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Breaking the epithelial polarity barrier
in cancer: the strange case of LKB1/PAR-4
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The PAR clan of polarity regulating genes was initially discovered in a

genetic screen searching for genes involved in asymmetric cell divisions in

the Caenorhabditis elegans embryo. Today, investigations in worms, flies and

mammals have established PAR proteins as conserved and fundamental

regulators of animal cell polarization in a broad range of biological phenomena

requiring cellular asymmetries. The human homologue of invertebrate PAR-4,

a serine–threonine kinase LKB1/STK11, has caught attention as a gene behind

Peutz–Jeghers polyposis syndrome and as a bona fide tumour suppressor

gene commonly mutated in sporadic cancer. LKB1 functions as a master reg-

ulator of AMP-activated protein kinase (AMPK) and 12 other kinases referred

to as the AMPK-related kinases, including four human homologues of PAR-1.

The role of LKB1 as part of the energy sensing LKB1-AMPK module has been

intensively studied, whereas the polarity function of LKB1, in the context of

homoeostasis or cancer, has gained less attention. Here, we focus on the

PAR-4 identity of LKB1, discussing the weight of evidence indicating a role

for LKB1 in regulation of cell polarity and epithelial integrity across species

and highlight recent investigations providing new insight into the old ques-

tion: does the PAR-4 identity of LKB1 matter in cancer?

provided by Helsingin yliopiston digitaalin
1. Introduction
The famous narrative from the Scottish author Robert Louis Stevenson, The
Strange Case of Dr Jekyll and Mr Hyde, keeps inspiring not only those fascinated

by psychiatric split personality disorder but also cell biologists working on

multi-functional proteins. In this sense, the tumour suppressor protein LKB1/

PAR-4 is a strange case. The LKB1 identity of this kinase protein, also known

as serine/threonine kinase 11 (STK11), has been associated with upstream acti-

vation of the two isoforms of AMP-activated protein kinase (AMPK) and 12

AMPK-related kinases (ARKs). Doubtless, LKB1 is a key regulator of cell

metabolism. However, LKB1/STK11 has yet another identity because the

protein is a human homologue of PAR-4, a member of a PAR clan of proteins

involved in regulation of cell polarity in worms, flies and mammals. Which,

among the multiple identities of a single protein LKB1/STK11/PAR-4, is

then Dr Henry Jekyll and which is the evil Mr Edward Hyde? The answer is

obvious: none is Mr Hyde because cells do not express evil proteins. However,

it appears that the bad nature of Mr Hyde surfaces on the pathways that suffer

from loss of LKB1. Inheriting a mutated copy of the LKB1 gene predisposes to

autosomal-dominant Peutz–Jeghers polyposis syndrome (PJS) and multiple

cancers. LKB1 is also mutated in a variety of sporadic cancers. When cells

lose LKB1, they also lose a mechanism to activate AMPK. Without AMPK

activity, cells are not capable of controlling the mammalian target-of-rapamycin

(mTOR) pathway, and consequently cells lose their grip on growth control and

proliferation. This chapter about LKB1 is almost like something from the

Stevenson story—Dr Jekyll is not inherently a good person but he is not

acting like Mr Hyde because he is able to repress impulses, which feed the

savage behaviour of Mr Hyde. How does the loss of PAR-4 identity become vis-

ible in tumour-prone cells that have lost LKB1? Investigations in flies and

mammals have shown that cells without PAR-4 (LKB1) activity suffer from

an inability to maintain apico-basal polarity and to sustain integrity of cell–cell
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junctions, including apical junctions. Damage at apical tight

junctions in these cells may be a deed of Mr Hyde, because

loss of cell cohesion promotes invasion of the cancer cells

into neighbouring tissues. However, we posit in this

review that one witnesses the true savageness of Mr Hyde

in a ferocious assault that PAR-4-derepressed pathways

launch against the basal side of the cells. The attack shatters

the basement membrane using a transmembrane serine pro-

tease called Hepsin—akin to the heavy cane that Mr Hyde

uses to beat his first victim to death. Basement membrane

is the last line that cancer cells have to cross before they

can invade connective tissue.

We first introduce here a few basic concepts of cell

polarity and epithelial integrity, discussing how impaired

control of these mechanisms may promote tumorigenesis.

Thereafter, we focus on LKB1, discussing the relevance of

the PAR-4 identity of LKB1 in polarity regulation and cancer.
8:20130111
2. Loss of epithelial polarity in cancer:
an epiphenomenon or a cause?

Epithelial tissues vary in form and function, but the basic

principle of apico-basal polarity is similar in different tissues.

In polarized epithelial cells, the apical surface is oriented

towards the lumen or external environment. This side of the

epithelial cell, which often has membrane protrusions (micro-

villi), takes care of the absorption, exchange and secretion of

molecules and macromolecules [1]. Lateral surfaces of the

epithelial cells contact adjacent cells via specialized cell–cell

junctions, namely tight junctions, adhesion junctions and

desmosomes. On the opposite side of the apical membrane is

the basal surface, which anchors cells to a basement membrane.

Basement membrane is a thin (about 100 nm), dense sheet

composed of a meshwork of insoluble molecules including

laminin polymers, a cross-linked network of collagen IV fibrils,

proteoglycans and glycoproteins [2,3].

(a) Epithelial cell polarity: frame and function
Polarized membranes and cytosolic molecular asymmetries

are fundamentally important for epithelial cells to function

as a multi-cellular organized tissue. The molecular asymme-

tries guide directional exocytosis and secretion of digestive

enzymes from pancreas, milk from mammary epithelium

and vectorial transfer of nutrients across the gut epithelium

to blood [1]. Furthermore, extension of epithelial monolayers

requires that cell divisions occur in the plane of the sheet

and many key cell polarity proteins are involved in determin-

ing alignment of the mitotic spindle so that it is perpendicular

to the axis of apico-basal polarity [4–6]. In addition to many

proteins, lipids are also asymmetrically distributed in polar-

ized cells [1]. In particular, the asymmetric distribution of

phosphatidylinositol phosphates Ptd(4,5)P2 (PIP2) and

Ptd(3,4,5)P3 (PIP3) along the apico-basal axis, observed in sev-

eral cell types, has been attributed to the differential activities

of PTEN phosphatases and PtdIns3-kinases (PI3K) on the

apical and basolateral sides of cells [1,7,8]. Developing (pri-

mordial) adhesion junctions, tight junctions, desmosomes

and basal cell surface–basement membrane contacts provide

landmarks and orientation cues for development of apico-

basal cell polarity [1,9]. Tight junctions maintain the polarized

status of membrane domains by physically restricting lateral
diffusion of integral membrane proteins. Also, key cadherins

of adhesion junctions and desmosomes, E-cadherin and des-

mocollin, are necessary for proper formation of cell polarity

and organization of epithelial structures [10]. Furthermore,

there is evidence indicating that hemidesmosomes, which are

structures attaching the basal surface of the cells to the under-

lying basement membrane at irregular intervals, are important

for development of polarized epithelial architecture [11]. At

the basal side of the cells, interference of b1-integrin contact

with laminin can even invert the apico-basal polarity so that

the apical surface becomes oriented towards the matrix [12].

The vesicular trafficking pathways, which are often guided

by distinct cytoskeletal tracks, are important cellular machi-

neries for maintenance of polarity as they direct and recycle

plasma membrane proteins specifically to the apical mem-

brane and basement membrane [9,13,14]. For example,

synthesis of functionally active basement membrane requires

both polarized localization of plasma membrane proteins,

for example integrins, and polarized secretion of basement

membrane proteins, for example laminins [3,15].

In Drosophila and mammals, the apical identity of apico-

basally polarized cells is maintained and regulated by two

conserved polarity complexes (named according to gene

names), the CRB/PALS1/PATJ (Crb) complex and the

PAR3/PAR6/aPKC (Par) complex. On basolateral sides of

the cells, a module of Scrib, Dlg and Lgl proteins controls

the basolateral identity [16]. Scrib, Dlg and Lgl physically

interact with each other in Drosophila epithelial cells, forming

a Scrib complex, whereas in mammalian cells, the nature of

these interactions is less clear. The core molecular machinery

that generates cellular asymmetry is conserved from worms

to mammals. The main components of the machinery are six

(or five depending on species) functionally, but not structu-

rally, related PAR (for ‘partitioning defective’) proteins [17].

The core set of PAR proteins, which is discussed in §3, along

with a limited number of other proteins such as aPKC and

CDC42, is involved in a broad range of phenomena requiring

cellular polarization, such as apico-basal polarity, neurite

extension, cellular migration and asymmetric cell division.
(b) Epithelial cell polarity: collapse in cancer
Cancer progression from benign tumour (local mass of cells)

to invasive and metastatic cancer features loss of all afore-

mentioned characteristics of polarized epithelial cells.

Indeed, loss of organized epithelial structure, loss of cell

polarity and loss of basement membrane attachment are

among the key diagnostic criteria that differentiate benign

tumours from life-threatening malignant cancers. One could

envision that collapse of the polarity system benefits the pro-

cess of cancer progression in many ways (figure 1). For

example, erratic alignment of the mitotic spindle could

enable efficient expansion of a cell mass in every direction,

thus promoting hyperplasia. Out-of-alignment mitotic

spindle may also increase aneuploidy [5,23]. Altered cell

adhesion and extracellular matrix-dependent signalling

mechanisms may make cells more migratory [24], loss of

lipid asymmetry may deregulate spatial PI3K signalling

and any cell-intrinsic (e.g. loss of cues for directional

secretion) or -extrinsic mechanism harming basal polarity

could lead to deterioration of basement membrane,

thus paving the way to invasion and metastasis [24,25].

Thus, in general, the aforementioned qualities would
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Figure 1. Loss of epithelial integrity—a hallmark of all advanced cancers. A schematic of cellular level changes, which typify disintegration of epithelial structure
during tumour progression. Partial or complete loss of basement membrane (BM) is a defining diagnostic marker to distinguish the in situ type of carcinoma from
invasive carcinoma [18]. Loss of cell – cell junctions, for example via loss of E-cadherin, is a common feature associating with the epithelial – mesenchymal transition
[19,20]. Junctional complexes are also altered so that adhesive cell – cell junctions are loosened and migratory focal adhesions increased [19]. Loss of epithelial cell
polarity associates with deterioration of cell junctions and basement membrane, as discussed in this review, which enhances the proliferative potential and migratory
capacity of epithelial cells [21]. However, the cell polarity machinery cannot be completely demolished in cancer, because the core polarity machinery is necessary
not only for apico-basal polarity but also for cell migration [22]. Thus, evolving cancers may need to carefully select polarity targets so as to acquire benefits from
loss of apico-basal polarity but not to compromise ability to proliferate or migrate.
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benefit arising tumours by cutting off cell structures, which

stabilize organized epithelial structure (cell–cell adhesions,

basement membrane), and endowing cells with new mig-

ratory capacities to move out of epithelial organizations and

into the stroma.

The polarized phenotype of epithelial cells is lost when a

tumour progresses towards malignancy, but it is still unclear

whether there are specific and prevalent genetic mutations

that contribute to tumour progression because they disrupt

epithelial cell polarity. So far, experiments in Drosophila pro-

vide the strongest evidence for a causal role of polarity

genes in tumour progression. The genes of the Scrib complex

form the core of Drosophila neoplastic tumour suppressor

genes (nTSGs) and, beyond nTSGs, inactivation of almost

any core gene of the polarity machinery, for example bazooka
(equivalent of human PAR3), stardust (similar to human

PALS1) and cdc42, dramatically promotes metastatic

behaviour of Ras or Raf-initiated tumours [16,26,27].

However, these findings in Drosophila may not directly

translate into human cancers, because many recently pub-

lished reports cataloguing the most frequently mutated genes
across thousands of human cancer genomes do not feature

polarity genes at the top of the lists. Our own investigation to

estimate the frequency of somatic mutations in polarity

genes, several years ago, suggested that these mutations are

indeed rare [21]. The rarity of mutations in core polarity

genes, however, does not mean that cell polarity would be an

irrelevant concept in cancer. In mammals, genetic redundancy

efficiently buffers against deleterious effects of single-gene

mutations, and there are commonly multiple homologues cor-

responding to prototypic Drosophila polarity genes [28]. This

means that, in mammals, tumour microevolution could prefer-

entially single out non-redundant polarity genes (rather than

the most typical) as targets for polarity-damaging mutations.

It is also worth noting that recent focused screens on cancer

cell lines for small intragenic deletions have identified hitherto

missed mutations in polarity genes, for example in PAR3,

paving the way for more precise analysis of polarity-gene

mutations in heterogenous primary tumour material [29].

Further evidence supporting the role of polarity genes as

potential tumour suppressor genes comes from the findings

that several core polarity genes, for example Dlg and Scrib,
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are targeted for degradation by oncogenic human papilloma-

viruses [30]. Finally, in mouse models of human cancer, like

in Drosophila models of tumour progression, a cell polarity

gene deficiency (LKB1/PAR4, SCRIB, PAR3) can dramatically

promote tumorigenesis in tissues engineered to express a

dominantly acting oncogene, such as Myc or Ras [31–34].

The role of core polarity genes and surrounding regulat-

ory networks in cancer has been recently comprehensively

covered in many reviews. This emerging field of research

continues to inspire investigators as it holds promise for

identifying novel, fundamentally important pathways contri-

buting to tumour progression and invasion as well as new

therapies to fight cancer [7,9,34–36]. This review focuses on

liver kinase B1, serine–threonine kinase 11 (LKB1/STK11),

which is a human homologue of PAR-4. LKB1 has the stron-

gest link to cancer among the PAR proteins but it is also a

multi-functional protein with a number of other functions,

besides polarity regulation.
 20130111
3. The LKB1 tumour suppressor gene:
PAR-4 and more

The LKB1 gene is the only human homologue of Caenorhabditis
elegans par-4 and Drosophila lkb1, encoding a serine–threonine

kinase with multiple functions in regulation of cell polarity,

metabolism and cell growth [37–39]. LKB1 is known as the

critical upstream kinase required for the activation of AMPK,

which is a cellular energy sensor and central regulator of

cell metabolism. The LKB1-AMPK module also operates via

the mTOR pathway to regulate cell growth [38]. These aspects

of LKB1 signalling and links of the pathways to cancer have

been covered in a number of recent reviews [37–39]. Below,

we review the incidence of LKB1 mutations in cancer and dis-

cuss the PAR-4 identity of LKB1, illuminating functions and

signalling of LKB1 in the context of physiological regulation

of cell polarity and epithelial tissue integrity.

(a) LKB1 in hereditary and sporadic tumours
Germline mutations in tumour suppressor LKB1 lead to

autosomal-dominant PJS, characterized by benign hamarto-

matous polyps occurring throughout the gastrointestinal tract

[40–42]. Patients with PJS also have a significantly increased

risk of developing cancer, for example, in the gastrointestinal

tract, pancreas, breast and ovaries [43–45].

Different types of sporadic cancers also harbour soma-

tic mutations in the LKB1 genes. Most frequently, LKB1

mutations have been found in non-small cell lung carcinoma.

In this cancer type, more than 30% of the cases have somatic

and homozygous inactivating mutations in LKB1 [46,47].

Somatic LKB1 mutations are also common in cervical

cancer, found in about 20% of cases [48]. In addition, LKB1

mutations have been observed in melanomas and cancers

of the pancreas, liver, breast and endometrium, although at

reduced frequency [49–53]. Reduced or missing expression

of Lkb1 has been reported in a range of cancers, including

endometrial, pancreatic and breast cancer [49,54–56]. In

breast cancer, LKB1 mutations appear to be rare, but loss

of expression is common based on the results from tissue

microarrays and Western blot analysis of tumours [32,54].

Loss of LKB1 expression has been attributed to epigenetic

silencing mechanisms, including promoter hypermethylation
in breast cancer, and there is also some evidence that reduced

LKB1 levels correlate with poor prognosis in these cancers

[54,57,58]. In melanoma, posttranslational inactivation mech-

anisms may target LKB1 because mutated B-RAF leads to

phosphorylation of LKB1, which inhibits it from activating

downstream targets [59].
(b) LKB1 as a polarity protein PAR-4
The PAR (partitioning defective) set of polarity regulating

proteins was initially found through a screen searching for

mutants that disrupt the first asymmetric cell divisions in

the C. elegans embryo [60]. PAR-4, the C. elegans homologue

of LKB1, was among the six PAR genes found necessary

for cytoplasmic partitioning and asymmetric cell division in

the worm zygote (figure 2). Subsequent studies have exposed

PAR proteins as fundamental regulators of cell polarization

in diverse animals and different contexts of polarity [17].

The core PAR proteins are a diverse group of proteins:

PAR-1 and PAR-4 encode serine–threonine kinases, PAR-5

belongs to the 14-3-3 family of proteins, which are recruited

to phosphorylate serines and threonines. PAR-3 and PAR-6

contain PDZ domains, which are signalling and protein inter-

action scaffolds, and PAR-2 has a RING finger domain that

may be used in the ubiquitination pathway. PAR proteins

1, 2, 3 and 6 acquire asymmetric localization patterns

during the development of cell polarization in C. elegans,

whereas PAR-4 remains symmetrically localized in cortex

and cytoplasm during the process [17]. Interestingly from

the LKB1 perspective, epistatic analyses have demonstrated

that PAR-4 is essential for establishment of PAR-3/PAR-6

asymmetry, suggesting that PAR-4 may master-regulate the

asymmetric segregation of other PAR family proteins [40,61].

In Drosophila (figure 2), PAR-4/lkb1 is required for the for-

mation of early anterio-posterior polarity in oocytes and

epithelial apico-basal polarity in follicle cells [62]. In adult

Drosophila retinal cells, inactivation of lkb1 also leads to dis-

ruption of polarity and further disarrangement of cell–cell

junctions and membrane domains [63]. The signalling circui-

tries, which in flies may operate downstream of lkb1 in

epithelial polarity regulation, are discussed below.

In mammalian cells (figure 2), construction of a STRAD

adaptor protein-mediated system to ectopically activate LKB1

by Baas et al. [64] led to a surprising finding that activation of

LKB1 is sufficient to polarize single, isolated intestinal epithelial

cells in culture—a finding that challenged current views of the

importance of cell–cell contacts in the process of polarization.

Subsequent descriptive and functional studies have pictured

LKB1 as a cell-polarity-linked protein in various contexts of

mammalian tissue asymmetries. For example, LKB1 has been

implicated in polarization of mouse oocytes [65]. Furthermore,

LKB1 is required for axon specification during polarization of

cortical neurons [66,67] and it participates in the formation of

Sertoli cell polarity and testicular junctions [68].

Recent studies from our laboratory have also suggested that

LKB1 is crucial for the integrity of mammary epithelial tissue

[32,69]. A detailed analysis of three-dimensional cultures of

primary mouse mammary epithelial cells (MMECs), rendered

LKB1 deficient by adenoviral Cre infection, shows that loss

of LKB1 disorganizes the normally rounded phenotype of

acinus-like structures. Characteristic of LKB1-deficient struc-

tures is lateralized or completely mislocalized expression of

apical polarity markers. In an electron microscopic analysis,
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Figure 2. LKB1/PAR-4 in regulation of cell polarity. LKB1 functions as a PAR-4 cell polarity gene in C. elegans, Drosophila and mammalian epithelial and neuronal
cells. Highlighted are suggested downstream targets, through which LKB1 may regulate cell polarity in different systems.
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the LKB1-deficient three-dimensional structures show multi-

ple abnormalities in desmosomes and tight junctions as well

as deteriorated basement membrane. A selective deletion of

LKB1 in the adult mammary gland, obtained by crossing

mice with floxed LKB1 alleles with mice harbouring a lacto-

genic hormone-inducible WAP-Cre construct leads to many

similar phenotypes observed in the in vitro three-dimensional

cultures. The LKB1-deficient mammary ductal and alveolar

structures express a disorganized pattern of apical markers

and incomplete basement membrane as well as displaying

enhanced branching of the ducts [32]. However, inactivation

of LKB1 may lead to strikingly different phenotypes in

different epithelial tissues as discussed next.

(c) LKB1 and epithelial tissue morphogenesis
The basic architecture of epithelial tubes in all branching

organs, for example, kidney, mammary gland, lung and

blood vessels, is a polarized epithelium that apically faces a cen-

tral luminal space and basally contacts basement membrane

[70]. The mechanisms of branching are complex and vary

between different tissue types, but the main underpinnings of

the branching process are coordinated actions between prolifer-

ation, apico-basal polarity and epithelial motility machineries.

Several investigations have also highlighted the role of base-

ment membrane as a scaffold providing cues for reorientation

of polarity during the branching process as well as incomplete

basement membrane coverage at branching points as an

element regulating branching morphogenesis [70].

Recent investigations have coupled LKB1 to branching mor-

phogenesis in two different organs—lung and the mammary

gland. The study of Lo et al. [71], using an ATP-binding

pocket modified form of LKB1 that confers sensitivity to specific

inhibition by a small molecule ATP analogue, shows that

inactivation of the modified LKB1 inhibits branching morpho-

genesis of embryonic lung tissue in an ex vivo explant culture.

The branching defect was rescued by activation of AMPK,

suggesting a role for the LKB1-AMPK pathway in the branch-

ing process. The same study also shows that the phenotypic
effects resulting from inactivation of LKB1 are tissue- and

context-specific. In pancreatic tissue, chemical inactivation of

LKB1 results in development of cystic structures by mechanisms

not involving defective AMPK signalling.

In the study of Partanen et al., conditional deletion of

LKB1 genes, ex vivo, in three-dimensional organoids and,

in vivo, in the mammary gland, leads to hyperbranching of

the mammary ducts. In the mammary gland, loss of LKB1

simultaneously leads to defects in cell polarity, cell junctions

and basement membranes [32]. In the study of Lo et al. [71],

polarity defects were not observed in embryonic lung tissue

after inactivation of LKB1. Therefore, it is possible that the

hyperbranching phenotype results from loss of polarity and

incomplete basement membrane coverage, and in tissues

spared from these defects, LKB1 loss may have other, even

opposite effects.
(d) LKB1/PAR-4 signalling pathways in
epithelial polarity

The kinase activity of LKB1 in mammalian cells requires the

formation of a heterotrimeric complex consisting of LKB1,

pseudokinase Ste20-related adaptor protein (STRAD) and a

scaffold protein, for example mouse protein 25 (MO25)

[72,73]. Binding to STRAD and MO25 renders LKB1 active

and furthermore, regulates stability and localization of LKB1

protein [73,74]. LKB1 functions as a master regulator of the

two isoforms of AMPK (AMPK-a1 and AMPK-a2) and 12

other kinases referred to as the ARKs [75–78]. All LKB1-regu-

lated downstream kinases, AMPK and ARKs, require LKB1-

dependent phosphorylation in the threonine 172 (T172) (or

equivalent residue) that resides in the activation loop to

become active. The AMPK and ARK serine–threonine kinases

belong to a small subfamily of calcium/calmodulin-dependent

protein kinases comprising AMPK-a1 and AMPK-a2, four

MARK/PAR-1 kinases (MARK1-4), the AMPK-related kinase

5 (ARK5, NUAK1), the SNF/AMPK-related kinase (SNARK,

NUAK2), two Brain-specific kinases (BRSK1 and 2), three
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salt-induced kinases or SIKs (SIK1/SIK, SIK2/QIK and SIK3/

QSK) and the Snf-related serine/threonine kinase (SNRK) [76].

Among the LKB1 downstream kinases, AMPKs, MARK/

PAR-1 kinases and BRSK1 and 2 have been linked to regulation

of cell polarity in a context-dependent manner (figure 2). Find-

ings in Drosophila have suggested that LKB1 may use AMPK to

signal cell polarity [79]. In Drosophila follicular epithelial cells,

ampk-a null mutants exhibit normal epithelial polarity in a

nutrient-rich environment but in culture media deprived of

sugars, conditions where AMPK normally is maximally

active, apico-basal cell polarity of these cells is disrupted.

Also lkb1 mutants show similar energy-starvation-dependent

polarity defects, which can be rescued by a constitutively

active AMPK transgene [79]. Another study has shown that

downstream of the ampk-a mutation, a constitutively active

form of a protein non-muscle myosin regulatory light chain

(MRLC or MLC2) rescues the polarity defects of ampk-a
mutant cells [80]. These investigations altogether suggest that

at least in flies, the LKB1-AMPK-MRLC module regulates cell

polarity in a mode that is responsive to cues from cellular

energy status. In mammals, branching defects in embryonic

lung tissue, caused by LKB1 inactivation, can be rescued via

ectopic activation of AMPK [71]. In cultured mammalian

cells, AMPK has also been shown to play a role in cell polarity

and formation of tight junctions [81,82].

Mammalian microtubule-associated protein (MAP)/

microtubule affinity-regulating kinases (MARKs) are homol-

ogues of C. elegans PAR-1, which was identified in the same

C. elegans partitioning defective screen as LKB1/PAR-4 [60].

PAR-1 serine/threonine kinase regulates other PAR proteins

to establish cell polarity. For instance, in Drosophila, PAR-1

phosphorylates PAR-3 to retain it in the apical pole of the

oocyte [83]. In mammals, MARK2 (PAR1b) has been impli-

cated as a downstream effector of LKB1 in regulation of

apico-basal polarity of pancreatic acinar cells in vivo [84].

Recently, it was found that MARK2 physically associates

with a RhoA-specific guanine nucleotide exchange factor,

influencing RhoA activity and the actin cytoskeleton. This

interaction could couple PAR-1-dependent polarity regulation

to cell movement [85]. The virulence factor CagA in Helicobacter
pylori cagA-positive strains interacts with MARKs/PAR1 caus-

ing junctional and polarity defects. It is believed that this

interaction leads to the disorganization of epithelial architec-

ture and loss of epithelial barrier function observed in

Helicobacter-infected gastric epithelium [86]. MARKs may also

regulate cell polarity by phosphorylating MAPs, for example

tau, and that type of interaction is important for polarized

protein trafficking [87,88].

In neuronal cells, polarization is important for axonal and

dendritic specification that is fundamental to the ability of

neuronal cells to transmit information. LKB1 has been

linked to regulation of polarized migration of neurons and

to promotion of axon initiation during neuronal polarization

through downstream kinases BRSK1 and -2 (also known as

SAD-A and -B), which in turn may contribute to cell polarity

via phosphorylation of MAPs [66,67,89].
4. Loss of PAR-4 identity matters in cancer: evil
deeds on the basal side of the epithelial cells

As discussed in the beginning of this review, collapse of a cell

polarity system can benefit cancer progression in multiple
ways. However, among the pillars of epithelial integrity, the

basement membrane is the last barrier to resist invasion of

motile cancer cells into the neighbouring tissues. Therefore,

any cell-intrinsic or -extrinsic mechanism harming the integrity

or altering the biological activity of basement membrane could

promote invasion and progression to metastatic disease

[24,25,90]. Loss of LKB1 has been shown to influence the

biological activity of basement membrane via non-proteolytic

and proteolysis-dependent mechanisms. The functional inter-

action between LKB1 loss and type II transmembrane

proteases may also involve polarity regulation.

(a) LKB1 and non-proteolytic moulding of basement
membrane

A stiffening of the extracellular matrix, which is attributable to

increased or inappropriate cross-linking of collagens, contrib-

utes to increased migratory and invasive behaviour of cancer

cells and is considered one indicator of poor cancer prognosis

[91–93]. One contributing factor to matrix stiffening is enhanced

activity of lysyl-oxidases (LOX), enzymes that play an important

physiological role in strengthening collagen fibrils, including

type IV collagen of basement membrane, via covalent cross-

linking of lysine residues in these proteins [93]. A functional

role of LOX in cancer has been addressed by blocking LOX

activity, which reduces tumour incidence in the MMTV-Neu

mouse model of breast cancer [93]. Loss-of-function mutations

in LKB1 are common in lung cancer and loss of LKB1 has

been observed to correlate with significantly enhanced levels

of LOX enzymes. In a mouse model of lung cancer and

human non-small cell lung cancer cell lines, loss of LKB1 leads

via enhanced mTOR and HIF1a signalling to enhanced LOX

activity, increased deposition of collagen and enhanced prolifer-

ation possibly caused by increased matrix stiffness [94]. Thus,

although the physiological significance of LKB1–LOX crosstalk

remains unclear, loss of LKB1 and the consequent dysregulation

of LOX activity in the context of tumour tissue has a prominent

impact on stromal extracellular matrix remodelling and collagen

biology (figure 3).

(b) LKB1 and proteolytic moulding of basement
membrane

(i) LKB1 and metalloproteinases
Matrix metalloproteinases (MMPs) are a group of enzymes

able to degrade various extracellular matrix and cell surface

molecules, aiding in tissue remodelling and branching mor-

phogenesis. The activity of MMPs is commonly elevated in

cancers [95–97]. However, whether these enzymes specifically

contribute to degradation of collagen IV, a basement mem-

brane transmigration-limiting factor [98], is unclear although

MMP-2 and MMP-9 have been implicated in the process

[95,99]. In a study, LKB1 overexpression has been shown to cor-

relate with downregulation of MMP-2 and MMP-9 and

invasion inhibition in an in vitro assay as well as with the

tumorigenicity and metastasizing capacity of xenografted

tumour cells [100]. However, the significance of these findings

in the context of LKB1 inactivation remains to be determined.

(ii) LKB1 and type II transmembrane serine proteases
In our study, using mice with LKB1-deficient mammary

glands, we found evidence that basement membrane may
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Figure 3. A model: loss of LKB1 and basement membrane remodelling. Mammary epithelial cells are bound to each other via tight junctions, adhesion junctions
and desmosomes. A TTSP hepsin is expressed on the basal and lateral membranes of epithelial cells, exhibiting a colocalized expression pattern with desmosomes.
Loss of LKB1 inflicts damage to tight junctions and desmosomes, which associate with widespread loss of epithelial integrity. In the present model (modified from
Partanen [32]), this damage liberates hepsin from the membranes into the cytosol. Hepsin is commonly overexpressed in cancer (an effect that can be seen in cells
engineered to overexpress MYC), and we posit that the overexpressed and mislocalized hepsin causes deterioration of basement membrane (BM). Breakdown of BM
is considered an essential step for tumour invasion and metastases. However, loss of LKB1 may also exert opposite, stabilizing effects on BMs and extracellular matrix
by stimulating expression of the collagen cross-linking enzyme LOX [94]. Also, these effects may benefit tumour progression, at least once the tumour has breached
the BM barrier, by increasing the stiffness of the extracellular matrix. Stiff matrix stimulates tumour cell proliferation and, in some instances, migration. The inves-
tigations expose the complex nature of functional interactions between LKB1 and constituents of extracellular matrix, which may inhibit or facilitate tumorigenesis
depending on context.
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be degraded by type II transmembrane serine proteases

(TTSPs) during mammary tumorigenesis [32]. We reported

that loss of LKB1 does not induce palpable tumours during

the lifetime of the mice but leads to mild abnormalities in the

mammary gland, such as hyperbranching, partial disorganiz-

ation of apical polarity and incomplete basement membrane.

However, combining LKB1 deficiency with oncogenic MYC

dramatically accelerates the appearance of mammary tumours

in comparison with glands exposed to oncogenic MYC alone

[32]. The study shows that both MYCþ and MYCþ;LKB12

tumours are histopathologically mostly adenocarcinomas and

not informative as such regarding the possible mechanisms

underlying accelerated tumorigenesis. However, the histology

of hyperplastic regions in between tumour areas was particu-

larly interesting, providing a path for follow-up studies.

Expression of oncogenic MYC alone, a stimulus known to pro-

mote cell proliferation, had led to development of surplus

ductal branches and alveolar units. All structures generated

under the influence of MYC were separated from stroma and

neighbouring epithelial structures by basement membranes.

By contrast, the hyperplastic regions in the MYCþ;LKB12

mammary glands had surplus epithelial cells but mostly

unrecognizable ductal or alveolar epithelial structures. In the

hyperplastic regions of MYCþ;LKB12 mammary glands, the

bordering basement membranes were missing giving the

impression that epithelial structures were fused together into
a huge disorganized cell mass. Missing basement membrane

was a defining difference between the hyperplastic glands

expressing oncogenic MYC (basement membrane present)

and those expressing MYC combined with loss of LKB1 (base-

ment membrane absent).

Investigating MMECs, isolated from aforementioned mice,

in ex vivo three-dimensional cultures, we observed that MYCþ

epithelial structures were hyperplastic but still maintained

the rounded morphology. By contrast, the MYCþ;LKB12 struc-

tures showed extensive branching and lacked basement

membrane components, such as nidogen and collagen IV

[32]. A panel of small molecule inhibitors tested in a rescue

assay did not support specific roles for MMPs, but instead

suggested involvement of TTSPs in deterioration of basement

membrane. Subsequent studies identified a strong correlation

between loss of LKB1 and overexpression of a TTSP called

hepsin/TMPRSS1 in our transgenic mouse models and in a

panel of 60 clinical human breast cancer samples. Knock-

down of hepsin rescued basement membrane in MYCþ;LKB12

three-dimensional structures, indicating a role for hepsin in

basement membrane degradation [32].

While the question of whether, downstream from LKB1

loss, hepsin-mediated deterioration of basement membrane

promotes mammary tumorigenesis has not been addressed,

the oncogenicity of hepsin has been investigated specifically

in prostate cancer models. Hepsin originally caught the



rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20130111

8
attention of cancer researchers in microarray profiling studies,

who found almost ubiquitous overexpression of hepsin in

prostate cancer [101,102]. Nearly 90% of prostate cancers over-

express mRNA for hepsin with up to 30-fold levels compared

with normal prostate tissue. Profound hepsin overexpression

is also found in ovarian and breast cancers, and high hepsin

mRNA levels are commonly accompanied by strong hepsin

protein signal in tumour sections [32,103–106]. A mouse

model engineered to express hepsin under probasin promoter

in prostate has revealed widespread defects in the integrity of

hemidesmosomes and basement membrane, indicating dele-

terious interaction between hepsin overexpression and

basement membrane in vivo [107]. In vitro, the targets for the

proteolytic activity of hepsin include the major basal laminal

component laminin-332 [108]. Basement membrane degra-

dation is a critical step for initiation of cancer metastasis, and

evidence from transgenic and orthotopic tumourgraft models

of prostate and ovarian cancer suggest that overexpression of

hepsin can promote incidence of metastases [104,107,109].

However, the relationship between LKB1-deficiency and

hepsin overexpression in prostate cancer has not yet been

systematically studied. According to the data obtained from

the Wellcome Trust Sanger Institute Cancer Genome

Project web site, http://www.sanger.ac.uk/genetics/CGP

(COSMIC and CONAN), LKB1 mutations have been found

in prostate cancer cell lines and with less than 1% frequency

in prostate cancer but to our knowledge, the epigenetic

influences on gene expression levels have not yet been

addressed in prostate cancer.

(c) Hepsin: permanent desmosome resident or a
cleaver-wielding bandit on the loose

It is still unclear how mechanistically overexpression of

hepsin damages basement membrane, but investigations on

the localization of hepsin in normal and transformed cells,

and changes in this localization in response to oncogenic sig-

nalling may provide some clues. In non-transformed and

some transformed cells, the transmembrane protease hepsin

localizes to cell membranes, its protease domain pointing to

the pericellular space [110]. In ovarian cancer cells and

primary MMEC, the immunostaining pattern of hepsin pro-

minently overlaps with desmosomal proteins [32,104].

Desmosomes are junctional complexes mediating the attach-

ment of specific cell-surface adhesion proteins, desmogleins

and desmocollins, to intracellular intermediate filaments. In

general, tumours express either a membranous or cytosolic

pattern of hepsin depending on the type and grade of the

tumours [32,101,104,105].

Absence of critical desmosomal proteins, for instance des-

moplakin, or depletion of desmoplakin in response to LKB1

inactivation leads to translocation of hepsin from cell–cell bor-

ders to cytosol [32,104]. In ovarian cancer cells, also, the

ectopically overexpressed hepsin is mainly cytosolic [104].

Therefore, it can be hypothesized that hepsin is normally

sequestered to desmosomes but if the junctional integrity is

compromised, as in most cancer cells, hepsin becomes liberated

in the cytosol (figure 3). It still remains a mystery how cytosolic

hepsin interacts with basement membrane but it is interesting

to note that vesicular trafficking plays an important role in the

activation cascades of other TTSPs. A TTSP family member,

matriptase has been reported to activate a downstream TTSP

prostasin on the basolateral membrane of polarized colonic
epithelial cells from which activated prostasin is intracellularly

transcytosed to apical membrane of the cells [111]. It is tempt-

ing to speculate that loss of cues for directional secretion in

depolarized cancer cells perturbs cell polarity-coupled proteo-

lytic cascades. Hence, disruption of polarity could lead to

uncontrolled proteolytic attacks on different cellular domains,

including basement membranes.

Finally, in addition to causing physical damage to basement

membrane, overexpressed (or liberated) hepsin may also con-

tribute to tumour progression via remodelling of basement

membrane, which is not only a barrier but also a dynamic scaf-

fold that controls access of the cells to various growth factors.

For example, proteoglycans bind and sequester growth factors

and cytokines, regulating their availability to cells [112,113].

Moreover, basement membrane proteins often contain cryptic

sites, which are exposed after extracellular matrix digestion

and can consequently act as pro-migratory, pro-invasive or

angiogenic cues [2,114]. Hepsin can proteolytically activate

many factors in the microenvironment of epithelial cells, includ-

ing hepatocyte growth factor, urokinase-type plasminogen

activator, macrophage-stimulating protein and EGF receptor,

all of which are well-known players in cancer [110,115–120].
5. Conclusion: lessons learned and
challenges ahead

Common interest in regulation and dysregulation of cell

polarity in health and disease has recently brought together

biologists with diverse backgrounds, representing single cell

and invertebrate models, developmental and neurobiology,

and cancer biology. In particular, past studies in Drosophila,

revealing how potently loss-of-gene functions involved in

cell polarity and epithelial integrity promote tumorigenesis,

have spurred interest in the polarity pathways among

cancer biologists. However, it is clear that the evolutionary

distance and gene diversification between flies and humans

makes it challenging to directly relate tumour genetics in

flies to human cancer. For example, it is still a matter of

debate whether the closest human structural homologues of

fly nTSGs are prevalent in human tumour suppressor

genes. While the ongoing studies on human versions of

nTSGs are expected to shed light on the question, it is also

emerging that the PAR clan of proteins plays an important

role at the intersection of polarity regulation and tumour sup-

pression in mammals. PAR-4/LKB1 is the clan member with

a strongest link to cancer but the multiple functions of LKB1

makes it challenging to discern the role of the PAR-4 identity

of LKB1 in tumorigenesis. PAR-4 also does not have asym-

metric localization in cells, in contrast to for example apical

PAR-3 and PAR-6, which makes it difficult to distinguish

between apical and basal polarity-directed actions of PAR-

4/LKB1. However, current studies have indicated evidence

that loss of PAR-4/LKB1 weakens apical cell–cell cohesion

and launches hepsin-mediated proteolytic and LOX invol-

ving non-proteolytic pathways to digest and remodel the

basement membrane on the basal side of the cells as well

as extracellular matrix—all of these events promote the

spread of cancer cells from epithelial structures to connective

tissue. While this evidence supports the involvement of the

PAR-4 identity in tumour development, a strong case also

exists to convict the LKB1-AMPK-mTOR branch of involve-

ment in tumorigenesis. On which side does the burden of

http://www.sanger.ac.uk/genetics/CGP
http://www.sanger.ac.uk/genetics/CGP
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proof lie? According to current knowledge, LKB1 predomi-

nantly signals via AMPK and the PAR-4 identity of LKB1

signals via activation of PAR1 (MARKs). However, how sep-

arate these identities in fact are is a question that will deserve

closer inspection. PAR-1/MARK proteins belong to a family

of ARKs and, in addition, evidence exists from studies in flies

and mammals indicating the involvement of LKB1-AMPK

axis in polarity regulation. The possibility that metabolic

pathways interact with polarity pathways, or vice versa, war-

rants further studies as an area of obvious interest and

significance to epithelial biology. This takes us back to Ste-

venson’s novella, The Strange Case of Dr Jekyll and Mr Hyde.

At the end of the story, the line between the different identi-

ties of Dr Jekyll and Mr Hyde becomes blurred when Dr

Jekyll keeps metamorphosing into Hyde involuntarily and

Hyde seeks a potion to revert back to Dr Jekyll again. If
this chapter holds to the strange case of LKB1/PAR-4,

future research will identify not only isolated phenotypes

attributed to LKB1/PAR-4 but also signalling nodes linking

different LKB1/PAR-4 regulated networks and cellular phe-

notypes. Such nodes would be prime targets for therapeutic

potions aiming to change evil Hyde back to Jekyll again.
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