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Abstract
Background: Diffuse intrinsic pontine gliomas (DIPGs) have a dismal prognosis. Previously, diag-

nosis was based on a typical clinical presentation and magnetic resonance imaging findings. After

the start of the era of biopsies, DIPGs bearing H3 K27 mutations have been reclassified into a

novel entity, diffuse midline glioma, based on the presence of this molecular alteration. However,

it is notwell established how clinically diagnosedDIPGoverlapwithH3K27-mutated diffusemid-

line gliomas, andwhether rare long-term survivors also belong to this group.

Methods: We studied tumor samples obtained at diagnosis or upon autopsy from 23 children,

including two long-term survivors. Based on clinical, radiological, and histological findings, all

tumors were previously diagnosed as DIPGs. All samples were analyzed for genetic alterations

by next-generation sequencing (NGS) and for protein expression by immunohistochemistry (IHC).

Results: H3 K27 was mutated in NGS or IHC in 20 patients, excluding both long-term survivors.

Oneof these long-term survivors harbored amutation in IDH1, formerly considered to be an alter-

ation absent in pediatric diffuse brainstem gliomas. Other altered genes inNGS included TP53 (10

patients),MET and PDGFRA (3 patients each), VEGFR and SMARCA4 (2 patients each), and PPAR𝛾 ,

PTEN and EGFR in 1 patient, respectively. IHC revealed cMYC expression in 15 of 24 (63%) of all

samples, exclusively in the biopsies.

Conclusions: Eighty-seven percent of the tumors formerly diagnosed as DIPGs could be reclassi-

fied as H3 K27-mutated diffuse midline gliomas. Both long-term survivors lacked this alteration.

Contrary to former conceptions, IDH1mutations may occur also in pediatric brainstem gliomas.
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1 INTRODUCTION

Diffuse intrinsic pontine gliomas (DIPGs) are rare and highlymalignant

tumors that typically arise in children and adolescents. They have a

notorious prognosis, with most patients deceasing within a year from

diagnosis1 and less than 10% surviving beyond 24 months.2 Surgery

is precluded, irradiation alleviates the symptoms only transiently,

and chemotherapies lack any significant effect on the outcome.1

DIPG diagnosis has traditionally been made on clinical grounds based

on characteristic symptoms and magnetic resonance imaging (MRI)

findings.

Abbreviations: DIPG, diffuse intrinsic pontine glioma; IHC, immunohistochemistry; MRI,

magnetic resonance imaging; MVD, microvessel density; NGS, next-generation sequencing;

OS, overall survival; PCR, polymerase chain reaction;WHO,World Health Organization

Recent molecular studies have revealed that most malignant

gliomas arising in the midline structures of the central nervous

system—brainstem, thalamus, and spinal cord—harbor a highly spe-

cific point mutation, K27M, in histone 3.3, 3.2, or 3.1.3–7 The dis-

mal prognosis specifically concerns those tumors bearing H3 K27

mutations.2 In the revised 2016 edition of the World Health Organi-

zation (WHO) brain tumor classification, these neoplasms constitute a

new entity termed as diffuse midline glioma, H3 K27M-mutant.8 H3

K27M-mutated DIPGs are now included in this category. However, a

subset of brainstem gliomas lack K27Mmutations and thus cannot be

classified as any established glioma subtype. More data are needed to

understand the clinical picture and underlying biology of these tumors.

In this study, biopsy and autopsy samples from previously diag-

nosed DIPG tumors were analyzed using next-generation sequencing

(NGS) and immunohistochemistry (IHC). Our aims were as follows: (i)
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reclassify these tumors according to theWHO 2016 brain tumor clas-

sification and explore the correlation between clinical DIPG diagno-

sis and molecular diagnosis; (ii) screen the tumors for both known and

as yet unstudied genetic alterations as well as pathological protein

expression; (iii) explore tumor specimens of long-term survivors to find

specific factors that can explain the unanticipated disease course; and

(iv) develop an NGS panel applicable for diagnostic, therapeutic, and

prognostic purposes for various pediatric brain neoplasms.

2 METHODS

2.1 Patients and samples

Diagnoses were made and the patients recruited to the study before

publication of the WHO 2016 brain tumor classification. Thus, eligi-

bility criteria are consistent with the clinical DIPG diagnosis and the

WHO 2007 classification and include the following: (i) age younger

than 16 years at diagnosis; (ii) radiologically verified DIPG (T1-

hypointense and T2-hyperintense tumor involving ≥50% of the pons)

diagnosed at Children’s Hospital, Helsinki University Central Hospital

(HUCH), during 1994–2014; (iii) available tumor sample, obtained at

diagnosis and/or autopsy, of sufficient amount and adequate quality

for NGS and IHC; and (iv) a histological diagnosis of diffuse astrocy-

toma WHO grades II and III or glioblastoma grade IV. Patient demo-

graphics were collected retrospectively from hospital records with

follow-up ending on October 25, 2015. The date of the first MRI was

regarded as the day of diagnosis. The Institutional Review Board and

the Ethics Committee approved the study design, and informed con-

sent was received from patients still alive at the end of the follow-up.

2.2 Next-generation sequencing

Tumor samples were analyzed with NGS utilizing a custom-made

AmpliSeq panel, designed using AmpliSeq Designer pipeline Version

4.4.2 (Table 1, Supplementary Tables S1 and S2). For each sam-

ple, target regions were amplified in three multiplex polymerase

chain reactions (PCRs). Three PCR pools were combined and pre-

pared for libraries using Ion XpressTM Barcode Adapters and the Ion

AmpliSeqTM Library Kit 2.0. Libraries were quantified using an Ion

Library TaqManTM Quantitation Kit and pooled in equimolar concen-

trations. Clonal amplification of the library pool was performed by

emulsion PCRwith Ion PITM Hi-QTM OT2200Kit and IonOneTouchTM

2 System. Templated ion sphere particles were enriched and then

sequenced on Ion PITM v3 Chips with an Ion PITM Hi-QTM Sequencing

200 Kit and an Ion ProtonTM Sequencer. Sequence data were analyzed

using Torrent Suite Software v4.6 and annotated via Ion Reporter soft-

ware v4.6. NGS analysis was successful in 20 samples.

2.3 Immunohistochemistry

IHC was utilized to analyze the protein expression of H3 K27M, TP53,

IDH1 (R132H), SMARCB1 (INI1), cMYC, CTNNB1 (beta-catenin), EGFR,

and CD31 (Supplementary File S1). IHC was unfeasible in two cases

TABLE 1 Next-generation sequencing platformutilized in the study

Gene
Mutations (whole
codons)

Mutations
(hotspots) Amplifications

ACVR1 X X

EGFR X X

EZH2 X X

KDR (VEGFR) X X

MET X X

PDGFRA X X

PPARG (PPAR𝛾) X X

PTCH1 (PTCH) X X

SMARCA4 X X

ALK X

BRAF X

CDKN2A X

CTNNB1 X

H3F3A X

HIST1H3B X

IDH1 X

IDH2 X

KRAS X

PIK3CA (PI3KCA) X

PTEN X

SMARCB1 X

SMO X

TP53 X

MYC (cMYC) X

MYCN X

and the expression of K27M could not be analyzed in one additional

biopsy due to technical issues. Consequently, IHC was conducted suc-

cessfully in 24 samples for all targets except for H3 K27M, which was

fulfilled in 23 samples.

Blinded for clinical data, an experienced neuropathologist evalu-

ated the tumor histology and IHC staining results based on the propor-

tion of immunopositive cells. H3 K27M, p53, IDH1, INI1, and nuclear

beta-catenin expressions were classified as either positive or negative.

For p53, nuclear expression in >10% of tumor cells were considered

positive and predictive for TP53 mutation.9 cMYC and EGFR expres-

sions were graded on a four-step scale (0 = 0%; 1 = 1–25%; 2 = 26–

50%; 3 = >50%). Further, the staining intensity of H3 K27Mwas eval-

uated as either high or low.

2.4 Microvessel density

Several patients had received low-dose, continuous (metronomic)

maintenance therapy according to the Angiocomb protocol,10 a treat-

ment with antiangiogenic properties. Therefore, we also evaluated

microvessel density (MVD) of the tumor samples as a separate part

of the study. MVD was assessed utilizing the method developed by

Weidner and based on the expression of CD3111 (Supplementary File

S2). One biopsy showedDIPG infiltration of the cerebellum, and it was
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TABLE 2 Patient characteristics

Grade Therapy Outcome Biopsy Autopsy

Patient Age (yrs) Biopsy Autopsy RT Other Status OS NGS IHC NGS IHC

1 8 III Yes Vincristine, paclitaxel,
cyclophosphamide

DOD 8.8 X X

2 10 III Yes HSCT and autologous SCT DOD 15.4 X X

3 5 IV Yes Vincristine, cisplatin, lomustine,
cyclophosphamide, paclitaxel

DOD 10.3 X X

4 7 III Yes No DOD 12.0 X X

5 13 II Yes Angiocomba AWD 90.1 X X

6 15 III Yes No DOD 21.7 X X

7 5 III Yes No DOD 12.5 X

8 8 IV Yes Topotecan concurrently with RT DOD 5.4 X X

9 4 II Yes Angiocomb CR 47.8 X X

10 15 III Yes Angiocomb DOD 7.4 X

11 11 III Yes No DOD 9.3 X X

12 4 II Yes No DOD 13.6 X X

13 10 III Yes Angiocomb DOD 11.1 X X

14 4 IV Yes No DOD 3.8 X

15 7 II Yes No DOD 15.1 X

16 9 IV IV Yes Angiocomb DOD 7.2 X X X

17 5 III IV Yes Angiocomb DOD 13.4 X X X

18 11 III III-IV Yes Angiocombb DOD 5.2 X X X

19 4 IV No 8-in-1 DOD 3.6 X X

20 7 IV Yes Angiocomb DOD 12.4 X X

21 2 IV Yes Angiocomb DOD 13.1 X X

22 12 IV Yes Angiocomb DOD 17.2 X X

23 10 IV No 8-in-1, HDCT and autologous SCT DOD 3.8 X

Grade, histological grade according toWHO2007 classification; yrs, years; RT, radiotherapy;OS, overall survival (months);NGS, next-generation sequencing;
IHC, immunohistochemistry;DOD, diedof disease;AWD, alivewithdisease;CR, complete response; SCT, stemcell transplantation;Angiocomb, radiotherapy
and topotecan followed by metronomic thalidomide, etoposide, and celecoxib10; HDCT, high-dose chemotherapy; TMZ, temozolomide; BVA, bevacizumab;
8-in-1, vincristine, hydroxyurea, procarbazine, CCNU, cisplatin, cytarabine, high-dosemethylprednisolone, cyclophosphamide.
aOnly treatment given by pediatric neurooncologists.
bThe patient had to discontinue thalidomide after approximately 1 week due to adverse events.

not assessable for MVD. Thus, MVD was evaluable in 23 samples. The

MVDs of biopsy and autopsy samples were not comparable due to

technical issues.

2.5 Statistical considerations

The statistical analysis was conducted using IBM SPSS Statistics, Ver-

sion 22 (SPSS, Chicago, IL, USA) and utilizing Kaplan–Meier survival

analysis and Mann–Whitney U test. Overall survival (OS) was defined

as the period from diagnosis to death or the end of follow-up. In

analyzing the relationship between MVD and survival, patients were

dichotomized into two groups according to the medianMVD. P-values

<0.05were considered significant.

3 RESULTS

3.1 Patient demographics

This study comprised 26 tumor samples, including 18 biopsies

and 8 autopsy specimens, obtained from 23 patients (Table 2 and

Supplementary Table S3). Three patients had both biopsies and

autopsy samples available. Of the 18 biopsies, 8 were stereotactic and

10 were obtained during a craniotomy and a microneurosurgical open

biopsy because of the surgeon’s preference. Altogether, three patients

had postoperative complications (17%), and all of these occurred after

open biopsies. One patient had amild but permanent facial nerve palsy

and diplopia. One patient presented with transient ataxia, and one

patient had transient worsening of a previous hemiparesis.

The median age at diagnosis was 8.3 years (range 2.7–15.3 years),

and 10 patients were females (44%). At the end of follow-up, 21 of 23

patients (91%) had died. The median OS was 12.0 months (range 3.6–

90.1 months), and 12 and 24 months’ survival rates were 52.2% and

8.7%, respectively (Supplementary Table S4). Two patients were alive

at the end of follow-up, 4.0 years and 7.5 years after diagnosis, respec-

tively (Figs. 1A and 1B).

3.2 Alterations in H3K27

The most frequently discovered mutation in our study was H3 K27M,

found in 20 of 23 patients (87%) when including both NGS and IHC
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F IGURE 1 MRI from long-term survivors: (A) patient 9, OS 4.0 years
and (B) patient 5, OS 7.5 years at the end of follow-up

results (Table 3). Samples of 20 patients were analyzed byNGS and the

H3.3 K27Mmutationwas found in 18 patients (90%), whereas noH3.1

K27Mmutation was encountered. IHC revealed H3 K27M expression

in 18 of 21 patients (86%) (Fig. 2A) with high staining intensity in 13

patients (72%) and low intensity infivepatients (28%). Fourof five sam-

pleswith lowK27Mstaining intensitywere autopsy specimens.Wedid

not find a clear correlation between H3 K27 status and survival in our

small cohort.

3.3 Alterations in TP53

TP53 was the second most commonly altered gene in our cohort and

was found in 10 patients (50%) by NGS. Using IHC, 14 of 21 patients

(67%) expressed p53 in >10% of the tumor cells. One of our patients

did not express p53 by IHC although NGS analysis discovered a TP53

mutation (Fig. 2B), whereas four samples showed strong IHC positivity

for p53, but lacked TP53mutations in the NGS analysis (Fig. 2C).

3.4 Othermolecular alterations

EGFRwasmutated in one patient (5%) byNGS. This patient lacked pro-

tein expression by IHC. Using IHC, EGFR expression was evident in six

patients (29%). None of these patients had EGFRmutations in NGS.

Three patients (15%) had MET mutations, two patients (10%) had

mutations in PDGFRA, and one patient (5%) a PDGFRA amplifica-

tion. Additionally, two patients (10%) had mutations in SMARCA4, one

patient (5%) had a mutation in PPAR𝛾 , and one patient (5%) a mutation

in PTEN. VEGFRwasmutated and amplified in one patient (5%) each.

One of the long-term survivors with anOS of 7.5 years at the end of

follow-up harbored an IDH1mutation (R132S) in the diagnostic biopsy.

Only NGS discovered the mutation, since the antibody utilized in IHC

only recognizes themost common IDH1 alteration, which is R132H.

In addition, IHC revealed cMYC expression in 15 of 21 (71%)

patients (Fig. 2D). All positive specimens were biopsies. None of the

autopsy samples expressed cMYC by IHC. We had three matched,

biopsy–autopsy pairs from the same patients, and all biopsies were

positive for cMYC, while the autopsy pairs were negative. We did not

findmutations or amplifications in cMYC byNGS.

F IGURE 2 Immunohistochemical stainings (200× magnification),
scale bar 100 𝜇m: (A) positive H3-K27M, (B) negative p53 despite of
evident TP53 mutation by NGS, (C) positive p53 staining despite lack
of TP53 mutation by NGS; (D) cMYC with strong expression (>50% of
the cells stained)

3.5 Microvessel density

MVD showed a wide variation in both biopsies and autopsy samples.

For biopsies, the difference between sampleswith the highest and low-

est MVD was a six-folded (range 30–179/mm2, median 64/mm2), and

for autopsy specimens, a three-folded (range 60–186/mm2, median

120/mm2) (Supplementary Table S5). None of these alterations corre-

lated with survival.

4 DISCUSSION

DIPG is a well-known clinical diagnosis. In the WHO 2007 brain

tumor classification,12 DIPGs were categorized based on their histol-

ogy as diffuse astrocytomas. Recent molecular studies have revealed

that a significant share of DIPGs bear a K27M mutation in histone

3.3,4,6,7,13–16 Together with other diffuse midline H3 K27M-mutated

gliomas, these tumors now constitute a new entity in the revisedWHO

2016 brain tumor classification known as diffuse midline glioma, H3

K27M-mutant.8 These tumors are associatedwith themost aggressive

disease and themost dismal prognosis.2

In earlier DIPG studies, the K27M mutation has resided in his-

tone 3.3 in 48–71% of the cases,2–7,17 whereas H3.1–K27M muta-

tions occur at a frequency of 11–25%.2–5,17 In our cohort, 87% of the

patients diagnosed with a DIPG based on clinical findings also har-

bored a H3 K27 mutation. Thus, in our cohort, brainstem tumors with

symptomsanda radiological presentation characteristic forDIPGmost

often belonged to a molecular entity of H3 K27-mutated diffuse mid-

line gliomas, showing that careful clinical DIPG diagnosis usually cor-

relates with a molecular diagnosis of aggressive H3 K27M-mutated

gliomas.

Our study cohort included three patients (13%) with wild-type H3

K27. The OS in this group did not statistically differ significantly from
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TABLE 3 Results of exon sequencing and immunohistochemistry

K27M TP53 cMYC EGFR

ID OS (months) Sample NGS IHC NGS IHC IHC IHC Othermutations

1 8.8 Biopsy H3.3 + Mutation + 1 0 0

2 15.4 Biopsy H3.3 + Mutation - 2 0 PDGFRA

3 10.3 Biopsy H3.3 + WT - 0 0 ACVR1, MET

4 12.0 Biopsy H3.3 + Mutation + 1 0 SMARCA4

5 90.1 Biopsy WT - Mutation + 1 0 IDH1a

6 21.7 Biopsy H3.3 + WT + 1 0 0

7 12.5 Biopsy NA + NA + 3 0 NA

8 5.4 Biopsy H3.3 + Mutation + 3 0 0

92 47.8 Biopsy WT - WT - 1 0 0

10 7.4 Biopsy NA + NA + 3 1 NA

11 9.3 Biopsy H3.3 + WT - 1 2 0

12 13.6 Biopsy H3.3 + WT + 3 0 0

13 11.1 Biopsy H3.3 + Mutation + 1 0 PTEN

14 3.8 Biopsy H3.3 NA WT NA NA NA 0

15 15.1 Biopsy H3.3 NA Mutation NA NA NA MET

16 7.2 Biopsy NA NA NA + 2 0 NA

Autopsy H3.3 + Mutation + 0 1 0

17 13.4 Biopsy NA + NA - 3 1 NA

Autopsy H3.3 + WT - 0 1 0

18 5.2 Biopsy NA + NA + 1 0 NA

Autopsy H3.3 + WT + 0 1 PDGFRA, PPAR𝛾3,MET3

19 3.6 Autopsy H3.3 + Mutation + 0 0 0

20 12.4 Autopsy H3.3 + Mutation + 0 1 0

21 13.1 Autopsy H3.3 + WT + 0 0 EGFR

22 17.2 Autopsy H3.3 + WT - 0 0 VEGFR, SMARCA4

23 3.8 Autopsy NA - NA - 0 0 NA

All tumors were clinically and radiologically diagnosed as DIPGs at baseline. Patient 14 had also amplifications of PDGFRA and VEGFR (not included in
the table). ID, patient identification number; OS, overall survival; NGS, next-generation sequencing; IHC, immunohistochemistry; WT, wild type; NA, not
assessable.
aImmunohistochemistry of IDH1was negative.
2The proportion of tumor cells was<10%, whichmay influence the sequencing results.
3Strong indication of mutations.

those patients who were positive for H3 K27M. However, this finding

may be due to the small cohort size, which prevents a reliable analysis.

Interestingly, one of the patients lacking the H3 K27 mutation expe-

rienced a rapid disease course and survived for only 3.8 months. This

finding was unexpected, as tumors harboring H3 K27M, and not the

wild-type H3 K27, have been associated with the worst prognosis.2

The reason for this fast tumor progression is equivocal. The fact that

no radiation therapywas given to this patientmay also have influenced

the disease course. Nonetheless, there may be other, yet unknown,

genetic factors that affect the outcomes of patients without H3 K27

mutations.

Theotherpatientswhowerenegative forH3K27Mmutationswere

two long-termsurvivorswhowere alive at the endof follow-up, 4.0 and

7.5 years from diagnosis, respectively. Both were initially diagnosed

to have DIPG at their baseline according to radiological and histolog-

ical findings. However, current analyses discovered features that war-

ranted a reevaluation of these diagnoses.

In the first patient, the initial radiological diagnosis was DIPG.

The patient was included in this study according to the initial diag-

nosis. However, when reevaluated for this study, the MRI images of

this patient showed distinctive features compared to other DIPGs

(Supplementary Figs. S1–S3): the lesion has diffuse boundary to the

normal tissue, but it is smaller and the mass effect is slighter than in

other patients. Histology of the biopsied lesion was consistent with

grade II astrocytoma infiltration zone. Unfortunately, NGS was impos-

sible to conduct due to the low tumor cell content of the tumor sample

(<10%), and we were thus not able to confirm the molecular diagno-

sis of this particular tumor. This patient received treatment according

to the antiangiogenic Angiocomb protocol.10 After radiotherapy with

concomitant topotecan infusions, the tumor disappeared radiologi-

cally, and follow-up MRIs confirmed a sustained complete response.10
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When taking into account the radiological reassessment and the lack

of molecular findings, it now seems unlikely that this patient had a real

DIPG. Consequently, combined radiological, histological, and molecu-

lar diagnosis is essential to confirm the clinical diagnosis and would

have been of highest importance in this case. This is the main message

of our study.

The other long-term survivor had a typical MRI appearance of

the tumor at diagnosis (Supplementary Figs. S4–S9). However, cur-

rent molecular findings in the biopsy indicate that this tumor was

not a classic aggressive DIPG. An IDH1 mutation was discovered by

NGS in the biopsy. IHC was unable to detect this alteration, as the

antibody only recognizes the most common mutation, R132H.18 The

R132S mutation found in our patient has prevalence of only 1.4% in

all IDH1/2-mutated gliomas.18 In the revisedWHO2016 tumor classi-

fication, the IDH mutation status divides diffuse gliomas into further

subgroups.8 Mutations in IDH1 or IDH2 occur in approximately 10%

of glioblastomas,8 predominately among adolescents and in cortical

tumors.19 IDH1 mutations confer a favorable prognostic marker that

is associated with extended survival in supratentorial gliomas,18,20 but

these have thus far been regarded as being absent in pediatric brain-

stem astrocytomas.2,4,6,7,21,22 The IDH1 mutation found in our sec-

ond long-term survivor now warrants a reevaluation of this paradigm.

Furthermore, this finding also indicates that a molecular diagnosis of

a biopsy is needed to confirm the real nature of a brainstem tumor

despite its typical clinical and radiological presentation.

By NGS, TP53mutations were found in 10 patients (50%), a preva-

lence similar to those reported in most earlier studies on DIPGs.6,7,23

There was some discrepancy between the NGS and the IHC results.

One patient was negative for p53 by IHC, although NGS did discover

a TP53mutation. This result is not unforeseen, sinceNGS is superior to

IHC in both sensitivity and specificity, and truncating TP53 mutations

arenot recognizedby IHC.9 Four samples showedstrong IHCpositivity

for p53, but lacked TP53mutations in an NGS analysis. Pollack et al.24

proposed that TP53 overexpression without gene mutation can occur

as a stress-related response to anoxia andDNAdamage.Moreover, we

cannot exclude the fact that the old age of some samples may have

yielded false-negative TP53mutation status. The rather high degree of

inconsistency in the NGS and IHC results was evident despite the uti-

lizationof a10%cutoff for positive andnegative IHCresults, a criterion

that is considered superior to previous classifications.9 Thus, although

IHC is the standardmethod for screening TP53mutations inmany lab-

oratories, a parallel genetic approachwould be preferable.

The tyrosine kinase receptors PDGFRA, EGFR, and VEGFR as well as

the mTOR pathway have been suggested as potential targets for novel

treatments of brainstemgliomas. Thepresenceof these targets in diag-

nostic biopsies would, therefore, be of great interest. In previous stud-

ies, PDGFRA amplification/gain or mutations have been encountered

quite frequently in DIPG.2,6,14,23,25–28 In our cohort, two patients had

mutations in PDGFRA, and one patient a PDGFRA amplification. EGFR

amplifications and mutations, common in adult glioblastomas,29 are

rare in DIPGs.2,26,28 Interestingly, we found an EGFR mutation in one

of our DIPG patients who also had a H3 K27M mutation. This tumor

lacked EGFR expression by IHC, which may reflect the incapability of

the antibody to recognize the mutated form of EGFR. EGFR expression

was found in six patients, but none of these harbored EGFRmutations

or amplifications.

Consistentwith our study, other studies have also reported a lack of

association between EGFR gene alterations and protein expression.2,28

Regarding themTOR pathway,MET30 and PTEN7 mutations have been

reported to occur only sporadically in DIPGs. Alterations in VEGFR are

rare. However, in our cohort, VEGFRwas mutated and amplified in one

patient each. In all, our results are largely consistent with earlier stud-

ies, but the proportion of rare EGFR andVEGFR alterationswere higher

than previously reported.

Two patients harbored SMARCA4 mutations. SMARCA4 encodes a

component of the chromatin remodeling complex SWI/SNF, andmuta-

tions in this gene distinguish a minority of atypical teratoid/rhabdoid

tumors (AT/RTs).31 In addition, one patient had a mutation in PPAR𝛾 ,

a multifunctional nuclear receptor involved in insulin and glucose

metabolism, inflammatory processes, and immune responses.32 There

is preliminary evidence of its role in adult gliomagenesis, and PPAR𝛾

protein expression levels have been reported to correlate inversely

with the histological grade.32 Further, PPAR𝛾 agonists have demon-

strated antitumor and antiangiogenic effects in preclinical studies.32

The functional impact of SMARCA4 and PPAR𝛾 mutations in diffuse

brainstem gliomas, however, remains unclear.

Amplification of the oncogene cMYC is associated with an inferior

prognosis in other tumors, such as medulloblastomas.33 The corre-

lation of cMYC amplification to prognosis in DIPG is yet not estab-

lished. In our study, none of the tumors had cMYC amplification, but

protein expression was evident in 15 patients (71%), excluding the

long-term survivors. It is known that cMYC can be overexpressed also

without gene amplification, such as through translocations.34–36 Inter-

estingly, cMYC overexpression was found exclusively in the biopsy

samples. This finding also applies to the threematchedbiopsy–autopsy

pairs in this study; biopsies were positive for cMYC expression while

autopsy samples from the same patients were negative. Technical

issues related to tissue preservation at autopsy may have interfered

with the results, but the high degree of cMYC positivity in the biop-

sies and the lack of expression in the autopsy samplesmay also indicate

that some factor—potentially radiotherapy, whichmost of the patients

received—could have eradicated the cMYC-positive tumor cells while

leaving treatment-resistant subclones remaining. cMYC expression did

not correlate with survival in our cohort, but it would be interesting to

validate the significance in a larger patient group.

Angiogenesis-related pathways have been proposed to be crucial in

a subset of DIPGs.3,37 How differences in angiogenesis signaling are

reflected on the histological level is still unknown, causing us to study

the MVD in our tumor samples. Due to the scarce size of the biopsies,

we had to utilize different methods to evaluate the MVD in the biop-

sies and autopsy samples. The MVD showed a wide variation in both

biopsies and autopsy samples, but it did not correlate with survival or

with the utilization of metronomic therapy.

There are certain caveats associated with our study. Substantial

tumor heterogeneity for certain genetic alterations26,30 increases the

risk of sampling bias. Due to the small number of samples, we were

unable to conduct more genetic analyses or find any statistically sig-

nificant correlations to survival.



PORKHOLM ET AL. 7 of 8

In conclusion, molecular analysis of brainstem gliomas previously

diagnosed asDIPGs revealedH3K27Mmutations inmost of the cases.

DIPGs with a typical MRI appearance most often corresponded to dif-

fuse midline glioma, H3 K27-mutant. However, three patients (13%)

did not fit into this category. One of these patients was a long-term

survivor who harbored an IDH1 mutation, a novel finding in pediatric

brainstem gliomas, which implies that this tumor was not a classic

DIPG. Thus, clinical and radiological diagnosis is not always sufficient

to categorize brainstem tumors. Nowadays more and more subjects

undergo abiopsy, and the combinedhistological andmolecular findings

should be taken into consideration whenmaking the final diagnosis.
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