and was stopped by placing the opened flask into an ice-
water bath for 10 min.

The product was dialyzed in a MWCO 3500 g/mol cellulose mem-
brane against deionized water for 2days changing dialysis water at
least 2 times a day. After dialysis, the product was freeze dried and
stored in a freezer until used.

The removal of the dodecyl end-group was performed with a
modified version of the method by Perrier et al. (Scheme 1, step II, Fig.
S1-2) [39]. 0.1 g of polymer al (end-groups 0.0016 g, 0.00624 mmol)
and 0.0154 g of AIBN (0.0936 mmol) were weighed into a 25 mL round
bottom flask. The flask was sealed and purged with Ar gas for 5min
under stirring. 5mL of dried dioxane was added through a rubber
septum and the mixture was left to stir with Ar bubbling for 35 min at
room temperature. The reaction was started by immersing the flask into
an 80 °C oil bath with magnetic stirring. The flask was left to stir in the
bath for 18 h and the reaction was stopped by placing the opened flask
into an ice-water bath for 10 min. The product was purified by pre-
cipitation to cold n-hexane three times and dried in a vacuum. After
purification, the dried product was dissolved in dioxane, freeze dried
and stored in a freezer until used.
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2.3. Preparation of ND dispersions and polymer solutions

A Hielscher UP400S Ultrasonic Processor was used to disperse NDs
and polymer:ND complexes using a H3 sonotrode at 400 W and a 0.5
duty cycle unless otherwise mentioned. The samples were placed into
an ice-water-salt bath IWS, ~0 °C) during sonication to prevent heating
of the solutions.

Stock dispersions of ND were prepared by weighing the as-received
ND powder into a 20 mL glass vial, adding deionized water, mixing by
hand vigorously and sonicated for 30 min. All samples were refrigerated
at +4 °C when not used and sonicated at full duty cycle for 10 min prior
use. The polymer solutions in water were made by dissolving polymer
thoroughly into deionized water to 1 mg/mL concentrations and kept at
+4°C prior use.

2.4. Polymer:ND complexation

For the complexation experiments, a Watson-Marlow solvent pump
was employed to obtain a constant addition rate of polymer solvent
(0.64 mL/min). Purification and fractionation of the complexes was
performed with Sigma 2K15C centrifuge at 5000 RPM (3773g) at 20 °C.

For the optimized procedure (see Supplementary data, Optimization
of the complexation), 5 mL of refrigerated 10 mg/mL ND dispersion was
measured into a 25mL round-bottom flask with a large magnetic
stirrer. The dispersion was sonicated in an IWS bath for 10 min at full
duty cycle. Sonicated dispersion was moved into another IWS bath with
magnetic stirring at 750 RPM. 15 mL of refrigerated 1 mg/mL polymer
solution was added to the ND dispersion dropwise with a solvent pump.
The mixture was left to stir for 24 h without replacing the IWS bath.
After stirring, the dispersion was subjected to 120 min of sonication. For
IR and TGA analysis, the complex was washed twice by centrifuging for
30 min, removing supernatant fraction and dispersing in fresh deio-
nized water. Washed complex was dried in a 50 °C oven and stored in a
desiccator if not used.

2.5. Gel permeation chromatography (GPC)

The molar masses of the polymers were determined with a Waters
Acquity APC - system equipped with Acquity APC XT 200 A, 450 A
columns and UV- and RI-detectors. DMF + 1 mg/mL LiBr was used as
an eluent and molar masses were compared to PMMA standards.
Samples were prepared by measuring 2mg of sample into 1 mL of
eluent and letting the sample dissolve overnight on a shaking table at
room temperature. Dissolved samples were filtered through 0.45pm
PTEE filters before measurement.

2.6. Nuclear magnetic resonance (NMR)

NMR-spectra were recorded with a Bruker Avance III spectrometer
operating at 500 MHz for protons. For liquid state 'H measurements,
the samples were dissolved in deuterium oxide (D,0) to a concentration
of 2mg/mL. In the titration experiments a polymer sample in D,O
(2mg/mL) was titrated by ND dispersion in DO (10 mg/mL), stirred
and left to stabilize overnight. Stabilized sample was shaken by hand
and sonicated in a bath for 30 min before measuring. Integrated solvent
signal at 4.79 ppm was compared to signals at 3.71 ppm, 2.34 ppm and
1.32 ppm (Supplementary data, Fig. S1). The results were corrected to
sample dilution.

2.7. Fourier-transform infrared (FTIR)

IR-spectra were collected with PerkinElmer Spectrum One using an
attenuated total reflection (ATR) setup for polymers and transmission
setup for ND- and complex samples. ND- and complex samples were
prepared into a pellet by adding ~5-10 wt% of sample to dried KBr,
mixing with a mortar and pestle to a fine powder and pressed with 10
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tons of pressure for 5min. 4 scans were taken with a range of
450-4000 cm ™.

2.8. Thermogravimetric- and evolved gas analysis (TGA-EGA)

TGA-EGA analysis was done using a Netzsch STA 449 F3 Jupiter
simultaneous thermal analyzer connected to JAS-Agilent GC-MS
(7890B/MSD5977A). 8-10 mg of sample was weighed into an Al,03 TG
crucible and stabilized in the instrument at 40 °C until there was no
significant mass change. In the dynamic measurements done, the
sample was heated from 40 to 1200 °C with a heating rate of 5°C/min
under a 40 mL/min helium flow. Half of the gas flow containing the
evolved gases was led through a heated transfer line to JAS valve box,
from where the flow was continuously sampled through a 60 cm long
inert GC capillary acting as a pressure restriction to the MS detector
(MSD5977A).

2.9. Transmission electron microscopy (TEM)

Transmission electron microscopy was conducted to complement
the size data and visualize NDs and complexes. TEM images were taken
with a Jeol JEM-2800. Samples with 0.1 mg/mL concentration in water
were sonicated in a water bath for 90 min, blotted on an ultrathin
CF300H-Cu-UL carbon support grid and dried at ambient atmosphere.

2.10. Dynamic light scattering (DLS) and Zeta Potential (ZP)

DLS and ZP measurements were made at 25°C with Malvern
Zetasizer Nano DS instrument using a HeNe laser operating at 633 nm
in a backscattering configuration. Samples were degassed and then
prepared into folded capillary zeta cells with a concentration of 0.1 mg/
mL. ND and complex samples were prepared without filtering to pre-
vent adsorption of samples into filters. Each sample was measured 5
times using the average of at least 3 measurements as the result.
Measurements where the quality was low or cumulant- and distribution
fit errors were too high, according to Zetasizer software, were not used.
To give a full view on the particle size distributions, both number and
intensity weighed distributions are presented and particle sizes are
given as number mean values or Z-average values from 2nd order
(cumulant) polynomial fit. Smoluchowski model was used in analysis of
the electrophoretic mobility and zeta potential. Stability of the disper-
sions was measured from the samples stored in zeta cells at different
periods of time.

2.11. pH

pH was measured to determine if the basic polymer (pKa = 7.5)
[40] and acidic carboxylic acid (pKa = 4-5) [41] on the ND surface
neutralize each other during complexation. pH of the solutions and
dispersions (concentration 1-10 mg/mL in deionized water) were
measured at room temperature with a VWR Phenomenal IS2100L using
WTW or WVR electrodes calibrated within a day of the measurement
with pH4, 7 and 10 buffers.

2.12. Stability studies

DLS and ZP samples in deionized water were stored in the folded
capillary zeta cells at room temperature in the dark and measured be-
tween set time intervals up to 5weeks of storage. For measurements
under saline conditions, samples in deionized water were added to salt
solutions to desired ionic strength ([NaCl] = 0.01-0.154 mol/L) and
solid content of 0.1 mg/mL. Each sample in saline was measured se-
parately within 2 h of preparation.
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Table 1
Specific data of block copolymers.
Product PEO17-b- PEO105-b- PEO17-b-
PDMAEMA-C12 PDMAEMA-C12 PDMAEMA
Label al a2 b
M:CTA:Init 150:1:0.1 200:1:0.33 1:0:16
Reaction time (h) 6 6 18
Conversion (%) 54.5 55 52.8
M, (g/mol)
Theoretical 13,834 22,293 15790°
NMR" 17,000 22,300 16790°
GPC 16,000 DMF, 15,000 DMF 15790
17,000 THF
PDI 1.9 DMF, 1.3 THF 1.6 DMF 1.9
Repeating units 101 110 101
(RU)
pH 8.6 9.1 8.6

? Molar mass was estimated assuming complete replacement of the Cl2-
chains with butyronitrile.

> Molar masses (M,) were assessed from 'H NMR by comparing the PEO-
block signals at 3.7 ppm to PDMAEMA side-chain CH,-signals at 4.15 ppm (Fig.
S1).

3. Results and discussion

The PEO-b-PDMAEMA-C12 polymers were synthesized via RAFT
polymerization and subsequent post-modification (Table 1). The three
polymers were synthesized to have the same PDMAEMA-block lengths,
while the PEO-block length and presence of the hydrophobic C12 do-
decyl end-group were varied. In order to investigate the interactions
between NDs and polymers, the complexation process and the resulting
complexes were first studied. Then complexation variables such as
temperature, polymer to ND ratio and use of sonication were varied and
their effect on the size distribution, pH and zeta potential of the com-
plexes were monitored. Full details of the complex preparation are
given in the Supplementary Data. Complexes with 20:1 (polymer:ND)
molar ratio were chosen for further studies. These were then in-
vestigated to assess their size, surface charge and colloidal stability. For
clarity, the polymers are labelled al (PEO17-b-PDMAEMA-C12), a2
(PEO105-b-PDMAEMA-C12) and b (PEO17-b-PDMAEMA) (Table 1) and
the corresponding complexes as C-al, C-a2 and C-b (Table 2).

3.1. Complexation of polymers and NDs

The polymer:ND complexation was studied by 'H NMR by adding
ND dispersion to the polymer solution (Fig. S1). As the surface of NDs
comprise mostly of carboxylic acids, especially the positively charged
PDMAEMA-blocks are expected to interact with their surface. This
would lead to lowered mobility of the polymer segments and conse-
quently to suppressed NMR signal intensity. However, as the ND sur-
faces contain also other functional moieties capable of interacting with
PEO or C12, their signals were monitored as well. The titration of
polymers al and a2 by ND dispersion (Fig. 1) shows a decrease of signal
intensities with increasing amount of ND added. By observing the
change in signal intensities of block copolymer al (Fig. 1A), it can be
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concluded that all parts of the polymer lose mobility with the addition
of NDs. When polymer a2 with longer PEO is studied (Fig. 1B) the
PDMAEMA signal decreases similarly as with polymer al, but the PEO
and C12 signals are less suppressed compared to PDMAEMA. This
shows that the electrostatic interaction between the ND carboxyls and
PDMAEMA plays the main role in the complexation process. The less
suppressed signal of PEO of a2 compared to al indicates that longer
PEO-chains of a2 extend as dangling chains from the ND surface to-
wards the solvent retaining their mobility. The situation is different for
al, where the short PEOs are embedded in the fuzzy interface. Analysis
of the C12 signals in the case of al indicates that the dodecyl end-group
is in very restricted environment due to the presence of hydrophobic
interactions with the ND surface. For polymer a2, the signal from C12
suppresses less during titration, which can be related to the overall
more hydrophilic nature of the a2 polymer due to the longer PEO-
blocks.

IR spectrum of the NDs (Fig. 2) reveals signals corresponding to OH-
groups of absorbed water, (confirmed by measuring the sample again
after heating at 130 °C, Fig. S3), carboxyls and anhydrides [4,42]. The
spectrum of the block copolymer is characteristic for PDMAEMA
without obvious signals from PEO or dodecyl end-groups. For the
purified and dried polymer:ND complex (C-al) the signals of both
polymer and ND are present. Complexes C-a2 and C-b show similar
spectra as C-al (Fig. S4). Compared with the starting materials, the
absorbances are shifted slightly indicating the binding of polymers onto
the ND surfaces. Most clear indication of the interaction is the at-
tenuation of the N-(CHj), signal at 2750 cm ™!, where the absorption
band is nearly undetectable in the complex sample, as has been ob-
served earlier for complexed PDMAEMA [43,44].

Thermal stability of NDs, polymer and complex were studied with
TGA under He-atmosphere (Fig. 3). ND shows onset of degradation at
475°C and starting from this temperature up to 900 °C. MS for the
evolved gases shows a strong signal at m/z 44, assigned to CO, which
may be assumed to form from degradation of carboxyl groups [45,46].
NDs retain 70% of their mass even when heated up to 1200 °C but
change their colour to dark black which can be related to high content
of sp> carbon [47]. Polymer al shows a two-step degradation pattern
starting at 155 °C. Evolved gas analysis of the polymer below 300 °C
indicates nearly pure evaporation of DMAEMA until further heating
leads to complex pyrolysis products and oxidized carbon.

The complex C-al shows a combination of the degradation patterns
of pure ND and polymer with three distinguishable steps. Nearly all
polymer degrades prior to the onset of ND degradation, enabling the
estimation of the amount of polymer in the complex. The polymer mass
of the purified complex according to TGA is around 20 wt%, which
corresponds well to the mass ratio of the polymer in the feed (in this
complex 23.2wt%, Table S1). Thermal analysis data of complexes
containing differential thermogravimetry curve (DTG) and extracted-
ion chromatograms (EIC) can be found at Supplementary data (Fig. S5).

All in all, the IR, NMR and TGA data confirm successful com-
plexation and that the purification does not selectively wash away ei-
ther of the components.

Table 2

DLS, ZP and pH data of ND and complexes.
Label Polymer pH? Zeta potential (mV) Size (d'nm) PDI
C-al PEO17-b-PDMAEMA-C12 7.3 51.1 154.2°, 27.8° 0.224
C-a2 PEO105-b-PDMAEMA-C12 7.4 44.3 190.6b, 50.0¢ 0.310
C-b PEO17-b-PDMAEMA 7.5 40.4 155.51’, 79.7¢ 0.225
ND - 3.8 —74.1 149.5", 30.5° 0.240

@ pH of polymer solutions in Table 1.
b Z-average size (Fig. S7).
¢ Number mean size.
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3.2. Complex characterization

When the as-received NDs are dispersed in water with stirring only,
the particles remain as large aggregates and agglutinates. Sonication
leads to narrower size distribution and decreased size (Fig. S6D).
However, the dispersions sediment quickly due to re-formation of the
larger structures. To minimize the complex size, achieve a neutral pH
and maximize the surface charge of complexes for stability, the mixing
ratios (polymer:ND), complexation temperatures and sonication times
were varied (see Supplementary data for details, Optimization of the
complexation). Generally, increasing the mixing ratio increases the size
of the particles as well as their zeta potential. Initially negatively
charged particles show positive zeta potential when enough polymer is
added but aggregate when zeta potential is close to zero. Lowering the
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complexation temperature to 0°C from room temperature results in
smaller complexes and increases the zeta potential to positive value at
lower mixing ratios. Even at lowest mixing ratio studied (3:1) the pH is
slightly basic compared to acidic ND dispersions. Sonication up to
120 min decreased the size of the complexes considerably.

The best conditions were chosen based on the smallest size, suitable
final pH value and highest surface charge obtained. Complexes with a
molar mixing ratio of 20:1 (polymer:ND), mixing temperature of 0 °C
and 120 min of sonication were chosen for further studies.

According to DLS the smallest complexes by number weighing are
obtained by using polymer al with short PEO-block and C12-group
(Table 2, Fig. 4A, for particle size distributions obtained by intensity
weighing see Fig. S7) showing similar particle size as the pure ND
dispersion after sonication. The particle size then increases for com-
plexes with polymer a2 with longer PEO-block, which is in line with the
results from NMR experiments that suggest that dangling PEO-chains
may extend towards the solvent from the complexes, increasing the
observed hydrodynamic diameter. Complexes obtained from the
polymer without the hydrophobic C12-group, C-b, show the largest size
analysed by number weighing, which is also demonstrated in a mor-
phological change in the TEM images discussed later. The importance of
hydrophobic-hydrophilic balance has also been shown for dispersing
carbon nanofibers by amphiphilic PDMAEMA copolymers [48] and for
fullerene C60 with alkyne-functionalized poly(oxazoline)s [49]. In both
cases polymers with hydrophobic moieties were better dispersants for
these carbon materials leading to smaller sized aggregates.

Upon complexation, the acidic NDs and basic polymers neutralize
each other leading to changes of pH compared to the original solutions
(Fig. 4B). Acidic pH < 7 indicates free ND and basic pH > 8 (Table 1)
indicates free, uncomplexed polymer. Average pH of the 20:1 com-
plexes after sonication is around 7.4. Complexes C-al and C-a2 have a
pH of 7.6 without sonication, a 2.5% difference to the sonicated solu-
tions which can be regarded as measurement error. For these polymers,
efficient complexation between ND and polymer without large me-
chanical stress applied to the solution takes place. As complexes C-al
and C-a2 have different length PEOs, we can conclude that the length of
PEO-block does not significantly change the binding between the
polymer and ND. However, dispersion of complex C-b without the hy-
drophobic C12 has a pH of 8.5 before sonication. After sonication the
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pH drops to 7.5. This shows that the binding of polymers to the ND
surface is aided by the hydrophobic dodecyl end-group, which anchors
the polymers to the hydrophobic sites on the NDs. After sonication the
average pH of all of the 20:1 complexes is ~7.4 which is a preferable pH
for many applications.

All studied complexes have a ZP above +30mV (Fig. 4C), in con-
trast to the pure ND dispersion having a ZP below —60mV. The
complexation thus induces a charge inversion of the particles. For all
the dispersions sonication increases the ZP if the value is positive and
decreases ZP if the value is negative. This is due to the breaking down of
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Fig. 4. Size distributions of complexes and ND by number (A) with pH- (B) and zeta potential (C) values of complexes and NDs before and after sonication. Error bars
represent instrument maximum error (5%) in pH data and measured deviation in ZP data.
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Fig. 5. TEM images of ND (A), C-al (B) and C-b (C). Note the increase in magnification from left to right 10,000 nm — 1000 nm — 100 nm.

the aggregates thus increasing the electrophoretic mobility of the par-
ticles being measured. The surface zeta potential > +40mV of the
sonicated complexes provides efficient electrostatic stabilization to the
dispersed particles.

TEM imaging was used to visualize the NDs and their complexes
(Fig. 5). The TEM images confirm large and dense aggregates for the
pure ND samples, while the polymer:ND complexes are more finely and
evenly dispersed at all magnifications. The complex C-al with the C12-
chain has smaller size and is clearly more dispersed than the complex C-
b. This is in line with the DLS and zeta potential measurements for C-al
and C-b highlighting the important role of the dodecyl end-group in the
complexation process.

3.3. Colloidal stability

Stability of the ND and complex dispersions in deionized water was
followed using samples stored at room temperature (Fig. 6). The pure
ND dispersion aggregated considerably after 1 week of storage. The
average diameter nearly doubled (Fig. 6A) and the ZP halved (Fig. 6B)
on top of visual observation of sedimentation. The change in ZP can be

explained through the size change. As the size increases, mobility de-
creases and surface to volume decreases causing smaller ZPs even
though there is no chemical change in the charged groups. The poly-
mer:ND complex samples showed a small increase in size and no sig-
nificant changes in ZP over 5weeks of observation time, apart from a
small fraction of sediment seen by eye. This shows clearly how com-
plexing NDs enhance the stability of the formed dispersion significantly
and the composition of polymer has little to no effect on it.

Stability of NDs and complexes C-al and C-a2 in saline were mea-
sured up to isotonic concentrations. Samples prepared in different NaCl
solutions were measured by DLS (Fig. 7A) and ZP (Fig. 7B) within 2 h of
preparation. The ND dispersion showed increased size and greatly de-
creased ZP immediately when salt was present. The dispersion began to
precipitate already at a concentration of 0.05mol/L and was un-
measurable by DLS at higher salt concentrations due to complete se-
dimentation. Complexes C-al and C-a2 remained in solution upon in-
creasing ionic strength. The size of C-al complexes increased when the
salt concentration was above 0.05 mol/L. Complexes of C-a2 retained
their size relatively unchanged over the whole concentration range
studied, indicating that the increased length of the PEO-block improves
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the stability. ZP of both complexes decreased due to the screening of
charges. The results show that the steric stabilization provided by PEO-
chains promotes the colloidal stability even though the charges are
screened through increased ionic strength. Stability data according to Z-
Average size is shown in Supplementary data (Fig. S8).

In addition to the described benefits by complexation of NDs for use
as dispersions, in some cases it would be preferable to store and use NDs
as dry powder. However, dry ND powder is difficult to handle as it
whirls easily as airborne small particulates and deposits on surfaces.
Dried polymer:ND complexes yield redispersable (Fig. S9), non-pow-
dery flakes that are easier and safer to work with.
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4. Conclusions

Colloidally stable dispersions of negatively charged nanodiamonds
(ND) were made with amphiphilic, cationic block copolymers.
Combined with sonication, polymer:ND dispersions with large positive
zeta potential, neutral pH, improved colloidal stability and particle
sizes below 200 nm were obtained. Complexes prepared with block
copolymers having different PEO-block lengths and/or with a hydro-
phobic C12-group resulted in differently sized aggregates with different
morphology. More finely dispersed complexes were obtained with
polymers bearing the C12-group, indicating the importance of hydro-
phobic interactions between the ND surface and polymers. The complex

T A

I I
0.1

0.154

o
S

*Inadequate data quality due to precipitation of ND
T T T

0 0.01

T
0.05

0.075 0.1 0.154

NaCl concentration (mol/L)

Fig. 7. Stability measurements in increasing NaCl concentration. Size with (A) and ZP (B) with standard deviation.

192



T. Tiainen, et al.

dispersions retain their size and colloidal stability in water for extended
periods of time. Their stability was also demonstrated in saline and
found to be superior compared with pure ND dispersions that aggregate
and sediment. Steric stabilization provided by the longer PEO-blocks
further increased the colloidal stability of the dispersions against saline.
Polyelectrolyte complexation of NDs thus provides a viable way to
prevent the aggregation and clustering of their dispersions and provides
a promising platform for functional, dispersible ND particles for a
variety of material and biological applications.
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