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Abstract
Aims/hypotheses We aimed to quantify the association of individual circulating amino acids with macrovascular disease,
microvascular disease and all-cause mortality in individuals with type 2 diabetes.
Methods We performed a case-cohort study (N = 3587), including 655 macrovascular events, 342 microvascular events (new or
worsening nephropathy or retinopathy) and 632 all-cause mortality events during follow-up, in a secondary analysis of the Action
in Diabetes and Vascular Disease: Preterax and DiamicronModified Release Controlled Evaluation (ADVANCE) study. For this
study, phenylalanine, isoleucine, glutamine, leucine, alanine, tyrosine, histidine and valine were measured in stored plasma
samples by proton NMR metabolomics. Hazard ratios were modelled per SD increase in each amino acid.
Results In models investigating associations and potential mechanisms, after adjusting for age, sex and randomised treatment,
phenylalanine was positively, and histidine inversely, associated with macrovascular disease risk. These associations were
attenuated to the null on further adjustment for extended classical risk factors (including eGFR and urinary albumin/creatinine
ratio). After adjustment for extended classical risk factors, higher tyrosine and alanine levels were associated with decreased risk
of microvascular disease (HR 0.78; 95% CI 0.67, 0.91 and HR 0.86; 95% CI 0.76, 0.98, respectively). Higher leucine (HR 0.79;
95% CI 0.69, 0.90), histidine (HR 0.89; 95% CI 0.81, 0.99) and valine (HR 0.79; 95% CI 0.70, 0.88) levels were associated with
lower risk of mortality. Investigating the predictive ability of amino acids, addition of all amino acids to a risk score modestly
improved classification of participants for macrovascular (continuous net reclassification index [NRI] +35.5%, p < 0.001) and
microvascular events (continuous NRI +14.4%, p = 0.012).
Conclusions/interpretation We report distinct associations between circulating amino acids and risk of different major compli-
cations of diabetes. Low tyrosine appears to be a marker of microvascular risk in individuals with type 2 diabetes independently
of fundamental markers of kidney function.
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Introduction

Prior to an individual developing overt type 2 diabetes,
there appears to be a period of subclinical metabolic
abnormality, manifesting in the altered circulating levels
of many metabolites [1, 2]. Specifically, several studies
have now reported that circulating concentrations of
amino acids predict the development of type 2 diabetes.
A nested case–control study from the Framingham
Offspring study showed that branched-chain amino acids
(BCAAs) isoleucine, leucine and valine and aromatic
amino acids (AAAs) tyrosine and phenylalanine showed
positive associations with insulin resistance and risk of
type 2 diabetes [3]. The European Investigation into
Cancer and Nutrition (EPIC) Potsdam study, the
Metabolic Syndrome in Men (METSIM) study, the
Cardiovascular Risk in Young Finns (CRY) study and
the Southall and Brent Revisited (SABRE) study report-
ed similar findings [4–7]. Glycine and glutamine have
also been reported to be consistently inversely associat-
ed with risk of type 2 diabetes in a meta-analysis [8].

In general population studies, elevated levels of BCAAs
and AAAs also appear to be associated with increased risk
of cardiovascular disease [9–12], although these associations
have not been entirely consistent [13]. In the large Estonian
Biobank study, inverse associations between the concentra-
tion of several amino acids (including BCAAs) and all-
cause mortality were observed [14]. An inverse association
between BCAAs and clinical dementia or Alzheimer’s
disease has also been observed [15]. Finally, we have

recently reported in a randomised placebo-controlled trial
that metformin treatment (for 18 months in men with CHD
but without type 2 diabetes) led to improved insulin sensi-
tivity and was associated with increases in alanine and his-
tidine and reductions in phenylalanine and tyrosine concen-
trations, with no effect on BCAAs [16].

Therefore, the existing literature highlights inconsistent
associations of amino acids with different outcomes in diffe-
rent studies, apparently contrary to the observations made in
general population studies wherein elevated levels of BCAAs
and AAAs are an adverse signal. This raises the possibility
that the mechanisms that influence circulating amino acids
might be more subtle than previously thought and as such it
is worth investigating and contrasting the associations of mea-
surable circulating amino acids with different adverse out-
comes in people with type 2 diabetes.

A very small (N = 80) nested case–control study did
not find that amino acids were associated with diabetic
retinopathy [17]. However, we are aware of no large
studies investigating the association of circulating amino
acids with outcomes in individuals with type 2 diabetes.

Developing an understanding of any relationship be-
tween amino acids and a range of adverse outcomes in
diabetes is important from an aetiological perspective, to
develop hypotheses for intervention studies and poten-
tially to develop clinical risk scores. We thus aimed to
simultaneously investigate the association of circulating
amino acids with the following outcomes in people with
type 2 diabetes: (1) macrovascular disease; (2) micro-
vascular disease and (3) all-cause mortality.
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Methods

Participants The Action in Diabetes and Vascular
Disease: Preterax and Diamicron Modified Release
C o n t r o l l e d E v a l u a t i o n ( ADVANCE ) s t u d y
(ClinicalTrials.gov registration no. NCT00145925)
recruited 11,140 participants with type 2 diabetes
between June 2001 and March 2003 [18]. Primary
outcomes of the trial have been published [19, 20].
Participants were ≥55 years of age and had been
diagnosed with type 2 diabetes after the age of
30 years. In addition, they were required to have a
history of cardiovascular disease (CVD) or one or more
additional cardiovascular risk factors. The trial included
two randomised interventions: (1) a double-blind assess-
ment of the efficacy of perindopril/indapamide (2 mg/0.
625 mg for 3 months, increasing to 4 mg/1.25 mg if
tolerated) vs placebo and (2) an open-label evaluation of
an intensive glucose-lowering regimen using modified-
release gliclazide (with a target HbA1c of ≤48 mmol/
mol [6.5%]) vs standard care. Participants had their se-
rum creatinine levels measured as part of the study pro-
tocol at baseline, 4 months and 1 year and annually
thereafter until completion of the study, with further
tests at the discretion of clinicians. Urinary albumin/
creatinine ratio (ACR) was measured as part of the
study protocol at baseline, 2 years, 4 years and comple-
tion of the study. GFR was estimated using the
Modification of Diet in Renal Disease formula.
Participants underwent formal eye examination and vi-
sual acuity testing at baseline, 2 years, 4 years and
completion of the study. Each participating centre ob-
tained ethical approval, and all participants provided
written informed consent.

The primary trial outcomes were composites of major
macrovascular and microvascular events that occurred during
a median of 5 years of follow-up. An independent adjudication
committee validated all outcomes.Major macrovascular events
were cardiovascular death, non-fatal myocardial infarction or
non-fatal stroke. Major microvascular events were defined as a
composite of new or worsening nephropathy or retinopathy, in
turn defined as any of the following:

(1) development of macroalbuminuria (urinary ACR
>33.9 mg/mmol, confirmed by two results);

(2) doubling of serum creatinine level to ≥200 μmol/l (with
non-qualifying exceptions of terminal illness or acute
illness and subsequent recovery of renal function);

(3) the need for renal replacement therapy due to kidney
disease (in the absence of other medical causes requiring
transient dialysis), or death due to renal disease;

(4) development of proliferative retinopathy (identified by
the incidence of new blood vessels on the disc or

elsewhere, vitreous haemorrhage, pre-retinal haemor-
rhage and fibrous proliferations on the disc or elsewhere
in a participant found not to have this condition at entry);

(5) development of macular oedema (characterised by a
retinal thickening within one disc diameter of the macu-
lar centre in a participant not found to have this condition
at entry);

(6) occurrence of diabetes-related blindness (corrected visual
acuity 3/60 or worse, persisting for ≥3 months and known
to not be due to non-diabetes-related causes in a partici-
pant found not to have this condition at entry);

(7) use of retinal photocoagulation therapy.

Blood samples were available from 17 out of 20 countries
participating in the ADVANCE study (the exceptions were
China, India and the Philippines), giving a total potential
source cohort size for the study of 7376 individuals (66.2%
of the overall study cohort).

To improve efficiency of the biomarker studies in the
ADVANCE trial a case-cohort study has been established
[21, 22]. In case-cohort studies, a random sample (called the
‘subcohort’) is drawn and phenotyped from the full cohort;
this is very likely to contain both individuals who are ‘cases’
and ‘non-cases’. Cases (generally for multiple case defini-
tions, such as microvascular disease and macrovascular
disease) who were not included in the subcohort are then
identified from the remainder of the cohort and were also
phenotyped. The case-cohort study has several advantages
over the nested case–control design, including the ability to
investigate multiple endpoints simultaneously. For this case-
cohort study, a random subcohort (n = 3500) was selected
from the base population, which was enriched by the addition
of individuals who had a cardiovascular event, a microvascu-
lar event or died during follow-up, giving a total study size of
4197 (Fig. 1) [21, 22].

Proton NMR analysis Plasma samples were obtained at baseline
from all study participants when they were in an unfasted state,
given that these were people with type 2 diabetes at risk of
hypoglycaemic episodes. Samples were collected across sites in
a pragmatic fashion (commensurate with a multinational RCT)
according to local facilities. Plasma samples were separated and
stored centrally at −80°C until measurement. The present study
used a previously unthawed aliquot of plasma for 1H-NMR
analysis. 1H-NMR spectroscopy was performed on all available
EDTA plasma samples from the ADVANCE case-cohort study
at baseline using a low-volume (100 μl) variation of the quanti-
tative 1H-NMR method (Nightingale Health, Helsinki, Finland)
described previously [23, 24] and reviewed [25]. Sample spectra
were analysed on a Bruker AVANCE III HD spectrometer to
quantify a targeted list of metabolites, lipids and lipoproteins,
as described previously [25]. This list included eight amino acids
(alanine, glutamine, histidine, isoleucine, leucine, valine,
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phenylalanine and tyrosine), which are detectable using the
method, and are not in ‘congested’ regions of the NMR spectrum
where multiple metabolites overlap. Metabolomic analyses of
plasma samples tend to yield lower analyte concentrations than
serum, both by NMR spectroscopy and other methods, although
plasma demonstrates better stability and reproducibility [26].
Samples with a low glutamine/glutamate ratio were excluded
from analyses of glutamine associations. Levels of all other ami-
no acids were consistent with published data.

Statistical analysis Continuous data with approximately nor-
mal distributions (including all amino acids) are presented as
mean ± SD; those with skewed distributions are presented as
median (with interquartile range). Categorical data are pre-
sented as n (%). Pearson correlations were used to explore
associations of the amino acids with each other. Associations
of amino acids with classical risk factors were investigated
across quarters of the distribution of each amino acid.

Cox regression models were fitted using the STSELPRE
procedure for case-cohort analyses (StataCorp, College
Station, TX, USA). Models estimated HRs for a 1 SD increase
in each amino acid with each of the endpoints. Two models,
with different potential confounding variables, were fitted for
each amino acid/outcome combination: model 1 with age, sex,
region and randomised treatment; model 2 with, additionally, a
prior macrovascular complication of diabetes (myocardial in-
farction, stroke, hospital admission for a transient ischaemic
attack or for unstable angina, coronary or peripheral
revascularisation, or amputation secondary to peripheral vas-
cular disease), duration of diabetes, current smoking, systolic
blood pressure, BMI, urinary ACR, eGFR, HbA1c, plasma
glucose, total cholesterol, HDL-cholesterol, triacylglycerols,
aspirin or other antiplatelet agent, statin or other lipid-
lowering agent, β-blocker, ACE inhibitor or angiotensin re-
ceptor blocker, metformin use, history of heart failure, partici-
pation in moderate and/or vigorous exercise for >15 min at

7376 included in biobank

11,140 recruited in ADVANCE study

3500 randomly selected participants including 

374 macrovascular events, 320 microvascular 

events and 367 all-cause deaths during 

follow-up

3764 not included in biobank 

(including all Chinese and 

Indian participants)

610 insufficient or unsuitable 
for NMR analysis for all 

metabolites

Further selection of all other participants  with 

macrovascular events (396), microvascular 
events (180) or all-cause mortality (410) during 

follow-up

Phenylalanine(3539 samples)

648 macrovascular events

337 microvascular events

624 all-cause deaths

Isoleucine (3587 samples)

655 macrovascular events

342 microvascular events

632 all-cause deaths

Glutamine (2228 samples)

389 macrovascular events

198 microvascular events

376 all-cause deaths

Alanine (3586 samples)

655 macrovascular events

342 microvascular events

632 all-cause deaths

Leucine (3583 samples)

654 macrovascular events

341 microvascular events

632 all-cause deaths

Tyrosine (3579 samples)

655 macrovascular events

341 microvascular events

632 all-cause deaths

Histidine (3566 samples)

653 macrovascular events

339 microvascular events

631 all-cause deaths

Valine (3587 samples)

655 macrovascular events

342 microvascular events

632 all-cause deaths

4197 included in the case-cohort study

Fig. 1 Flow diagram for design
and sample analysis in the
ADVANCE study of amino acids
(note microvascular,
macrovascular and all-cause
mortality not mutually exclusive)
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least once weekly, and high-sensitivity C-reactive protein
(CRP). A third adjustment model, attempting to include all
amino acids in the same model, resulted in collinearity and
estimates were thus not available. Non-linearity was tested
by comparing the deviances of linear and categorical models
and by the inclusion of polynomial components (quadratic and
cubic terms). Other analyses were performed using SAS v9.2
(SAS Institute, Cary, NC, USA). All p values reported are two-
sided, with the 5% threshold used to determine significance.

For the random subcohort, the ability of amino acids to
discriminate between those who will and those who will not
go on to suffer each of the three adverse outcomes were esti-
mated, in the context of model 2, using c statistics for 5 year
risk, accounting for censoring. In addition, the ability of amino
acids to reclassify participants according to 5 year risk, using
the continuous net reclassification index (NRI), was assessed
by methods suitable for survival data, using bootstrapping [27].

Primary results came from use of all available data; sensi-
tivity analyses using only participants with complete data
were also performed.

Results

Baseline associations A maximum of 3587 samples had avai-
lable data for at least one amino acid (Fig. 1). Due to the design
of the multicentre study, there was some variability in sample
processing time, leading to some samples having low
glutamine/glutamate ratios. As such, fewer samples had a result
for glutamine [28]. The detected absolute concentrations of
amino acids were generally comparable with data from other
studies (see electronic supplementary material [ESM] Table 1).

In general, the amino acids showed a broad range of corre-
lations with each other. Taking extreme examples, leucine and
glutamine were not correlated (r = 0.03, p = 0.23) but BCAAs
leucine, isoleucine and valine were highly intercorrelated (r ≥
0.67, p < 0.001) (Table 1). The associations of amino acids
with classical CVD risk factors are shown in ESM Tables 2–
9. Phenylalanine was positively associated with older age,
baseline CVD, higher CRP and higher baseline high-

sensitivity troponin T (hsTnT) and amino-terminal pro B-
type natriuretic peptide (NT-proBNP). In contrast, the other
AAA, tyrosine, showed inverse associations with HbA1c and
ACR and a positive association with eGFR. Histidine, alanine
and glutamine showed inconsistent associations with classical
risk factors. The BCAAs leucine, isoleucine and valine were
inversely associated with age, HDL-cholesterol and NT-
proBNP but were positively associated with CVD, male sex,
BMI, triacylglycerols and HbA1c.

Macrovascular disease, microvascular disease and all-cause
mortality Baseline risk factors associated with all three end-
points included male sex, increased duration of diabetes, his-
tory of macrovascular disease, higher systolic blood pressure,
lower HDL-cholesterol, higher HbA1c, higher ACR and
higher hsTnT and NT-proBNP (Table 2).

Among the amino acids, after adjustment for age, sex, re-
gion and randomised treatment (model 1), higher phenylala-
nine and lower glutamine and histidine concentrations were
associated with increased macrovascular risk (HR per 1 SD
increase was 1.22 [95% CI 1.12, 1.32], 0.88 [95% CI 0.79,
0.98] and 0.86 [95% CI 0.79, 0.94], respectively) but these
associations were attenuated to the null on further adjustment
for classical risk factors (model 2) (Fig. 2a and ESMTable 10).

Higher tyrosine alone was associated with decreased risk of
microvascular events (HR 0.74 [95% CI 0.64, 0.86]) in model
1 and this was only slightly attenuated on adjustment for a full
range of classical risk factors in model 2 (HR 0.78 [95% CI
0.67, 0.91]) (Fig. 2b and ESM Table 10). A higher alanine
level was also associated with decreased risk of microvascular
events after further adjustment (HR 0.86 [95%CI 0.76, 0.98]).
The association between tyrosine and renal impairment was
further investigated by assessing the HRs across tertiles of
eGFR and ACR. There was no evidence of interaction by
eGFR or ACR (data not shown).

In contrast, several amino acids were associated with all-
cause mortality. Phenylalanine was positively associated with
risk ofmortality, while glutamine, leucine, alanine, histidine and
valine were all inversely associated with risk of mortality in
model 1 (ESM Table 10). After adjustment for classical risk

Table 1 Pearson correlations (r)
of the amino acids with each other Amino acid Phenylalanine Isoleucine Glutamine Leucine Alanine Tyrosine Histidine

Isoleucine 0.32 –

Glutamine −0.05 0.05 –

Leucine 0.34 0.89 0.03 –

Alanine 0.2 0.44 0.13 0.44 –

Tyrosine 0.4 0.25 0.13 0.29 0.26 –

Histidine 0.16 0.24 0.43 0.2 0.27 0.17 –

Valine 0.27 0.67 0.13 0.75 0.34 0.29 0.25

All correlations have p values of <0.001, except for phenylalanine vs glutamine (p = 0.02), isoleucine vs gluta-
mine (p = 0.03) and glutamine vs leucine (p = 0.23)
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factors (model 2), the inverse association with risk remained for
leucine (HR 0.79 [95% CI 0.69, 0.90]), histidine (HR 0.89
[95% CI 0.81, 0.99]) and valine (HR 0.79 [95% CI 0.70,
0.88]) but the positive association of phenylalanine was attenu-
ated to the null (Fig. 2c and ESM Table 10). A sensitivity
analysis using samples from individuals with complete data
gave similar results (ESM Table 11). There was no evidence
of a randomised treatment interaction in any model (data not
shown).

A model including all the classical CVD risk factors in model
2 yielded a c statistic of 0.716 for macrovascular events, 0.728
for microvascular events and 0.747 for all-cause mortality
(Table 3). Addition of the amino acids in combination did not
improve the c statistic for any endpoint but did improve the
continuous NRI for macrovascular events (+35.5%, p < 0.001)
and microvascular events (+14.4%, p = 0.012). The improve-
ment in prediction of microvascular events was driven by the
addition of tyrosine alone.

Discussion

Although previous observational studies have reported asso-
ciations of circulating BCAAs and AAAs with adverse out-
comes in healthy people, the present report contrasts for the
first time the associations of multiple circulating amino acids
with the major vascular complications of diabetes. Rather than
one (or more) amino acids being a consistent signal for adverse
outcomes of any kind, we report that their associations with
risk of macrovascular events, microvascular events and all-
cause mortality are strikingly different from each other. A
key finding is the inverse association of tyrosine with risk of
microvascular events, independent of eGFR and urinary ACR.
Although the evidence from the present study suggests that
these might only be very moderately useful biomarkers in in-
cremental prediction of adverse events in individuals with type
2 diabetes, the pathophysiology underlying these associations
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Fig. 2 Adjusted associations (model 2, log10 scale HR) of amino acids
individually (per 1 SD increase) with macrovascular outcomes (a), mi-
crovascular outcomes (b) and all-cause mortality (c)

Table 3 Prediction of endpoints using amino acids in combination or individually

Model Macrovascular events Microvascular events All-cause mortality

c statistic Continuous NRI (%) c statistic Continuous NRI (%) c statistic Continuous NRI (%)

Basic modela 0.716 – 0.728 – 0.747 –

Plus all amino acids +0.010 +35.5 +0.010 +14.4 +0.009 +8.0

p value 0.17 <0.001 0.23 0.012 0.26 0.09

Plus tyrosine only – – 0.007 +14.9 – –

p value – – 0.30 0.01 – –

a Adjusted for age, sex, region, randomised treatment, previous macrovascular event, duration of diabetes, current smoking, systolic blood pressure,
BMI, urinary ACR, eGFR, HbA1c, plasma glucose, total and HDL-cholesterol, triacylglycerols, use of aspirin or other antiplatelet agent, statin or other
lipid-lowering agent, β-blocker, ACE inhibitor or angiotensin receptor blocker, or metformin, history of heart failure, participation in moderate and/or
vigorous exercise for >15 min at least once weekly, and CRP
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and the possibility of intervention studies are intriguing and
worthy of further investigation.

The association of high circulating concentrations of BCAAs
andAAAswith obesity has been known since the 1960s [29] and
has been proposed to be at least partially mediated by insulin
resistance. Insulin is thought to be a regulator of branched-
chain α-keto acid dehydrogenase complex [30]. Insulin resis-
tance may hence suppress BCAA catabolism, as suggested by
associations noted in observational epidemiology studies
[31–33]. The causal pathway may not be unidirectional; a recent
Mendelian randomisation study suggests that genetically elevat-
ed BCAAs (via impaired catabolism) are associated with in-
creased risk of type 2 diabetes [34], although a better understand-
ing of the underlying pathway is required to increase confidence
in this observation [35]. There is also the possibility that amino
acids themselves (particularly BCAAs) may affect metabolism
by suppressing postprandial glucose levels [36]. Increased pro-
tein turnover in people with central obesity may result in higher
circulating levels of amino acids [37] and might therefore cause
elevations in amino acids in people who are overweight and have
type 2 diabetes. There are hence a variety of potential mecha-
nisms related to type 2 diabetes pathologies that might influence
circulating amino acids in individuals with type 2 diabetes.

Given this background, and prior findings in general popula-
tions of associations of specific amino acids with CVD [9–12],
we wished to examine whether amino acid levels associated with
adverse outcomes in individuals with type 2 diabetes. In the
ADVANCE study, the BCAAs leucine, valine and isoleucine
showed no association withmacrovascular events, but low levels
of leucine and valine were associated with increased all-cause
mortality. However, the positive, albeit not independently predic-
tive, association of phenylalanine with CVD and all-cause mor-
tality we observed is broadly in line with other published data.
There are limited intervention studies investigating the effect of
amino acid supplements on health outcomes, with most research
coming from short-term trials examining surrogate health
markers in the sports science area [38]. Our data strongly support
the need for further studies to determine why higher phenylala-
nine appears to be a consistently adverse signal for CVD out-
comes. Our study provides observations that are the basis for
testable hypotheses investigating the effect of genetic variants,
which are instrumental variables for circulating amino acids, on
health outcomes [39, 40].

The inverse association of tyrosine with risk of microvascular
events is perhaps the most intriguing individual finding from this
study. Tyrosine itself was positively associated with baseline
eGFR and inversely associated with baseline HbA1c and urinary
ACR. Impaired conversion of phenylalanine to tyrosine has been
reported in renal disease [41, 42]. Low tyrosine levels might
therefore simply reflect impaired kidney function, which itself
predicts future microvascular events. Tyrosine is also linked to
catecholamine synthesis, which, also speculatively, might be rel-
evant to our findings [43]. That noted, counter-intuitively, we

have reported that metformin in fact lowers, not raises, tyrosine
levels in individuals with CVD and at high risk of diabetes [16].
The effect of other glucose-lowering drugs on amino acid profiles
in individuals with diabetes would now be of interest. Further
studies are now needed to validate our novel observations and to
examine whether our findings may represent causal pathways.

Strengths of the study include the use of a well-characterised
clinical trial cohort, an efficiently designed case-cohort study to
yield a powerful study for a range of endpoints, which were
independently adjudicated according to pre-defined criteria.
Like other RCT populations, ADVANCE study participants rep-
resent a selected cohort. For instance, ADVANCE study partic-
ipants were required to have a history of CVD or CVD risk
factors. Therefore, our results may not be generalisable to all
individuals with diabetes, although other risk factors we mea-
sured are generally associated with risk of major endpoints in
the expected directions. Amino acids were measured in pragmat-
ically collected plasma samples in the context of a multinational
RCT and we cannot rule out the potential for differential pre-
analytical sample handling or sample degradation during storage,
which may have biased our results [44], although these samples
were analysed at first thaw. We also present data suggesting
broadly comparable concentrations of amino acids relative to
other cohorts. Another potential limitation is the analysis of sam-
ples from non-fasted participants, although in clinical practice,
fasting is rarely required among individuals with type 2 diabetes.
NMR spectroscopy has been used to investigate changes in ami-
no acids 30 min after a standardised liquid meal [45] and effects
sizes were generally relatively small, although the immediate
postprandial state is likely to give larger effect estimates than
are at play in this study.

In conclusion, we report distinct associations of different ami-
no acids with risk of major adverse endpoints in individuals with
type 2 diabetes. Most notably, the identification of tyrosine as a
potential marker of microvascular risk requires further study.
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