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Abstract 
 
In this thesis, a conditional BVARX forecasting model for short and medium term economic forecasting is developed. 
The model is especially designed for small-open economies and its performance on forecasting several Finnish 
economic variables is assessed. Particular attention is directed to the hyperparameter choice of the model. A novel 
algorithm for hyperparameter choice is proposed and it is shown to outperform the marginal likelihood based 
approach often encountered in the literature. Other prominent features of the model include conditioning on predictive 
densities and exogeneity of the global economic variables. The model is shown to outperform univariate benchmark 
models in terms of forecasting accuracy for forecasting horizons up to eight quarters ahead. 
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Tiivistelmä 
 
Tässä tutkielmassa kehitetään BVARX-ennustemalli lyhyen ja keskipitkän aikavälin taloudelliseen ennustamiseen. 
Malli on erityisesti kehitetty pienten avotalouksien erityispiirteet huomioon ottaen ja tutkielmassa testataan mallin 
kykyä ennustaa useita suomalaisia taloudellisia muuttujia. Erityistä huomiota tutkielmassa kiinnitetään mallin 
hyperparametrien valintaan. Tutkielmassa esitellään uusi menetelmä hyperparametrien valitsemiseksi ja uuden 
menetelmän näytetään tuottavan tarkempia ennusteita kuin kirjallisuudessa usein käytetty marginal likelihood 
funktioon perustuva lähestymistapa. Muita mallin erityispiirteitä ovat mahdollisuus ehdollistaa ennusteita mallin 
muuttujien tulevilla arvoilla tai tiheyksillä ja globaalien taloudellisten muuttujien eksogeenisuus. Tutkielmassa 
kehitetyn ennustemallin näytetään tuottavan tarkempia ennusteita kuin vertailukohtana käytettävät yhden muuttujan 
menetelmät kaikilla tarkastelluilla ennustehorisonteilla yhdestä kahdeksaan neljännestä tulevaisuuteen. 
 

Avainsanat 
 ennustaminen, ehdollinen ennustaminen, bayesiläinen VAR, marginal likelihood, hyperparametrien valinta 
 



Contents

1 Introduction 1

2 Literature review 4

2.1 Economic forecasting . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Conditional forecasting . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Bayesian vector autoregressive models . . . . . . . . . . . . . . 10

2.3.1 Hyperparameter choice . . . . . . . . . . . . . . . . . . 13

3 Conditional BVARX-model 15

3.1 BVAR-model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Exogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Conditionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Forecasting algorithm . . . . . . . . . . . . . . . . . . . . . . . 24

4 Data 28

5 Hyperparameter choice 30

5.1 Marginal likelihood based approach . . . . . . . . . . . . . . . 31

5.2 New algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Empirical assessment . . . . . . . . . . . . . . . . . . . . . . . 39

6 Forecasting accuracy 50

6.1 Conditional forecasts . . . . . . . . . . . . . . . . . . . . . . . 55

7 Discussion 57

8 Conclusions 61

References 63

Appendix A Data 68

Appendix B Marginal likelihood function 69



1 Introduction

It is common for central banks and other economic institutes to regularly

publish medium term forecasts concerning the state of the economy within

the next few years. These forecasts are usually based on both subjective con-

siderations and econometric models. Nowadays arguably the most prominent

tools for econometric forecasting are DSGE- and BVAR-models and they

both have their strengths and weaknesses. With the abbreviation DSGE is

referred to dynamic stochastic general equilibrium models, which consist of

multiple behavioral equations, one per endogenous variable. BVAR stands

for Bayesian vector autoregressive model and BVARX simply refers to a

BVAR-model with suitable lag restrictions on the exogenous variables of the

model. What motivates the use of a BVARX-model is that when modeling

small open economies, like Finland, it is very convenient to treat global eco-

nomic variables as exogenous, as it is very plausible to assume the small open

economy not to have any significant effect on the global economic variables.

However, credible modelling of the whole global economy is not often

feasible and thus a model with a few global aggregate variables, measuring

factors such as the global economic activity and interest rates, provides little

to no informational value on future paths of those variables, expect for their

own lags of course. This is undesirable, since knowledge of the future values

on exogenous global variables could be used to obtain more accurate forecasts

on the endogenous variables as well.

Usually forecasts on global economic variables can be obtained by for

example aggregating country specific projections provided by national sta-

tistical agencies and central banks. These projections usually contain more

accurate information on future paths of the global variables, as it is probable

that they are based on more extensive amounts of information than what is

available to the forecaster. Therefore, conditioning forecasts of endogenous

variables on projections of exogenous global variables can be expected to yield

improvements in forecasting accuracy of the model. For example, Bloor &

Matheson (2011) successfully condition their forecasts of the GDP, inflation

and interest rates in New Zealand on point estimates of global variables.

However, by focusing on variables such as import and export flows which are

1



unarguably highly dependent on the global economy, even greater improve-

ments in terms of forecasting accuracy of the model could be expected. On

top of that, instead of using only point estimates for conditioning, using full

predictive densities would yield forecasts with full predictive densities and

reliable predictive intervals.

The conditioning of forecasts with future values or predictive densities

of other variables requires no structural assumptions regarding the relation-

ship of the variables. However, it must be borne in mind that conditioning

on future values requires very different interpretation from conditioning on

structural shocks. Forecast conditioned on future values does not have the

interpretation of structural analysis useful for policy evaluation. Condition-

ing on future values merely provides the most likely forecast on all of the

other variables, given the information on the other. No causal conclusions

based on these conditional forecasts can be drawn.

The conditioning procedure could also be taken a step further and pre-

dictive densities of other endogenous variables could be used in addition to

exogenous ones. For example, in some cases forecaster might have a reason

to believe that another model would provide more accurate predictions of

some other endogenous variable. As an example, medium term projections

of inflation figures produced by DSGE-models are often found to yield su-

perior performance to the ones produced by VAR-models (see e.g. Smets &

Wouters 2007, Burlon et al. 2015, Wang 2009). In this case, the forecasts of

the BVARX-model could very well be conditioned on the inflation projections

of the DSGE-model.

The model developed in this thesis allows for conditioning on full predic-

tive densities as discussed above, and the possibilities and technical details of

conditioning will be thoroughly discussed. However, in the empirical section

of this thesis, the conditioning on future values of exogenous variables was

not found to yield significant improvements to the forecasting accuracy of

the model and the possible limitations of the approach are also discussed.

In addition to the conditioning discussed above, another topic thoroughly

assessed in this thesis is how the hyperparameter choice should be carried out

in the context of a Bayesian vector autoregressive model. Hyperparameter

choice is arguably the most important single feature affecting the forecast-
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ing accuracy of a Bayesian vector autoregressive model and the choice has

been approached in the literature in various different ways. Giannone et al.

(2015) argue in favor of an approach based on maximization of the marginal

likelihood function of the model. In Giannone et al. (2015) they find their

proposed approach outperforming the other approaches for hyperparameter

choice often encountered in the literature.

However, in this thesis, several deficiencies of the marginal likelihood

based methods for hyperparameter choice (in short: ML approach) are pre-

sented. Especially, with the very limited nature of macroeconomic time series

data the ML approach seems to yield hyperparameter values that cause the

model to over-fit the data. With a Monte Carlo simulation study, it can be

illustrated how on average the prior suggested by the ML approach tends to

become tighter as more data becomes available, and hence the correct hyper-

parameter values are only obtained with a large amount data. This feature

could be avoided with a hyperprior distribution pulling the hyperparame-

ter estimates themselves towards a cautious zero when the data is scarce.

However, Giannone et al. (2015) completely disregard this feature and cen-

ter their hyperprior distribution around the rule-of-thumb-values originally

proposed by Sims & Zha (1998).

A suitable hyperprior distribution discussed could however be difficult

to find and therefore an alternative approach is proposed. A novel algo-

rithm presented in this thesis exploits the fact that the mean of the pre-

dictive distribution of any typical Bayesian vector autoregressive model has

a closed form representation. Therefore, by treating the mean of the pre-

dictive distribution as the point-estimate of the forecast and by setting up

a pseudo out-of-sample forecasting exercise, it becomes feasible to use nu-

merical optimization methods to search for the vector of hyperaparameters

that minimizes any function of all the past out-of-sample forecasting errors.

The novel algorithm described is found to provide more accurate forecasts

with the model developed, than either the ML approach or the rule-of-thumb

values of Sims & Zha (1998).

Main contribution of this thesis is to develop a non-structural, conditional,

flexible and efficient forecasting model for medium term forecasting of small-

open economies. Many of the modeling choices discussed and presented in
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this thesis are easily generalizable for different Bayesian vector autoregressive

models and work as a solution for several issues of practical importance.

These issues include (i) the incorporation of data of different frequencies, (ii)

the imposition of exogeneity on global economic variables, (iii) dealing with

the so-called ragged edge of the data, (iv) conditioning of the forecasts on

predictive densities and (v) the proper hyperparameter choice.

The next section provides a comprehensive literature review, where the

economic forecasting with Bayesian vector autoregressive models is discussed,

with particular attention on conditional forecasting and hyperparameter choice.

The model and all its technical details, excluding the hyperparameter related

ones, are presented in the third section. The data used for the study is elab-

orated in the fourth section and in the fifth section the issues related to

hyperparameter choice are discussed in depth. The novel algorithm for hy-

perparameter choice is also presented in the fifth section and an empirical

assessment is performed to compare the performance of differently chosen

sets of hyperparameters with models of different size. In the sixth section,

the forecasting accuracy of the model is assessed with respect to gross do-

mestic product, exports of goods and services, imports of goods and services,

inflation and unemployment. The conditioning of the forecasts on future

values of exogenous variables is also studied and discussed in the sixth sec-

tion. In the seventh section the issues addressed and the results obtained are

discussed and finally the section eight concludes.

2 Literature review

2.1 Economic forecasting

The medium term economic forecasts produced by central banks and re-

search institutions are often based on structural models. For example in

Finland, the Bank of Finland bases it’s medium term projections on the

large DSGE-model documented in Kilponen et al. (2016) and the Research

Institute of the Finnish economy (Etla) bases it’s forecasts to a so-called

SEM-model documented in Lehmus (2018). Also, the Finnish ministry of fi-
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nance uses a DSGE-model as a basis of it’s forecasts.1 Usually the published

projections are not however based only on these structural models, but are

ensembles of structural models, statistical models and subjective consider-

ations. Especially BVAR-models designed for nowcasting purposes can be

used as complementary tools in addition to the structural models (see e.g.

Itkonen & Juvonen 2017, Bok et al. 2017).

The popularity of DSGE-models is not a surprise given their interpretabil-

ity and reasonable forecasting accuracy. However, large structural models

often incorporate a great amount of strong assumptions and restrictions and

can transpire to be an unfeasible option for many forecasters due to their

complex nature. Not surprisingly, the developments in more easily imple-

mented BVAR-models (e.g. Banbura et al. 2010, Giannone et al. 2015, Koop

2013) have stemmed a growing interest in statistical methods capable of

comparable performance to DSGE-models in terms of forecasting accuracy.

The grown interest in BVAR-modeling accelerated after Banbura et al.

(2010) showed that BVAR-models are capable of handling a very large num-

ber of variables (131 variables in the paper in question) and that the large

BVAR-models could be superior to other statistical methods in terms of fore-

casting accuracy, at least in forecasting of inflation and unemployment. Koop

(2013) compared different prior distributions in the context of BVAR-models

with as much as 161 variables. The results further supported the superiority

of large BVAR-models compared to other state-of-the-art statistical forecast-

ing methods, such as dynamic factor models.

The prevailing view even before the latest developments in BVAR-modeling

was that the statistical models often produce more accurate forecasts in short

horizons while structural models should be used in longer horizons (see e.g.

Wang 2009). The above mentioned studies have however shown that cor-

rectly specified BVAR-models are capable of producing forecasts compara-

ble to those of DSGE-models in terms of accuracy for horizons relevant to

medium-term forecasting as well. On top of comparable or even superior

forecasting accuracy, the BVAR-models have other advantages over popular

DSGE-models and subjective considerations as well.

As already mentioned BVAR-models are easier to implement and they do

1https://vm.fi/en/economic-forecasts
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not require as strong assumptions or restrictions as DSGE-models or other

structural models. The problem of forecasts based on subjective considera-

tions is that in general reliable confidence levels of the forecasts can not be

produced. Also, the performance of these forecasts can not be assessed via

backtesting with pseudo out-of-sample forecasting exercises. Also, at least in

some cases DSGE-models have even been reported to overestimate the uncer-

tainty around the point estimates (Wolters 2015). The results of structural

models are however easier to interpret and their usefulness for policy analy-

sis is unarguable. From a pure forecasting perspective the BVAR-models do

however make a strong case for themselves.

No matter which modeling approach is used for forecasting purposes, com-

mon issues arise due to global economic fluctuations being an evident factor

affecting the development of economic variables in any country involved in

the interconnected global markets.

First, rigorous modeling of the global economy is rarely a feasible option

to the forecaster. To avoid this issue, exogenous global variables are often

added to the model. An example of a more ambiguous approach closely con-

nected to the BVAR-models is the B-GVAR approach (see e.g. Cuaresma

et al. 2016, Dovern et al. 2016). Especially with structural models the is-

sue is sometimes addressed by combining several country specific forecasting

models to create a massive model for the global economy. For example, the

structural forecasting and policy evaluation model (Lehmus 2018) used in

the Research Institute of the Finnish Economy is used to update the Finnish

module in the NiGEM 2 global macroeconomic model. Evidently, a massive

structural econometric model consisting of tens or even hundreds of national

modules can not always be considered a feasible option. In the context of

the BVAR-models, the issue can be addressed by conditioning the forecasts

on the most credible projections provided by any institutions concerning the

global economy. This is the approach studied in this thesis and earlier applied

in Bloor & Matheson (2011).

Second issue concerns the exogeneity of the global economic variables

and is especially important when modeling small open-economies, such as

Finland. It is easily taken into account, but in the context of VAR- or

2For NiGEM global econometric macro model, see: https://nimodel.niesr.ac.uk/
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BVAR-modeling often ignored for convenience. The issue of exogeneity in

VAR-modeling, and the ignorance to it, was first brought up by Zha (1999).

The estimation procedure proposed by Zha (1999) concerned strong recursive

blocks, which can be seen as a generalization of the so-called BVARX ap-

proach used in this thesis and in Bloor & Matheson (2011). The importance

of proper incorporation of exogeneity for policy analysis with BVAR-models

was illustrated by Zha (1999). It however remains unclear, does the proper

incorporation of exogeneity lead to significant improvements in forecasting

accuracy of the model. The promising results from the empirical assessment

in this thesis suggest so, although this specific issue is not explicitly studied

in this thesis.

Despite the advancements in statistical modeling there is not, and ar-

guably will never be, a single model that would outperform other models

in every metric imaginable. It has been shown repeatedly that model com-

binations are likely to outperform any single model (see e.g. Fawcett et al.

2014, Amisano & Geweke 2013, Koop & Koroblis 2012, Timmermann 2006,

Yu et al. 2005, Zhang 2003, Bates & Granger 1969). Combination of models

is often referred to as ensemble modeling. The conditioning of forecasts with

(sometimes combined) projections from other models, can as well be viewed

as an unorthodox way of ensemble modeling. Essentially, the ensemble mod-

eling in any form allows for incorporating more information more efficiently

into the forecasts.

2.2 Conditional forecasting

Here conditional forecast is defined to be a forecast that is conditioned on in-

formation from outside the data used for estimation of the forecasting model,

excluding prior beliefs. Since statistical models often require the data to be

balanced (i.e. to not have any missing observations), conditional forecasts

are often forecasts conditioned on the observations from the periods with

observations of some other variables missing. Especially in nowcasting ap-

plications this is essential, since it allows for exploiting all the latest data

available. The same idea can be generalized to a case where the observations

to be conditioned on are yet to happen, hence there is uncertainty revolv-
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ing the information to be conditioned on. Often the term scenario analysis

is used somewhat substitutively with conditional forecasting, but with an

emphasis on different scenarios to be conditioned on.

When conditioning on the values of the upcoming observations, a clear

distinction between the forecasts conditioned on structural shocks and on

reduced form shocks must be made. This is an issue easily forgotten, since

in both cases a forecast conditioned on the deceptively alike information

can be produced. The interpretation between the two is however completely

different.

First, to condition on structural shocks the shocks must be identified,

hence a model of at least some structure is required. A bulk of macro econo-

metrics focuses on the identification of economic shocks to produce credible

impulse response functions (see e.g. Kilian & Lütkepohl 2017). An impulse

response function tells what is the effect of an exogenous shock on other

variables. Conditional forecasts based on restrictions on structural shocks

can thus for example be interpreted as what would happen to other variables

if we were to force one variable to follow a certain path? This kind of sce-

nario analysis is representative of policy analysis, where causal relations and

effects of government policies are of interest. This interpretation must how-

ever not be mistaken for the correct one, when dealing with the conditioning

of reduced form shocks studied in this thesis.

Conditioning on reduced form shocks requires no identification of struc-

tural shocks. The interpretation is however different, and arguably better

suited for forecasting as one does not have to impose any assumptions re-

garding the causes of the shocks to be implicitly conditioned on. As an

example, if one were to condition the forecast on very positive believes re-

garding the future growth rate of the gross domestic product (GDP), the

forecast produced would not represent the effects of an economic boom to

the economy, but rather illustrate the most likely values of other variables

given the economic boom were to happen. This makes conditional forecasting

a particularly effective model combination tool, at least in theory, since by

conditioning on one variable, some information on all of the other variables

from the other model can be incorporated to the forecast.

The one commonly used tool in economics for conditional forecasting
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is the Kalman filter originally proposed in Kalman (1960) and the various

algorithms based on it (see e.g. Banbura et al. 2015, Schorfheide & Song

2015, McCracken et al. 2015). The Kalman filter has a long tradition in

economics and it also has many practical properties beyond its applicability

to forecasting (see e.g. Athans 1974). In many nowcasting applications (e.g.

Schorfheide & Song 2015, McCracken et al. 2015) the Kalman filtering has

been used to exploit the information on observations from the latest periods,

where the data is still incomplete (i.e. not balanced).

However, as noted in Banbura et al. (2015), the conditional forecasting in

more general form, has been left with a very limited amount of attention af-

ter the development of the most commonly used method in Waggoner & Zha

(1999), apart from a few exceptions (e.g. Bloor & Matheson 2011). Banbura

et al. (2015) argue that this is due to unfeasibly computationally demand-

ing nature of the method. The successful implementation of the method in

Bloor & Matheson (2011) to a BVAR-model with as much as 41 endogenous

variables however suggests otherwise.

The conditioning method discussed above was originally proposed in its

rawest form by Doan et al. (1984). The approach had however its drawbacks

since it did not minimize the mean squared errors of the forecasts conditional

on the restrictions and the parameter estimates were not consistent with the

path to be conditioned on (see Karlsson 2012). These issues were addressed

in Waggoner & Zha (1999) as they proposed a Gibbs sampler to draw the

reduced form errors that the conditional forecasts would be constructed of.

Still, the greatest deficiency of the method remained. Incorporation of un-

certainty in the restrictions to be conditioned on was not possible, leading

to too narrow and unreliable predictive densities. This can be argued to be

the main reason for the lack of attention regarding conditional forecasting,

as opposed to what was implied in Banbura et al. (2015).

The issue of unreliably narrow predictive densities was addressed in Robert-

son et al. (2005) by a computationally very demanding method including ex-

ponential tilting and moment conditions. The same method was also applied

in Cogley et al. (2005) and as an example of later developments in con-

ditional forecasting, Jarocinski (2010) proposed minor modifications to the

algorithm of Waggoner & Zha (1999) for improved computational efficiency.
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In this thesis, the revision of the method in Waggoner & Zha (1999),

proposed by Andersson et al. (2010), is used. The algorithm proposed in

Andersson et al. (2010) is otherwise analogous to the original one in Wag-

goner & Zha (1999), but it allows for conditioning on predictive densities of

future values rather than only point estimates, thus providing full reliable

predictive densities itself. The original method can be acquired as a special

case of the revised method by setting the variance or standard deviation,

of the predictive density to be conditioned on, to zero. This possibility for

uncertainty in the restrictions comes with minimal computational costs, as

opposed to to the method of exponential tilting in Robertson et al. (2005).

The Kalman filter based method in Banbura et al. (2015) is unarguably

computationally more efficient than the method of Andersson et al. (2010).

However, the latter mentioned method has many desirable properties. Most

importantly, although imposed in this thesis, in general the method does not

require normality in the predictive densities to be conditioned on, as Kalman

filter based algorithms do. On top of that, the methodology of Andersson

et al. (2010) allows for more diverse linear restrictions and is, arguably, more

intuitive and easier to implement.

Due to these desirable properties, the algorithm from Andersson et al.

(2010) is used to produce the conditional forecasts in this thesis. Also, in

practice the computational efficiency of the method becomes an issue only

in the most unconventional applications such as the one in the appendix of

Banbura et al. (2015) containing 24 variables to be conditioned on and a

forecasting horizon of 60 periods. In author’s opinion, in conditional eco-

nomic forecasting, the method of Andersson et al. (2010) should be studied

further and applied when applicable, in addition to the algorithm proposed

by Banbura et al. (2015).

2.3 Bayesian vector autoregressive models

Until the 1980s, economic time series analysis, and hence forecasting, was

performed using a variety of techniques such as structural multiple equa-

tion models and statistical univariate time series models. These techniques

appeared however to be insufficient for economic analysis as none of them
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seemed to be able to produce trustworthy results in the economic turbulence

of the 1970s. (see e.g. Stock & Watson 2001). In a seminal paper, Sims

(1980) criticized the ”incredible” identifying assumptions of the structural

models of the day and argued in favor of a more statistical approach with

minimum assumptions required. Sims (1980) then introduced the vector au-

toregressive models (VARs) into economics, which have since then proved to

be very successful especially in economic forecasting applications (e.g. Stock

& Watson 2001).

However, the number of parameters in a VAR-model grows quickly as

more variables and lags are added to the model. As in time series applica-

tions there is always a very limited amount of data available, this increases

the estimation uncertainty, and hence greatly reduces the capabilities of the

model to efficiently incorporate more than a few variables. One particular

solution to this problem was proposed by Litterman (1979, 1980). Litterman

introduced a so-called Litterman’s prior and brought Bayesian vector autore-

gressive models (BVARs) into economics. Convinced by the US macroeco-

nomic data, he believed that most of the economic variables closely resemble

a univariate random walk process and that the estimation uncertainty could

be reduced by shrinking the parameter estimates towards this belief.

The Litterman’s prior included other soft restrictions as well, such as

shrinking the coefficients of the further lags more towards zero, reflecting the

belief that more distant observations are less important. After five years of

true out-of-sample forecasts Litterman (1986) provided promising evidence

of the forecasting performance of his model, comparing the forecasting er-

rors of his models with those from commercial forecasts of the day. The

forecasts produced by the BVAR-model were superior for the real variables

such as gross domestic product, but could not provide the same accuracy as

structural models for some variables, such as inflation.

After Litterman (1979, 1980) had introduced the BVAR-models into eco-

nomics, several modifications and improvements were made to the original

model. Additional priors to be included by adding pseudo-observations to

the data were proposed by Doan et al. (1984) and Sims (1993). The sum-of-

coefficients prior introduced by Doan et al. (1984) allows the data to a priori

follow a higher order unit root process, than of order one implied by the orig-
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inal Litterman’s prior. The other additional prior proposed by Sims (1993) is

called a dummy-initial-observations prior and it introduced the possibility of

prior correlation among the parameters of the same equation. Both of these

additional priors were proven to enhance the forecasting performance of the

BVAR-models and have since become a regular addition to BVAR-models.

Further advancements in BVAR-modeling were provided in the 1990s by

Kadiyala & Karlsson (1993, 1997) and Sims & Zha (1998). Kadiyala & Karls-

son (1993, 1997) relaxed the assumption of a diagonal covariance matrix and

provided empirical evidence in favor of the priors allowing for dependencies

between equations, such as the natural conjugate Normal-Wishart prior used

in this thesis as well. Sims & Zha (1998) further improved the methodology

of Kadiyala & Karlsson (1997) by providing new insights to the estimation of

the error bands and showed that exploitation of the Kronecker product struc-

ture of the covariance matrix allows for computationally efficient estimation

of larger systems than what had been possible at the time.

The development of BVAR-models took another big step forward when

Banbura et al. (2010) showed that with a correctly specified Normal-Wishart

prior it is possible, and efficient, to include even hundreds of variables into a

BVAR-model. Along with the improved capability of incorporating more in-

formation into the model, the BVAR-models were shown to produce superior

forecasts compared with the other state-of-the-art statistical methods, such

as the dynamic factor models (see e.g. Banbura et al. 2010, Koop 2013).

In addition to the Litterman-based priors, such as the one in Banbura

et al. (2010), there have been other successful approaches as well for impos-

ing different prior believes through different hyperparameterization of the

model. As an example Villani (2009) proposed a so-called steady state prior,

which has proven to be especially efficient for example in the context of sea-

sonal BVAR-models (Stelmasiak & Szafranski 2016). However, the efficient

estimation of a large number of variables requires for exploitation of the Kro-

necker product structure of the covariance matrix made possible for example

by the natural conjugate Normal-Wishart prior. Thus, not very different

priors from Normal-Wishart priors have been successfully applied to large

systems.

The Normal-Wishart prior used in this thesis allows for computationally

12



efficient direct sampling from the posterior distribution of the coefficients,

which is extremely convenient in the context of already computationally

moderately burdensome conditional forecasts discussed earlier. No other

prior distributions are thus considered in this thesis.

2.3.1 Hyperparameter choice

Hyperparameter choice can often be described as specifying the strength of

the prior believes. When properly executed, no other choices of importance

regarding the specification of the BVAR-model with a given prior distribution

need to be done. Thus, well executed hyperparameter choice has the potential

to greatly increase the performance of the model, whereas careless assessment

of the issue can lead to a significant deterioration in performance. Essentially,

with optimal hyperparameter values the maximum amount of information is

extracted from the data, while still giving enough importance for the prior

to avoid over-fitting of the model.

In the literature, various approaches have been proposed for choosing the

optimal hyperparameters. Sims & Zha (1998) provide the so called rule-

of-thumb values often used in the literature. Fixed hyperparameter values

cannot however take into account the growing number of the variables in the

larger models. Other popular and intuitively appealing technique is to com-

pute the out-of-sample forecasting errors of the model for some pre-specified

time interval over some set of hyperparameter alternatives and then choose

the set of hyperparameters that minimizes some function of the forecasting

errors (e.g. Litterman 1986). The third popular technique for hyperparam-

eter choice is the one from Banbura et al. (2010). They first estimate the

model with ordinary least squares (OLS) and only three variables, to make

sure the model does not suffer from overfitting, and compute the in-sample

forecasting errors. Then they define the optimal hyperparameters for the

larger models to be the ones that produce in-sample forecasting errors of the

same size as the ones with only three variables and no shrinkage.

As noted in Anttonen (2018) all those approaches however lack a solid

theoretical foundation and none of them have been proven to consistently

outperform the rule-of-thumb values provided by Sims & Zha (1998). To ac-
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count for the issue with a theoretically sound and well performing solution,

Giannone et al. (2015) emphasize the fact that ”the distinction between

parameters and hyperparameters is mostly fictious and made only for conve-

nience”. The hyperparameter choice could therefore be approached similarly

to the estimation of the other parameters in the model. Imposing then a

hierarchical structure on the model and defining an informative or uninfor-

mative prior to the hyperparamters themselves then allows one to exploit the

marginal likelihood function to choose, in a sense, the optimal hyperparam-

eters, that account for the addition of variables into the model. Giannone

et al. (2015) proceed to show in their study that the hyperparameters cho-

sen this way, should in theory minimize the one-step-ahead out-of-sample

forecasting error of the model. However, the empirical results of this thesis

suggest that in practice this might not be the case. The issue is revisited in

the fifth section.

The method of Giannone et al. (2015) however requires for metropolis-

algorithm to account for hyperparameter uncertainty, which increases the

computational complexity of the estimation procedure. Therefore, as the

method is applied to the model in this thesis, a slight modification of it

is used to preserve the computationally convenient features of the model

allowing for direct sampling from the posterior distribution of the coefficients,

as in Anttonen (2018). Most importantly, only the numerical mode of the

marginal posterior distribution of the hyperparameters is used to set the

hyperparameter values.

Although the method of Giannone et al. (2015) is theoretically well

founded and the authors provide convincing empirical evidence in favor of

the method, it still has it’s drawbacks and most importantly it is not immune

to over-fitting as opposed to what is implied by the authors. As mentioned

above, the shortcomings of the method are more elaborately discussed in the

fifth section.

As an alternative method for hyperparameter choice, a computationally

feasible algorithm minimizing any function of the past out-of-sample fore-

casting errors with respect to a vector of hyperparameters is proposed in this

thesis. The performance of the newly proposed method is compared empir-

ically to that of the marginal likelihood based approach of Giannone et al.
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(2015) and to rule-of-thumb values proposed by Sims & Zha (1998) in the

fifth section. The results of this assessment provide empirical evidence in

favor of the newly proposed algorithm, although it must be acknowledged

that the time-interval in which the comparison is performed is fairly short.

3 Conditional BVARX-model

The model developed in this thesis is fairly technical and various economet-

ric methods are involved. Essentially, the statistical model developed is a

Bayesian vector autoregressive model (BVAR) with a few additional bells

and whistles adding to the model complexity.3

In this section, the required econometric methods are described. First, the

underlying BVAR-model and the structure of the prior are briefly described.

Next, a way to impose exogeneity on certain variables is illustrated and the

conditioning procedure is discussed in depth. Finally, these methods are put

together and the complete algorithm for estimation of the model is presented.

The hyperparamter choice can also be considered a part of the estimation

procedure but it is covered in depth later in the fifth section.

3.1 BVAR-model

BVAR-model is a Bayesian version of a celebrated vector autoregressive

model (VAR) widely used in the economics. In a VAR model, a variable

is modeled as a linear function of the past p values of itself but also of the

other variables in the model plus the (usually) normally distributed error

term εt. The covariance matrix of the error term, Σ, is in general not diag-

onal and thus the values of different variables from the same period can also

depend on each other. The VAR-model can be represented as follows:

yt = c+A1yt−1 + ...+Apyt−p + εt, εt ∼ N(0,Σ), (1)

where yt is an n-dimensional vector of observed variables at time t, c is a

vector of constant factors, A1, ...,Ap are the coefficient matrices and εt is

3All the methods used in the this thesis are implemented in R (R Core Team 2018)
and written by the author of the thesis. The source code is available upon request.
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the normally distributed vector of error terms with the covariance matrix Σ.

Evidently, the VAR-models are not very parsimonious in nature and

therefore, to avoid overfitting, the coefficients to be estimated need to be

shrunk towards a more parsimonious prior distribution as the number of

variables and lags increases. This is where the Bayesianity comes in. The

prior to be used is Normal-Wishart-distributed and very common in the lit-

erature. The coefficients themselves are assumed to be normally distributed,

whereas the covariance matrix is assumed to follow an Inverse-Wishart dis-

tribution. The prior mean of the coefficients is then set to unity for the own

first lags of the variables, and to zero otherwise.

Often at this point a distinction between stationary and non-stationary

variables is made, and the prior mean of the coefficients on the own first

lags of the stationary variables are set to zero, or to some positive number

below unity. It can be argued however, that when not differentiated, the

mean reversion of stationary economic variables is in most cases reasonably

sluggish and that the random walk walk prior (i.e prior with the coefficient

on the own first lag set to unity) better fits our perception of the reality as

opposed to the white noise prior (i.e prior with all the coefficients set to zero).

Natural choice would of course be to set the coefficients on the own first lags

of the stationary variables a priori to some value close to but below unity.

Specification of this value without leaning on the data would not however be

an arbitrary task and for these reasons the random walk prior is used for all

the variables in the model. The main charasteristics of the prior mean can

be formalized as follows:

E[ (Al)ij | γ ] =

γ, if j = i, l = 1 (i.e. for own first lags)

0, otherwise
, (2)

where γ = 1, as discussed above, coefficient matrices A1, ...,Ap are assumed

to follow a normal distribution, p is the number of lags in the model, i, j ∈
{1, ..., n} and n is the number of variables. The prior variance of the normally

distributed coefficients is then set as:

Var[ (Al)ij | δ, Ψ ] =

(
λ1
l

)2
Ψii

Ψjj

, for all l ∈ {1, ..., p}, (3)
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where λ1 accounts for the overall tightness of the prior and thus essentially

controls the variance of the prior and δ is the vector of hyperparameters

λ1, λ2, λ3. Larger the λ1, closer the estimates will be of coinciding with the

OLS-estimates and smaller the λ1, closer the estimates will be of coinciding

with the random walk prior. Ψ is a diagonal square matrix of size n including

the prior for the covariance matrix Σ, and the term Ψii

Ψjj
accounts for different

variances of the dependent and explanatory variables. The latter term can

also be interpreted as the scaling factor taking into account the different

scales of the variables as the data in the model is not normalized. Finally

the prior on the intercept is considered to be non-informative and the variance

is set to an arbitrarily large number.

The other hyperparameters in δ include λ2 and λ3. These two hyperpa-

rameters control the weight given for two additional very standard priors,

the sum-of-coefficients prior and the dummy-initial-observation prior, that

are shown to improve the predictive performance of BVAR-models (see e.g.

Karlsson 2012). Notation-wise, the diagonal elements of Ψ could also be

included in the vector of hyperparameters δ, but as they (diagonal of Ψ) are

chosen differently to the hyperparameters in δ they are treated as a separate

set of hyperparameters. The diagonal elements of Ψ are chosen according to

residuals of an AR-process of order p. Although this data driven approach

is not completely innocuous as the same data is used for the prior and the

estimation of the posterior distribution, this is a very common practice in

the literature (see e.g. Banbura et al. 2010).

To summarize, the Normal-Wishart prior can be characterized by equa-

tions 4 and 5.

vec(A) | Σ ∼ N (vec(A0),Σ⊗Ω0) (4)

Σ ∼ iW (Ψ, v0) , (5)

where A0 and Ω0 are chosen to satisfy equations 2 and 3, v0 is set to n+2 to

ensure the existence of a finite prior variance, ⊗ denotes a Kronecker product

and vec denotes a vectorization operator that stacks the columns of a matrix

into a single vector. Assuming a normal model according to equation 1, it is

straightforward to show that the unnormalized posterior distribution of the

coefficients A and Σ can be expressed as a function of the prior and the data,
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as illustrated in equations 6 and 7 (see e.g. Karlsson (2012) or appendix of

Giannone et al. (2015)).

vec(A) | Σ,Y ∼ N
(
vec(Ã),Σ⊗

(
XᵀX + Ω−1

0

)−1
)

, (6)

where X is the data matrix of predictors constructed as a function of Y

according to equation 1, Ã =
(
XᵀX + Ω−1

0

)−1
(
XᵀY + Ω−1

0 Â
)

and Â =

(XᵀX)−1XᵀY . Also,

Σ | Y ∼ iW
(
S̃, T + v0

)
, (7)

where T is the number of observations, i.e the number of rows in Y or X,

and S̃ = Ψ + Ŝ +
(
A0 − Â

)ᵀ (
Ω0 + (XᵀX)−1)−1

(
A0 − Â

)
The model can be estimated by explicitly constructing the matrices A0

and Ω0, but especially with larger systems it is often more convenient, and in

some cases necessary for numerical stability, to follow Banbura et al. (2010)

and impose the prior structure on the model through artificial observations.

Augmenting the data matrices Y and X with Y d and Xd (see equation 8)

and estimating the system with ordinary least squares (OLS) is equivalent

to imposing the prior through A0 and Ω0 and using equations 6 and 7.

Y d =



Ψ/λ1

0n(p−1)×n

Ψ

01×n

Y a


Xd =


Jp ⊗Ψ/λ1 0np×1

0n×np 0n×1

0n×1 ε

Xa

 , (8)

where Jp = diag(1, ..., p), ε is some very small number close to zero (uninfor-

mative prior on the intercept) and 0i×j is a matrix of zeros with i rows and j

columns. The additional priors are imposed through Y a and Xa to be spec-

ified below. Thus, the unnormalized posterior distribution of the coefficients

A and Σ can be expressed as:

vec(A) | Σ,Y ∼ N
(
vec(Â∗),Σ⊗ (Xᵀ

∗X∗)
−1
)

(9)
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Σ | Y ∼ iW
(
Ŝ∗, T + 2 + Td − k

)
, (10)

where Y ∗ = (Y ᵀ,Y ᵀ
d)

ᵀ,X∗ = (Xᵀ,Xᵀ
d)

ᵀ, Td is the number of artificial obser-

vations, k is the number of coefficients per equation, Â∗ = (Xᵀ
∗X∗)

−1Xᵀ
∗Y ∗,

and Ŝ∗ =
(
Y ∗ −X∗Â

)ᵀ (
Y ∗ −X∗Â

)
.

The additional priors are imposed through Y a, Xa, as discussed above,

and following closely the notation in Giannone et al. (2015) they are defined

as follows:

Y a =

Y +

y++

 Xa =

X+

x++

 (11)

Y + = diag

(
ȳ0

λ2

)
(12)

X+ =
[
0,Y +, ...,Y +

]
, (13)

where ȳ0 is an n×1 vector that contains the average of the p first observations

for each variable, Y + is an n × n dimensional matrix, X+ is an n × (1 +

np) dimensional matrix and λ2 is a positive hyperparameter controlling the

strength of the sum-of-coefficients (SOC) prior. Smaller the λ2, more weight

is given to the SOC prior. Also,

y++ =

(
ȳ0

λ3

)ᵀ

(14)

x++ =

[
1

λ3
,y++, ...,y++

]
, (15)

where x++ is a 1 × (1 + np) vector, and λ3 controls the strength of the

dummy-initial-observation (DIO) prior. Thus, setting hyperparameters λ2

and λ3 to infinity would equal to ignoring the additional priors altogether,

whereas setting the hyperparameters to zero would put all the weight on

these priors, therefore ignoring the data entirely.

The SOC prior enables the coefficients of a variable to have correlation

among their own lags by allowing for unit processes of higher order than

one implied by the Litterman-styled prior. The SOC prior was originally

proposed by Doan et al. (1984) and it was shown to be able to significantly
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improve the forecasting accuracy of a BVAR model. The other additional

prior, the DIO prior, was originally proposed by Sims (1993) and it is moti-

vated by the fact that the SOC prior alone is not consistent with the possible

cointegration of macroeconomic variables.

Although the strength of these additional priors is separately specified

through hyperparameters λ2 and λ3, in this thesis the relative strength of

these additional priors have been fixed according to equation 16, as in Ban-

bura et al. (2010). The hyperparameters λ2 and λ3 are treated as fixed

for simplicity and most importantly to make the discussion regarding the

hyperparameter choice more clear.

10× λ1 = λ2 = λ3 (16)

3.2 Exogeneity

An additional feature of the model explaining the abbreviation BVARX in-

stead of the usual BVAR stems from the exogeneity imposed on global eco-

nomic variables. This exogeneity is obtained as in Bloor & Matheson (2011),

by first estimating a BVAR-model on the exogenous variables alone, and

then using the forecasts acquired from this model to append the estima-

tion equations of the endogenous variables with lags and current values of

the exogenous variables. Thus in this case, there are two separate blocks of

equations, the endogenous and the exogenous block. The exogenous block of

equations is first estimated as a typical BVAR-model consisting of only exoge-

nous variables (see equation 1). The endogenous block of equations is then

constructed by adding exogenous variables as exogenous predictive variables

to a model with only endogenous variables. The equation 17 illustrates.

yt = c+A1yt−1 + ...+Apyt−p +B0zt + ...+Bpzt−p + εt, (17)

where zt is a vector of exogenous variables at time t, B0, ...,Bp are the coef-

ficient matrices on exogenous variables and everything else is as in equation

1.

Evidently, the exogenous block remains symmetric, as all the variables

entering the equations are to be forecast. However the block of endogenous
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variables becomes non-symmetric as the exogenous variables are added to

the estimation equations. This calls for slight adjustments in the prior. The

coefficients for the lags of exogenous variables are set to have a prior mean

of zero and variance analogous to the endogenous variables. Finally, the

coefficients on the exogenous variables from the current period are chosen to

have an analogous prior to those from the previous period.

The generalization of this method for more than two blocks of equations

is formalized in Zha (1999).

3.3 Conditionality

The final and the major additional feature of the model is the conditional

nature of it. To illustrate this feature, following closely the exposition in

Bloor & Matheson (2011), the h-step out-of-sample forecast at time T can

be decomposed as follows:

yT+h = dT+h +
h∑
j=1

Mh−jεT+j, (18)

where the vector dT+h includes the unconditional dynamic forecasts produced

by the model. The future shocks effect the forecast through the second term,

where Mh−j illustrates the impulse response functions and the future struc-

tural shocks are presented by εT+j. For forecasting purposes, the structural

errors can always be identified with a recursive identification scheme, since

as shown by Waggoner & Zha (1999) the predictive distribution is invariant

to orthonormal transformation of the system. Hence, the ordering of the

equations within a given block has no effect on the predictive distributions

produced. Therefore, one can implicitly operate with reduced form errors

instead of structural ones.

As M is a function of already estimated A and Σ, the conditional fore-

cast can be acquired by restricting the reduced form shocks to be drawn from

a distribution satisfying the restriction to be conditioned on. This can be

obtained by following the conditioning algorithm of Andersson et al. (2010).

As the forecasts are to be conditioned on normally distributed future projec-
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tions, the conditions are to be formed according to the equation 19.

CyT+1,T+h ∼ N
(
fT+1,T+h, Ωf

)
, (19)

where yT+1,T+h includes all the forecasts from horizon T+1 to T+h, fT+1,T+h

represents the mean or central tendency of the restrictions, Ωf is the covari-

ance matrix of the restrictions and the matrix C completes the restrictions

on the first moments by picking the right future values to be restricted. Thus,

usually C consists of one element per row set to unity, while all the other

elements are set to zero. However, more versatile linear restrictions can be

imposed through different structure of C, which underlines the flexibility of

this conditioning method. To elaborate further, the central tendency of the

restrictions, fT+1,T+h, is a vector of all future values to be conditioned on.

If for example, one were to condition the forecast on only future values of

one particular variable, the vector fT+1,T+h would consist of only those val-

ues and the matrix C would be constructed to pick only the corresponding

elements of yT+1,T+h.

Also, Ωf = Ξ ◦
(
σfσ

ᵀ
f

)
, where ◦ stands for Hadamard product (i.e.

element-wise matrix multiplication) and the restrictions regarding the second

moments of the predictive distribution (i.e. the uncertainty around the values

to be conditioned on) enter into the algorithm through σf . Alternatively,

one could set Ωf = DDᵀ, where D = CM ᵀ and M is as in equation 20.

This way the uncertainty around the values to be conditioned on is itself

estimated from the data, which makes the conditioning of the forecast on

uncertain future values sensible even in the absence of prior information on

the uncertainty regarding those future values.

M =



M 0 M 1 M 2 . . . Mh−1

0 M 0 M 1 . . . Mh−2

0 0 M 0 . . . Mh−3

...
...

...
. . .

...
0 0 0 . . . M 0


, (20)

where Mh−j is n × n matrix of impulse responses as in equation 18, j ∈
{1, ..., h} and subscript h− j denotes the number of periods from the shock.
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For example, M 0 includes the response of every variable to a shock from

every variable from the same period.

One is able to formulate so-called hard restrictions of Waggoner & Zha

(1999) as a special case of density restrictions elaborated in this section. Hard

restrictions can be obtained by setting every element of σf to zero, which is

equivalent to imposing no uncertainty around the values to be conditioned

on. The hard restrictions are particularly useful when dealing with the so

called ragged edge of the data. A data set of time series is said to have a

ragged edge if for the most recent periods there are observations for only

some of the variables (i.e. the data is unbalanced). Ordinary VAR models

(or almost any other multivariate time series models) are not capable of

utilizing the data from those incomplete periods, but are forced to discard

the latest observations. With hard restrictions however, the forecast can be

conditioned on those latest observations and all the available information can

be preserved in order to produce more accurate forecasts.

Given one has specified the central density fT+1,T+h and covariance ma-

trix Ωf of the restrictions, the unconditional dynamic forecast without the

error term can be transformed into a conditional forecast by adding the re-

stricted errors according to equation 18. The distribution of the restricted

errors ε̃T+1,T+h can be derived from 19 and is presented in equation 21. For

full derivation of this result, see Andersson et al. (2010).

ε̃T+1,T+h ∼ N (µε, Σε) , (21)

where

µε = D∗fT+1,T+h −D∗CdT+1,T+h,

Σε = D∗Ωf (D∗)ᵀ + D̂
ᵀ
D̂

D∗ denotes the generalized inverse ofD, the rows of the matrix D̂ are chosen

to form an orthonormal basis for the null space of D and dT+1,T+h denotes

the unconditional dynamic forecast without the error term (see equation 18).

The other elements are as previously defined.

Although the posterior distribution of the coefficients is known and can be

sampled from directly, sampling from the conditional predictive distribution
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requires for a Gibbs sampler. Gibbs sampler is required since the conditions

laid out in equation 19 are nonlinear functions of the coefficients themselves

and the correct distribution of the coefficients conditional on equation 19

must therefore be derived from the joint distribution of the coefficients and

Y T+1,T+h. This joint distribution is generally unknown, but as shown in

Waggoner & Zha (1999), it is feasible to simulate the distribution with a

Gibbs sampler by augmenting the data used for the estimation of the coeffi-

cients with the conditioned forecast drawn in the previous period.

Conditionality is a remarkably attractive feature for a forecasting model

since as already discussed it allows for efficient processing of the latest ob-

servations and flexible conditioning of the forecasts on uncertain informa-

tion coming from outside the model. Moreover, the developed conditional

model could be used for example to produce full predictive densities around

pre-specified point-estimates of other forecasters, by forcing the conditional

forecasts around those point-estimates but allowing the model to estimate

the higher moments of the predictive distribution. This could prove to be

practical since the official forecasts of many forecasting agencies are usually

at least partly based on subjective considerations and are therefore usually

not accompanied by any metrics regarding the uncertainty of the forecast

presented. However, for the predictive densities not to be too wide or nar-

row, the underlying conditional model should on average be able to produce

as accurate forecasts as the ones based on subjective considerations.

3.4 Forecasting algorithm

After this overview of the econometric methods required for estimating the

model and producing the forecast, summarizing the complete algorithm is in

order. The data used in the model consists of both monthly and quarterly

variables, which are further divided into exogenous and endogenous variables.

Therefore, the estimation of the model comprises four separate conditional

BVAR-models. Each conditional BVAR-model is estimated analogously, only

with different data and with different hyperparameters.

First, the symmetric system of exogenous monthly variables is estimated

as an ordinary BVAR-model, leaving the latest periods for which the data is
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incomplete out of the data. The dynamic central tendency of the uncondi-

tional predictive density is then produced according to the equation 1 without

the error term. Next, the conditional forecast is acquired by drawing the re-

duced form errors according to the conditioning algorithm of Andersson et al.

(2010) discussed above and summing them with the unconditional forecast

(see equation 19). The drawn errors are conditioned on the observations from

the incomplete periods and on the possible additional restrictions consisting

of the predictive densities of certain variables. These additional restrictions

might include projections from outside the model on the future path of the

global interest rates or on the economic activity of the export markets of an

individual country, for example.

Then, as proposed by Waggoner & Zha (1999), to ensure that the pa-

rameter estimates are consistent with the conditional forecast produced, the

forecast is appended to the data used for estimation of the coefficients before

the next draw. These steps are repeated N times, after which the first half

of the sample is burned in order to make sure the chain has converged. This

comprises the Gibbs sampler required for producing the conditional forecasts

and the same steps are followed with the other three sub-models.

Algorithm 1 Sampling from the conditional predictive distribution

1: for i ∈ 1,...,N do
2: Draw the coefficients A(i),Σ(i) | Y ,Y (i−1)

T+1,T+h according to
equations 9 and 10.

3: Draw the unconditional forecast d
(i)
T+1,T+h | A

(i),Σ(i),Y by simulating
from equation 1 or 17 without the error term.

4: Draw the restricted errors ε̃
(i)
T+1,T+h | d

(i)
T+1,T+h,fT+1,T+h,Ωf ,C

according to equation 21.
5: Compute the conditional forecast

Y
(i)
T+1,T+h | d

(i)
T+1,T+h, ε̃

(i)
T+1,T+h,A

(i),Σ(i) according to equation 18.
6: end for

7: Discard the first half of the sample {Y (1)
T+1,T+h, ...,Y

(N)
T+1,T+h}

The non-symmetric system of endogenous monthly variables is then es-

timated analogously, only this time producing the dynamic central tendency

of the unconditional predictive density according to the equation 17, using

the newly produced forecasts of exogenous variables z
(i)
t+h for each draw i,
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where i ∈ 1, ..., N .

At this point, the series of monthly frequency are aggregated to a quar-

terly frequency, and the newly produced forecasts of monthly variables are

used to approximate a predictive distribution of the quarters for which there

are only some observations of monthly variables. In other words, the forecasts

from the sub-models for monthly variables constitute a sample of the latest

quarters in the data of aggregated variables. The uncertainty revolving these

quarters constructed of the incomplete monthly observations is preserved by

randomly sampling from the predictive distribution of these quarters prior to

every draw from the posterior predictive distribution of the set of variables

consisting of both quarterly frequency and the monthly variables aggregated

to a quarterly frequency.

To illustrate, after the forecasts for the variables of monthly frequency

are produced and both the series and the forecasts are aggregated to a quar-

terly frequency, the forecast quarters for which there were no observations of

any of the variables are dropped from the sample, as the monthly forecasting

model is only used to produce a predictive distribution of the incomplete

quarters. Then the data of quarterly frequency is augmented with the newly

aggregated series originally of monthly frequency producing a system of ex-

ogenous and endogenous variables. This new data is then used to produce

the conditional quarterly forecast analogously to the monthly forecasts, with

only one difference. Prior to every draw from the posterior predictive distri-

bution of quarterly variables, new aggregated quarters are drawn randomly

from the sample produced by the model of monthly frequency.

This kind of random sampling with replacement from a sample drawn it-

self from some distribution (in this case the predictive posterior distribution

produced by the monthly BVARX-model) is often referred to as bootstrap-

ping. One could set the number of draws from the predictive distribution of

monthly variables to exactly match the number of draws needed by the quar-

terly model and use this sample directly, but by bootstrapping one allows

the number of draws to vary, which might be desirable for computational

reasons. Another approach for conditioning the quarterly forecasts on latest

monthly observations would be to assume that the predictive distribution of

aggregated monthly variables is approximately normal and then use the con-
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ditioning algorithm laid out above. This assumption however does not hold

very well. Even in the case of unconditional model, the predictive distribu-

tion would not be normal, but t-distributed, and there is no reason to believe

that the predictive distribution of the quarters acquired by aggregating the

monthly forecasts would be normal either. The bootstrapping procedure thus

allows one to preserve the non-normal distribution of the quarters containing

uncertainty due to missing monthly observations.

Algorithm 2 Sampling from the predictive distribution of the conditional
BVARX-model with monthly and quarterly variables

1: Draw a sample {Y M,Exo
T+1,T+h} of conditional forecasts of exogenous monthly

variables according to algorithm 1.

2: Draw a sample {Y M,Endo
T+1,T+h | {Y M,Exo

T+1,T+h} of conditional fore-

casts of endogenous monthly variables conditioning Y
M,Endo,(i)
T+1,T+h on

Y
M,Exo,(i)
T+1,T+h , for all i ∈ {1, ..., Nm} according to the algorithm 1 and equa-

tion 17.

3: Augment the obtained samples with the data Y M and aggregate
the monthly series to a quarterly frequency to obtain {Y M,exo} and
{Y M,endo}.

4: Discard the quarters for which there were no observations on any of
the monthly variables as the monthly model is only used to fill in the
latest quarters.

5: Augment the exogenous and endogenous quarterly data with {Y M,exo,(r)}
and {Y M,endo,(r)}, where r is randomly drawn from {1, ..., Nm}.

6: To produce the final forecast, draw the samples {Y Q,Exo
T+1,T+h} and

{Y Q,Endo
T+1,T+h} of quarterly forecasts analogously to the steps 1 and 2. Prior

to every draw, repeat the step 5.

The model presented in this section is highly flexible and it seeks to pre-

serve the uncertainty of the estimates as precisely as possible in every step

of the forecasting algorithm. The objective of the model is to produce as

accurate full forecasting densities as possible, not limiting the forecast to

mere point-estimates. The exogeneity of the global variables is imposed for

more efficient parameter estimation and the conditional nature of the model

allows for efficient utilization of both monthly and quarterly variables. The
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conditionality of the model also allows the forecaster to impose uncertain

believes regarding the predictive variables into the model in a highly flexi-

ble manner and the model could even be used for producing full predictive

densities around pre-specified point-estimates.

4 Data

Although the model developed in this thesis is applicable for medium term

forecasting of economic variables in any small open economy, in this thesis

the focus has been directed to Finland. Also, as small open economies are

often highly dependent of international trade, the export and import flows as

variables are of special interest, in addition to gross domestic product (GDP)

of course.

As already discussed, the model consists of both monthly and quarterly

variables which have been further divided into exogenous and endogenous

variables. The endogenous variables consist mostly of official statistics ac-

quired from Statistics Finland. These include the quarterly national account

and monthly economic indicators such as price indices, confidence indicators

and labour market statistics. Also the monthly statistics on the volume of

imports and exports of goods provided by the custom authorities of Finland

are used in the largest version model.

A priori the most important exogenous variable is the quarterly indicator

of economic activity of trade partners of Finland (Trade market GDP in table

1). This indicator is acquired as a weighted sum of the gross domestic product

figures of trade partners of Finland acquired from OECD. The weights for

the countries are acquired from the custom authorities of Finland as shares

of bilateral trade of goods between Finland and the respective country of the

total trade of goods by Finland. Unfortunately there is no corresponding

data available to produce a set of weights for the trade in services, but as the

trade in goods comprises over two thirds of the total trade in Finland4 this

should suffice.

Other exogenous variables are of monthly frequency and consist of interest

4International trade in goods and services 2018Q3, Statistics Finland
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rates, exchange rates, price indices and confidence indicators. The export and

import prices of a small open economy are treated as exogenous, as in the

Bloor & Matheson (2011). A full list of variables can be found in table 1 and

in the Appendix A.

Model Endogenous variables Exogenous variables Number of
variables

Small GDP
Exports of goods
Exports of services
Imports of goods
Imports of services
Unemployment rate
Inflation rate 7

Medium Small Export price index
Import price index
ESI (EU)
USD/EUR
Trade market GDP 12

Large Medium Medium
+ +
Employment rate Oil price
Consumer confidence Euribor 3kk
Industrial confidence CPI (EU)
Exports (Customs)
Imports (Customs)
Building permits
Private consumption
Public consumption
Investments (residental)
Investments (residental exc.) 25

Table 1: Variables of the Small, Medium and Large model.

As is evident after inspecting table 1, there are three models of different

size. The smallest model called Small includes only 7 variables with no

exogenous variables. The second model is called Medium and it is constructed

of the variables in the small model plus five additional exogenous variables,

totaling 12 variables. The largest model is called Large and it consists of 25
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variables in total. Although models up to only 25 variables are studied, the

hyperparameterization of the model should allow for an efficient exploitation

of an arbitrarily large number of variables. At some point the conditional

forecasting algorithm presented earlier would however become in practice

computationally too burdensome.

The data starts from the beginning of the European monetary union,

which is considered to be the date from which there is official exchange change

rate data available for the Euro. The data thus starts from the beginning of

the year 1999 and spans for approximately 20 years to the third quarter of

2018. The starting date is used to avoid structural breaks in the estimation

period as well as possible, and to ensure the availability of as many useful

time series as possible, while still keeping the data sufficiently long for the

estimation and out-of-sample study of the model.

All the data is in levels and logarithmic transformation is carried out for

all the variables that are not already expressed in rates or percentage points.

5 Hyperparameter choice

The hyperparameter choice is arguably the most important single thing af-

fecting the performance of a BVAR-model. As discussed earlier in the pre-

vious section, the hyperparameter values determine the extent to which the

prior believes are weighted as compared to the information gathered from

the data. As more variables are added to a parameter rich VAR-model, the

model becomes less parsimonious and the importance of the hyperparame-

ter choice increases. Without shrinking the parameter estimates towards a

suitable prior distribution, the limited amount of data causes the parameter

estimates to over-fit the data and the model loses it’s capability to predict

anything outside the sample used for estimation. As one has only one timeline

at disposal to sample time series data from, the problem of limited amount

of data is not easily avoidable.

For these reasons, traditional VAR-models rarely perform on a par with

BVAR-models beyond a very limited amount of variables and lags. The op-

timal amount of shrinkage towards the prior is however non straightforward

to determine as too loose prior (too little shrinkage) causes the parameter
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estimates to over-fit, whereas too tight prior (too much shrinkage) prevents

the model from exploiting all the information available. Several factors affect

the optimal amount of shrinkage in a BVAR-model: the number of observa-

tions, the number of variables, the number of lags, the noisiness of the data

and of course the suitability of the prior. To make things even more difficult,

the optimal amount of shrinkage may sometimes vary when comparing the

out-of-sample forecasting errors of different variables within the same model.

In the literature review, several different approaches for hyperparameter

choice were discussed. The approaches can be roughly divided to four classes:

(i) fixed values from the literature (usually the rule-of-thumb values proposed

by Sims & Zha (1998)), (ii) minimization of the out-of-sample forecasting

errors over pre-specified time interval and grid of parameter values, (iii) the

in-sample-fit based method by Banbura et al. (2010) and (iv) the marginal

likelihood based methods, e.g. the one formalized in Giannone et al. (2015).

In this section the marginal likelihood function based method of Giannone

et al. (2015) later simplified and applied for a small BVAR-model nowcasting

the unemployment rate in Finland by Anttonen (2018) is studied in depth.

As an alternative to that method a novel algorithm based on the minimiza-

tion of the past out-of-sample forecasting errors is proposed. Finally, both

the performance of the newly proposed algorithm and the marginal likelihood

based approach are empirically assessed against the fixed rule-of-thumb val-

ues proposed by Sims & Zha (1998).

5.1 Marginal likelihood based approach

Marginal likelihood based approach (ML approach) builds upon the idea of

treating the hyperparameters as just another set of parameters to be esti-

mated in a hierarchical setting. Giannone et al. (2015) formalize this ap-

proach by imposing a full hierarchical structure on a BVAR-model by speci-

fying a prior distribution on the hyperparameters themselves and centering it

around the rule-of-thumb values of Sims & Zha (1998). The full hierarchical

structure however complicates the sampling process as Metropolis algorithm

is required for sampling from the posterior distribution. The fairly informa-

tive but fixed prior on the hyperparameters is not a very appealing feature
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either, since bigger models are a priori believed to need much tighter priors

than the smaller ones.

Anttonen (2018) simplifies the approach of Giannone et al. (2015) by

numerically estimating the mode of the hyperposterior distribution prior to

estimating the model, thus parting ways with the full hierarchical structure

of Giannone et al. (2015) and allowing for direct sampling from the posterior

distribution of the BVAR-model. The equation 22 illustrates the structure of

the hyperposterior distribution and follows directly from the Bayes’ theorem.

p (δ | y)︸ ︷︷ ︸
Hyperposterior

∝ p (y | δ)︸ ︷︷ ︸
ML

p (δ)︸︷︷︸
Hyperprior

(22)

Evidently, the unnormalized hyperposterior distribution can be expressed in

a closed form if one possesses a closed form solution for the marginal like-

lihood function. The closed form solution also makes the numerical search

for the mode of the hyperposterior distribution very straightforward to exe-

cute. Under a flat (i.e non-informative) hyperprior the problem reduces to

a maximization problem of the marginal likelihood over the vector of hyper-

parameters δ.

Giannone et al. (2015) derive a moderately complex closed form repre-

sentation of the marginal likelihood function by integrating the coefficients

A and Σ out of the joint posterior distribution of the coefficients after im-

posing the prior beliefs through A0 and Ω0, as discussed in the third section.

However, by imposing the prior distribution through artificial observations

only, one is able to derive considerably simpler closed form representation

of the proportional marginal likelihood function (see equation 23)5, that can

be shown to produce exactly the same estimates of the optimal vector of

hyperparameters δ as the one in Giannone et al. (2015).

p (Y | δ) ∝ | Ŝd |
vd
2 |Xᵀ

dXd |
m
2

| Ŝ∗ |
v∗
2 |Xᵀ

∗X∗ |
m
2

, (23)

where v = T − p− k −m− 1, all the other elements are as described in the

third section and subscripts d and ∗ implicate that the respective element is

5For derivation, see Appendix B.
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constructed of only dummy observations or of all observations including the

dummy observations, respectively.

The ML approach however has its deficiencies, not considered in Gian-

none et al. (2015). The idea of Bayesian shrinkage is to reduce the parameter

estimation uncertainty by shrinking the parameter estimates towards a cau-

tious prior, controlling the shrinkage of a potentially high dimensional system

through a lower dimensional vector of hyperparameters. By a suitable choice

of those hyperparameters the curse of dimensionality can be dealed with and

no over-fitting takes place. However, if non-infinite amount of data is used

to estimate the hyperparameters themselves, they can not be in any way im-

mune to over-fitting the data themselves, no matter how low dimensional the

vector of hyperparameters. This holds of course in practice for almost any

method used for choosing the hyperparameters, but it needs to be empha-

sized that the ML approach even with a hierarchical structure of Giannone

et al. (2015) is not an exception, especially when the hyperprior is centered

around fixed and non-zero values.

Monte Carlo simulation experiment shows, that the ML approach tends to

give less weight to the prior distribution (by means of hyperparameter values)

when there is less data, which is exactly at odds with what would be desirable

with a limited amount of data available. In figure 1 are the results of the

simulation experiment. To keep things simple, the generated data is bivariate

and the model is thus reasonably parsimonious. On the left hand side of the

figure 1, the data was generated from a harmonic VAR-process of order 13,

as this is the order often chosen with monthly BVAR-models. The order of

the model to be estimated is also chosen to impose some dimensionality to

the parameter space. Still, a model with 27 parameters per equation is fairly

parsimonious as opposed to the BVAR-models discussed in this thesis, which

might involve hundreds of parameters per equation. On the right hand side

of the figure 1, both variables follow an independent random walk process.

In the simulation exercise 100 artificial time series, 200 observations per

series, were generated. With every series, the optimal value for λ1 implied by

the ML approach was computed at intervals of ten observations, starting from

30 observations. The model fitted was an ordinary BVAR-model discussed

in the third section, without any additional priors (sum-of-coefficients- and
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Figure 1: Monte Carlo simulation experiment illustrating the tendency of the
hyperparameters chosen by the marginal likelihood based approach to over-fit
the data on average when the amount of data is limited. The dashed grey
lines are the hyperparameter values implied during 100 simulations and the
red dashed line represents the mean of all those values given the number of
observations in the data.

dummy-initial-observation prior).

Even with a model as parsimonious as this, on average, the implied opti-

mal hyperparameter value decreases for at least eighty observations, i.e. the

strength of the prior increases as more observations become available. With

data of monthly frequency there is usually more than eighty observations

available to fit a model of economic variables with, but with larger models

and with data of quarterly frequency, the danger of over-fitting with a lim-

ited amount of data implied by the Monte Carlo exercise might become an

issue. Although the exercise was performed as if the data was of monthly fre-

quency, eighty observations of quarterly data means 20 years of data, which

is coincidentally the length of the data available for the model developed in

this thesis.

One way to deal with the above illustrated deficiency of the ML approach

would be to use a more suitable hyperprior than the one proposed by Gi-

annone et al. (2015). More suitable hyperprior would shrink the parameter

estimates towards the cautious prior, just like the ordinary prior, thus pre-
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Figure 2: Logarithmic marginal likelihood function or model evidence as
a function of one hyperparameter controlling the overall shrinkage of the
medium sized model.

venting the hyperparameters from over-fitting the model when there is not

enough data available for reliable estimation of the low-dimensional vector

of hyperparameters δ. The proper choice of the variance of the hyperprior

would however remain a cumbersome task to solve and this approach is not

pursued further in this thesis.

Another practical issue regarding the ML approach that can be solved

with a proper choice of hyperprior, is the behavior of the marginal likelihood

function with hyperparameter values close to zero. As illustrated in figure 2,

the marginal likelihood function may yield higher values with hyperparame-

ter values very close to zero than the desired local maximum of the function

further away from the zero. The hyperparameters set according to the local

solution away from the zero would also seem to produce more accurate fore-

casts than the random walk model implied by the solution of the marginal

likelihood function with hyperparameters close tho zero. Therefore, the be-

havior of the marginal likelihood function can be deemed undesirable and
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the hyperparameter values should be restricted from getting values too close

to zero when using marginal likelihood based methods for hyperparameter

choice. The source of this behavior of the marginal likelihood function is not

however clear and this matter is not studied to a further extent in this thesis.6

5.2 New algorithm

To address the issues regarding the ML approach to hyperparameter choice,

alternative methods must be considered. Essentially, the optimal hyper-

parameter values can be defined as the ones producing the most accurate

out-of-sample forecast, given the model at hand. Therefore, the idea of sim-

ply minimizing the past out-of-sample forecasting error of the model over

some pre-specified grid of hyperparameters strikes as a compelling approach

to choose the hyperparameters. The approach however has some impractical

properties and lacks the theoretical elegance of the ML approach.

First, it is often computationally unfeasible to compute the out-of-sample

forecasting errors over the grid of pre-specified hyperparameter values, espe-

cially if the vector of hyperparameters is multi-dimensional, as it would re-

quire estimating the potentially computationally burdensome model as many

times as there are elements in the grid of hyperparameters. Second, it is not

an arbitrary task to choose the proper support or density of this grid of

hyperparameters, especially given the computational limitations at hand.

While the elegance of the ML approach may not be matched with the

novel algorithm to be proposed, the above mentioned practical issues con-

cerning the minimization of the past out-of-sample forecasting errors over the

hyperparameter values can be dealt with, and the algorithm can be shown to

produce in many cases forecasts of superior out-of-sample performance when

compared to the ML approach.

The first feature of the algorithm builds upon the fact that the mean of the

predictive distribution of a BVAR-model with a normal error term is available

in a closed form for any forecasting horizon, even if the model is conditional.

6It is possible that the observed behavior of the marginal likelihood function is merely
a result of numerical instability of the function with hyperparameter values close to zero.
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Thus defining the mean of the predictive distribution as the point-estimate

of the forecast, one is able to produce forecasts with no uncertainty in a

computationally highly efficient way. Then, instead of pre-specifying a grid

of hyperparameters to optimize over, one can specify a closed set (i.e infinitely

dense grid) of almost arbitrary size of hyperparameter values to optimize over,

and use numerical optimization methods to minimize the past out-of-sample

forecasting error over that set of hyperparameter values.

First, let’s define:

f (δ) =
T∑
t=t1

g
((
ŷt+1,t+h | yt

)
− yt+1,t+h

)
, (24)

where the vector ŷt+1,t+h | yt includes all the point-estimates of the future

values up to period t+ h at time t, conditional on the information available

up to period t, and the vector yt+1,t+h includes the realized values of those

periods. The difference of those vectors is therefore a vector of the out-

of-sample forecasting errors of the model. This vector can be denoted as

zt =
(
ŷt+1,t+h | yt

)
− yt+1,t+h. In the sum, t1 is the first period at which the

out-of-sample forecasting error is evaluated in order to choose the optimal

set of hyperparameters. The period t1 should be chosen to allow for both,

(i) enough observations at time t1 for reliable estimation of the model and

(ii) enough periods t1, ..., T for the evaluation of the forecasting errors.

Given the data and the structure of the model, zt only depends on the

vector of hyperparameters, δ. Hence, given some functional form of g (.),

f (.) is only a function of δ, and g (.) can be defined as any function of the

out-of-sample forecasting errors, zt, of the model. For example, in the next

subsection, the optimal set of hyperparameters is defined to minimize the

squared one-step-ahead out-of-sample forecasting error of the gross domestic

product and therefore g (.) is defined as:

g (zt) =
(
zGDP , h=1
t

)2
, (25)

where zGDP , h=1
t denotes the element of the vector zt corresponding to the

one-step-ahead forecasting error of the gross domestic product.

Finally, the optimal set of hyperparameters δ̃ can be obtained as the
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solution for the following minimization problem:

min
δ

f (δ) , (26)

subject to, δj > 0 for every element j of δ.

As the algorithm enables one to specify the objective function to be mini-

mized over, the hyperparameters can be chosen to minimize the out-of-sample

forecasting error of a certain variable and forecasting horizon or of a combina-

tion of variables and horizons. Although it is theoretically compelling with

the ML approach to maximize the model evidence (i.e marginal likelihood

function) of the whole model, it might not be as desirable feature in practice.

Especially in a large model there might be several predictive variables that

are practically impossible to forecast themselves and some of these variables

might even have very little predictive power on the variable of interest. The

addition of a variable like this is detrimental to the forecasting performance of

the model and the detrimental effect can not be avoided even with Bayesian

shrinkage, since any tightening of the prior reduces also the amount of useful

information that can be extracted from the data. For this very same reason,

the addition of variables to a large BVAR model with a standard prior struc-

ture often does not seem to enhance the performance of the model after a

very limited number of variables, as noted before in Banbura et al. (2010).

ML approach amplifies this effect as there is no distinction in importance

between the variables and the additional shrinkage required by the addition

of an unnecessary predictive variable to a model is even greater.

The algorithm proposed is very straightforward to implement, but there

is no guarantee that the objective function behaves well and multimodularity

might become an issue if the closed set of hyperparameter values to be opti-

mized over is not carefully selected. Figure 3 illustrates a situation in which

a typical gradient based numerical optimization algorithm might get stuck

in the local minimum near zero, never finding the global minimum, leading

to a suboptimal set of hyperparameters implied. Solution to this problem

is to simply restrict the set of hyperparameter values not to include values

close to zero. This is equivalent to setting a uniform prior distribution over

positive values of hyperparameters with probability zero near zero.
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Figure 3: The root mean squared one-step-ahead out-of-sample forecasting
error of the medium sized model from 2010Q1 to 2018Q3 as a function of the
hyperparameter λ1 controlling the shrinkage of the fourth sub-model keeping
all the other hyperparameter values fixed. On the right hand side is a zoomed
version of the picture on the left hand side.

L-BFGS-B (Byrd et al. 1995), an extension of the celebrated BFGS algo-

rithm, is used for solving the numerical optimization problems in this thesis,

as the method conveniently allows for specifying the lower and upper bounds

for the set of values to be optmized over.

5.3 Empirical assessment

To empirically assess the performance of the discussed methods for hyper-

parameter choice, a pseudo out-of-sample forecasting exercise is performed.

In this exercise, the out-of-sample forecasts are computed as if the forecaster

would have only the information that was available at the time. This requires

some assumptions regarding the publication lags of the variables in the model

and all these assumptions are listed in the Appendix A. For example, the first

official publication of quarterly GDP figure in Finland is published approx-

imately 90 days after the end of the respective quarter. The GDP is thus

listed to have a publication lag of one quarter, as in the beginning of 2019Q1
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the latest observation at one’s disposal would not be from 2018Q4, but from

2018Q3. The forecasting horizons are also defined with respect to the latest

observation.7

Because there are always several revisions to the data for a few years after

the first official figures, the forecasting performance from this exercise does

not exactly match the real forecasting performance of the model. The latest

observations of economic data usually involve some amount of uncertainty,

which is not usually accounted for explicitly in the forecasting models. This

uncertainty is not accounted for in the model developed in this thesis either,

since accounting for it would require data on the revisions not easily available.

This can be regarded as a serious shortcoming, as it causes the predictive

densities produced by the model in real time to be most probably a bit too

narrow.

The pseudo out-of-sample forecasting exercise is ran from 2012Q1 to

2018Q4 and forecasts for horizons of length one and four are produced for

every quarter. The time interval is chosen to always ensure at least ten years

of data for the estimation of the model. The algorithm for hyperparameter

choice discussed above uses periods starting from 2009Q4 for computation of

the out-of-sample forecasting errors.

As with this exercise the interest lies in the hyperparameter choice rather

than in the forecasting accuracy of different variables per se, only forecasts

regarding the GDP are compared and discussed. Focusing on only one vari-

able at the time allows for clear and simple representation and analysis of

the results. GDP is the natural choice of variable for this analysis, as it is the

most commonly forecast economic variable and usually the economic variable

of most interest. Later in the next section, the forecasting performance of

the model with respect to the other variables as well is assessed in depth.

Other feature streamlining the forecasting exercise discussed has to do

with the hyperparameters λ2 and λ3 when studying the ML approach and

the novel algorithm proposed. As discussed in the third section, for compu-

tational efficiency and ease of interpretation the hyperparameters λ2 and λ3

are fixed to λ1 × 10, as in Banbura et al. (2010). This reduces the dimen-

7i.e in the beginning of 2019Q1, h = 1 for backcasting 2018Q4 and h = 4 for forecasting
2019Q3.
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sionality of the optimization problem at hand and allows for specification of

the prior only in terms of its tightness. This is not an innocuous choice and

this might come with deterioration of the forecasting performance.

Two metrics are reported to assess the forecasting accuracy of the model

with different schemes for hyperparameter choice and with different number

of variables. The names Small, Medium and Large refer to the models of

different sizes presented in table 1.8 The two metrics reported are the Root

Mean Squared Forecasting Error (RMSE) and the so-called Log-Score. RMSE

is perhaps the most commonly used metric in the literature for assessing the

forecasting performance of a model. It measures the accuracy of the point-

estimates produced by the model, giving smaller values for models producing

smaller squared forecasting errors. Log-Score on the other hand is a metric

for evaluating the accuracy of full predictive densities produced by a model.

It is produced by averaging all the values of log-predictive marginal densities

produced by the model at the realized values. Thus, larger the value, more

accurate the predictive densities produced by the model.

To give some idea of the relative accuracy of the forecasts, results from

two naive benchmark models are reported as well. First model is the random

walk with drift. With random walk the forecast for the next period is always

the same as the observation from the last period. Random walk also happens

to be the prior of our model, if the additional dummy-priors are excluded.

Random walk with drift is merely an extension of this, with a constant time-

dependent factor that usually grows at a constant pace as the time passes.

This is sensible as GDP is not stationary, but is expected to grow in the

long run. The predictive densities for the random walk are produced by

estimating a normally distributed error term of mean zero from the data.

The other naive benchmark model is a simple univariate AR-model, with

lag length chosen according to Akaike information criterion. For the AR-

model the data is transformed to differences to obtain a stationary series

and enhance the forecasting performance.

The results of the pseudo out-of-sample forecasting exercise are presented

in table 2. In the table, there are four different BVARX-models. Sims-Zha

8Small = no exogenous variables at all and 7 variables in total, Medium = 12 variables
in total, Large = 25 variables in total.
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refers to the model in which the fixed hyperparmeter values from the lit-

erature are used, 0.2 for λ1 and 1 for λ2 and λ3. Evidently, those fixed

hyperparameters lead to a significant over-fitting and poor forecasting per-

formance for every model expect the smallest one without the exogenous

block, in which only slightly poorer results are obtained compared to the

other methods. The conditional BVARX-model developed would seem to

require much tighter priors and that the tightness of the prior should be

specified separately for every sub-model included.

The abbreviation ML stands for the ML approach to the hyperparameter

choice, and it would seem to yield comparable results to the novel algorithm

proposed, atleast for h = 1. The ML approach would not seem to suffer

too badly from the over-fitting related issues discussed above and it proves

itself as a fairly successful option for hyperparameter choice in this occasion.

Although, as expected, a closer inspection of the hyperparameters implied

reveals the prior implied by the ML approach to be slightly looser than the

prior implied by the novel algorithm.
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Large h = 1 h = 4
RMSE Log-Score RMSE Log-Score

Random Walk 0.0069 3.2588 0.0215 2.3917
AR 0.0064 3.2948 0.0205 2.3362

BVARX (Sims-Zha) 0.0083 3.2719 0.0299 1.8523
BVARX (ML) 0.0061 3.7036 0.0166 2.6418
BVARX (A1) 0.0067 3.5890 0.0171 2.5515
BVARX (A4) 0.0063 3.6477 0.0144 2.8299

Medium h = 1 h = 4
RMSE Log-Score RMSE Log-Score

Random Walk 0.0069 3.2588 0.0215 2.3917
AR 0.0064 3.2948 0.0205 2.3362

BVARX (Sims-Zha) 0.0072 3.4838 0.0202 2.4401
BVARX (ML) 0.0060 3.6836 0.0158 2.7165
BVARX (A1) 0.0054 3.7289 0.0132 2.8895
BVARX (A4) 0.0055 3.7242 0.0123 2.9298

Small h = 1 h = 4
RMSE Log-Score RMSE Log-Score

Random Walk 0.0069 3.2588 0.0215 2.3917
AR 0.0064 3.2948 0.0205 2.3362

BVARX (Sims-Zha) 0.0065 3.6112 0.0166 2.6696
BVARX (ML) 0.0062 3.6359 0.0154 2.7433
BVARX (A1) 0.0061 3.6204 0.0153 2.7191
BVARX (A4) 0.0062 3.6118 0.0129 2.8427

Table 2: The out-of-sample forecasting errors of natural logarithm of GDP
from 2011Q4 to 2018Q3 for h = 1 and 2012Q3 to 2018Q3 for h = 4, h
denoting the length of the forecasting horizon, with out-of-sample hyperpa-
rameter estimates. Smaller the root mean squared forecasting error (RMSE),
more accurate the point-estimates of the model are, and larger the Log-Score,
more accurate are the full predictive densities produced by the model. De-
scriptions of the models of different size can be found from table 1. The
univariate benchmark-models (Random Walk and AR) are the same in each
of the three tables as they are not dependent of the number of variables in-
cluded in the model. Four BVARX-models of the table differ only in how
their hyperparameters are chosen and those differences are elaborated in the
text.
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For example, in the large BVARX-model and in its fourth BVAR-model

requiring the tightest prior as all the variables are included, the optimal hy-

perparameter value λ1 implied by the ML approach hovered from around

0.045 to 0.035 (see figure 4). The slow tightening of the prior as more data

becomes available is very similar to what was observed in the Monte Carlo

exercise above. The optimal hyperparameter value implied by the algorithm

(A4) had some jumps in the beginning of the sample caused by the very

limited amount of observations9, but varied mostly between 0.02 and 0.03.

These would be very small hyperparameter values for a traditional BVAR-

model of this size10, which implies that the modified prior structure imposed

by the BVARX-model requires a fairly tight prior and further developments

in the prior formulation could yield potential improvements in forecasting

accuracy due to allowing for a looser prior. The need for a fairly tight prior

could also be explained by the relative lack of quality of the predictive vari-

ables, which could partly explain why the largest model is not able to match

the smaller ones in terms of forecasting accuracy.

In table 2, A1 stands for the novel algorithm approach in which the one

step ahead out-of-sample forecasting errors are minimized in order to choose

the hyperparameters, whereas in A4 the four steps (i.e. one year) ahead

out-of-sample forecasting errors are minimized. The performance of both

of these methods and the ML approach is very comparable for h = 1 and

no significant differences in performance become evident. Especially for A1

and ML approach this is not surprising since both of those two methods are

essentially based on the minimization of the one step ahead out-of-sample

forecasting errors. A4 on the other hand is based on the minimization of the

out-of-sample forecasting errors one year ahead and it still seems to perform

atleast as well as the other methods when h = 1. When h = 4, A4 yields

significantly better forecasting performance as the other methods for a model

of any size.

Based on this assesment the A4 seems therefore to be the best suited

9only 8 observations (2009Q4-2011Q3) used for the minimization of the out-of-sample
forecasting error for the first forecast of the sample.

10In Giannone et al. (2015) for a model of 22 variables, corresponding hyperparameter
value implied by the ML approach is approximately 0.09. However that estimate is drawn
towards a hyperprior centered at 0.2.
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Figure 4: Implied optimal hyperparameter values λ1 for the fourth sub-model
with three different methods for medium and large model from 2012Q1 to
2018Q4. Descriptions of the methods can be found in the text.

method for medium-term forecasting with the conditional BVARX-model

developed. Inspection of the implied hyperparameters reveals that the prior

implied by A4 varies less from period to period than the one implied by A1.

The superior performance of A4 may thus atleast partly be attributed to this

feature. Minimization of the four steps ahead out-of-sample forecasting error

would seem to be more robust against the misspecification of hyperparame-

ters than the one step ahead approach of A1 and ML.

Figure 4 illustrates the optimal hyperparameter values implied by the

three methods discussed, over different points in time as more data becomes

available. The hyperparameter values implied by the ML approach stay

much more stable over time since the relative amount of data available for

the method alters much less over the time interval. With the ML approach

the whole data beginning from the year 1999 can be used in a sense to

minimize the out-of-sample forecasting error. Thus, the length of the data

available for the method grows only approximately by 70 percent. With A1

and A4 the model must be estimated to produce the out-of-sample errors to

minimize, which restricts the amount of data to be used in the minimization

process to start from 2009Q4 and the length of the data available for the

method grows approximately by 500 percent over the time interval of the
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exercise.

Given this, especially the hyperparameter values implied by A4 seem to

converge surprisingly fast towards a stable perimeter to be hovered around

from approximately 2014Q2 onward. Although the values implied by the

ML approach vary less, the values decrease in a very persistent manner as

was also observed with the Monte Carlo experiment. The values from the

last period implied by A1 and A4 also naturally coincide with the values

minimizing the out-of-sample forecasting errors over the entire sample from

2011Q4 to 2018Q3. The hyperparameter values implied by the ML approach

are significantly larger at the end of the sample and can thus be deemed to

cause the model to over-fit the data, atleast based on this sample of seven

years. Therefore, the almost comparable accuracy of the ML method to the

approach with the novel algorithm seems to stem, atleast to a some extent,

from the more stable behavior of the implied hyperparameter values espe-

cially in the beginning of the sample.

Large λ1
Method Exo (M) Endo (M) Exo (Q) Endo (Q)

ML 0.121 0.158 0.185 0.035
A1 0.010 0.184 0.090 0.027
A4 0.098 0.163 0.010 0.025

Medium λ1
Method Exo (M) Endo (M) Exo (Q) Endo (Q)

ML 0.161 0.173 0.220 0.055
A1 0.505 1.000 0.083 0.032
A4 0.130 0.447 0.139 0.031

Small λ1
Method Exo (M) Endo (M) Exo (Q) Endo (Q)

ML - 0.324 - 0.231
A1 - 1.000 - 0.174
A4 - 1.000 - 0.055

Table 3: Optimal hyperparameter values at 2018Q4 implied by three different
methods.
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Table 3 presents the optimal hyperparameters at the end of the sample,

implied by three different methods. The lower and upper bounds for the

hyperparameters are set to 0.01 and 1, respectively, and the smallest model

has no exogenous variables at all and therefore possesses only two hyperpa-

rameters controlling the shrinkage. Not all the hyperparameters are of equal

importance and it is the last column of table 3 that deserves attention the

most, since it controls the shrinkage of the final sub-model including all the

variables and producing the final forecast. Focusing on the last column, it

seems that the ML method changes the most when moving from the 12 vari-

able model (medium) to the 25 variable model (large). This reflects the fact

that the ML method pursues to minimize the out-of-sample forecasting error

of every variable in the model, whereas the other two methods are specified

to be concerned only of the variable of interest. Also, since the hyperparam-

eter values implied by the algorithm (A1 and A4) are less affected by the

addition of the variables, it would seem that not all the variables added had

much impact on the predictions regarding the variable of interest.

Table 4 presents the same forecasting errors as table 2, only this time

the hyperparameter values from table 3 are used for the entire length of

the forecastin exercise. In other words, table 4 presents the out-of-sample

forecasting errors using the in-sample estimates of the hyperparameters. As

expected, the forecasts are slightly more accurate with in-sample estimates

of the hyperparameters, however the difference to the errors reported in 2

is not huge. Interestingly, now the A1 seems to produce the most accurate

forecasts for both horizons and for a model of any size. This implies that the

minimization of the one step ahead out-of-sample forecasting error instead

of the four step approach is more sensitive to the amount of data used for

estimation, but that after the hyperparameter values have converged in some

sense, the one step ahead approach becomes as valid as, or even superior to,

the four step approach.

Also, the in-sample estimates of the hyperparameters improve the relative

performance of the large model and to the same extent worsen the relative

performance of the small model. This implies that a great extent of the some

times observed relatively inferior performance of the larger BVAR-models

could in general be accounted to their greater sensitivity to the hyperparam-
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eter choice controlling the shrinkage and to the insufficient way of choosing

the hyperparameters.

Overall, the medium sized model with 12 variables seems to be out-

performing the other model specifications. According to the out-of-sample

forecasting errors with the in-sample hyperparameter estimates, both the

medium and the large model also seem to outperform the small model, which

suggests that the exogenous variables of the model are indeed useful, atleast

in forecasting the gross domestic product.

The medium sized model with the hyperparameters chosen by the novel

algorithm minimizing the one step ahead out-of-sample forecasting error of

the gross domestic product seems to be yielding more accurate forecasts than

the other models. Therefore, the medium sized model and the corresponding

hyperparameter values (A1 and ML) from table 3 are used in the next section

of the thesis, where the forecasting accuracy of the model is empirically

assessed in more depth.
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Large h = 1 h = 4
RMSE Log-Score RMSE Log-Score

Random Walk 0.0069 3.2588 0.0215 2.3917
AR 0.0064 3.2948 0.0205 2.3362

BVARX (Sims-Zha) 0.0083 3.2719 0.0299 1.8523
BVARX (ML) 0.0062 3.6625 0.0154 2.7309
BVARX (A1) 0.0058 3.7407 0.0131 2.9163
BVARX (A4) 0.0062 3.6912 0.0130 2.9097

Medium h = 1 h = 4
RMSE Log-Score RMSE Log-Score

Random Walk 0.0069 3.2588 0.0215 2.3917
AR 0.0064 3.2948 0.0205 2.3362

BVARX (Sims-Zha) 0.0072 3.4838 0.0202 2.4401
BVARX (ML) 0.0057 3.7339 0.0146 2.8026
BVARX (A1) 0.0053 3.7573 0.0115 2.9838
BVARX (A4) 0.0055 3.7374 0.0122 2.9384

Small h = 1 h = 4
RMSE Log-Score RMSE Log-Score

Random Walk 0.0069 3.2588 0.0215 2.3917
AR 0.0064 3.2948 0.0205 2.3362

BVARX (Sims-Zha) 0.0065 3.6112 0.0166 2.6696
BVARX (ML) 0.0061 3.6482 0.0153 2.7439
BVARX (A1) 0.0060 3.6326 0.0142 2.7860
BVARX (A4) 0.0062 3.6323 0.0154 2.7261

Table 4: The out-of-sample forecasting errors of natural logarithm of GDP
from 2011Q4 to 2018Q3 for h = 1 and 2012Q3 to 2018Q3 for h = 4, h de-
noting the length of the forecasting horizon, with in-sample hyperparameter
estimates. Smaller the root mean squared forecasting error (RMSE), more
accurate the point-estimates of the model are, and larger the Log-Score, more
accurate are the full predictive densities produced by the model. Descriptions
of the models of different size can be found from table 1. The univariate
benchmark-models (Random Walk and AR) are the same in each of the three
tables as they are not dependent of the number of variables included in the
model. Four BVARX-models of the table differ only in how their hyperpa-
rameters are chosen and those differences are elaborated in the text.
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6 Forecasting accuracy

In this section, the forecasting accuracy of the BVARX-model developed is

assessed empirically. The capability of the model to forecast five different

economic variables in Finland is studied. Those five variables include, gross

domestic product (GDP), exports of goods and services (Exports), imports

of goods and services (Imports), inflation and unemployment. Forecasting

horizons assessed are one-step-ahead (h = 1), one-year-ahead (h = 4) and

two-years-ahead (h = 8).

The medium sized model and two sets of hyperparameter values are in-

cluded in the assessment of this section. A1 refers to the hyperparameter

values deemed most successful in the previous section. These hyperparam-

eter values were however chosen to specifically minimize the out-of-sample

forecasting errors of the GDP forecasts while the maximum likelihood based

method pursues to minimize the out-of-sample forecasting errors of the whole

model. Thus, the hyperparameters chosen that way (ML) could outperform

the A1 values with respect to other variables than GDP. Therefore, fore-

casts produced with both sets of hyperparameters, namely A1 and ML, are

assessed (for hyperparameter values of sets A1 and ML see table 3).

For benchmarking the same naive univariate models from the previous

section are used. Namely, the univariate autoregressive model (AR) with lag

length chosen according to the Akaike information criterion and the random

walk with drift11 (Random Walk).

Table 5 presents the forecasting errors and log-score measures for the

forecasts of GDP, exports and imports. As already discussed in the previous

section, the BVARX-model seems to outperform the univariate models by

a wide margin when forecasting the GDP. With exports and imports the

performance of the nowcasts (h = 1) produced by the univariate models is

comparable to those produced by the BVARX-model.

11Drift coefficient is set to zero for stationary variables, i.e. for inflation and unemploy-
ment.
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GDP h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Random Walk 0.0069 3.2588 0.0215 2.3917 0.0370 1.8984
AR 0.0064 3.2948 0.0205 2.3362 0.0358 0.2197

BVARX (ML) 0.0057 3.7339 0.0146 2.8026 0.0163 2.5284
BVARX (A1) 0.0053 3.7573 0.0115 2.9838 0.0127 2.6464

Exports h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Random Walk 0.0303 1.8153 0.0408 1.1910 0.0701 0.8068
AR 0.0283 1.8448 0.0408 1.6925 0.0702 1.2272

BVARX (ML) 0.0338 1.9621 0.0483 1.4497 0.0542 1.0703
BVARX (A1) 0.0333 1.9897 0.0379 1.5446 0.0424 1.1629

Imports h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Random Walk 0.0285 2.1252 0.0435 1.5877 0.0672 1.1931
AR 0.0326 1.9942 0.0486 1.4053 0.0699 0.2176

BVARX (ML) 0.0316 1.4931 0.0459 1.6371 0.0594 1.3906
BVARX (A1) 0.0307 1.6208 0.0389 1.8264 0.0464 1.5741

Table 5: The accuracy of the out-of-sample forecasts for the natural logarithm
of gross domestic product (GDP), exports of goods and services (Exports) and
imports of goods and services (Imports) from 2011Q4 to 2018Q3 for h = 1,
2012Q3 to 2018Q3 for h = 4 and 2013Q3 to 2018Q3 for h = 8. Letter h
refers to the forecasting horizon and descriptions of the models are in the
text. Root mean squared forecasting error (RMSE) measures the accuracy of
the point estimates while Log-Score measures the overall performance of the
marginal predictive distribution.
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However, for longer forecasting horizons, atleast the other BVARX-model

(A1) seems to outperform the the univariate benchmark-models. The inferior

log-score measure of the exports forecasts produced by the BVARX-model

compared with the one produced by the AR-model is somewhat surprising,

since the RMSE of the BVARX-model implies much more accurate forecasts

especially for h = 8 (0.0424 against 0.0702). This is probably caused by

the sensitivity of the log-score measure for misspecification of the tails of the

predictive distribution. Normality assumption of the error terms in the model

can cause the approximately t-distributed12 predictive distribution to have

thinner tails than the true data generating process. Consequently, the near

zero probability mass further in the tails causes the occasional observations

with large deviations from the mean (or mode) to affect the mean log-score

in a disproportional manner.

Although the set A1 of hyperparameters were chosen only to minimize the

out-of-sample forecasting error of the GDP, the set still seems to outperform

the ML set of hyperparameters for other variables as well. This implies that

the minimization of the forecasting errors of only one variable could produce

sufficient hyperparameter estimates for the analysis of also other variables in

the same model.

The inflation and unemployment need to be assessed separately from the

three variables above to make the comparison to univariate models mean-

ingful. In the above pseudo out-of-sample forecasting studies in this thesis

the forecasts are assumed to be performed at the end of the respecting quar-

ter. As an example, the one-step-ahead predictions for 2018Q4 would be

established using the data available at the end of the year 2018 (i.e. now-

cast). The last data points available for GDP, exports and imports would

be from 2018Q3 and thus the comparison of the multi- and univariate fore-

casts is meaningful. However, the monthly variables (e.g. inflation and

unemployment) have shorter publication lags and at the end of the year the

BVARX-model would use the information on these variables from October

and November as well. This same monthly information regarding the vari-

ables is not however available for the univariate models which would invali-

12The predictive distribution is conditioned and is therefore not exactly t-distributed as
in the case of an unconditional BVAR-model.
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date the comparison of the models. Therefore, when assessing the forecasting

performance of the inflation and unemployment the pseudo out-of-sample

forecasting study is performed assuming that the forecasts are established at

the end of the first month of the respective quarter. This way both the multi-

and univariate models have the same information set at disposal regarding

the variable of interest. Alternatively, the univariate models could have been

specified for the monthly series and aggregated only after the forecasts had

been established. This could however affect the accuracy of the univariate

forecasts potentially unfavorably, especially with longer forecasting horizons.

Table 6 presents the results of this pseudo out-of-sample forecasting ex-

ercise. For inflation the BVARX-model seems to be outperforming the uni-

variate models by a wide margin and the A1 set of hyperparameter values

seems to yield more accurate forecasts for every forecasting horizon than the

ML set of hyperparameter values.

Inflation h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Random Walk 0.3276 -0.5656 0.8578 -1.3635 1.4344 -1.8019
AR 0.3194 -0.4110 0.9747 -1.7810 1.6440 -3.7035

BVARX (ML) 0.1498 0.4516 0.4021 -0.5313 1.1044 -1.6505
BVARX (A1) 0.1491 0.4578 0.3661 -0.4059 1.0510 -1.4966

Unemployment h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Random Walk 0.2592 -0.0818 0.6587 -1.0795 0.9346 -1.4118
AR 0.2654 -0.1085 0.7566 -3.6672 1.1408 -8.3756

BVARX (ML) 0.1704 0.3523 0.3712 -1.0526 0.8183 -2.1614
BVARX (A1) 0.1779 0.0446 0.3455 -0.9431 0.7007 -1.7195

Table 6: The accuracy of the out-of-sample forecasts for the inflation and
unemployment from 2011Q4 to 2018Q3 for h = 1, 2012Q3 to 2018Q3 for h =
4 and 2013Q3 to 2018Q3 for h = 8. Letter h refers to the forecasting horizon
and descriptions of the models are in the text. Root mean squared forecasting
error (RMSE) measures the accuracy of the point estimates while Log-Score
measures the overall performance of the marginal predictive distribution.
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For unemployment as well, the BVARX-model seems to be producing

more accurate forecasts than the univariate benchmark-models, and the ML

set of hyperparameter values slightly outperforms the A1 set for one-step-

ahead forecasts, while A1 yet again produces the most accurate forecasts for

longer forecasting horizons.

The log-score measures regarding the unemployment forecasts seem to

suffer from a fairly unstable behavior and the measure suggests a different

model for every forecasting horizon assessed. This is at odds with the RMSE

measures, which imply that the BVARX-models are clearly outperforming

the univariate models. The reason for the unstable behavior of the log-score

measures probably stems from the same issue of the sensitivity of the mea-

sure for misspecification of the tails of the predictive distribution, briefly

discussed earlier. This could imply that particularly unemployment forecast-

ing requires accounting for more probability mass in the tails of the predictive

distribution, or simply that there just happened to be more extreme values

than usual in the short sample of unemployment figures used for this study.

Overall, the medium sized BVARX-model with 12 variables and hyper-

parameters chosen according to the novel algorithm presented in the previ-

ous section seems to provide the most accurate forecasts for every variable

concerned. Not only does the multivariate BVARX-model with conditional

features and exogenous variables seem to perform remarkably better than the

univariate benchmarking models, but the proper choice of hyperparameter

values seems to provide further considerable yields over the model with less

suitable set of hyperparameter values.

The empirical assessment of this section provides evidence in favor of the

modeling choices presented in this thesis. However, due to data limitations,

the time interval of the pseudo out-of-sample forecasting exercises performed

in this thesis is fairly short13, which should be borne in mind when making

conclusions based on these results. In terms of future research, the applicabil-

ity of the novel algorithm for hyperparameter choice presented in this thesis

could also be tested against alternative approaches with different datasets.

1321 (h = 8) to 28 (h = 1) quarterly observations
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6.1 Conditional forecasts

Conditional framework of the model developed in this thesis allows for utiliz-

ing all the information from the latest statistical publications in an efficient

way, but as discussed it also allows for conditioning of the forecasts on pre-

dictive densities. By conditioning the forecast of one variable on predictions

regarding the evolution of other variables, the forecast may be enhanced, but

only if the additional information acquired is relevant. The relevance of this

information depends on whether (i) the changes in the variables to be con-

ditioned are associated with changes in the variable to be forecast, directly

or indirectly, according to the model, and whether (ii) the predictions to be

conditioned on differ from those produced by the unconditional model.

In this subsection, the accuracy of the forecasts conditioned on the in-

formation on future values of the exogenous variables is compared to the

forecasts produced in the previous section. Specifically, the set A1 of hyper-

parameter values and the medium sized model are used and the variables of

interest are those from table 5 (i.e GDP, exports and imports). The forecast-

ing exercise is performed as the one reported in table 5, but this time the

forecaster is assumed to have a perfect foresight on the future values of the

exogenous variables, up to third quarter of 2018 of course, which is the last

observation in the dataset of quarterly frequency. First, the perfect foresight

was assumed on only the future values of trade market GDP (Conditional)

and then on all the exogenous variables (Conditional - all). Table 7 presents

the results of this exercise.

The conditioning of the forecasts on future values of exogenous variables

did not seem to yield any significant improvements to the forecasts produced

without this information. Therefore, it can be concluded that conditioning of

the forecasts on predictions of future values of exogenous variables would not

have improved the forecasts during the time interval of our exercise either.

However, the number of observations used in the exercise is very small and the

subtle differences in forecasting performance, if any, might become evident

with a different dataset or with more data.

As the medium sized model studied was previously observed to produce

more accurate GDP forecasts than the otherwise identical smaller model with-
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GDP h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Unconditional 0.0053 3.7573 0.0115 2.9838 0.0127 2.6464
Conditional 0.0054 3.7516 0.0116 2.9718 0.0127 2.6510

Conditional - all 0.0052 3.7583 0.0117 2.9703 0.0125 2.6558

Exports h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Unconditional 0.0333 1.9897 0.0379 1.5446 0.0424 1.1629
Conditional 0.0336 1.9923 0.0401 1.5321 0.0440 1.1486

Conditional - all 0.0332 1.9826 0.0380 1.5467 0.0394 1.1782

Imports h = 1 h = 4 h = 8
RMSE Log-Score RMSE Log-Score RMSE Log-Score

Unconditional 0.0307 1.6208 0.0389 1.8264 0.0464 1.5741
Conditional 0.0308 1.6128 0.0392 1.8163 0.0471 1.5750

Conditional - all 0.0310 1.5451 0.0395 1.8084 0.0467 1.5817

Table 7: The accuracy of the conditional and unconditional out-of-sample
forecasts for the natural logarithm of gross domestic product (GDP), ex-
ports of goods and services (Exports) and imports of goods and services (Im-
ports) from 2011Q4 to 2018Q3 for h = 1, 2012Q3 to 2018Q3 for h = 4 and
2013Q3 to 2018Q3 for h = 8. ’Unconditional’ refers to the forecasts for which
no information regarding the future values of exogenous variables was used,
whereas ’Conditional’ refers to the forecasts where information on the future
values of trade market GDP was used. In ’Conditional - all’ information on
future values of all the exogenous variables was used. Letter h refers to the
forecasting horizon.

out the exogenous variables, the exogenous variables should be directly or

indirectly associated with changes in the GDP. Therefore, the first relevance-

condition of the information conditioned on (laid out above) should be satis-

fied. Hence, the results imply that the second relevance-condition must have

been violated. The realized future values of the exogenous variables did not

seem to differ enough from those predicted by the model. It is possible, that

conditioning on future values significantly improves the forecast only in a

case of highly surprising information. This would be in line with the results

in Bloor & Matheson (2011) where they found conditioning on the sharp
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and surprising rise in commodity prices over the year 2007 to significantly

improve the forecasts on those periods.

However, conditioning on some variables could turn out to be more useful

than the others. Many economic variables can be forecast to a sufficient

degree with reasonably simple models and when they cannot, the changes are

often fundamentally unpredictable. Conditioning on future values of these

kind of variables may not yield significant improvements to the forecasts as

no relevant information, that would not already be included in the model,

on future values of these variables is usually available.

On the other hand, there are some variables for which there may be plenty

information available on the expectations of their future values, that cannot

directly be derived from the past data. For example, the policy rates con-

trolled by the central banks have significant effects on the economy and the

central banks seek to communicate the future policy rate changes as accu-

rately as possible. This kind of information could be conveniently included

in the forecast with the conditioning framework presented in this thesis. Fu-

ture values of policy rates, or any other interest rates for that matter, should

also usually be restricted to account for any possible lower bounds14 on these

rates, which makes the addition of the conditioning framework presented to

any model including policy rates even more appealing. However, the assess-

ment of the applicability of this conditioning framework to the models with

policy rates falls beyond the scope of this thesis and is left for future research.

No strong conclusions regarding the usefulness of the conditioning on

future predictions to acquire more accurate forecasts can be made on the

basis of the results presented in this section.

7 Discussion

Although in the previous section, the conditioning on the future values of

exogenous variables was not found to yield significant improvements to the

forecasts of endogenous variables, the conditioning framework studied in this

thesis offers several possibilities for future research. The results obtained

14e.g. zero (or near zero) lower bound of policy rates.

57



in this thesis were not highly surprising, since the possible improvements

to the forecasting accuracy were expected to be subtle and the number of

observations in the assessment of this thesis is fairly small. Similar forecasting

exercise could be repeated for a number of different datasets to attain better

understanding of the usefulness of the conditioning approach.

However, the conditioning framework studied allows for a great number

of versatile applications beyond the studied conditioning on future values of

exogenous variables. As an example, the conditioning framework could be

used to impose restrictions to ensure the consistence of forecasts with some

known or observed properties of economic variables, such as lower bounds of

policy rates and accounting identities.

Another, more unorthodox application of the conditioning framework has

to do with the predictive densities of forecasts based on subjective consid-

erations. As official forecast published by different economic institutes are

usually based on subjective considerations, it is difficult to produce sensi-

ble estimates of uncertainty around the published point-estimates. With the

model developed in this thesis, the mean of the posterior predictive distri-

bution could be restricted to follow a pre-specified path (i.e. the official

point-estimates based on subjective considerations), while not restricting the

estimation of higher moments of the predictive distribution. In other words,

with the above portrayed approach it is possible to produce full predictive

densities for the forecasts based on subjective considerations.

Predictive densities produced this way should however be dealt with cau-

tion, as the interpretation of these densities as true predictive densities of

the forecasts based on subjective considerations would require reasonably

strong assumptions. For one, given the forecasts obtained with the help of

subjective considerations were to be more accurate on average than the ones

produced by the data-driven model, the predictive densities produced by the

model would be incorrigibly too wide. However, if the data-driven model

can be expected on average to produce approximately as accurate predic-

tions, then the predictive densities obtained this way could very well be used

to communicate the uncertainty revolving the forecast, or even to answer

more subtle questions than what the point-estimates are capable of, such as

what is the probability of the economic growth in Finland to exceed a certain
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Figure 5: Fan plot of a forecast for annual growth rate of the Finnish econ-
omy produced by the BVARX model, that is restricted to produce the same
point-estimates as the official subjectively adjusted forecast published by the
Research Institute of the Finnish Economy (Etla). The outermost lines of the
fan portray the 90 percent credible interval of the forecast, while the inner-
most area covers 20 percent of the probability mass of the posterior predictive
distribution.

growth rate on a given period?.

In addition to the conditional forecasting framework, another feature

thoroughly assessed in this thesis is the hyperparameter choice. The hyper-

parameter choice is of the essence in Bayesian modelling and the main driver

of the forecasting accuracy of BVAR forecasting models. However, the issue

has been left with not enough attention in many of the previous studies con-

cerning BVAR modelling, which may have caused the forecasting accuracy of

BVAR models to have been underestimated. For instance, the seminal paper

of Banbura et al. (2010) on large BVAR models is often used as a reference

when comparing the forecasting performance of BVAR and dynamic factor
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models. However, in Banbura et al. (2010) the hyperparameters are chosen

in an extremely non-rigorous way, by fixing the in-sample fit of the model

to that of a model with three variables. Later Giannone et al. (2015) have

shown the hyperparameters chosen that way to perform in a very subopti-

mal manner. The approach for hyperparameter choice presented in Giannone

et al. (2015) can arguably be reckoned as the state-of-the-art approach, yet

as shown in this thesis, the approach has its deficiencies as well. The novel,

reasonably simple, approach for hyperparameter choice presented in the fifth

section was shown to generate sizeable improvements to the forecasting ac-

curacy of the model compared to any other approach for hyperparameter

choice. This result suggests that there may be plenty of space to improve the

performance of BVAR models in general, via more careful selection of the

hyperparameter values.

Although the proposed novel approach resulted in the most accurate fore-

casts, the marginal likelihood based approach for hyperparameter choice was

also observed to lead to a reasonable forecasting accuracy and the compact

expression for the unnormalized marginal likelihood function derived in the

Appendix B can be used conveniently for hyperparameter choice. However,

these hyperparameter estimates can be expected to lead to a over-fitting of

some degree and the addition of a hyperprior distribution to drag the pa-

rameter estimates towards the prior is recommended.

Due to considerable uncertainty in medium term economic forecasting,

simple univariate autoregressive and random walk models have often been

shown to produce forecasts on a par with, or even beyond, the forecasting

accuracy of the more complex models. However, with a suitable prior and

optimally chosen hyperparameter values, a BVAR model should in principle

always be able to produce forecasts at least as accurate as the simpler model.

Model combination point-of-view may be used to illuminate the argument,

since a BVAR model can be constructed as a combination of a simpler model

(e.g. random walk prior) and the underlying VAR model. Therefore, with

optimally chosen hyperparameter values, the simpler model should match

the performance of the BVAR model only when the optimal hyperparameter

values would shrink the variance of the prior distribution to zero. The empir-

ical assessment of the fifth and sixth section also suggest that the predictive
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densities produced by the BVARX model are far more accurate than the ones

produced by the univariate benchmark models.

All things considered, the BVARX forecasting model developed in this

thesis appears to be a highly suitable choice for medium term forecasting of

a small open economy. Further improvements to the model could include

non-fixed hyperparameter values λ2 and λ3 controlling the strength of the

additional priors (i.e. 10× λ1 6= λ2 6= λ3) and the addition and conditioning

of policy rates as discussed above.

In terms of future research, the possibilities of conditioning on future

values of predictive variables could be studied further, since no strong con-

clusions regarding the matter can be drawn from the very limited empirical

assessment of this thesis. Another interesting topic left for future research is

the proper formulation of a hyperprior distribution, when the hyperparam-

eters of the model are chosen according to the marginal likelihood function.

With a proper formulation of the hyperprior distribution, the marginal like-

lihood function could possibly be used to choose the hyperparameters more

efficiently than with any other method, and in a computationally highly fea-

sible manner.

8 Conclusions

In this thesis, a conditional BVARX forecasting model for short and medium

term forecasting of small open economies is developed. The proposed model

offers a framework to deal with several practical issues of data-driven eco-

nomic forecasting. The conditioning framework of the model (i) allows for

efficient incorporation of time series of different frequencies, (ii) provides a

way to deal with the so-called ragged edge of the multivariate time series data

by conditioning the forecasts on the latest observations and (iii) allows for

imposing versatile restrictions on the forecasts by conditioning on marginal

predictive densities, or linear combinations of them, of any variable in the

model. The model is also especially well suited for modelling small open

economies as it allows for (iv) imposing exogeneity on the global economic

variables.

Finally, as the most important single feature of the model affecting the
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forecasting accuracy, (v) a novel approach for hyperparameter choice is pro-

posed and shown to lead to a more accurate forecasts than any of the alterna-

tive approaches tested, when forecasting five economic variables in Finland

from the last quarter of 2011 to the third of 2018. All the features of the

model should be easily generalizable for a wide range of BVAR models as

a solution for many issues of practical importance, providing more accurate

forecasts.

The marginal likelihood based approach for the hyperparameter choice

of a BVAR model is also shown to be prone to cause the model to over-fit

the data, if the hyperprior distribution is not carefully selected. The proper

formulation of the hyperprior distribution is however left for future research.

The accuracy of the model is assessed via pseudo out-of-sample forecast-

ing exercises. The model is shown to outperform the univariate benchmark

models by a wide margin for all the five economic variables tested. All things

considered, the model developed in this thesis provides practical and effec-

tive data-driven tools for economic forecasting and could be used by economic

forecasters from nowcasting to medium term forecasting either independently

or collectively with other models and subjective considerations.
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Appendices

A Data

Quarterly variables (1999Q1 - 2018Q3)
Name Exogenous Pub. lag (quarters)
Gross domestic product (B1GMH) 1
Private consumption expenditure (P31S14+S15) 1
Public consumption expenditure (P3S13) 1
Gross fixed capital formation, res. buildings (P51N111) 1
Exports of goods (P61) 1
Exports of services (P62) 1
Imports of goods (P71) 1
Imports of services (P72) 1
Gross fixed capital formation, exc. res. buildings (P51S1-P51N111) 1
Trade market GDP x 1

Monthly variables (1999M01 - 2018M09)
Variable Exogenous Pub. lag (months)
Employment rate 1
Unemployment rate 1
Inflation 1
Consumer confidence indicator 1
Industrial confidence indicator 1
Exports of goods according to custom authorities 3
Imports of goods according to custom authorities 3
Building permits 3
USD to EUR exchange rate x 1
Crude Oil Spot Price (BFOE) x 1
Euribor (3 months) x 1
Economic sentiment indicator (EU) x 1
Consumer price index (EU) x 1
Import price index x 2
Export price index x 2

Table 8: Publication lags (Pub. lag) refer to assumptions used in the pseudo out-of-sample
forecasting exercises. For example, if a monthly figures for a variable are published less
than a month after the end of the respective month, the publication lag is set to one. For
some variables (e.g. exchange rates) there could be real time information available and the
publication lag of those variables could therefore be set to zero. However in this thesis those
variables are treated as if they were available not before the beginning of the subsequent
month.
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B Marginal likelihood function

This appendix derives a compact analytical expression for the unnormalized

marginal likelihood function (ML) of a BVAR model with the prior imposed

solely through dummy observations (e.g. large BVAR models). The derived

expression can be used conveniently for hyperparameter choice.

If the entire prior of a BVAR model is imposed via dummy observations,

one can obtain the ML directly by integrating an expression equivalent to the

likelihood function of a multivariate normal model (i.e. the underlying VAR

model). Conditioning on the initial p observations of the sample (standard

assumption), the likelihood function can be written as

p(Y | A,Σ) ∝
T−p∏
i=1

[
| Σ |−

1
2 exp

{
−1

2
(yi − xia)ᵀΣ−1(yi − xia)

}]
(B.1)

=| Σ |−
T−p
2 exp

{
−1

2

T−p∑
i=1

(yi − xia)ᵀΣ−1(yi − xia)

}

=| Σ |−
T−p
2 exp

{
−1

2
tr
[
(Y −XA)ᵀ(Y −XA)Σ−1

]}
,

where A and Σ are the coefficient matrices, lower-case symbols without

subscripts represent the vectorized versions of the upper-case symbols, i.e.

vec(A) = a and tr denotes the trace-operator. By completing the square one

can write the term within the trace operator as

(Y −XA)ᵀ(Y −XA)Σ−1 =
[
(A− Â)ᵀXᵀX(A− Â) + Ŝ

]
Σ−1. (B.2)

The equation B.2 and the properties of the trace-operator and Kronecker

product yield the following expression for the unnormalized likelihood func-

tion:
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p(Y | A,Σ) ∝ | Σ |−
T−p
2 exp

{
−1

2
(a− â)ᵀ(Σ−1 ⊗XᵀX)(a− â)

}
(B.3)

× exp

{
−1

2
tr(ŜΣ−1)

}
,

where

â = vec((XᵀX)−1XᵀY )

Ŝ = (Y −XÂ)ᵀ(Y −XÂ).

The unnormalized posterior distribution of a BVAR model with a perfectly

flat prior is obtained as a product of an arbitrary constant prior and the

likelihood function derived above. This unnormalized posterior distribution

is denoted as

p(A,Σ | Y )flat ∝ | Σ |−
T−p
2 exp

{
−1

2
(a− â)ᵀ(Σ−1 ⊗XᵀX)(a− â)

}

× exp

{
−1

2
tr(ŜΣ−1)

}
, (B.4)

From here on, it becomes straight forward to integrate outA and Σ. Starting

from the normally distributed A one obtains∫
p(A,Σ | Y )flat dA ∝ | Σ |−

T−p
2 | Σ−1 ⊗XᵀX |−

1
2 (B.5)

× exp

{
−1

2
tr(ŜΣ−1)

}
=| Σ |−

T−p−k
2 |XᵀX |−

m
2 exp

{
−1

2
tr(ŜΣ−1)

}
.

Next, Σ can be integrated out (as it follows an Inverse-Wishart distribution)

to obtain the unnormalized marginal likelihood function as∫
p(Σ | Y )flat dΣ = p(Y )flat ∝ | Ŝ |−

v
2 |XᵀX |−

m
2 , (B.6)

where v = T −p−k−m−1.15. Finally, as noted in the appendix of Banbura

15T = number of total observations, p = number of lags in the model and the number
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et al. (2010), based on properties of conditional probabilities, the marginal

likelihood function of a BVAR model, for the part of the data not containing

dummy observations, can be written as a fraction of the marginal likelihood

function of every observation and only dummy observations. Hence, one can

write

p(Y ) =
p(Y ∗)

flat

p(Y d)flat
, (B.7)

where Y ∗ is the data set containing both the observations of interest and

the dummy observations and Y d includes only the dummy observations (i.e.

the prior). Therefore, denoting the vector of hyperparameters with δ, the

unnormalized marginal likelihood function of a BVAR model with the prior

imposed solely through dummy observations can be written as

p (Y | δ) ∝ | Ŝd |
vd
2 |Xᵀ

dXd |
m
2

| Ŝ∗ |
v∗
2 |Xᵀ

∗X∗ |
m
2

. (B.8)

of initial observations to be conditioned on, k = number of parameters in an equation (i.e
k = mp + 1), m = number of variables in the model.
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