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Abstract
Purpose Ionising radiation exposure is especially harmful to brain development. The purpose of this study was to evaluate
whether black-bone (BB) magnetic resonance imaging (MRI), a non-ionising imaging method, offers an alternative to ionising
imaging methods such as computed tomography (CT) in the examination of cranial deformities.
Methods From 2012 to 2014, a total of 408 children were referred to the Craniofacial Centre at the Helsinki University Hospital
for further examination due to flatness of the posterior skull. Fifteen of these patients required further diagnostic imaging. To
avoid ionising radiation, we used an MRI protocol that included sequences for evaluation of both brain anatomy and skull bone
and sutures by BB-MRI. A semi-automatic skull segmentation algorithm was developed to facilitate the visualisation. Two
patients with scaphocephaly were included in the study to confirm the ability to differentiate synostosis with BB-MRI.
Results We obtained informative 3D images using BB-MRI. Seven patients (7/15, 46.7%) had plagiocephaly on the right side
and seven on the left side (7/15, 46.7%). One patient (1/15, 6.7%) had symmetric posterior flatness affecting both sides. Neither
structural nor signal-intensity alterations of the brain were detected in visual analysis.
Conclusion BB-MRI provides an alternative to CT when imaging craniofacial deformities. BB-MRI provides not only high-
quality 3D-reconstructed imaging of the bony structures and sutures but also information on brain structure in one imaging
session. With further development, this method could replace ionising radiation-based methods in analysing deformities of the
skull.
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Introduction

Craniosynostosis occurs when one or more of the sutures be-
tween the bones of the cranial vault fuse prematurely [1, 2].
Craniosynostosis can occur as part of a syndrome or as an
isolated defect (non-syndromic). As a result, the skull shape

becomes deformed and brain growth and development may be
impaired. The most common craniosynostosis is sagittal syn-
ostosis, which occurs in 45% of non-syndromic cases [3].

Plagiocephaly is used to describe an asymmetry or flatness
in the posterior cranial vault of the head. Posterior
plagiocephaly can be divided into deformational (positional)
plagiocephaly and true lambdoid synostosis [4]. Unilateral
lambdoid synostosis occurs only once in every 40,000 live
births, accounting for up to 1 to 4% of all patients with cranio-
synostosis [5]. In contrast to lambdoid synostosis, positional
plagiocephaly is a common finding. Depending on the study,
current estimates indicate an incidence of 8.2 to 13 to 48% of
children under 1 year [6–8]. The incidence of posterior
plagiocephaly has increased dramatically over the past two de-
cades since initiation of the Bback to sleep^ campaign in 1992
by the American Academy of Pediatrics [9]. In clinical practice,
it is important to differentiate true lambdoid synostosis from the
more common deformational plagiocephaly, which may be
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caused by external forces on the skull or in some cases, a pri-
mary growth problem in the brain itself [10, 11]. Posterior
plagiocephaly seems to be associated with early
neurodevelopmental defects, such as delayed speech develop-
ment or motor function [12, 13]. Thus, regardless of the cause
of posterior plagiocephaly, it is important to screen patients in
infancy so that appropriate diagnosis, possible further examina-
tions, and final treatment can be implemented.

The diagnosis of craniosynostosis is made by physical ex-
amination and medical imaging. Despite exposure to ionising
radiation, the current golden standard for diagnosis is low-
dose computed tomography (CT) [14]. The risks associated
with radiation exposure are well known [14–17]. Magnetic
resonance imaging (MRI) is superior to CT in most cases
when evaluating structural brain alterations in children.
Thus, in children with craniosynostosis, MRI is routinely per-
formed on patients with neurological symptoms. A non-
ionising imaging modality should be the first-choice imaging
method in children. However, due to the poor ability of routine
MRI sequences to show bony details,MRI thus far has not had
a role in diagnostic evaluation of children with skull deformi-
ties [18]. In 2012, Eley et al. presented a novel black-bone
MRI (BB-MRI) sequence in order to differentiate bone from
an almost uniform contrast of soft tissues [19]. The BB-MRI
sequence provided improved contrast between soft tissue and
bone and enabled 3D rendering of the skull [19–21].
However, the BB method described previously was not as
accurate as CT in visualising skull bone and the sutures.

The purpose of this study was to develop and evaluate
whether BB-MRI could offer an alternative diagnostic method
instead of CT in the examination of skull deformities. We
report the imaging protocol, semi-automatic segmentation al-
gorithm, results, and our experience of using BB-MRI as a
diagnostic method in children with posterior plagiocephaly.

Patients and methods

Ethical approval for the use of black-bone MRI was granted
from the Helsinki University Hospital Research Ethics
Committee. From 2012 to 2014, a total of 408 children were
referred to the Craniofacial Unit at the Helsinki University
Hospital for further examination due to flatness of the poste-
rior skull (i.e. posterior plagiocephaly). Those patients who
did not have any neurological symptoms and clearly had po-
sitional plagiocephalies were not considered to require further
examinations. In this study, MRI of the skull and brain was
performed when the patient had a severe posterior
plagiocephaly that did not show any improvement before the
age of 18 months and was accompanied with neurological
symptoms. Thus, MRI was used for diagnostic evaluation of
patients with severe posterior plagiocephaly and neurological
concerns, including motor skill delays (3/15 patients, 20%),

delayed speech development (11/15 patients, 73.3%), dyspha-
sia (1/15 patients, 6.7%), or behavioural problems (5/15 pa-
tients, 33.3%).

The accuracy and diagnostic value of BB-MRI to exclude
synostosis were tested in two patients with scaphocephaly. For
these patients, the indication for MRI was the preoperative
evaluation of potential intracranial findings (such as Chiari
malformation). BB-MRI imaging was performed in the same
imaging session.

All imaging was performed under generalised anaesthesia.
Images were acquired with a 3-T Siemens Verio or Skyra
(Erlangen, Germany) and a 32-channel head coil. The imaging
protocol included anatomical sequences (i.e. axial T2-TSE,
T13D, and a 2D FLAIR for radiological evaluation) and a
BB-MRI sequence. The BB-MRI sequence was based on the
work by Eley et al. [19, 21–25]. We also used MRI-based
radiation therapy planning and attenuation correction for
PET-MRI, where in-phase and out-of-phase imaging (i.e.
Dixon technique) [26] is used for the generation of the so-
called pseudo-CT [27, 28]. The sequence evolved during the
study and the currently used BB-MRI sequence at our hospital
is an axial or sagittal (or both) T1 VIBE sequence, where both
in-phase and out-of-phase images are acquired at a resolution
of 1 × 1 × 0.9 mm3, interpolated in-plane resolution of 0.5 ×
0.5 mm2, FOV 192 ∗ 192, TR 25 ms, flip angle 3° or 5°, and
NSA 1, with distortion correction applied. The acquisition
time is about 2.5 min, depending on the number of the slices
required for full head coverage.

The skull is segmented from the BB-MRI images semi-
automatically with a Matlab (MathWorks Inc., USA) script.
First the in-phase and out-of-phase images are separated and
reoriented with FMRIB FSL tools [29, 30] and zero-padded
by 10 voxels. The in-phase image was segmented into back-
ground and foreground by applying Otsu thresholding [31] to
each slice separately, and to obtain an intact foreground, mask
dilation/erosion image operations were performed. A rough
initial skull segmentation can already be obtained from the
Otsu thresholding. The fat image was calculated from the in-
phase and out-of-phase images [26] and segmented into two
categories (backgroundmean of the fat image, 0.5 ∗maximum
value of the fat image) with the 3D bias field-corrected fuzzy
c-means clustering (BCFCM) algorithm [32] as implemented
previously (https://se.mathworks.com/matlabcentral/
fileexchange/25712-bias-field-corrected-fuzzy-c-means). The
fat mask was obtained from the probability map by
thresholding with a value of 0.7. Excluded areas from the
foreground mask were categorised as fat, which is a simple
way to avoid false categorisation (e.g. due to a chemical shift
artefact in the in-phase image). The masked in-phase image
was also segmented with the 3D BCFCM-algorithm initiated
with five intensity values (background mean, 0.5 ∗ mean of
the Otsu-thresholded skull, mean of the Otsu-thresholded
skull, 0.5 ∗ image maximum value, 0.75 ∗ image maximum
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value). This resulted in five different probability images; of
which, only the two probability images initiated with the
Otsu-thresholded skull intensities were summed. For the
summed probability map, a threshold value of approximately
0.3 was used and a skull mask was obtained. The inverted in-
phase image was then masked with this skull mask.

The image visualisation was performed with 3D Slicer
[33]. The segmentation was visually assessed and manually
improved if necessary. If the segmentation required manual
improvement, typically bias field correctionwas performed on
the original in-phase image using the N4ITK bias field correc-
tion module [34]. All MR images were analysed by a neu-
roradiologist (NB) who had 11 years of experience in
radiology.

Results

We obtained informative 3D images of the skull bone and
posterior sutures by using BB-MRI in 15 patients with poste-
rior plagiocephaly (Figs. 1 and 2). The mean age at time of
imaging was 38.4 months (SD 12–84 months). Seven patients
(7/15, 46.7%) had right posterior plagiocephaly and seven
(7/15, 46.7%) patients had left-sided posterior plagiocephaly.
One patient (1/15, 6.7%) had symmetric posterior
plagiocephaly affecting both sides.

The patients with posterior plagiocephaly had neither struc-
tural nor signal-intensity alterations of the brain. Cranial su-
tures of all patients with posterior plagiocephaly were open,
and no patients had lambdoid synostosis (Figs. 1 and 2). For
the first 10 patients with positional plagiocephaly, we con-
firmed the suture diagnosis with CT in addition to MRI.

However, for most of the patients, the diagnostic quality of
the BB-MRI images alone was sufficient.

To further confirm the diagnostic value of BB-MRI in
visualising synostotic sutures, two patients with
scaphocephaly were imaged by MRI using black-bone se-
quences (Fig. 3a–b). The BB-MRI for these two patients
was performed with 3D gradient echo FLASH sequences;
the image quality required improvement. Sequence type was
changed to a VIBE (Fig. 1). Slight adjustment to the sequence
was later performed (e.g. increasing the resolution and also
aquiring the out-phase image). A segmentation algorithm was
developed and utilised to facilitate better 3D visualisation of
the BB-MRIs (Figs. 2 and 3).

The 3D BB-MRI images were considered accurate and
showed the structures of the skull adequately (Fig. 2), includ-
ing the sutures important for diagnosis of sagittal synostosis
(Fig. 3). Sagittal sutures of two patients were visualised very
similarly in BB-MRI and routine CT 3D reconstruction im-
ages. The MRI protocol used provided us with information
not only about the skull and sutures but also on the brain
structures. Minor left cerebellar hemisphere haemorrhage
was identified by the presence of hypointensity on the T2-
weighted sequence in one patient with scaphocephaly
(Fig. 3b). The same patient also had mild ectopia of the cere-
bellar tonsils through the foramen magnum.

Discussion

The aim of this study was to assess the use of BB-MRI in the
evaluation of skull deformities. The BB-MRI method present-
ed by Eley et al. was used and further developed as a suitable

Fig. 1 Skull images of a
32 month (2 year 8 months)-old
patient with right posterior
asymmetry of the skull. Top row,
3D-rendered BB-MRIs before
protocol optimisation. Bottom
row, 3D- rendered CT images of
the same patient
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MRI protocol for diagnostic imaging as an alternative for CT.
We report our imaging protocol and semi-automatic segmen-
tation method, results, and our experience of using BB-MRI.

In routine diagnostic evaluation of children with deformi-
ties of the skull, CT provides the ability to document the
patency or closure of the sutures and aid in surgical planning
[35]. However, the potential risks associated with radiation
exposure are well known [14–17, 36]. In 2012, the
American National Cancer Institute raised concerns about
the hazards of ionising radiation with regard to inducing tu-
mours and developmental delays in children [36]. Some au-
thors have suggested that CT examination is not justified in
craniosynostosis [37, 38]. MRI is a potential tool for imaging
patients with cranial malformations and brain structure

without harmful radiation [39, 40] and may also possess cer-
tain advantages over CT [41].

In most cases, the differential diagnosis of lambdoid syn-
ostosis and non-synostotic posterior plagiocephaly is clear
only by clinical examination [11]. However, a minority of
patients with deformational plagiocephaly present with a se-
vere flatness and require differential diagnostics and imaging
[42]. In the case of posterior plagiocephaly, physicians may
need information not only on the bony structures of the skull
but also on the brain. The cause of unilateral posterior
plagiocephaly can be in some cases induced by a primary
problem in growth of the brain itself. For these reasons, we
included conventional MRI sequences in addition to the BB-
MRI sequence to our imaging protocol. To confirm that we

Fig. 2 3D-rendered BB-MRIs
and anatomical T2 and T13D
images of two patients with
posterior plagiocephaly. a A 24-
month-old (2 years) patient with
posterior plagiocephaly. b A 25-
month-old (2 years 1 month)
patient with posterior
plagiocephaly. Black arrows on
the BB images point to the
lambdoid suture on the flat
posterior hemisphere. No
structural abnormalities were
observed in either patient in the
anatomical regions
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can identify synostosis with BB-MRI, two patients with
scaphocephaly were evaluated by BB-MRI and routine CT
imaging. By both methods, the patient sutures were identified
as areas of decreased signal intensity, with these features being
absent at the site of synostosis in the sagittal suture.

One major advantage of BB-MRI over CT is the avoidance
of harmful radiation exposure. Another advantage of BB-MRI
is that information on both the skull and brain can be obtained
in one imaging session. In particular, posterior cranial synos-
toses may be associated with Chiari malformation with

Fig. 3 a A 57-month-old (4 years
9 months) patient with sagittal
synostosis. Top row, 3D-rendered
BB MRIs. Middle row, 3D-
rendered CT images. This patient
had no structural abnormalities on
the anatomical T2W and T13D
images, as seen on the bottom
row. bA6-month-old patient with
sagittal synostosis. Top row, 3D-
rendered BB-MRI images.
Middle row, 3D-rendered CT
images. Bottom row, anatomical
T2W and T13D images. Minor
left cerebellar hemisphere
haemorrhage was observed in the
T2 images (not shown), otherwise
no abnormal T2 signal changes
were detected. Mild ectopia of the
cerebellar tonsils through the
foramen magnum was observed
in the T1 images
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herniation of one or both cerebellar tonsils [43]. Of our 15
patients with posterior plagiocephaly, none of the children
had structural abnormalities of the brain tissue despite pres-
ence of neurological symptoms.

While MRI eliminates the risks of ionising radiation, in-
creased examination time and cost may be disadvantages of
this method. However, the black-bone sequence itself lasts
approximately 3 min. If there is need to image the brain as
well, the whole protocol for clinical purposes is possible to
perform in 15 to 20 min. In infants, the longer anaesthesia or
sedation time can be considered as a potential risk [44].
However, in children under the age of 6 months, the MRI is
possible to perform in natural sleep after feeding. Imaging
unanaesthetised children with a less motion-sensitive se-
quence may be beneficial. The ultra-short TE sequences will
also offer new opportunities for craniosynostosis imaging, but
the availability of the sequence on current scanners is limited.
These imaging sequences may, however, increase the acquisi-
tion time.

Eley et al. demonstrated that 3D-rendered images of the
skull can be obtained with image processing software [21].
A segmentation algorithm of the skull was used to improve
the visualisation, but the algorithm should be developed fur-
ther. Currently, the segmentation algorithmmisclassifies some
intracranial structures and manual improvement is required.
We have observed that the segmentation of the skull is more
difficult the younger the patient is. For example, the skull of a
6-month-old infant is quite thin and has a higher water con-
tent, thus the bone is not always black. Therefore, we have
decided to postpone preoperative imaging close to the planned
surgical session. Also an optimised sequence for infants
would be desirable. More studies are needed to decide the
optimal age of the infant as far as the interpretation of the
imaging is concerned. Our final goal for the segmentation is
a fully automatic workflow. This will require registration to a
standard space, so that desired projections of the skull can be
generated consistently.

In conclusion, the MRI protocol with the BB-MRI se-
quence used in this study provides a very promising alterna-
tive to CTwhen imaging patients with any calvarial deformity,
plagiocephaly, or craniosynostosis. This protocol provides
high-quality 3D-reconstructed skull images and visualisation
of structural abnormalities of brain structure during one imag-
ing session. We believe that with further development, the
method could gain wide acceptance as a method of choice in
everyday practice for patients with deformities of the skull. It
should also be remembered that although the brain in visual
analysis may be considered normal in conventional MRI, the
patient can present neurological symptoms. In the future, ad-
ditional microstructural and functional MRI imaging, such as
diffusion tensor imaging (DTI) and resting state functional
MRI, could provide more information about the potential un-
derlying microstructural changes in these patients.
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