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A B S T R A C T

Many glycaemic variability (GV) indices extracted from continuous glucose monitoring systems data have been
proposed for the characterisation of various aspects of glucose concentration profile dynamics in both healthy and
non-healthy individuals. However, the inter-index correlations have made it difficult to reach a consensus
regarding the best applications or a subset of indices for clinical scenarios, such as distinguishing subjects ac-
cording to diabetes progression stage. Recently, a logistic regression-based method was used to address the basic
problem of differentiating between healthy subjects and those affected by impaired glucose tolerance (IGT) or
type 2 diabetes (T2D) in a pool of 25 GV-based indices. Whereas healthy subjects were classified accurately, the
distinction between patients with IGT and T2D remained critical. In the present work, by using a dataset of CGM
time-series collected in 62 subjects, we developed a polynomial-kernel support vector machine-based approach
and demonstrated the ability to distinguish between subjects affected by IGT and T2D based on a pool of 37 GV
indices complemented by four basic parameters—age, sex, BMI, and waist circumference—with an accuracy of
87.1%.
1. Introduction

So-called continuous glucose monitoring (CGM) systems have
enabled the quasi-continuous (up to a resolution of a sample per minute),
real-time monitoring of blood glucose (BG) concentrations [1].
Currently, the majority of available commercial products comprise three
main elements: a minimally-invasive subcutaneous electrochemical
needle sensor (to be inserted into the abdomen or arm), wireless trans-
mitter, and receiver, which is often coupled with a display or other user
interface [2,3]. These existing devices have accuracies similar to those of
standard finger-prick BG devices (see Refs. [4–7] for example
references).

The concept of glycaemic variability (GV) as a tool for characterising
the dynamic properties of BG concentration traces has gained importance
in light of the increased use and reliability of CGM systems [8,9]. Pre-
vious reports have proposed tens of GV indices with varying degrees of
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mathematical complexity and clinical interpretability (e.g. [10], and
[11]), and some are thought to serve as markers of a number of adverse
pathological outcomes and complications in diabetic patients [12–16].
However, a general consensus regarding the best subset of GV indices and
the exact combinations needed to evaluate the metabolic state of a sub-
ject has not yet been reached [17,18], partly because of the high degrees
of correlation between many GV metrics [10,19,20].

To the best of our knowledge, Ref. [21] presents the first investigation
of a basic classification problem, such as distinguishing between healthy
subjects and patients affected by impaired glucose tolerance (IGT) or type
2 diabetes (T2D), using a large subset of GV indices. In that work, the
authors implemented a cascade of two logistic regression steps to
sequentially determine which of the 102 subjects were healthy and
subsequently pinpoint the exact altered metabolic state (IGT or T2D) of
the remaining subjects. The results achieved in that study were promising
in terms of the highly accurate identification of healthy subjects (91.4%
d.unipd.it (G. Acciaroli), facchine@dei.unipd.it (A. Facchinetti), liisa.hakaste@
Maran), gianni@dei.unipd.it (G. Sparacino).
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cross-validation accuracy); however, the distinction between subjects
affected by IGT and T2D proved quite critical (79.5%� 15.9%
cross-validation accuracy).

To assess the reasons underlying the difficult CGM-based distinction
between IGT and T2D, let us consider the traces in Fig. 1. The top panel
shows a CGM trace recorded in a representative subject affected by T2D
who was frequently affected by hyperglycaemia (BG> 180mg/dL),
which is characteristic of the condition. The middle panel shows a CGM
trace recorded from a patient affected by IGT; here, we can appreciate the
somewhat expected reduction in the frequency and entity of hyper-
glycaemic episodes, although a brief hypoglycaemic event (BG< 70mg/
dL) occurred. Finally, the bottom panel features a CGM trace which is
arguably much more similar to the trace acquired from the patient with
IGT, despite actually having been acquired from a subject with full-
fledged T2D. Clearly, the distinction of IGT and T2D based on an in-
spection of CGM signals is a non-trivial problem attributable to subtle
differences that may not be readily detectable, but nonetheless must be
assessed quantitatively in terms of GV indices.

In the present paper, which considers a dataset of 62 IGT and T2D
subjects evaluated previously by Acciaroli et al. [21], we discuss the use
of a machine learning approach to further develop the previous work,
with the aim of improving the distinction between IGT and T2D. Spe-
cifically, we explored two possible avenues of improvement: first, we
attempted to increase the quantity of information available for classifi-
cation by considering a wider subset of GV indices in the literature and
complementing these tools using basic information such as age, sex, body
mass index (BMI), and waist circumference; second, we tested the per-
formance of more sophisticated techniques— namely, two support vector
machine (SVM) variants—which might be more suitable for more chal-
lenging classification problems. We demonstrate that IGT and T2D pa-
tients could be distinguished with accuracy levels as high as 87.1%; this
improvement was significant when compared to the baseline of 61.3%
established by implementing a logistic regression-based strategy similar
to that proposed in Ref. [21].
Fig. 1. Three exemplificative continuous glucose monitoring (CGM) traces.
The top and bottom panels show CGM traces acquired from two subjects
affected from T2D; the middle panel shows a CGM trace from a patient with IGT.
The dashed lines represent the hyperglycaemia (blood glucose >180mg/dL)
and hypoglycaemia (blood glucose <70mg/dL) thresholds.
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2. Database

2.1. Dataset description

The 62 subjects analysed in the present work represent a subpopu-
lation extracted from two long-term studies, the Botnia Prospective Study
(BPS) and the Botnia PPP Study (approved by the ethics committee of
Helsinki University Hospital; all study participants provided informed
consent). The data, which were acquired during the EU FP7 Mosaic
Project [22], include both CGM traces and a wide range of clinical pa-
rameters (including age, sex, BMI, and waist circumference) obtained
during two annual visits per subject (reference timeframes: Februar-
y–June 2014 and March–June 2015). All subjects were constantly
monitored using the iPro CGM system (Medtronic MiniMed, Inc.,
Northridge, CA, USA) for 6-days periods at a frequency of one sample
every 5min. IGT or T2D were diagnosed at the time of the visit using an
oral glucose tolerance test (OGTT) [23]. At the time of the first visit, 36
and 26 subjects were affected by IGT and T2D; 1 year later, two and one
subject experienced diagnostic changes from T2D to IGT and from IGT to
T2D, respectively, yielding a total of 37 IGT and 25 T2D patients.

2.2. Glycaemic variability indices

CGM-acquired signals were initially processed to extract a set of
37 GV indices (including the 25 indices used previously used in Ref. [21]
and, for purposes of compressed representation, in Refs. [19,20]).

Seven of those indices comprise a subset that is related, roughly
speaking, to the 'gross' statistical properties of CGM signals: mean,
standard deviation (SD), coefficient of variation (CV), median, range,
interquartile range (IQR) [19,24], and J-index [25]. We also considered
seven metrics related to variations in the times of global properties,
point-values, and percentages of time spent in the hypo-, eu-, and
hyper-glycaemic ranges: SDw and SDd [26], CONGA andMODD [27], and
%BGbelow, %BGabove, and %BGwithin [19,28]. A third subset of four GV
indices addresses the identification of the entities and frequencies of
peak-nadir excursions: the MAGE, MAGEþ and MAGE- [29,30] and
excursion frequency (EF) [31–33] indices. Twelve additional indices are
derived from empirical transformations of the glycaemic scale intended
to emphasise the abnormality of hypoglycaemia and hyperglycaemia
relative to the physiological state of euglycaemia: M-value [34], GRADE,
GRADEhypo, GRADEhyper, GRADEeu [35], Hypo Index, Hyper Index, IGC
[36], LBGI, HBGI, BGRI, and ADRR [37,38]. Finally, we computed seven
indices as the moment invariants (φ1, …, φ7) proposed in Ref. [39] for
pattern recognition; these indices provide a stable description of the bi-
nary image, obtained by assigning the values 1 and 0 to all pixels below
and above the CGM trace, respectively, in line with the rationale followed
in Refs. [31–33].

3. Methods

3.1. Classification strategy

We defined training and test sets comprising data acquired during the
first and second visits, respectively, yielding a total of 62 samples per set.
We decided against mixing data from different visits to simulate a dataset
that would be realistically available and applicable to clinical practice
(i.e., no clinician should be expected to conduct a longitudinal trial to
acquire a consistent training set). Different subsets of our total set of
37 GV indices (see Section 4 for an in-depth discussion of subset
composition) and four basic parameters (age, sex, BMI, and waist
circumference) were used as features, whereas the results of the OGTT, a
reference diagnostic technique for both IGT and T2D [23], were used as
the label (ground truth).

Throughout our analyses, we developed and tested several variations
of three popular classification techniques: logistic regression, a soft-
margin SVM, and a SVM to which the kernel trick was applied using a
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polynomial kernel [40]. To prevent overfitting, we used L2 regularisation
by estimating the penalty coefficient C together with other
hyper-parameters, if present.

Specifically, using xi for i¼ 1, …, 62, yi as the feature vector associ-
ated with the i-th subject in the training set, and C as the L2 regularisa-
tion coefficient, the following three cost functions were applied.

For logistic regression, we minimised

L ¼
X62
i¼1

½yi logðσðwTxÞ Þ þ ð1� yiÞlogð1� σðwTxÞ Þ � þ 1
2
Cjjwjj2 (1)

where w is the weight vector, which also includes the intercept param-
eter, and σ(⋅) is the sigmoid function.

For the soft-margin SVM, we maximised

L ¼
X62
i¼1

αi � 1
2

X62
i¼1

X62
j¼1

αiαjyiyjxTi xj s: t:

8><
>:

X62
i¼1

αiyi ¼ 0

0 � αi � C

(2)

where αi for i¼ 1, …, 62 are the sparse dual-problem weights equivalent
to w.

For the SVM with the kernel trick formulation, we maximised

L ¼
X62
i¼1

αi � 1
2

X62
i¼1

X62
j¼1

αiαjyiyjk
�
xi; xj

�
s: t:

8><
>:

X62
i¼1

αiyi ¼ 0

0 � αi � C

(3)

where we replaced the inner product, xiTxj, with the polynomial kernel

k
�
xi; xj

� ¼ �
xTi xj þ c0

�d (4)

We used a grid search to estimate the hyper-parameters; specifically,
we tested the performances of different combinations of these values in a
four-fold stratified cross-validation setting. In practice, we first divided
the training set into four folds while preserving the original ratio of IGT
to T2D subjects within each fold; next, we fixed the value of the hyper-
parameters to some point in the grid, estimated four weight vectors, w,
by training the classifier on three of four folds and testing it on the fourth
fold, and calculated the average inter-fold error; finally, after repeating
this procedure for each point in the hyper-parameter grid, we selected
the set of hyper-parameters with which we obtained the minimum
average cross-validation error. The final value of the weight vector, w,
was eventually selected by minimising the cost function using the final
set of hyper-parameters. By applying this rather complex procedure and
alternating between the cost function and average cross-validation error
minimisation, we attempted to maximise the generalisation potential of
our models to ensure efficacy despite the limited cardinality of the
available training set.

3.2. Performance assessment

After estimating the weight vector and appropriate set of hyper-
parameters for each model, we conducted a performance assessment
that considered two distinct metrics to gain insights regarding the
goodness of classification, particularly test accuracy and cross-validation
accuracy.

Here, test accuracy simply refers to classification accuracy, defined as
the percentage of correctly classified subjects over the training set:

ACC ¼ 1
N

XN
i¼1

Iðbyi ¼ yiÞ (5)

where I(⋅) is the binary indicator function, which is equal to 1 when the
condition is true (i.e., when the estimated label ŷi is correct), and N is the
cardinality of the test set (in this case, N¼ 62). As ACC is assessed using
an actual test set (i.e., a hitherto unseen collection of samples), it is
143
indicative of the real-life classification performance.
We computed both the mean and inter-fold standard deviation of

cross-validation accuracy using a four-fold stratified cross-validation.
Specifically, we first divided the entire training set in four folds while
maintaining a consistent ratio of IGT to T2D examples in each fold. Here,
k¼ 1,…, 4 is the index associated with each fold, and Nk is the number of
elements in the k-th fold. To compute the cross-validation accuracy for
each model, we iteratively set aside the k-th fold of our training set to be
used in lieu of an actual test set, re-trained the model using the remaining
three folds, and computed the resulting accuracy, ACCk, for k¼ 1, …, 4
by applying Equation (5) with N ¼ Nk. Cross-validation accuracy was
then defined as

CVACC ¼ 1
4

X4

k¼1

ACCk (6)

Additionally, we computed the inter-fold standard deviation of
CVACC as

stdðCVACCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

X4

k¼1

ðACCk � CVACCÞ2
vuut (7)

We note that although the technique used to assess CVACC was
identical to the technique described during the grid-search step of the
model estimation phase, these assessments were undertaken indepen-
dently. In other words, the complete calculation of CVACC requires two
nested cross-validation loops, the innermost of which accesses only three
quarters of the total training set. Given the further reduction in cardi-
nality of the training portion of the data, we would expect CVACC to be
pessimistic relative to the test set accuracy ACC. However, the standard
deviation of CVACC is a good measure of the expected variability in our
test set point estimate.

4. Results

4.1. Baseline GV-based classification

To establish a reference, we first re-implemented a logistic regression-
based strategy using the same subset of 25 indices considered in
Ref. [21]. As expected, the ACC results were unsatisfactory; here, a
simple logistic regression with an ACC of 61.3% barely out-performed a
random classifier when confronted with an independent test set. We note
that some level of discrepancy emerged between ACC and CVACC;
however, as the test set accuracy ACC is representative of a real-life
use-case (i.e., the application of a trained classifier to an unknown
dataset), we considered it to be the more reliable point-value metric.
Additionally, we referred to CVACC to check for excessive variability or
otherwise extremely unsatisfactory results.

Given this preliminary set of results, we could argue that a simple
linear classification technique, such as logistic regression, might be
insufficient to capture the subtle differences in GV that are needed to
accurately differentiate between IGT and T2D (recall Fig. 1). Based on
these considerations, we attempted to overcome this limitation by
adopting a more complex model, namely a SVM with a polynomial
kernel, of which themain advantage (relative to logistic regression) is the
ability to identify nonlinear boundaries between classes [38]. However,
the application of the polynomial-kernel SVM to the same subset of 25 GV
indices yielded inconclusive results; specifically, a noticeable increase in
CVACC (from 71.1% to 79.2%) was offset by the quasi-random test set
performance (CVACC¼ 56.5%).

4.2. Extended pool of GV indices

To investigate the reasons underlying this apparently inconsistent
behaviour, we attempted to enrich the information available to the
polynomial-kernel SVM by increasing the number of considered GV



Table 1
Summary of the results. The first and second columns report the model names
and feature sets, respectively, while the third and fourth columns report cross-
validation and test set accuracy, respectively.

Classifier Features (#) CVACC ACC

Logistic Regression GV indices (25) 71.1 (�6.4) % 61.3%
SVM (poly. kernel) GV indices (25) 79.2 (�4.8) % 56.5%
SVM (poly. kernel) GV indices (37) 71.1 (�8.9) % 71.0%
SVM (poly. kernel) GV indices (37)

þ parameters (4)
72.5 (�7.5) % 87.1%
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indices to 37. We hypothesised that a more complex classifier could
successfully integrate a wider selection of features, represent a more
nuanced picture of the examined CGM traces, and achieve more stable
and satisfactory results. As expected, the development and application of
our 37-index polynomial-kernel SVM allowed us to reconcile CVACC and
ACC, which were both approximately equal to 71%.

All the relevant results discussed so far are reported in Table 1. A
survey of this table demonstrates how the 37-index polynomial-kernel
SVM clearly outperforms both the logistic regression baseline and the
initially devised 25-index polynomial-kernel SVM extension. This sug-
gests that a wider subset of GV indices is instrumental to a better char-
acterisation of the subtle differences between the CGM traces acquired
from subjects affected by IGT and T2D, especially when these data are fed
into a more complex classifier. However, the performance remained far
from satisfactory, which may indicate that GV alone is not sufficient to
completely characterise a subject as affected by IGT or T2D. In the
following section, we will attempt to improve the classification perfor-
mance by considering additional GV-independent variables.
4.3. Inclusion of additional parameters: age, sex, BMI, and waist
circumference

Previous studies [41,42] suggested the importance of considering
subsets of GV indices to define glycated haemoglobin (HbA1c)-inde-
pendent dimensions, which could help to comprehensively characterise
the metabolic state of a subject. Here, we followed the same rationale and
enriched our index pool with four basic parameters pertaining to each
patient which are normally available without any cost: age, sex, BMI, and
waist circumference. Thus, we aimed to complement the information
Fig. 2. Visualisation of the study results. We compared the baseline results obtai
performing model (right panel), a polynomial-kernel SVM, to 37 GV indices and fou
classified IGT and T2D subjects; crosses and plus signs indicate respective misclassific
to which the slightly different shapes of the two point clouds are attributed.
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provided by GV with basic clinical information regarding the subjects.
As described previously, we developed and tested a polynomial-

kernel SVM using the whole set of 41 variables (37 GV indices plus the
four basic parameters). Whereas CVACC differed only slightly when
compared to the 37-index GV-only scenario (72.5% vs. 71.1%), we
achieved substantial improvements in terms of ACC; specifically, 87.1%
of the patients in the actual test set were correctly identified as being
affected by IGT or T2D. A visual representation of the improvement,
obtained via principal component analysis (PCA), is reported in Fig. 2,
where we can qualitatively appreciate the increase in the discriminative
power of our method by comparing the numbers of circles (hits) between
the two panels. Furthermore, we highlight the fact that our SVM correctly
labelled the CGM traces reported in Fig. 1, as opposed to the baseline
logistic regression model discussed in Section 4.1 which mistakenly
classified the second subject as affected by T2D.

Finally, we report that the inclusion of the four basic parameters
introduced in this section to the logistic regression model, similar to the
methodology in Ref. [21], did not yield satisfactory classification per-
formance results. Indeed, ACC remained less than 68%, regardless of the
initial pool of GV indices (25 as in Ref. [21], or 37 as investigated here).

5. Discussion

In the present work, we demonstrated the value of the concept of GV
in highlighting subtle differences between the CGM traces acquired in
subjects affected by IGT and T2D.

To the best of our knowledge, this particular problem was previously
only tackled in Ref. [21], where Acciaroli et al. proposed a strategy based
on a cascade of two logistic regression steps to first isolate healthy con-
trols, and only then differentiate between patients with IGT and T2D.
This latter distinction proved quite critical in terms of performance
metrics, which was likely due to a combination of factors. The first factor
is the high degree of correlation among GV indices, which was addressed
using a descriptive rather than discriminative framework in Ref. [20],
wherein the application of a sparse PCA to a pool of GV indices (quan-
tified from CGM in 13 subjects affected by T2D) revealed that most of the
variance could be explained by a subset of indices. The performance of
the classifier proposed in Ref. [21] might also have been affected by the
absence of linear (in terms of GV) separability between the classes
defined by a diagnosis of IGT or T2D. This factor would also partially
explain why the first logistic regression step in Ref. [21] achieved
ned by applying a logistic regression to 25 GV indices (left panel) and our best
r basic parameters. The circles and squares correspond respectively to correctly
ations. The two-dimensional projection was obtained using a PCA of the test set,
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drastically better results than the second one. In all likelihood, the
distinction between healthy and non-healthy subjects is actually a matter
of defining a threshold hyperplane in the feature spaces of GV indices,
whereas the border separating IGT and T2D is probably a more complex
n-dimensional surface.

The non-linear models applied to GV indices were also investigated in
Refs. [31,32], which yielded very promising results in the context of
characterising the quality of glycaemic control in patients affected by
T1D or T2D. Although this problem differs fundamentally from the
problem investigated in the present work, both required researchers to
address the blurry boundaries between classes. In addition to the intrinsic
difficulties in quantifying glycaemic control, however, Marling et al. also
reported an average intra-clinician consistency of 82% [32]; in other
words, the same expert, when tasked with classifying the same CGM
trace, often reconsidered his or her own assessment. In light of this
finding, the distinction between IGT and T2D seems an appropriate task
with which to evaluate the potential of GV indices to solve nuanced
classification problems, while removing any noise that might be intro-
duced by subjective labelling.

A possibly insightful by-product of a study on GV-based classification
like that reported in the present paper could be the identification of an
optimal subset of indices. To this end, in previous works several tech-
niques, including sparse PCA [20], t-test filter [31], and backward
elimination [31], were proposed, but none of them gave conclusive re-
sults. An alternative approach might be the assessment of relative feature
importance via exhaustive search [40]. However, we did not implement
it here, given the high number of covariates in the starting pool (41)
which would have required evaluating about 2⋅1012 different feature
combinations.

Finally, although we realise that the sample size of our study may be a
limiting factor in terms of generalising our results to a general popula-
tion, we clarify that to the best of our knowledge, no broader data sets
relevant to our scope are available even in the most recent literature. For
instance, although [43] describes 63 subjects affected by T1D and T2D
who were monitored by CGM, only HbA1c measurements were collected
during follow-up visits. In Ref. [44], the CGM traces of 54 subjects
affected by T2D and pre-diabetes were recorded, but no follow-up data
were made available. Although a dataset with higher cardinality was
recently used in Ref. [45], it comprised only subjects affected by T2D and
did not include any follow-up data; therefore, this dataset was unsuitable
for a classification task such as that considered in the present paper.

6. Conclusions

The distinction of subjects affected by IGT or T2D using CGM-
extracted GV indices remains poorly investigated, and has been only
partially addressed in Ref. [21], which yielded encouraging but not
completely satisfactory results. In the present work, we aimed to improve
upon those preliminary results by first abandoning logistic regression in
favour of more sophisticated machine learning techniques and then
introducing additional variables to complement the information carried
by GV indices. After establishing a baseline using a similar methodology
to that of [21], we achieved an initial improvement in performance by
implementing a polynomial-kernel SVM on an extended subset of 37 GV
indices, which increased the accuracy from 61.3% to 71.0%. The sub-
sequent inclusion of four basic parameters–age, sex, BMI, and waist cir-
cumference–allowed us to solve the classification problem with a more
satisfactory test set accuracy of 87.1%. Apparently, then, the subtle (in
terms of CGM traces) boundaries between IGT and T2D are better defined
in light of an overview of the subject's general metabolic state, which can
be achieved using a wide set of variables comprising both GV indices and
other patient-related information.

Future research will investigate the trade-off between performance
and interpretability, which remains an open issue in that further inves-
tigation is needed to assess how accuracy would be affected by anymodel
simplification in the context of each specific application. In fact, our
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inability to identify a stable optimal subset of features for this task was a
direct result of using the kernel trick to boost the performance of our SVM
model. Moreover, the limited number of samples at our disposal hindered
the identification of the optimal strategy for the GV-based distinction of
subjects affected by IGT or T2D. Accordingly, despite our promising re-
sults and satisfactory performance in the considered subpopulation, our
methodology, or any extension of it, should be thoroughly validated
before applying it to the general population, and adjustments should be
made as appropriate. Additionally, a dataset with higher cardinality
would be instrumental in the refinement of GV-only methods for IGT and
T2D diagnoses that do not rely on clinical parameters other than CGM
traces, especially if new GV metrics were developed in the process.
Indeed, given the sheer number of indices in existence in the clinical
literature and the variety of CGM signal properties they describe, a
convincing case for a new indicator could only be made with substantial
practical evidence in favour of its adoption. Hence, we refrained from
proposing new metrics and, instead, stuck to analysing aspects of the
CGM signal widely accepted as significant by the diabetes technology
community.
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