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This thesis provides an analysis of Growth Optimal Portfolio (GOP) in discrete time. Growth

Optimal Portfolio is a portfolio optimization method that aims to maximize expected long-term

growth. One of the main properties of GOP is that, as time horizon increases, it outperforms all

other trading strategies almost surely. Therefore, when compared with the other common methods

of portfolio construction, GOP performs well in the long-term but might provide riskier allocations

in the short-term.

The �rst half of the thesis considers GOP from a theoretical perspective. Connections to the other

concepts (numeraire portfolio, arbitrage freedom) are examined and derivations of optimal properties

are given. Several examples where GOP has explicit solutions are provided and su�ciency and

necessity conditions for growth optimality are derived.

Yet, the main focus of this thesis is on the practical aspects of GOP construction. The iterative

algorithm for �nding GOP weights in the case of independently log-normally distributed growth

rates of underlying assets is proposed. Following that, the algorithm is extended to the case with

non-diagonal covariance structure and the case with the presence of a risk-free asset on the market.

Finally, it is shown how GOP can be implemented as a trading strategy on the market when

underlying assets are modelled by ARMA or VAR models. The simulations with assets from the

real market are provided for the time period 2014-2019.

Overall, a practical step-by-step procedure for constructing GOP strategies with data from the real

market is developed. Given the simplicity of the procedure and appealing properties of GOP, it can

be used in practice as well as other common models such as Markowitz or Black-Litterman model

for constructing portfolios.
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1. Introduction

1.1 The history of GOP

It is generally believed that Growth Optimal Portfolio concept was founded by Kelly in
his 1956 paper "A New Interpretation of Information Rate" [1], although he considered
gambling and did not name his strategy as growth optimal. His main result derived from
information theory was that there exists an optimal gambling strategy that accumulates
more wealth than any other strategy with probability one. In modern terms, he indeed
presented Growth Optimal Portfolio for the class of gambling games.

From the other perspective, GOP's main idea is to maximize the average geometric
return of the strategy and this idea was mentioned in di�erent sources earlier. For example,
Christensen (2012) [3] refers to William's (1936) paper [2] where it was stated that
speculators should focus on the geometric mean instead of arithmetic due to compounding.
We examine the optimality properties of GOP, and in particular long-term growth in
Section 2.2.

Finally, we can consider the Growth Optimal Portfolio as a particular case of expected
utility maximization. Namely, to obtain GOP one can choose logarithm utility function
for the future wealth and then use the usual utility maximization framework. The utility
theory has deep roots in the history, conventional wisdom holds that it starts from the
solution to the famous St. Petersburg gambling paradox that was posed by Nicolas
Bernoulli and resolved by Daniel Bernoulli in the 18th century. The logarithm function is
commonly used in the utility theory since it is one of the simplest examples of the analytic
function that has desired growth and convexity properties.

The GOP discovery was motivated by its appealing growth performance in the long
run. However, recent research mainly concentrates on the other aspect of GOP, to wit,
its numeraire property. The fact that prices divided by GOP are supermartingales with
respect to original probability measure was �rstly mentioned by Breiman (1960) [4] and
recently was intensively studied by Platen [5], [8], [11]. In Section 2.1 of this thesis, we
show that Numeraire Portfolio and GOP are the same concepts.

According to Christensen [3], calculation of GOP weights is generally very di�cult
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in discrete time. Thus, the main focus of this thesis is on the practical side of GOP
construction in discrete time. In chapter Chapter 3 we discuss the di�culties related to the
optimization problem of GOP, derive necessary and su�cient conditions and show several
examples where GOP weights have closed form solution. Following that, in Chapter 4
we consider GOP in the case when growth ratios of underlying assets are log-normally
distributed. In Section 4.3 we propose an iterative algorithm for �nding GOP's weights,
then improve it by variance reduction methods and examine its convergence in Sections
4.4, 4.5. To apply this algorithm on the real market, it is needed to capture the dynamics
of underlying assets. For these purposes, we use simple time-series models ARMA and
VAR. We show how GOP's optimization problem can be adapted to the time-series model
of general form in Section 4.2. Finally, in Chapter 5 we �t ARMA and VAR models for
selected assets from the real market, simulate the returns of GOP over 2014-2019 time
period and discuss the observed properties of GOP.

1.2 Market model and de�nitions

Let's consider a multi-period discrete market model. There are N + 1 primary securities
where the �rst one is a risk-free bond and we assume that transactions are allowed only
at times t ∈ {0, 1, ..., T}, T ∈ N ∪∞. We denote the price of security i at time t as
St,i and the price vector St = (St,0,St,1, ...,St,N). At each time t, all agents know the
full price history (S0, ..,St) and can make their decisions based on this information. We
assume that at time 0 prices are known and deterministic. Mathematically, we can model
this information by the sequence of nested sigma algebras Ft = σ(S0,S1, ...,St) called
�ltration

F0 ⊂ F1 ⊂ ... ⊂ FT ,

F = (F0,F1, ...,FT ).

Thus, we represent the market by the stochastic �eld (Ω,F,P) where all random
variables are de�ned.

Remark 1.1. Securities on the market can generate interest, dividends and other cash
�ows. Therefore, for rigorous analysis, we have to consider the cumulative price indices
that represent a strategy of buying one security and reinvesting all generated cash �ow in
that security. However, sometimes we can avoid it and use pure prices of securities. For
example, an investor can assume that market prices do not incorporate the information
regarding other cash �ows or those cash �ows are negligible like in the case of red-hot
growth stocks. For simplicity, we will provide an analysis for security prices but the same
theoretical framework can be used for cumulative price indices.
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Assumption 1.2.1. St,i > 0 for each t ∈ T and i ∈ 0, N 1 almost surely.

Let's denote for convenience T = T ∈ 0, T , where T ∈ N∪∞. Using Assumption 1.2.1
we can introduce the notion of growth ratio.

De�nition 1.2.1 (Growth ratio). The growth ratio ht,i of security i ∈ 0, N at time t ∈ T
is de�ned as

ht,i(ω) =

{
St,i(ω)

St−1,i(ω)
, when St−1,i(ω) > 0

0, otherwise
.

Remark 1.2. Growth ratio ht,i is adapted to �ltration F since St is an adapted process.

Remark 1.3. Note that ht,i correspond to the usual return rate as ht,i = 1 + rt,i

We also need to induce some natural restrictions on the growth ratio. Namely, we
assume that one-period growth of each security is �nite and there is one risk-neutral
security that allows us to construct portfolios with strictly positive growth ratios.

Assumption 1.2.2. We assume that

1. ht,i is almost surely �nite. For all t ∈ T and i ∈ 0, N : P(ht,i <∞) = 1,

2. ∀t ∈ T : P(ht,0 > 0) = 1 i.e. return of risk-neutral bond is positive almost surely.

Remark 1.4. Combining assumptions 1.2.1 and 1.2.2 we get that ∀t ∈ T : St,0 > 0.

Investor acts on the market by buying or selling �nancial instruments. Therefore, at
each time step, we can characterize his or her decision by the vector where each component
represents the number of securities in a positive (long) or negative (short) position. The
vector represents the allocation of investor's wealth and we say that an investor holds
a portfolio. Obviously, gross value and nominal growth of each portfolio depend on the
investor's initial capital. However, the growth ratio of the portfolio depends only on the
proportions invested in the securities as we will show in Derivation 1.9.

De�nition 1.2.2 (Portfolio and Portfolio weights). Let's consider an investor who at
time t ∈ T has overall wealth Wt. The proportion of wealth invested in security i at that
time is

wt,i =
capital invested in security i at time t

Wt

.

Note that investment decisions are made given only the past information. Since St is
an adapted process, we have wt,i ∈ Ft−1. As in the previous notation, we denote wt =
(wt,0, . . . , wt,N). The portfolio V is a combination of initial wealth W0 and sequence of
vectors wt with corresponding invested portions

(1.5) V = {(W0, w0, ..., wT ) | W0 ∈ R+ and wt ∈ Ft−1}.
1We use the following notation K,N = {K,K + 1, ..., N − 1, N}.
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Remark 1.6. For convenience, we will mark the initial wealth or weights that belong to
portfolio V by a superscript i.e. W V

0 or wVt,i.

Let V be a portfolio of some investor, so at time t ∈ T the proportions vector is wt
and the value is WV

t . By De�nition 1.2.2, we can write

(1.7) WV
t =

N∑
i=0

wt,iSt,i.

We restrict our analysis to self-�nancing portfolios i.e portfolios where the value of
the portfolio varies only due to changes in primary securities. In other words, we assume
that investors do not withdraw or add any cash to their investment accounts.

Assumption 1.2.3 (Self-�nancing property). At any time point t ∈ T \ {0} an investor

can only use the wealth that is generated by his or her portfolio in the previous period t−1

(1.8)
N∑
i=0

wt,iSt,i =
N∑
i=0

wt−1,iSt,i, for all t ∈ T \ 0.

Let's now compute the growth ratio of portfolio V at time t ∈ N

hVt =

∑N
i=0w

V
t,i · St,i∑N

i=0w
V
t−1,i · St−1,i

=
N∑
i=0

wVt−1,i · St−1,i∑N
i=0w

V
t−1,i · St−1,i

· St,i
St−1,i

=(1.9)

=
N∑
i=0

wVt−1,i ·
St,i
St−1,i

=
N∑
i=0

wVt−1,i · ht,i.2

In the following de�nitions we will have the logarithmic function applied to the growth
ratio, thus we can only consider allocations that lead to positive growth ratios.

De�nition 1.2.3 (Admissible portfolio). We call a portfolio V admissible, if it is of the
form (1.5) and for all t ∈ T we have hVt+1 > 0.

De�nition 1.2.4 (Set of strictly positive portfolios). The set of all admissible portfolios
of the form (1.5) is called the set of strictly positive portfolios

V = {V is admissible}.
2Note that sometimes we use · to ease the reading of formulas, by this symbol we denote usual scalar

multiplication.
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Remark 1.10. Note that in the most of realistic scenarios the set V contains only non-
negative weights. For example, whenever we allow unbounded prices and there are no
fully correlated assets, weights must be non-negative, for details see Section 4.1. Which
means that the initial wealth and all components of the predictable portions process are
positive. However, there are some toy examples when we can allow negative weights like
markets with �nite probability space Ω.

On the set of strictly positive portfolios, we can de�ne one of the central concepts of
the growth optimal portfolio theory - growth rate gVt .

De�nition 1.2.5 (Growth rate). At time t ∈ T\T , the growth rate of portfolio V ∈ V is

gVt = E(log
(
hVt+1

)
|Ft).

Given the notion of growth rate we can de�ne the optimal growth rate.

De�nition 1.2.6 (Optimal growth rate). At time t ∈ T the optimal growth rate is

g∗t (ω) = sup
V ∈V

gVt (ω), for all ω ∈ Ω.

We again narrow down our analysis and try to exclude extreme cases, therefore we
have another assumption

Assumption 1.2.4. The growth rate on the market is �nite

∀t ∈ T : g∗t <∞.

almost surely.

Now we can de�ne an optimal portfolio in our framework. This corresponds to the
choice of investor's utility function, i.e. how he or she evaluates returns of his or her
portfolio. In our case, we postulate that the growth optimal portfolio coincides with a
portfolio with a locally growth optimal rate.

De�nition 1.2.7 (Growth optimal portfolio - GOP). We call a portfolio V ∗ ∈ V 3 as
growth optimal if

(1.11) WV ∗

0 = 1,

(1.12) gV
∗

t = g∗t ,∀t ∈ T,

and for any other portfolio Ṽ ∈ V

(1.13) E

(
hṼt+1

hV
∗

t+1

|Ft

)
<∞,∀t ∈ T.

3From here and below we will use star superscript ∗ to demonstrate that variable is associated with

GOP.
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The �rst two conditions are natural, they de�ne the scale of the portfolio and its
main property. The latter condition is quite arti�cial and needed for technical reasons.
According to Buhmann and Platen, this condition is satis�ed in the most common �nancial
models, see [5].

Remark 1.14 (On the construction of GOP on the multi-period market). Note that
De�nition 1.2.7 involves a sequence of optimization problems, where at each step we
identify new weights of the portfolio. By Self-�nancing Property 1.8 the wealth at a
corresponding time step is reallocated according to new weights.

Our �nal assumption for the GOP framework is that this portfolio actually exists on
the market.

Assumption 1.2.5. There exist a portfolio V ∈ V that is growth optimal in the sense of

De�nition 1.2.2.

For the readers who want to understand to which allocations GOP leads in practice,
we recommend to go directly to Chapter 3. Examples where GOP has a closed form
solution can be found in Sections 3.3, 3.4, 3.5.
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2. Growth Optimal Portfolio properties

2.1 Growth Optimal Portfolio as Numeraire portfolio

In this section, we establish the theory that connects GOP to Numeraire portfolio. It turns
out that with our assumptions these di�erent notions appear to be the same concept. Let's
start with the de�nition of Numeraire portfolio.

De�nition 2.1.1 (Numeraire portfolio). The portfolio V N satisfying De�nition 1.2.2 is
called Numeraire if for any portfolio V its value process WV

t benchmarked by WV N

t is a
supermartingale

WV
t

WV N
t

≥ E
(
WV

t+1

WV N
t+1

|Ft
)
.

Intuitively we can think of Numeraire as a best locally performing portfolio. Imagine
that you invested the same capital in portfolio V and V N , then according to the De�nition
2.1.1 we expect that the value of portfolio V will be smaller compared to the V N given
the available information.

One simple example of the Numeraire portfolio is a portfolio that contains only riskless
asset on the arbitrage-free market where risk-neutral martingale measure corresponds to
the real-world probability measure. In this case, the benchmarked price process is a
martingale and, therefore, it's a supermartingale so the condition in 2.1.1 is satis�ed.

For the following proofs, it is convenient to introduce interpolated portfolio between
GOP and some portfolio V ∈ V.

De�nition 2.1.2 (Interpolated portfolio). Let θ ∈ (0, 1) and V ∈ V such that W V
0 = 1.

Then, the weights of interpolated portfolio V θ,V,∗ at time point t ∈ T are

wV
θ,V,∗

t = θ · wVt + (1− θ) · wV ∗

t .

Since the initial wealth is the same, we have similar equation for the wealth at time
t ∈ T
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(2.1) Wθ,V,V ∗

t = θ ·WV
t + (1− θ) ·WV ∗

t .

Then we can de�ne the derivative of GOP in the direction to the portfolio V as follows.

De�nition 2.1.3.
∂gθ,V,V

∗

t

∂θ

∣∣
θ=+0

= lim
θ→+0

gθ,V,V
∗ − gV

∗
t

θ
.

Remark 2.2. Note that by Optimal Property of GOP (1.12) we must have

∂gθ,V,V
∗

t

∂θ

∣∣
θ=+0

≤ 0.

The next theorem will present a property of GOP portfolio that will help us to link GOP
with Numeraire portfolio.

Theorem 2.1.1. For any portfolio V ∈ V we have

∂gθ,V,V
∗

t

∂θ

∣∣
θ=+0

= E(
hVt+1

hV
∗

t+1

|Ft)− 1.

Proof. Using the concavity of the logarithm function we obtain the following inequality

(2.3) ∀x ∈ (0,∞) : log(x) ≤ x− 1.

At x = 0 the function f(x) = x is tangent to log(1 + x)

log(1 + x)
∣∣
x=0

= x
∣∣
x=0

= 0,

d log(1 + x)

dx

∣∣
x=0

=
dx

dx

∣∣
x=0

= 1.

Since f(x) = x is linear and logarithm is concave (d2 log(1+x)
dx2

< 0) we indeed get (2.3).

For �xed θ ∈ (0, 1
2
), V ∈ V and t ∈ T let's consider the expression Gθ,V,V ∗

t+1 :=

1
θ

log

(
hθ,V,V

∗
t+1

hV
∗

t+1

)
.

Using Inequality (2.3)

Gθ,V,V ∗

t+1 =
1

θ
log

(
hθ,V,V

∗

t+1

hV
∗

t+1

)
≤ 1

θ
(
hθ,V,V

∗

t+1

ht+1V ∗
− 1)
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=
1

θ
(
(1− θ)hV ∗

t+1 + θhVt+1 − hV
∗

t+1

hV
∗

t+1

) =
hVt+1

hV
∗

t+1

− 1.

and by properties of the logarithm and inequality (2.3)

Gθ,V,V ∗

t+1 = −1

θ
log

(
hV

∗
t+1

hθ,V,V
∗

t+1

)
≥ −1

θ

(
ht+1V

∗

hθ,V,V
∗

t+1

− 1

)

= −1

θ

(
hV

∗
t+1 − (1− θ)hV ∗

t+1 − θhVt+1

hθ,V,V
∗

t+1

)
=

hVt+1 − hV
∗

t+1

hθ,V,V
∗

t+1

.

If hVt+1 − hV
∗

t+1 > 0, then Gθ,V,V ∗

t+1 > 0 because interpolated portfolio belongs to the set
of strictly positive portfolios.

If hVt+1 − hV
∗

t+1 < 0, then

Gθ,V,V ∗

t+1 ≥ −
hV

∗
t+1

hθ,V,V
∗

t+1

= − 1

1− θ + θ
hVt+1

hV
∗

t+1

≥ − 1

1− θ
≥ −2.

Summarizing, we get

−2 ≤ Gθ,V,V ∗

t+1 ≤
hVt+1

hV
∗

t+1

− 1.

Now, using Assumpion 1.13 and De�nition 2.1, we can apply the Dominated
Convergence Theorem for Conditional Expectation on Gθ,V,V ∗

t+1 to get

∂gθ,V,V
∗

t

∂θ

∣∣
θ=+0

= lim
θ→+0

E
(
Gθ,V,V ∗

t+1 |Ft
)

= E
(

lim
θ→+0

Gθ,V,V ∗

t+1 |Ft
)

= E(
∂

∂θ
log

(
hθ,V,V

∗

t+1

hV
∗

t+1

)∣∣∣
θ=0
|Ft) = E

(
hVt+1

hV
∗

t+1

|Ft
)
− 1.

Corollary 2.4. A portfolio V ∗ ∈ V such that WV ∗
t0

= 1 is growth optimal if and only if,

for any V ∈ V

(2.5) E
(hVt+1

hV
∗

t+1

|Ft
)
≤ 1.
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Proof. Suppose that V ∗ ∈ V is GOP. Then, Inequality (2.5) holds by Remark 2.2 and
Theorem 2.1.1.
Now assume that Inequality (2.5) holds and consider any V ∈ V. Then,

gVt − gV
∗

t = E
(

log

(
hVt+1

hV
∗

t+1

)
|Ft
)
≤ E

(hVt+1

hV
∗

t+1

|Ft
)
− 1 =

∂gθ,V,∗t

∂θ

∣∣
θ=+0

≤ 0.

Thus, by Remark 2.2 Conditions (1.12) and (1.13) are satis�ed and V ∗ is GOP.

Note that by de�nition of growth ratio we have

(2.6) Wt = W0 · hV1 · hV2 · ... · hVt .

Thus, we can multiply (2.5) by
W0·hV1 ·hV2 ·...·hVt

WV ∗
0 ·hV

∗
1 ·hV

∗
2 ·...·hV

∗
t

that is Ft measurable and get an

equivalent expression

(2.7) E
(Wt+1

WV ∗
t+1

|Ft
)
≤ Wt

WV ∗
t

.

Therefore, by De�nition 2.1.1 we see that Growth Optimal Portfolio and Numeraire

portfolio are the same concept.

2.2 Optimality of the Growth Optimal Portfolio

The Growth Optimal Portfolio was de�ned as a certain supremum over the set of strictly
positive portfolios. However, the de�nition involves an arti�cial condition expectation
and doesn't tell us in what sense this portfolio is optimal. In this section, we will present
several optimal properties of GOP.

De�nition 2.2.1 (Long term growth rate). Long term growth LV of the portfolio V ∈ V
is de�ned pathwise for all ω ∈ Ω as

LV (ω) = lim sup
t→∞

1

t
log

(
WV

t (ω)

WV
0 (ω)

)
.

Theorem 2.2.1. Long term growth rate of any portfolio V ∈ V is almost surely bounded

by the long term growth rate of GOP. That is,

LV ≤ L∗.

For the proof of this theorem, we will need the classical result by Doob for
supermartingales.
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Lemma 2.8 (Doob's inequality). Let Xn be a non-negative supermartingale. Then, for

any a > 0
aP
(

sup
k≥n

Xk > a
)
≤ E(Xn).

Proof of Theorem 2.2.1. Let's consider a V ∈ V such thatWV
0 = 1. By Doob's inequality

for any ε ∈ (0, 1) and k ∈ T

exp(εk) · P
(

sup
k≤t

WV
t

W∗
t

> exp(εk)

)
≤ E

(
WV

k

W∗
k

)
≤ WV

0

W∗
0

= 1.

Which implies that

∞∑
k=1

P
(

sup
k≤t

(
log

(
WV

t

W∗
t

))
> εk

)
≤

∞∑
k=1

exp(−εk) <∞.

Now by Borel-Cantelli lemma we get that

P

(
lim sup
k→∞

(
sup
k≤t

(
log

(
WV

t

W∗
t

))
> εk

))
= P

(
lim
k→∞

(
sup
k≤t

(
log

(
WV

t

W∗
t

))
> εk

))
= 0.

Thus, there exists kε such that for all k > kε and t ≥ k almost surely,

log

(
WV

t

W∗
t

)
≤ εk ≤ εt.

Therefore,

sup
t≥k

1

t
log

(
WV

t

W∗
t

)
≤ ε,

and

sup
t≥k

1

t
log

(
WV

t

W∗
t

W∗
0

WV
0

)
= sup

t≥k

(1

t
log

(
WV

t

WV
0

)
− 1

t
log

(
W∗

t

W∗
0

))
≤ ε.

Finally we get that

lim sup
t→∞

1

t
log

(
WV

t

WV
0

)
≤ lim sup

t→∞

1

t
log

(
W∗

t

W∗
0

)
+ ε.
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Since the inequality holds for any ε ∈ (0, 1) we have that

LV ≤ L∗.

The next optimal property of GOP ensures that no other portfolio can systemically
outperform GOP. The systematic outperformance is closely connected to the concept of
stochastic dominance, namely the next theorem actually tells us that once GOP and some
other portfolio started with the same initial capital, then there is no time point where the
other portfolio's value stochastically dominates GOP's value.

De�nition 2.2.2 (Systematic Outperformance). A portfolio V 1 ∈ V systematically
outperforms a portfolio V 2 ∈ V if

1. WV 1

0 = WV 2

0 and,

2. ∃t : P(WV 1

t ≥WV 2

t ) = 1 and P(WV 1

t >WV 2

t ) > 0.

Theorem 2.2.2. Growth Optimal Portfolio cannot be systematically outperformed by any

portfolio from the set of strictly positive portfolios.

Proof. Let's consider a portfolio V ∈ V. By Inequality (2.7), we see that the benchmarked
(i.e. divided by the value of GOP) value process satis�es the supermartingale property,
therefore for s ∈ T \ 0 we can write

(2.9) E
(
WV

s

W∗
s

−WV
0

W∗
0

|F0

)
= E

(
WV

s

W∗
s

− 1

)
≤ 0.

On the other hand, Condition 2 of systematic outperformance implies that

P(
WV

s

W∗
s

− 1 ≥ 0) = 1

and

P(
WV

s

W∗
s

− 1 > 0) > 0.

Therefore we have a lower bound estimate

E(
WV

s

W∗
s

− 1) =

∫
ω

(WV
s (ω)

W∗
s(ω)

− 1
)
dP (ω)
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=

∫
ω:

WV
s (ω)

W∗
s (ω)

−1>0

(WV
s (ω)

W∗
s(ω)

− 1
)
dP (ω) +

∫
ω:

WV
s (ω)

W∗
s (ω)

−1≤0

(WV
s (ω)

W∗
s(ω)

− 1
)
dP (ω) =

=

∫
ω:

WV
s (ω)

W∗
s (ω)

−1>0

(WV
s (ω)

W∗
s(ω)

− 1
)
dP (ω) > 0

that contradicts Inequality(2.9).

There are many other optimality properties of GOP. For example, that the ruin
probability of GOP is zero or that GOP needs the shortest expected time to reach a
given wealth level. More properties of GOP can be found in [3] and [8].

2.3 Connection between GOP and arbitrage freedom

In this section, we will examine a very general case when GOP exists on the market. Let's
start with the usual de�nition of arbitrage.

De�nition 2.3.1 (Arbitrage strategy). Let's consider a portfolio V ∈ V. An arbitrage
opportunity exists if the initial wealth is zero, and at some point we can make money out
of nothing

(2.10) WV
0 = 0

and

∃T > 0 : P(WV
T ≥ 0) = 1, P(WV

T > 0) > 0.(2.11)

It turns out that the absence of the arbitrage is equivalent to existence of GOP under
certain conditions.

Theorem 2.3.1. If GOP exists on the market, then the market is arbitrage free.

Proof. Let's assume that there exists a growth optimal portfolio V ∗ ∈ V but there exists
an arbitrage opportunity which can be achieved by portfolio V a. Note that for V a we
can't apply previous theorems because from the de�nition of arbitrage it does not belong
to the set of strictly positive portfolios.
To �x this let's consider a portfolio V o = V ∗ + V a. V o also belongs to the set V because
V ∗ is admissible and the growth ratio of the sum is a sum of growth ratios by Property
(1.9).
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Then by the arbitrage property we have

Wo
0 = W∗

0,

and there exist T such that:

1 = P(Wa
T ≥ 0) = P(Wa

T + W∗
T ≥W∗

T ) = P(Wo
T ≥W∗

T )

Which means that
0 < P(Wa

T > 0) = P(Wo
T >W∗

T ).

Which contradicts to Theorem 2.2.2 that states the absence of systematic
outperformance on the market.

In Christensen's survey [3] Theorem 1.1 states that the existence of GOP is equivalent
to the absence of arbitrage. Unfortunately, there is no detailed proof but it is mentioned
in the text that portfolio with Numeraire property 2.1.1 can be somehow constructed
from the martingale risk-neutral measure. I could not �nd any exhaustive proofs for
su�ciency in the discrete time setting. A comprehensive proof of this linkage is given in
[9], however only the one-period market with �nite probability space is considered. The
proof can be easily extended to the multiperiod market since the absence of arbitrage on
the multiperiod is equivalent to the absence of arbitrage in all consecutive sub-one-period
markets and the construction of GOP is done for each time step independently. I suppose
that in the discrete time more assumptions on the market structure are needed in order
to achieve the existence of GOP. For example, the proof can be completed assuming that
the market is complete.

Theorem 2.3.2. GOP exists on the market if the market is arbitrage free and complete.

Proof. Let's consider an asset i ∈ 0, N . Absence of arbitrage guarantees us that there
exists an equivalent risk-neutral measure Q to real-world probability measure P , under
which the discounted price process is a martingale, i.e. for any t ∈ T

(2.12) EQ
(
St+1,i

St+1,0

|Ft
)

=
St,i
St,0

.

Let's denote Zt := EP
(

dQ
dP
|Ft
)
, using Abstract Bayes' Theorem [7] (Prop. B.41) and

properties of conditional expectation we can rewrite the right hand side as

EQ
(
St+1,i

St+1,0

|Ft
)

=
EP
(

St+1,i

St+1,0

dQ
dP
|Ft
)

EP
(

dQ
dP
|Ft
)
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=
EP
(

St+1,i

St+1,0
Zt+1|Ft

)
Zt

= EP
(
St+1,i

St+1,0

Zt+1

Zt
|Ft
)
.

So that Equation (2.12) becomes

EP
(
St+1,i

St,0
St+1,0

Zt+1

Zt
|Ft
)

= St,i.(2.13)

Since the market is complete we can �nd the replicating portfolio for the claim St,0
Zt

,

i.e. there exists a sequence of portfolio weights (wV0 , w
V
1 , ..., w

V
T ) such that at any t ∈ T

St,0
Zt

= WV
t =

N∑
i=0

wVt,iSt,i(2.14)

Therefore, we can rewrite (2.13) as

EP
(
St+1,i

WV
t

WV
t+1

|Ft
)

= St,i

and �nally

EP
(
St+1,i

WV
t+1

|Ft
)

=
St,i
WV

t

.(2.15)

The replicating portfolio does not depend on the selected asset, so Equation (2.15)
holds for all i ∈ 0, N . By linearity of conditional expectation we have the same martingale
equation for any portfolio Ṽ ∈ V

EP

(
WṼ

t+1

WV
t+1

|Ft

)
=

WṼ
t

WV
t

.(2.16)

Thus, GOP in this case exists as a replicating portfolio (2.14) and it is indeed growth
optimal by martingale property (2.16) and Corollary 2.4.
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3. Growth Optimal Portfolio examples

Even though the discrete market model and the optimization problem stated in De�nition
1.2.7 may sound simple, the problem of �nding the actual weights of GOP is often
unfeasible and surprisingly more complicated than in the continuous setting, see [3].
On the other hand, once we are given a portfolio candidate, we can easily check if it
is growth optimal by the Numeraire Property (2.7). In this Chapter, I will consider
di�erent examples where GOP can be found explicitly and then provide a framework for
empirical construction of GOP for a broad class of growth ratios' time series models.

3.1 Domain restrictions for portfolio weights

The heart of the problem of the actual construction of GOP lies in the logarithmic
function, that allows us to work only with positive arguments. From the �rst perspective,
the restriction of analysis to the set of strictly positive portfolios does not a�ect our
solution at all because if the solution for maximization problem exists, ht

V ∗
is positive

and the corresponding restrictions on the portfolio weights are not active. However, in
most of the cases, we cannot easily map the set of strictly positive portfolios to the
respective set of feasible portfolio weights. This map actually heavily depends on the
distribution assumptions of the ht

V ∗
.

For instance, we can consider two independent assets. Whenever we allow unbounded
distributions for ht,i our strictly positive restriction implies that possible weights are
always positive. To see this, let's consider a one period market with two securities. Let
wt,0 < 0 then we can �nd ω = {ω1, ω2} such that wt,0ht,0(ω1) + wt,1ht,1(ω2) is negative.
Therefore, we cannot compute the logarithm for this element of probability space and the
expectation operation is unde�ned as well.

The set of possible portfolio weights can be identi�ed only when we are given exact
distributions of ht,i. While without those restrictions we cannot apply the Karush-Kuhn-
Tucker theorem [10] in order to �nd necessary conditions for optimality.
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3.2 Necessary and Su�cient condition for the case of

unrestricted portfolio weights

Let's consider Optimization problem 1.2.6 and restate it in terms of portfolio weights

(3.1) g∗t = sup
V ∈V

E
(
log
(
hVt+1

)
|Ft
)

= sup
wVt ∈Wt

E

(
log

(
N∑
i=0

wVt,iht+1,i

)
|Ft

)
,

where the set of possible weights Wt is given by

(3.2) Wt = {wVt ∈ Ft−1|hVt > 0 and
N∑
i=0

wVt,i = 1}.

Assumption 3.2.1. Let's assume that the restriction hVt > 0 does not a�ect the solution

of the optimization problem (3.1), so we can instead optimize over

Wt = {wVt ∈ Ft−1|
N∑
i=0

wVt,i = 1}.

Let's denote w̃Vt = (wVt,1, w
V
t,2, ..., w

V
t,N) ∈ Ft−1, then for any ω ∈ Ω we can rewrite (3.1)

as

g∗t (ω) = sup
wVt ∈Wt

E

(
log

(
N∑
i=0

wVt,iht+1,i

)
|Ft

)
(ω)

= sup
w̃Vt ∈RN

E

(
log

((
1−

N∑
i=1

wVt,i

)
ht+1,0 +

N∑
i=1

wVt,iht+1,i

)
|Ft

)
(ω).

Theorem 3.2.1 (Optimality condition in the case of unrestricted domain). Under
Assumption 3.2.1, the portfolio V ∗ ∈ V is growth optimal if and only if for any t ∈ N

(3.3) ∀i : E
(
ht+1,i

hV
∗

t+1

|Ft
)

= 1 a.s.

Proof. The logarithm is a concave function and inside the logarithm, we have a linear
function of weights, which means that the composition of the functions is concave too.
Thus, for every �xed ω ∈ Ω we have a unique maximum.

The function inside the conditional expectation has the following properties.
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1. For all wVt ∈ Ft−1 we have a Ft+1 measurable r.v. inside the expectation.

2. By Inequality 2.3 and Jensen's inequality we have

E
(
log
(
hVt+1

)∣∣Ft) ≤ logE
(
hVt+1

∣∣Ft) ≤ E
(
hVt+1

∣∣Ft).
Therefore, by Dominated Convergence Theorem, we can interchange the order of

taking a derivative and expectation as follows. Let's consider a partial derivative for
�xed j ∈ {1, ..., N} at the optimal weights

∂E
(

log
((

1−
∑N

i=1w
V ∗
t,i

)
ht+1,0 +

∑N
i=1w

V ∗
t,i ht+1,i

)
|Ft
)

∂wV
∗

t,j

= E

∂ log
((

1−
∑N

i=1w
V ∗
t,i

)
ht+1,0 +

∑N
i=1 w

V ∗
t,i ht+1,i

)
∂wV

∗
t,i

|Ft


= E

 ht+1,j − ht+1,0(
1−

∑N
i=1w

V ∗
t,i

)
ht+1,0 +

∑N
i=1w

V ∗
t,i ht+1,i

|Ft


= E

(
ht+1,j − ht+1,0

hV
∗

t+1

|Ft
)

= 0.

Now let's multiply the last expression by wV
∗

t,j and sum over j

(3.4)

N∑
j=1

wV
∗

t,j · E
(

(ht+1,j − ht+1,0)

hV
∗

t+1

|Ft
)

= E

(∑N
j=1w

V ∗
t,j (ht+1,j − ht+1,0)

hV
∗

t+1

|Ft

)
+ E

(
ht+1,0

hV
∗

t+1

|Ft
)
− E

(
ht+1,0

hV
∗

t+1

|Ft
)

= E

(
(1−

∑N
j=1w

V ∗
t,j )ht+1,0 +

∑N
j=1 w

V ∗
t,j ht+1,j)

hV
∗

t+1

|Ft

)
− E

(
ht+1,0

hV
∗

t+1

|Ft
)

= 1− E
(
ht+1,0

hV
∗

t+1

|Ft
)

= 0

Therefore we have for the asset 0

E
(
ht+1,0

hV
∗

t+1

|Ft
)

= 1.
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Summing this with (3.4) we get the same condition for all assets

E
(
ht+1,0

hV
∗

t+1

|Ft
)

+ E
(
ht+1,j − ht+1,0

hV
∗

t+1

|Ft
)

= 1 + 0,

so that

(3.5) For all j ∈ {1, ..., N} : E
(
ht+1,j

hV
∗

t+1

|Ft
)

= 1.

Remark 3.6. Note that in this theorem the �rst asset is used just for the convenience of
the proof. We did not assume that this asset has deterministic returns' structure.

Corollary 3.7. Under Assumption 3.2.1 the benchmarked value process of any admissible

portfolio is a martingale in natural �ltration Ft

E
(
Wt+1

WV ∗
t+1

|Ft
)

=
Wt

WV ∗
t

.

Proof. Let's consider some portfolio V ∈ V with corresponding weights' vector wVt . For
all i ∈ {0, .., N} multiply (3.5) by the corresponding portfolio weight wV

∗
t,i and sum up

Conditions (3.5).

N∑
i=0

wVt,i · E
(
ht+1,i

hV
∗

t+1

|Ft
)

=
N∑
i=0

wVt,i = 1

E
(
hVt+1

hV
∗

t+1

|Ft
)

= 1.

We can multiply (2.5) by
W0·hV1 ·hV2 ...·hVt

WV ∗
0 ·hV

∗
1 ·hV

∗
2 ...·hV ∗

t
that is Ft measurable and get

(3.8) E
(Wt+1

W∗
t+1

|Ft
)

=
Wt

W∗
t

.

The martingale property of the growth optimal portfolio under Condition 3.2.1 leads
to the concept that is called fair pricing. Namely, similarly to the risk-neutral measure
pricing, we have a martingale that allows us to de�ne the price given the distribution of
GOP and underlying assets. For further details see [5].
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3.3 Example 1: Betting

Let's consider the gambling game where we have a countable set of possible outcomes
Ω = ∪i∈I{ωi}, where i ∈ I - is a countable set. A player chooses an outcome and receives
α times his original bet if he guessed right and nothing otherwise.

A smart player who wants to play the game optimally in the sense of growth optimal
portfolio tries to �nd weights that correspond to GOP in this game or, in other words, he
allocates his wealth across di�erent outcomes.

Let's de�ne sets Ai = {ωi}, then they partition the outcomes space Ω = ∪i∈IAi. From
the portfolio theory perspective, we have one period market and a set of assets (bets on
outcomes) where each asset generates a certain return. Namely, the growth rate of the
outcome i is

hi = α · 1Ai .
The growth rate of portfolio is

hV =
∑
i∈I

wi · α · 1Ai ,

where (w0, w1, ..., wN) are the portfolio weights.
Now, let's compute GOP weights by applying Theorem 3.2.1

1 = E
(

hi
hV ∗

)
= E

(
α · 1Ai∑

i∈Iw
V ∗
i · α · 1Ai

)
=

P(Ai)

wV
∗

i

.

Therefore, the optimal weights are equal to the probabilities of the outcomes

(3.9) wV
∗

i = P(Ai).

3.4 Example 2: Complete markets with

countable probability space

Now let's consider again a one-period market with a countable probability space Ω =
∪i∈I{ωi}. We assume that the market is complete meaning that all claims are attainable
by some portfolios of original securities. We can interpret this market as a set of indicator
claims, that are de�ned as

S̃1,i(ω) = 1(ω = ωi),

where i ∈ I.
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Since the market is complete, we can replicate these claims by portfolios Ṽi

1(ω = ωi) =
N∑
j=0

wṼij · S1,i.

Now we are in the setting of Section 3.3, to wit, the investor has a set of mutually
exclusive alternatives {S̃1,i}i∈I and α = 1. Therefore, we already know the weights of
GOP in terms of indicators from the previous section result (3.4)

W V ∗

t =
∑
i∈I

P(ω = ωi)S̃1,i =
∑
i∈I

P(ω = ωi)
N∑
j=0

wṼij · S1,i

=
N∑
j=0

[∑
i∈I

P(ω = ωi)w
Ṽi
j

]
S1,i.

Thus, GOP weights can be computed as

wV
∗

j =
∑
i∈I

P(ωi ∈ Ω)wṼij .

3.5 Example 3: A bond and a risky asset with log-

normally distributed growth ratio

Let's consider a bit more complicated case where we will see exactly how the restrictions on
the portfolio weights a�ect the martingale properties of GOP. Now we are considering the
multiperiod market with two securities where the �rst security is a bond with a constant
price St,0 = 1 for all t ∈ T and the second one is a risky asset with i.i.d growth ratio
such that for all t ∈ T, ht,1 ∈ (0,∞) . Since we are considering the set of strictly positive
portfolios, as described at the beginning of this chapter, the weights should be strictly
positive. As far as weights sum up to one for V ∈ V we have

wVt,1 ∈ [0, 1],

and
wVt,1 = 1− wVt,0.

The growth rate is then

gVt = E
(
log
(
1 + wVt,1(ht+1,1 − 1)|Ft

))
.
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As discussed in the proof of Theorem 3.2.1 we can pass the partial derivative inside
the conditional expectation. The �rst order condition becomes

∂gVt
∂wVt,1

= E
(

ht+1,1 − 1

1 + wVt,1(ht+1,1 − 1)
|Ft
)

= 0.

The second partial derivative is then always negative

∂2gVt

∂wVt,1
2 = −E

(
(ht+1,1 − 1)2

(1 + wVt,1(ht+1,1 − 1))2
|Ft
)
≤ 0,

which implies that the growth rate is concave. Let's compute the derivative on the
boundaries of weights' interval

∂gVt
∂wVt,1

∣∣
wVt,1=0

= E (ht+1,1|Ft)− 1,

∂gVt
∂wVt,1

∣∣
wVt,1=1

= 1− E
(

1

ht+1,1

|Ft
)
.

Since the second partial derivative is not positive, the �rst derivative is decreasing.
Therefore, for the �rst order condition to have a solution the following condition should
be satis�ed

(3.10) E
(
(ht+1,1)λ|Ft

)
≥ 1, for λ = ±1.

Otherwise, if (3.10) is violated then the maximum is obtained on the boundaries.
Now let's consider a case when growth ratios are independently identically distributed

log-normal variables

log(ht,1) ∼ N (µ, σ2).

Given this information we can compute the expectation in (3.10)

E
(
(ht+1,1)λ|Ft

)
= E

(
(ht+1,1)λ

)
=

∫ ∞
−∞

eλx
1√
2π
e−

(x−µ)2

2σ2 dx =

∫ ∞
−∞

1√
2π
e−

(x2−2xµ+µ2−2σ2λx)

2σ2 dx

=

∫ ∞
−∞

1√
2π
e−

(x2−2x(µ−σ2λ)+(µ−σ2λ)2−(µ−σ2λ)2+µ2)
2σ2 dx
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= e
λ2σ2

2
+λµ

∫ ∞
−∞

1√
2π
e−

(x−(µ−σ2λ))2

2σ2 dx = e
λ2σ2

2
+λµ.

Now we can solve (3.10). We require that

e
λ2σ2

2
+λµ ≥ 1, for λ = ±1.

Thus

e
σ2

2
+µ ≥ 1 ∧ e

σ2

2
−µ ≥ 1,

σ2

2
+ µ ≥ 0 ∧ σ

2

2
− µ ≥ 0

are satis�ed. To summarize,

(3.11)
|µ|
σ2
≤ 1

2
.

Inequality (3.11) shows us under which condition solution to Optimisation Problem
3.1 lies inside the domain. Whenever this inequality holds we are in the setting of
Theorem 3.2.1 and Corollary 3.7 holds implying that benchmarked price of each asset
is a martingale.

If Inequality 3.11 is violated we have two possible cases. The �rst one µ
σ2 > 1

2

corresponds to the situation when the risky asset performs extremely well and, therefore,
in GOP all capital is allocated to this asset. The benchmarked bond's price becomes
a strict supermartingale, while benchmarked stock's price always equals one. On the
contrary, if µ

σ2 < −1
2
, then the stock signi�cantly underperforms and all wealth in GOP is

allocated to the bond. In this case, the stock's benchmarked price is a strict supermartingale,
while bond's benchmarked price is always one.

This simple example with two assets shows us that we cannot always apply Theorem
3.2.1 to compute GOP's weights and demonstrates the source of complexity in GOP
discrete time construction. Moreover, it provides an economic intuition regarding possible
violations to the fair pricing mentioned above. Namely, the fair pricing breaks down if
the growth of risky asset is quite low comparing to the risk-neutral asset or when the
market price of risk is too high.
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4. Construction of GOP in the case of Log-

Normally distributed growth ratios

In this chapter, we will consider a model that can be applied to construct Growth
Optimal portfolio on the real market. The usual way of building GOP involves continues
time models and further approximations. For example, Platen shows that GOP can
be approximated by the well-diversi�ed portfolio, see Chapter 10 at [8] or [11]. The
other approach is to assume a certain distribution of the returns, then use Monte Carlo
approximation for the target function and �nally solve this problem directly by the suitable
general optimization method. The example with stationary log-normally distributed
returns can be found in Maier's paper, see [13]. However, Maier constructs the optimal
portfolio that has an unconditional expectation as a target function. This setting corresponds
to the one-period market and, obviously, on a multi-period market the solution will
not have attractive properties that were described in Chapter 2 even if the distribution
assumption is valid.

4.1 Log-normality assumption

In this section, we will consider a model-based approach of constructing GOP. This means
that we need to make some assumptions on the growth ratios' process. Our �nal goal is
to construct GOP for a set of securities that can be modelled by the common time-series
models such as ARIMA and VAR, which will be speci�ed in the following chapter. The
main assumption for using those models is a stationarity assumption

Assumption 4.1.1. The logarithm of growth ratio of each risky security on the market

forms a stationary process with normally distributed components.

One can argue that this assumption is too arti�cial and we cannot really model
the securities on the market with such simple models. Nevertheless, the most famous
option pricing Black-Scholes-Merton model implies that the growth ratio of a stock is
log-normally distributed
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St+∆t

St
∼ exp

(
N((µ− 1

2
σ2)∆t, σ2∆t)

)
.

Moreover, there is a variety of papers where scientists successfully model di�erent
stocks by above-mentioned time-series models, for examples see [14], [15], [16]. The fact
that these models actually can explain certain stocks does not automatically imply that
one can abuse them in order to obtain an arbitrage. On the contrary, in most of the cases,
con�dence intervals for predictions are huge and eliminate the possibility of arbitrage
operations.

Finally, we want to emphasize that by utilizing these time-series models we do not aim
to obtain just a best possible prediction for the growth ratio, rather than we try to use
the current information on the market to assess the conditional distribution that would
allow us to solve Optimization Problem 1.2.6.

4.2 GOP optimization problem for time-series models

In this section, we will specify the model the general setting while in the following chapter
we will provide speci�c models that we used for stocks modelling. For simplicity we are
considering the case when the market only consists of N risky securities, the risk-less asset
will be added in the following section as an extension to this model. For convenience, let's
�rstly denote the vector of growth ratios as

ht = (ht,1,ht,2, ...,ht,N).

Assumption 4.2.1. We assume that for all t ∈ T error vectors εt are i.i.d. and follow

Multivariate Normal distribution with zero mean

εt = (εεεt,1, εεεt,2, ..., εεεt,N) ∼ N(0,Σ),

where

εt ∈ Ft,

and Σ - covariance matrix, i.e. parameter of Multivariate Normal distribution.
Given this assumption, the general time series model setting is the following

For all i ∈ 1, N, t ∈ T : log(hi,t) = fi(ht−1,ht−2, ...,ht−k, εεεt−1, εεεt−2, ..., εεεt−l) + εεεt,i,

where k, l are prede�ned number of lags in the model and fi don't depend on t.
Now let's plug in this model into Optimization Problem 1.2.6 at time t
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g∗t = sup
V ∈V

gVt = sup
V ∈V

E
(
log
(
hVt+1

)
|Ft
)

= sup
wVt ∈Wt

E

(
log

(
N∑
i=1

wVt,iht+1,i

)
|Ft

)

= sup
wVt ∈Wt

E

(
log

(
N∑
i=1

wVt,i exp(fi (ht,ht−1, ...,ht−k+1, εεεt, εεεt−1, ..., εεεt−l+1) + εεεt+1,i)

)
|Ft

)
.

(4.1)

Now note that fi (ht,ht−1, ...,ht−k+1, εεεt, εεεt−1, ..., εεεt−l+1) ∈ Ft by Assumption 4.2.1 and
De�nition 1.2.1. It means that at time t, we already know realized values of ht = ĥt,ht−1 =
ĥt−1, ...,ht−k+1 = ĥt−k+1 and εεεt = ε̂t, εεεt−1 = ε̂t−1, ..., εεεt−l+1 = ε̂t−k+1. On the other
hand we have that εεεt+1,i |= Ft, therefore, we actually have an optimization problem with
unconditional expectation and (4.1) can be restated as

(4.2)

g∗t = sup
wVt ∈Wt

E

(
log

(
N∑
i=1

wVt,i exp
(
fi

(
ĥt, ĥt−1, ..., ĥt−k+1, ε̂t, ε̂t−1, ..., ε̂t−l+1

)
+ εεεt+1,i

)))
.

If X ∼ N(µ, σ) then X + a ∼ N(µ + a, σ). So we can de�ne a new random vector
Yt = (Yt,1,Yt,2, ...,Yt,N) ∼ N(µ,Σ) as follows

(4.3) For all i ∈ 1, N : Yt,i = fi

(
ĥt, ĥt−1, ..., ĥt−k+1, ε̂t, ε̂t−1, ..., ε̂t−l+1

)
+ εεεt+1,i.

Following this, we can rewrite Problem 4.2 as

(4.4) g∗t = sup
wVt ∈Wt

E

(
log

(
N∑
i=1

wVt,i exp(Yt,i)

))
.

Domain Wt of the optimization problem, de�ned at 3.2, in this case correspond to
non-negative or, following �nancial jargon, long-only portfolio weights, as it is explained
in Section 3.1. Thus

(4.5) Wt = {wVt ∈ Ft−1|∀i wVt,i ≥ 0 and
N∑
i=1

wVt,i = 1}.

The exact density of the sum of Log-normally distributed random variables is hard
to derive even in the simplest independent case. Another common approach is to use
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Fenton-Wilkinson approximation [21] for the sum of log-normally distributed variables.
However, according to my tests on randomly sampled parameters µ and Σ, Fenton-
Wilkinson approximation does not provide accurate enough distribution to compute an
expectation of form 4.4. Therefore, we need to build a Monte-Carlo type of algorithm to
calculate optimal weights.

4.2.1 Information theory interpretation of GOP optimization

problem

In this subsection, we will provide an interpretation of GOP optimisation problem from
the information theory perspective. It gives a good intuition behind the goal of the
optimisation problem and since we haven't found this interpretation in the literature it
might be a good starting point for further research of GOP.

Let's assume that components ofYt are independent and have the following covariance
structure

Σ =


σ2
t,1 0 . . . 0
0 σ2

t,2 . . . 0
...

...
. . .

...
0 . . . σ2

t,N

 .
Let Xt,i ∼ N(0, 1) i.e. (Xt,1, ...,Xt,N) ∼ (N((0, ..., 0), IN), where IN is N ×N

identity matrix. Then, we can rewrite the target function from Optimization
Problem 4.4 as

E

(
log

(
N∑
i=1

wVt,i exp(µt,i + σt,iXt,i)

))

= E

(
log

(
N∑
i=1

w̃Vt,i exp

(
σt,iXt,i −

1

2
σ2
t,i

))
− log

(
N∑
k=1

w̃Vt,k exp

(
−µt,k −

1

2
σ2
t,k

)))
,

(4.6)

where w̃Vt,k =
wVt,k exp(µt,k+ 1

2
σ2
t,k)∑N

i=1 w
V
t,i exp(µt,i+ 1

2
σ2
t,i)

.

Remark 4.7. Note that if Y = exp(µ+ σX) where X ∼ N(0, 1), i.e. Y is log-normally
distributed, then E(Y) = exp

(
µ+ 1

2
σ2
)
. Thus, we have expectations of corresponding

log-normally distributed r.v. in the second term.
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Let's denote the density of Normal distribution with parameters µ, σ as dN(µ, σ) and
rewrite (4.6) as

= E

(
log

(
N∑
i=1

w̃Vt,i
dN(σt,i, 1)(Xt,i)

dN(0, 1)(Xt,i)

))
− log

(
N∑
k=1

w̃Vt,k exp

(
−µt,k −

1

2
σ2
t,k

))

= E

(
log

(
N∑
i=1

w̃Vt,i
dN((0, 0, ..., σt,i, 0, ..., 0), IN)(Xt,1, ...,Xt,N))

dN((0, 0, ..., 0), IN)(Xt,1, ...,Xt,N)))

))

− log

(
N∑
k=1

w̃Vt,k exp

(
−µt,k −

1

2
σ2
t,k

))

= E

(
log

(∑N
i=1 w̃

V
t,idN((0, 0, ..., σt,i, 0, ..., 0), IN)(Xt,1, ...,Xt,N))

dN((0, 0, ..., 0), IN)(Xt,1, ...,Xt,N)))

))

− log

(
N∑
k=1

w̃Vt,k exp

(
−µt,k −

1

2
σ2
t,k

))
.(4.8)

Denote

(4.9) Q(Xt,1, ...,Xt,N) =
N∑
i=1

w̃Vi dN((0, 0, ..., σt,i, 0, ..., 0), IN)

and

(4.10) P (Xt,1, ...,Xt,N) = dN((0, 0, ..., 0, 0, ..., 0), IN).

Note that because of w̃Vt ∈ Wt, Q(Xt,1, ...,Xt,N) is a multivariate normal mixture
density and the �rst term is Kullback-Leibler divergence between P and Q. Thus, using
(4.8), Optimization Problem 4.4 can be restated as

(4.11) g∗t = sup
w̃Vt ∈Wt

(
DKL(P ||Q)− log

(
N∑
k=1

w̃Vt,k exp

(
−µt,k −

1

2
σ2
t,k

)))
.

The �rst term can be interpreted as a distance between Multivariate Normal
Distribution mixture and a Standard Normal Distribution. The second term is a regularization
term that tights weights to the corresponding index of the largest component µt,k + 1

2
σ2
t,k.
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4.3 Iterative algorithm for �nding GOP weights

In this section, we will present the iterative algorithm for construction of GOP. The main
idea of the algorithm is that there exists a �xed point equation for optimal weights. I want
to thank Dario Gasbarra for proposing the idea and suggesting several improvements and
extensions for the algorithm that we will present in the following sections. So let's start
with a �xed point equation.

Theorem 4.3.1 (Fixed point equation). Let's denote logarithm of growth ratio log(ht)
vector as Yt. If Yt ∼ N(µ,Σ) and the components of Yt are independent i.e. it has the

following covariance structure

Σ =


σ2
t,1 0 . . . 0
0 σ2

t,2 . . . 0
...

...
. . .

...

0 . . . σ2
t,N

 ,
then for all t ∈ T and j ∈ {1, ..., N} there exists a �xed point equation

(4.12) wV
∗

t,j = σ−1
j,t E

(
Xt,j log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

))
.

Proof. Let Xt,i ∼ N(0, 1) then, Optimization Problem 4.4 can be rewritten as

(4.13) g∗t = sup
∀i wVt,i≥0 and

∑N
i=1 w

V
t,i=1

E

(
log

(
N∑
i=1

wVt,i exp(µt,i + σt,iXt,i)

))
.

Now we have the optimization problem withN inequalities and one equality constraint.
Let's denote corresponding Kuhn-Tucker multipliers as γi and λ, then Lagrangian for the
problem is

L(wVt , γ1, ..., γN , λ) = E

(
log

(
N∑
i=1

wVt,i exp(µt,i + σt,iXt,i)

))
−

N∑
k=1

γiw
V
t,i−λ ·(

N∑
i=1

wVt,i−1).

As discussed in Section 3.2, we can pass the partial derivative inside the expectation
in this problem. Kuhn-Tucker's conditions for optimality are then the following
For all j ∈ 1, N

∂L(wV
∗

t , γ1, ..., γN , λ)

∂wV
∗

t,j
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=
∂E
(

log
(∑N

i=1w
V ∗
t,i exp(µt,i + σt,iXt,i)

))
−
∑N

k=1 γiw
V ∗
t,i − λ · (

∑N
i=1 w

V
t,i − 1)

∂wV
∗

t,j

= E

(
exp(µt,j + σt,jXt,j)∑N

i=1w
V ∗
t,i exp(µt,i + σt,iXt,i)

)
− γj − λ = 0,(4.14)

and

(4.15) γj · wV
∗

t,j = 0,

where γj ≥ 0.
By the same procedure as in Section 3.2 we can derive that λ = 1. To see this, we can
multiply (4.14) by corresponding weight and take the sum over weights

N∑
j=1

wV
∗

t,j E

(
exp(µt,j + σt,jXt,j)∑N

i=1w
V ∗
t,i exp(µt,i + σt,iXt,i)

)
=

N∑
j=1

wV
∗

t,j (γj + λ) , that is

E

(∑N
j=1w

V ∗
t,j exp(µt,j + σt,jXt,j)∑N

i=1w
V ∗
t,i exp(µt,i + σt,iXt,i)

)
=

N∑
j=1

wV
∗

t,j γj +
N∑
j=1

wV
∗

t,j λ, so that

λ = 1−
N∑
j=1

wV
∗

t,j γj.

By Complementary Slackness Condition (4.15) we indeed get

(4.16) λ = 1.

For the next step, we need Gaussian integration by parts (Stein's lemma) formula.
The proof can be found in [12], Lemma 1.1.1.

Lemma 4.17 (Stein's lemma for d-dimensional normal vector). For d dimensional random

vector Z ∼ N(0, Id) and for any function f , such that E
(∣∣∣∣∣∣∂f(Z)

∂Z

∣∣∣∣∣∣) < ∞ the following

equation holds

(4.18) E (∇f(Z)) = E (Z · f(Z)) .

Let's apply this lemma to the target function inside the expectation in Problem 4.13

E

∂ log
(∑N

i=0w
V
t,i exp(µt,i + σt,iXt,i)

)
∂Xt,j

 = E

(
Xt,j log

(
N∑
i=1

wVt,i exp(µt,i + σt,iXt,i)

))
,
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so,

E

(
wVt,jσt,j exp(µt,j + σt,jXt,j)∑N
i=1 w

V
t,i exp(µt,i + σt,iXt,i)

)
= E

(
Xt,j log

(
N∑
i=0

wVt,i exp(µt,i + σt,iXt,i)

))
.

Therefore we get

wVt,j =

(4.19)

σ−1
j,t

(
E

(
exp(µt,j + σt,jXt,j)∑N

i=0w
V
t,i exp(µt,i + σt,iXt,i)

))−1

E

(
Xt,j log

(
N∑
i=1

wVt,i exp(µt,i + σt,iXt,i)

))
.

For the optimal weights by Condition (4.14) and (4.16)

(4.20) wV
∗

t,j = σ−1
j,t (γj + 1)−1 E

(
Xt,j log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

))
.

Let's denote the set of indices with positive optimal weights as I>0 = {i ∈ 1, N |wV ∗
t,i >

0} and with zero weights as I=0 = {i ∈ 1, N |wV ∗
t,i = 0}.

Now by Complementary Slackness Condition (4.15) for non-zero weights we have

(4.21) For all j ∈ I>0 : wV
∗

t,j = σ−1
j,t E

(
Xt,j log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

))

While for the zero weights since γj ≥ 0 and {Xt,i}Ni=1 are independent

(4.22) For all j ∈ I=0 : 0 = wV
∗

t,j = E

(
Xt,j log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

))
= 0

Remark 4.23. Note that random variables Xt,j and log
(∑N

i=1w
V ∗
t,i exp(µt,i + σt,iXt,i)

)
are

non-negatively correlated since logarithm is an increasing function. Thus, all updates for
the weights should be non-negative: ∀t, j : wV

∗
t,j ≥ 0. However, Monte-Carlo estimations

can be negative, so we should truncate the updated weights at zero.
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Update rule Fixed Point Equation (4.12) holds only for optimal weights. However,
we can make a guess that starting with some initial weights w0

t we will converge to the
optimal solution by iterating weights with this equation. At step n ∈ N, we update the
weight j ∈ {1, ..., N} as

(4.24) wn+1
t,j = σ−1

j,t E

(
Xt,j log

(
N∑
i=1

wnt,i exp(µt,i + σt,iXt,i)

))
.

Given this update rule, we can estimate expectations with Monte Carlo sampling
and propose the following algorithm for computing GOP weights. Starting from initial
weights, we use Update rule (4.24) and then re-normalize weights such that they sum up
to one. We iterate until the di�erence between wn+1

t and wnt becomes negligible. The
pseudo code for the algorithm is the following.

Algorithm 1 GOP weights for log-normally distributed growth ratio

1: function GOPweights(weights0, N, µ, σ)
2: ε = 10−6 . Set precision.
3: weightscur = weights0

4: weightsnew = weights0 + ε
5: while ||weightscur − weightsnew||L1 > ε do
6: weightscur = weightsnew
7: samples = generateSamples(N) . Generate samples from N dimensional

standard normal distribution.
8: for j ∈ 1, N do

9: weightsnew[j] = σ−1[j] · computeExpectation(samples, weightscur, µ, σ)

10: weightsnew = weightsnew
||weightsnew||L1

11: return weightsnew

12: function computeExpectation(X, weights, µ, σ)
13: L = length(Xj)

14: return max( 1
L

∑N
k=1 Xj[k] · log

(∑N
i=1 weights[i] exp(µ[i] + σ[i]Xi[k])

)
, 0)

Remark 4.25. Note that Equations (4.16) or (4.22) can be also used to check optimality
of the computed solution.

This algorithm is quite simple and can be a good alternative to the usual general
gradient descent methods. Firstly, it does not require parameters tuning. For instance,
we do not need to provide it with a learning rate. Secondly, it might provide a signi�cant
speed improvement when we solve the problem with a big number of assets, especially if
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the gradient descent method uses also second derivatives. Finally, we can use �xed Monte
Carlo samples for it or can generate new ones each step. Which means that compared to
the gradient descent methods, Algorithm 1 will not over�t to the provided samples.

4.4 Variance reduction techniques

Update rule (4.24) involves expectation operators that are too complicated to be computed
analytically, thus we compute them by Monte Carlo simulation. In order to converge to
the optimal weights, we need accurate estimations, for these reasons we use di�erent
variance reduction tricks.

4.4.1 Antithetic Variates

The �rst technique that we use to decrease variance is Antithetic variates trick described
in Kroese book [19], section 9.2. For the Standard Normal Distribution, it works as
follows.

Suppose that we want to compute the statistics E(h(X)) for normally distributed
random variableX ∼ N(0, 1). Then, the antithetic variates trick is to compute expectation
of g(X)) = 1

2
(h(X)) + h(−X)) instead of h(X). Random variable g(X) has the same

expectation as h(X) but reduced variance if h(X) is monotone function, since correlation
between h(X) and h(−X) is negative.

4.4.2 Static Control Variate

In addition to general antithetic variates trick, we can use another variance reduction
trick called Static Control Variate that is described in Pagès (2018) [22], Section 3.1.

Suppose that we want to compute E(X), the idea of this trick is to �nd another
random variable Y such that E(Y) can be computed analytically and the variance of
random variable Z = X − Y ≥ 0 became smaller. Let's �nd a control variate for the
expectation in Updating Rule 4.24

E

(
Xt,j log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

))
= E

(
Xt,j log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

))

+ E

(
Xt,j

N∑
i=1

wV
∗

t,i (µt,i + σt,iXt,i)

)
− E

(
Xt,j

N∑
i=1

wV
∗

t,i (µt,i + σt,iXt,i)

)

=E

(
Xt,j

{
log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

)
−

N∑
i=1

wV
∗

t,i (µt,i + σt,iXt,i)

})
+ wV

∗

t,j · σt,j.
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By Jensen's inequality for all ω ∈ Ω we have

log

(
N∑
i=1

wV
∗

t,i exp(µt,i + σt,iXt,i)

)
≥

N∑
i=1

wV
∗

t,i (µt,i + σt,iXt,i).

Combining these two reduction methods we can rewrite function computeExpectation

In Algorithm 1.

1: function computeExpectation(X, w, µ, σ)
2: L = length(Xj)
3:

gX =
1

L

N∑
k=1

Xj[k] ·

{
log

(
N∑
i=1

w[i] exp(µ[i] + σ[i]Xi[k])

)

− log

(
N∑
i=1

w[i] exp(µ[i]− σ[i]Xi[k])

)

−
N∑
i=1

(w[i]µ[i]− σ[i]Xi[k])

}

4: return gX + w[j] · σ[j]

In order to test these two variance reduction methods, we experimented with sampled
parameters from standard Normal distribution: µ ∼ N(0, IN), σ ∼ |N(0, IN)| and
normalized w ∝ |N(0, IN)|. We have computed the Monte Carlo variance of expectation
from Update Rule 4.21 on samples of size 104 for 100 times and on average the variance
was reduced by factor 11.

4.5 Convergence of the algorithm

In this section, we will provide theoretical and practical arguments for the convergence of
Algorithm 1. From the theoretical point of view, we will consider the convergence under
the second order approximation of Logarithm function. In practice, we will compare
the algorithm to the standard scipy library's optimizer that uses Sequential quadratic
programming implemented by Dieter Kraft [18].
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4.5.1 Theoretical argument

We will consider the algorithm at a certain time t, so I will omit the time index for
simplicity. Let w∗ - target actual weights of GOP, w = w∗+ ∆w - current weights, where
∆w is a current error. Our goal is to show that after one iteration the updated weights
become closer to the actual weights w∗.

Lemma 4.26. If ∆w is small enough such that we can use second order approximation

of the logarithm

(4.27) log(1 + x) = x− x2

2
+O(x3), as x→∞.

and if, in addition,

1. we can neglect a second order di�erence term i.e. (∆w)2 � ∆w,

2. for all i we have exp(µi + σ2
i /2) < 2,

3. underlying assets are not dramatically di�erent from each other∑N
i=1 ∆wi exp(µi + σ2

i /2) ≈ 0 1 ,

then the following condition should be satis�ed so that a new weight wuj , j ∈ {1, ..., N}
after update (4.24) is closer to the optimal w∗j than before. Namely, if

∣∣∣∣exp
(
µj + σ2

j/2
)
·
(

2− max
i∈1,N

(
exp
(
µi + σ2

i /2
)))
− 2

(
exp
(
2µj + 2σ2

j

)
− exp

(
2µj + σ2

j

))∣∣∣∣ < 1

(4.28)

then |wuj − w∗j | < |wj − w∗j |.

Proof. Let's consider non-negative weights from the set I>0, by (4.21) we have

w∗j = σ−1
j E

(
Xj log

(
N∑
i=1

w∗i exp(µi + σiXi)

))

= E

(
Xj log

(
1 +

N∑
i=1

w∗i (exp(µi + σiXi)− 1)

))

≈ σ−1
j E

Xj

( N∑
i=1

w∗i (exp(µi + σiXi)− 1)

)
−

(∑N
i=1w

∗
i (exp(µi + σiXi)− 1)

)2

2


 .

1Note that
∑N

i=1 ∆wi = 0.
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The updated weight wuj after one iteration of (4.21) is then approximately equals

σ−1
j E

(
Xj

((
N∑
i=1

(w∗i + ∆wi)(exp(µi + σiXi)− 1)

)

−

(∑N
i=1(w∗i + ∆wi)(exp(µi + σiXi)− 1)

)2

2


 .

We can take the di�erence of these weights and use linearity of expectation

wuj − w∗j ≈

(4.29)

≈ σ−1
j E

(
Xj

(
N∑
i=1

(w∗i + ∆wi)(exp(µi + σiXi)− 1)

−

(∑N
i=1(w∗i + ∆wi)(exp(µi + σiXi)− 1)

)2

2




− σ−1
j E

Xj

 N∑
i=1

w∗i (exp(µi + σiXi)− 1)−

(∑N
i=1w

∗
i (exp(µi + σiXi)− 1)

)2

2




(4.30)

The �rst terms are linear and have common multiplier and for the second terms we
can apply simple di�erence of squares formula, so (4.30) is then

= σ−1
j E

(
Xj

(
N∑
i=1

∆wi(exp(µi + σiXi)− 1)

(4.31)

−

(∑N
i=1 ∆wi(exp(µi + σiXi)− 1)

)(∑N
i=1(∆wi + 2w∗i )(exp(µi + σiXi)− 1)

)
2

 .
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Now we can use Assumption 1 meaning that we are quite close to the optimal portfolio,

so we can ignore second order term 1
2

(∑N
i=1 ∆wi(exp(µi + σiXi)− 1)

)2

, then (4.31) can

be rewritten as

≈ σ−1
j E

(
Xj

(
N∑
i=1

∆wi exp(µi + σiXi)

−

(
N∑
i=1

∆wi exp(µi + σiXi)

)(
N∑
i=1

w∗i (exp(µi + σiXi)− 1)

)))

= σ−1
j E

(
Xj

((
N∑
i=1

∆wi exp(µi + σiXi)

)(
2−

N∑
i=1

w∗i exp(µi + σiXi)

)))
.(4.32)

Since we assume that Xi and Xj are independent for i 6= j most of the elements inside
the expectation are zero because for i 6= j: E (Xj · g(Xi)) = E(Xj) · E(g(Xi)) = 0. Thus,
we can rearrange (4.32) and again use linearity of expectation

= 2σ−1
j ∆wjE (Xj exp(µj + σjXj))

− σ−1
j E

(
Xj∆wj exp(µj + σjXj)

(
N∑

i=1,i 6=j

w∗i exp(µi + σiXi)

))

− σ−1
j E

(
Xj

((
N∑

i=1,i 6=j

∆wi exp(µi + σiXi)

)
w∗j exp(µj + σjXj)

))
− σ−1

j ∆wjw
∗
jE
(
Xj exp(µj + σjXj)

2)
= 2σ−1

j ∆wjE (Xj exp(µj + σjXj))

− σ−1
j ∆w∗jE (Xj exp(µj + σjXj))

N∑
i=1,i 6=j

w∗iE (exp(µi + σiXi))

− σ−1
j w∗jE (Xj exp(µj + σjXj))

N∑
i=1,i 6=j

∆wiE (exp(µi + σiXi))

− σ−1
j ∆w∗jw

∗
jE
(
Xj exp(µj + σjXj)

2)(4.33)

By the same derivation of expectation as in Section 3.5 we can compute

(4.34) E (exp(µj + σjXj)) = exp
(
µj + σ2

j/2
)
,
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similarly

(4.35) E (Xj exp(µj + σjXj)) = σj exp
(
µj + σ2

j/2
)
,

and

(4.36) E
(
Xj exp(µj + σjXj)

2) = 2σj exp
(
2µj + 2σ2

j

)
.

Now plug them in (4.33)

= 2∆wj exp
(
µj + σ2

j/2
)
−∆wj exp

(
µj + σ2

j/2
) N∑
i=1,i 6=j

w∗i exp
(
µi + σ2

i /2
)

− w∗j exp
(
µj + σ2

j/2
) N∑
i=1,i 6=j

∆wi exp
(
µi + σ2

i /2
)
− 2∆wjw

∗
j exp

(
2(µj + σ2

j )
)

= 2∆wj exp
(
µj + σ2

j/2
)

+ 2∆wjw
∗
j exp

(
2µj + σ2

j

)
−∆wj exp

(
µj + σ2

j/2
) N∑
i=1

w∗i exp
(
µi + σ2

i /2
)

− w∗j exp
(
µj + σ2

j/2
) N∑
i=1

∆wi exp
(
µi + σ2

i /2
)
− 2∆wjw

∗
j exp

(
2(µj + σ2

j )
)
.

We assume that we are close to GOP and we don't have dramatically di�erent assets∑N
i=1 ∆wi exp(µi + σ2

i /2) ≈ 0 i.e. Assumption 2. Moreover, by Assumption 3 for all i we
have exp(µi + σ2

i /2) < 2. Given these assumptions we get

|wuj − w∗j | /
/ |∆wj|

∣∣2 exp
(
µj + σ2

j/2
)

+ 2w∗j
(
exp
(
2µj + σ2

j

)
− exp

(
2(µj + σ2

j )
))

− exp
(
µj + σ2

j/2
) N∑
i=1

w∗i exp
(
µi + σ2

i /2
)∣∣∣∣∣

≤ |∆wj|
∣∣∣∣exp

(
µj + σ2

j/2
)
·
(

2− max
i∈1,N

(
exp
(
µi + σ2

i /2
)))

−2
(
exp
(
2µj + 2σ2

j

)
− exp

(
2µj + σ2

j

))∣∣
Finally, we have the rough criterion that allow us to check if one step of the algorithm

drives the non-negative weight towards the optimal one. Namely, if
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∣∣∣∣exp
(
µj + σ2

j/2
)
·
(

2− max
i∈1,N

(
exp
(
µi + σ2

i /2
)))
− 2

(
exp
(
2µj + 2σ2

j

)
− exp

(
2µj + σ2

j

))∣∣∣∣ < 1

then |wuj − w∗j | / |∆wj| and we are closer to the optimal solution than before. If
Property (4.28) is satis�ed for all non-negative weights, then we make a step to the
optimal direction and re-normalization will not make an allocation worse. In practice, the
values of µ and σ vectors are quite small, so Property (4.28) is usually satis�ed.

4.5.2 Simulations

The calculations in previous Subsection 4.5.1 show us that a convergence criterion for
Algorithm 1 is hard to derive even if we allow a number of assumptions and
approximations. Therefore, let's see how Algorithm 1 works in practice.

We approximate expectations from the algorithm by Monte-Carlo method, drawing
n = 105 from the N -dimensional Normal Distribution. In order to have more accurate
results, we used variance reduction tricks described in Section 4.4.

Let's �rstly set N = 10 and use µ ∼ N(0, IN) and σ ∼ |N(0, IN)|. As a benchmark
for the results, we use standard optimization method from scipy python library.

# Initial Scipy Optimizer Iterative Alg. Di�erence % Criterion (4.28)

1 1.22 2.27 2.25 0.80 True
2 1.04 2.49 2.49 0.10 True
3 1.15 2.07 2.05 1.30 True
4 1.05 1.72 1.63 4.80 True
5 1.99 2.76 2.75 0.30 True
6 0.94 1.60 1.58 1.20 True
7 0.69 1.02 1.01 0.80 True
8 0.34 1.27 1.25 1.70 True
9 0.26 0.75 0.74 0.70 True
10 1.46 2.28 2.25 1.00 True
Mean 1.02 1.82 1.80 1.27 -

Table 4.1: Optimization results for randomly sampled parameters

We see that in all cases Algorithm 1 performs almost as good as scipy optimizer. The
maximum di�erence between optimizers was 4.8% and the average di�erence is 1.27%.
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Note that we compute the target function by Monte-Carlo and, therefore, it also contains
some error. Overall we can say that this simulation test is passed and Algorithm 1
converges to the optimum.

Now let's take 10 assets from the real market and construct 10 portfolios where each
time N = 5 randomly chosen assets are selected. For estimate µ and σ of each asset,
we use mean values calculated from monthly close prices from March 2009 to 1 March
2019, because now the purpose is to understand whether we can apply Algorithm 1 for
real assets at all, rather than to construct a proper GOP portfolio. We took the returns
data from Investing.com and then transformed it to the log growth ratios. The assets and
their parameters are

Ticker µ σ

AAPL 0.021 0.073
AMD 0.018 0.170
BAC 0.011 0.098
BA 0.019 0.071
INTC 0.011 0.061
FB 0.021 0.100
FDX 0.011 0.076
MS 0.005 0.089
WMT 0.005 0.048
XOM 0.001 0.048

Table 4.2: Stocks' monthly estimated parameters 09-19

# Initial Scipy Optimizer Iterative Alg. Di�erence % Criterion (4.28)

1 0.015 0.023 0.020 13.1 True
2 0.016 0.022 0.021 4.4 True
3 0.018 0.024 0.024 0.1 True
4 0.016 0.024 0.024 0.0 True
5 0.011 0.019 0.018 7.4 True
6 0.015 0.023 0.021 8.4 True
7 0.014 0.023 0.022 6.5 True
8 0.013 0.022 0.022 1.0 True
9 0.016 0.024 0.023 4.1 True
10 0.016 0.024 0.023 3.3 True
Mean 0.015 0.023 0.022 4.8 -

Table 4.3: Optimization results with randomly picked 5 assets from the real market
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We see that on average the results of algorithm are close to the optimal ones. However,
there are cases like 1 or 6 when it looks like our method did not converge to global optima
while Criterion (4.28) is satis�ed. However, in all cases, we got an improvement to the
initial value, so we conclude that we can use this algorithm as a fast approximation for
GOP that does not require computing gradients.

4.6 Extensions of the algorithm

In this section, we will provide two important extensions of Algorithm 1. Namely, we will
consider the case of correlated securities and the case where we have a riskless asset. The
case of correlated risky assets combined with a risk-free instrument involves complicated
Inverse problem 4.48. We provide a possible structure of the solution, however, it is not
guaranteed that in general setting this form of solution is positive de�nite. Thus, further
research is needed to identify the structure that works for any form of the covariance
matrix.

4.6.1 Extension 1: Correlated log ratios

Let's use notation from Section 4.3

Yt = Xt + µt,(4.37)

Xt ∼ N(0,Σ),

where Σ is positive de�nite covariance matrix.
Given this notation, Optimization Problem 4.4 can be rewritten as

(4.38) g∗t = sup
∀i wVt,i≥0 and

∑N
i=1 w

V
t,i=1

E

(
log

(
N∑
i=1

wVt,i exp(µt,i + Xt,i)

))
.

To obtain stationary point equation 4.21 we will again use Stein's lemma. Since a
covariance matrix of a normally distributed random vector is symmetric and positive
de�nite we can use LU decomposition, that in a symmetric case gives

(4.39) Σ = AAT .

On the other hand if Z ∼ N(0, Id) and X = AZ, then the covariance matrix of X is

Cov(X) = E((X− E(X))(X− E(X))T ) = E((AZ− E(AZ))(AZ− E(AZ))T )
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= AE((Z− E(Z))(Z− E(Z))T )AT = ACov(Z)AT = AIdA
T = AAT .

Therefore, since Multivariate Normal Distribution is characterized by its mean and
covariance matrix, X is just a linear transformation of some standard normally distributed
vector X = AZ.

We can rewrite Lemma 4.17 for Xt = AZt using transformation of gradient rule
∇xf(Ax) = AT∇f(Ax) [20]. Let g(Zt) = f(AZt), then

E (∇Zg(Zt)) = E (Zt · g(Zt)) ,

by de�nition of g(Zt) and gradient rule

E
(
AT∇f(AZt)

)
= E (Zt · f(AZt)) ,

returning to the Xt we get

E
(
AT∇f(Xt)

)
= E

(
A−1Xt · f(Xt)

)
.

Therefore the expectation of gradient can be written as

E (∇f(Xt)) = (AT )−1A−1E (Xt · f(Xt))

= (AAT )−1E (Xt · f(Xt)) = Σ−1E (Xt · f(Xt)) .(4.40)

Note that E (∇f(Xt)) =
(
E
(
∂f(Xt,1)

∂Xt,1

)
,E
(
∂f(Xt,2)

∂Xt,2

)
, ...,E

(
∂f(Xt,N )

∂Xt,N

))T
,

and these components we have already computed in Section 4.3. For non-negative weights
by (4.16) and (4.15) we have

E

∂ log
(∑N

i=0 w
V ∗
t,i exp(µt,i + Xt,i)

)
∂Xt,j

 = wV ∗t,j E

(
exp(µt,j + σt,jXt,j)∑N
i=1w

V ∗
t,i exp(µt,i + Xt,i)

)
= wV ∗t,i .

(4.41)

Therefore, by (4.40) and (4.41) we can again propose an update rule for weights wKt,i
in vector notation

(4.42) wK+1
t = Σ−1E

(
Xt log

(
N∑
i=0

wKt,i exp(µt,i + Xt,i)

))
.

And the updated version of Algorithm 1 is
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Algorithm 2 GOP weights for correlated log-normally distributed growth ratios

1: function GOPweights(weights0, N, µ,Σ)
2: ε = 10−6 . Set precision.
3: weightscur = weights0

4: weightsnew = weights0 + ε
5: while ||weightscur − weightsnew||L1 > ε do
6: weightscur = weightsnew
7: samples = generateSamples(N,Σ) . Generate samples from N dimensional

normal distribution with covariance matrix Σ.
8: for j ∈ 1, N do

9: expV ector[j] = computeExpectation(samples[:, j], weightscur, µ,Σ)

10: weightsnew = Σ−1 · expV ector
11: weightsnew = weightsnew

||weightsnew||L1

12: return weightsnew

4.6.2 Extension 2: Risk-free instrument

Now we can get back to the initial setting where we have a risk-free on the market. With
additional risk-free asset Optimization problem 3.1 can be written as

(4.43) g∗t = sup
∀i wVt,i≥0 and

∑N
i=0 w

V
t,i=1

E

(
log

(
wVt,0ht,0 +

N∑
i=1

wVt,iht,i

))
,

where ht,0 is deterministic. Therefore, (4.43) is equivalent to

g∗t = sup
∀i wVt,i≥0 and

∑N
i=0 w

V
t,i=1

E

(
log

(
wVt,0 +

N∑
i=1

wVt,i
ht,i
ht,0

))
(4.44)

= sup
∀i wVt,i≥0 and

∑N
i=0 w

V
t,i=1

E

(
log

(
wVt,0 +

N∑
i=1

wVt,iĥt,i

))
.

Let's forget for a moment about this optimization problem and consider the case where
we have N+1 risky securities. We can use the �rst risky security as numeraire and rewrite
target function inside the expectation as

log

(
N∑
i=0

wVt,iht,i

)
= log(ht,0) + log

(
wVt,0 +

N∑
i=1

wVt,ih̃t,i

)
.(4.45)
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And again, as in (4.44)

g∗t = sup
∀i wVt,i≥0 and

∑N
i=0 w

V
t,i=1

E

(
log

(
N∑
i=0

wVt,iht,i

))
(4.46)

= sup
∀i wVt,i≥0 and

∑N
i=0 w

V
t,i=1

E

(
log

(
wVt,0 +

N∑
i=1

wVt,ih̃t,i

))
.

Let's have Assumptions 4.37 regarding Xt and Yt as in Section 4.6.1, therefore

(4.47) h̃t,i =
ht,i
ht,0

= exp
(
µ̃t,i + X̃t,i

)
,

where µ̃t,i = µt,i − µt,0 and

(4.48) E(X̃t,iX̃t,j) = Σ̃i,j = Σi,j + Σ0,0 − Σ0,j − Σ0,i.

Thus, new dummy variables h̃t,i are again log-normally distributed and this optimization
problem corresponds to (4.44). Combining (4.44) and (4.46) we see that instead of solving
Optimization problem (4.43) we can �nd corresponding arti�cial N + 1 risky assets and
solve the problem by Algorithm 1. For simplicity, we can �x µt,0 = 0 in (4.46) and consider
already discounted ht,0 as in (4.44). Then, the task is to solve the inverse problem, namely

to �nd a positive de�nite covariance matrix Σ̂ for N+1 optimization problem that satis�es
equation (4.48) given initial N ×N covariance matrix Σ for risky assets.

For the case of the initial diagonal covariance matrix Σ as in Section 4.3 it is not hard
to guess a correct solution.

For σ̂t,0 ∈ R+ satisfying

(4.49) min
i∈1,N

(σ2
t,i) > σ̂t,0 ·N

the matrix

Σ̂ =


σ̂t,0

2 0 . . . . . . 0
0 σ2

t,1 − σ̂t,02 −σ̂t,02 . . . −σ̂t,02

...
...

...
. . .

...
0 −σ̂t,02 . . . −σ̂t,02 σ2

t,N − σ̂t,0
2
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is positive de�nite and satis�es Equation (4.48). In the general setting, we can try
a matrix with the same structure as Σ̂. However, the criterion for positive determinant
becomes more complicated than (4.49).
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5. Growth Optimal Portfolio for ARMA and

VAR growth ratio models

In this chapter, we will show how to construct Growth Optimal Portfolio by Algorithms 1,
2 on the real market using time series models. We will consider two di�erent approaches,
namely modelling assets' growth ratios independently with ARMA models and joint
modelling by VAR model. We will provide only speci�cations of these time series models,
for detailed analysis of these models [24]. For estimations of time-series models we use
statsmodels package for python [23].

5.1 ARMA model

5.1.1 Speci�cation

Standard Auto Regressive Moving Average with lags p and q i.e. ARMA(p, q) model for
a process Xt states that

(5.1) Xt = c+

p∑
i=1

αiXt−i +

q∑
j=1

βjεεεt−j + εεεt,

where εεεt are i.i.d. normal random variables or strong white noise process and c, αi, βi -
scalar model parameters.

Let's assume that logarithm of growth ratios ht,k of each asset k follow some ARMA(pk, qk)
process.

Assumption 5.1.1. For each security k

log(ht,k) = ck +

pk∑
i=1

αi log(ht−i,k) +

qk∑
j=1

βjεεεt−j,k + εεεt,k.
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Following the notation from Section 4.2 we see that function
fk(ht−1,ht−2, ...,ht−k, εεεt−1, εεεt−2, ..., εεεt−l) is a usual forecast of ARMA model

fk(ht−1,ht−2, ...,ht−k, εεεt−1, εεεt−2, ..., εεεt−l) = E(log(ht,k)|Ft−1)

= ck +

pk∑
i=1

αi log(ht−i,k) +

qk∑
j=1

βjεεεt−j,k.(5.2)

Assuming 5.1.1 we should model each security on the market separately, but these
models do not provide us with information on the dependence structure of εεεt =
(εεεt,1, ..., εεεt,N). Therefore, we have to make an additional assumption. For the normal
distribution it means that we need to specify the covariance matrix. Given some particular
assets, professionals can give good enough a priori estimations of the dependencies. We
will use the simpliest independence assumption and try to �nd assets for which this
assumption is precise enough.

Assumption 5.1.2. The covariance structure of error vector is

cov(εεεt) = IN ,

where IN is an identity matrix of size N ×N .

Given Assumptions 5.1.1, 5.1.2 and �tted ARMA models, we can construct GOP by
Algorithm 1 for each time step t. The procedure for constructing GOP weights is then
the following

Algorithm 3 GOP construction procedure. ARMA case.
1: procedure GOPconstructionARMA

2: for t ∈ T do

3: for k ∈ 1, N do

4: Estimate ARMA model for security k.

5: µ = forecast from ARMA models.
6: σ = extract from ARMA models.
7: GOP weights = Call function GOPweights(µ, σ) from Algorithm 1.

5.1.2 Data and Diagnostics Checks

It is quite hard to �nd securities on the markets for which we can assume that they are
independent. Nevertheless, our goal is not to construct the exact growth optimal portfolio
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with real securities rather than demonstrate how one can do it. Therefore, for analysis,
we took aggregate stocks index S&P500, Vanguard VGLT (Vanguard Long Term) ETF
that tracks long-term US government bonds and Gold Futures. Stocks and government
bonds are usually considered as orthogonal components of investing portfolio while the
gold price is often called by investors as safe heaven i.e. perfect hedge for stocks and
bonds on a bear market. For the broad analysis of the dependence structure of these
three assets see [26].

We took monthly data from January 2010 to March 2019 for indices prices that is
available online on Investing.com website. Note, that indices' prices incorporate dividend
yields and, therefore, prices Pt,i match cumulative indices St,i. For security k logarithms
of growth rates are computed as in Equation 1.2.1

(5.3) log(ht,k) = log

(
Pt,k

Pt−1,k

)
.

Gold Futures VGLT S&P 500

Count 110 110 110
Mean 0.0019 0.0023 0.0086
Std 0.047 0.032 0.036
Min -0.13 -0.082 -0.096
25% -0.025 -0.021 -0.009
50% 0.0035 0.00024 0.011
75% 0.032 0.02 0.029
Max 0.12 0.092 0.1

Table 5.1: Summary statistics of securities
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Figure 5.1: Logarithm growth ratios of securities

Plots 5.1 of log-growth-rates do not re�ect any non-stationary patterns like deterministic
and stochastic trends or volatility clusters. Unit root Dickey-Fuller (DF) and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) tests also support visual analysis and do not indicate
violations from stationary on signi�cance level 5% for all assets.

DF test KPSS test

Gold Futures 7.37-21 >0.1
VGLT 2.88e-15 >0.1
S&P 500 1.58e-21 >0.1

Table 5.2: Unit root tests' P-Values

Remark 5.4. Unit root tests are done by corresponding functions from the library statmodels
[23]. KPSS function compares test statistics to the table values that are limited up to
10% P-value.

For order selection (p, q) I used Bayesian Information Criteria (BIC) criteria. Diagnostic
checks were done for residuals from the ARMA models �tted to the whole data set. On
signi�cance level 5% Jarque-Bera test does not show violations of normality assumption
and Ljung-Box Portmanteau test does not indicate autocorrelation in residuals.
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Jarque-Bera Ljung-Box Portmanteau

Gold Futures 0.74 0.22
VGLT 0.19 0.23
S&P 500 0.073 0.13

Table 5.3: Diagnostic tests' P-Values

5.1.3 GOP simulation

Using Procedure 5.1.1 and data described the previous section we simulated the construction
of Growth Optimal Portfolio with historical data. The simulation does not incorporate
any transaction costs, so in practice returns of GOP would have been smaller. On the
other hand, we did not do any parameters tuning and lookback tweaking like it is usually
done when traders construct strategies, therefore the performance of GOP as a strategy
could be better.

The simulation does not start from the �rst available date in the data set, because the
start date should be chosen such that

• ARMA and VAR (Section 5.2) models are provided with enough data for accurate
model parameters estimation.

• There is enough test data to see how GOP behaves in the long term.

Let's compare di�erent investing strategies where capital is reinvested in each period.
We can invest either to one of the assets or according to allocation suggested by GOP. In
addition, let's compare the performance of GOP portfolio on the long run to theMarkowitz

portfolio [28] with the highest Sharpe ratio (Max Sharpe) based on historical estimations.
For convenience, we constructed this portfolio using the python library PyPortfolioOpt

[27]. In this simulation, models were retrained and portfolios were rebalanced each month.
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Figure 5.2: GOP simulation with ARMA models

We see that over 5 years of testing period the best performing asset is S&P500 index
and GOP is the �rst runner-up. The testing period is not very large, so we cannot
guarantee that even exact GOP portfolio outperforms other assets with high probability.
Nevertheless, the overall return of GOP is higher than return Max Sharpe Portfolio and
GOP does not have dramatic drawdown periods, unlike all underlying assets. It may
seem that performance of GOP is high due to the fact that it tends to allocate all
capital to stocks index that occasionally had the best return over the test period, but
on average GOP allocated only 63% of weight to S&P500. Moreover, in our simulations,
GOP allocations were always diversi�ed despite criticism that GOP tends to produce
sparse portfolios, especially in a one-period market setting.

Avg. Weights

Gold Futures 16%
VGLT 21%
S&P 500 63%

Table 5.4: Average Growth Optimal Portfolio Weights

54



Another surprising fact is that GOP has a higher Sharpe Ratio then all underlying
securities and Max Sharpe portfolio. Meanwhile Max Sharpe portfolio is constructed to
maximize this performance measure using historical data.

Sharpe Ratio

Gold Futures 0.023
VGLT 0.076
S&P 500 0.17
GOP 0.19
Max Sharpe 0.069

Table 5.5: Sharpe Ratios

5.2 VAR model

5.2.1 Speci�cation

Vector Auto Regression model allows us to capture linear interdependencies between
components of some stochastic vector process. Standard VAR model with p lags for
a stochastic vector process Xt = (Xt,1, ...,Xt,N) states that

(5.5) Xt = c+

p∑
i=1

AiXt−i + εεεt,

where εεεt strong white noise vector process with multivariate normal distribution i.e.

εεεt ∼ N(0,Σ),(5.6)

and

For t 6= s : εεεt |= εεεs.(5.7)

Vector c ∈ RN and matrices Ai ∈ RN×N are model parameters.

Remark 5.8. One can consider a vector analogue of ARMA(p,q) process - VARMA(p,q)
model. However, there exists a fundamental identi�cation problem that the coe�cient
matrices are not generally unique, see Chapter 12 in [25].
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As for the ARMA model, we will assume that vector of the growth ratios' logarithms
log(ht) is a VAR (p) process.

Assumption 5.2.1. For any t ∈ T the log growth ratio can be represented as

(5.9) log(ht) = c+

p∑
i=1

Ai log(ht−i) + εεεt,

where εεεt satisfy usual VAR properties 5.6 and 5.7.

To identify the function fk(ht−1,ht−2, ...,ht−k, εεεt−1, εεεt−2, ..., εεεt−l) from Section 4.2 let's
rewrite Equation 5.9 for each component k.

(5.10) log(ht,k) = ck +

p∑
i=1

N∑
j=1

aik,j log(ht−i,j) + εεεt,k,

where aik,j is a [k, j] component of the matrix Ai.
Thus, similarly to ARMA model we get that

fk(ht−1,ht−2, ...,ht−k, εεεt−1, εεεt−2, ..., εεεt−l) = E(log(ht,k)|Ft−1)

= ck +

p∑
i=1

N∑
j=1

aik,j log(ht−i,j).(5.11)

In contrast to the ARMA model, we do not need to make any additional assumptions
on the covariance matrix structure since it is estimated directly during �tting process of
a VAR model. Despite this bene�t, from representation 5.10 wee see that VAR model
involves much more parameters for estimation given the same number of lags. Therefore,
we need enough data to avoid over�tting of the model.

The procedure of GOP construction with VAR model is similar to ARMA case.

Algorithm 4 GOP construction procedure. VAR case.
1: procedure GOPconstructionARMA

2: for t ∈ T do

3: Estimate VAR model for all securities.
4: µ = forecast from VAR model.
5: Σ = extract residuals covariance matrix from VAR model.
6: GOP weights = Call function GOPweights(µ,Σ) from Algorithm 2.

56



5.2.2 GOP simulation

For the simulation, we will use the same dataset as in Section 5.1.2. In the ARMA case,
we used Assumption 5.1.2 that log-growth-ratios of underlying securities are independent.
However, this assumption is quite unrealistic even for the selected assets. Therefore, we
can use the VAR model and estimate the covariance structure of residuals. For the
construction, we again use the implementation of VAR model from python statsmodels

package. The �t function automatically selects the required order of VAR by BIC and time
series are automatically checked for cointegration. In our case we do not face cointegrated
time series, thus, Vector Error Correction Model (VECM) is not needed and we can
perform simulations with VAR model.

Figure 5.3: GOP simulation with ARMA models

Avg. Weights

Gold Futures 28%
VGLT 28%
S&P 500 44%

Table 5.6: Average Growth Optimal Portfolio Weights
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Plot 5.2.2 shows that cumulative return of GOP with underlying VAR model over
the test period is approximately the same as the return of S&P500 index. On average,
the portfolio is more diversi�ed than in the case of ARMA models, so again we cannot
say that the portfolio performed well just because it favours risky stock index. GOP's
Sharpe Ratio (0.25) over this period is higher then Sharpe Ratio of GOP in the ARMA
case(0.19). To sum up, we see that the inclusion of linear interdependencies between
underlying assets has a positive impact on GOP performance as an investment strategy.
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6. Conclusions

In this thesis, we tried to cover most of the aspects of Growth Optimal Portfolio on
a discrete market. In the theoretical part of the thesis, we gave proofs for important
optimal properties, derived necessary and su�cient conditions for optimality and provided
examples of GOP in simple cases when they have closed-form solutions.

The main result of this thesis is Iterative Algorithm 1 (presented in Section 4.3) for
constricting GOP in the case when growth ratios of underlying assets are log-normally
distributed. We derived iterative equations for updating weights, utilized variance
reduction techniques and extended the algorithm to the cases with risk-free asset and
non-diagonal covariance structure of growth ratios. Algorithms 1 and 2 have shown good
convergence properties on the toy examples. However, there were simulations where
general optimization algorithm shows better results, meaning that our method did not
converge to the optimal value. For example, Algorithm 2, in general, performed worse in
the cases where the covariance matrix has a small determinant due to numerical issues.
Finally, we have shown how we can apply Algorithm 1 when assets are modelled by linear
time series models (ARMA and VAR).

The simulation of Growth Optimal Portfolio within time period 2014-2019 indicate
some interesting aspects of GOP. Namely, GOP demonstrated quite good cumulative
return and the best risk-adjusted return measured by Sharpe Ratio. Moreover, the
allocations of GOP were quite diversi�ed opposed to the common criticism of GOP for
providing sparse solutions in the discrete market setting. Even though the simulation
shows favorable performance of GOP, it is clear that for proper VAR modelling we need
to use bigger samples sizes, since information criteria always preferred simple models with
not more than 2 lags. For example, with monthly data, this makes yearly seasonality
di�cult to model.

Summing up, I think that Growth Optimal Portfolio is still a promising concept both
as a tool for pricing securities and as a trading strategy. I believe that simple construction
procedures that are derived in this thesis can shed some light on the utilization of Growth
Optimal Portfolio in the investing process.
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