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Notation

Many different notations have been used in literature with regard to data assimilation. In
this thesis, we follow the notation proposed in [12], with only minor differences in order
to make the notation as easy to follow as possible for the purposes of this thesis.

Symbols

x State vector

y Observation vector

z Joint state-observation vector

M Linear or tangent linear model oper-
ator

M Non-linear model operator

H Linear or tangent linear observation
operator

H Non-linear observation operator

η Model error

ε Observational error

e Estimation error

Q Model error covariance

R Observation error covariance

P Filter error covariance

K Gain matrix

Indices

()a Analysis

()f Forecast

()k At time tk

()e Ensemble
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Chapter 1

Introduction

Data assimilation is an estimation method for combining information of a system from
multiple sources. Data assimilation can be used in a wide range of applications for several
purposes ranging from interpolating sparse data to estimating model parameters. We
focus on data assimilation with a goal in state estimation. Especially we concentrate
in sequential data assimilation, which means that the previous state is used as prior
information when new observations become available, as opposed to methods that use
information from the whole time window. Common optimisation methods for calculating
the estimate are to either minimise a cost function or to find a minimal variance solution
for the problem. Similar results can be obtained using either one and both have their
advantages. In this thesis we will discuss only the minimal variance optimisation.

In chapter 2 we will show how data assimilation is built on the Bayes’ theorem, which
provides a way of combining prior information of the system with observations, in order
to calculate a new estimate, and builds a probability framework for it. In chapter 3 we
will introduce the Kalman filter method, which is one of the most important statisti-
cal tools developed in the 20th century. Kalman filter is the basis for several different
ensemble-based methods of which we introduce two in chapter 4. The first is the tradi-
tional Ensemble Kalman filter and the second, Ensemble Adjustment Kalman Filter, was
developed based on the first. In our research problem we used the second filter.

After the theoretical part we will introduce the Yasso model for the decomposition
of soil organic carbon. It is a simple linear model that requires an initial state and
yearly weather conditions as input. We used observations of the amount of soil organic
carbon in five fields across Europe measured as part of a long-term experiment [5] done in
different climate conditions and soil types. In section 5.3 we will go through how the data
was processed and introduce the DART software, which was used to run the Ensemble
Adjustment Kalman filter algorithm. Finally the results are presented in chapter 6.
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Chapter 2

Bayesian approach for data assimilation

Data assimilation is based on the Bayes’ theorem. We start by looking at the Bayes’
formula, which estimates a state x based on observations y and some previous information
of the state

p(x|y) =
p(y|x)p(x)

p(y)
,

where the probability p(x|y) is the posterior distribution for the state x given an ob-
servation y. Whereas the probability p(x) is the prior distribution, which holds all the
information we have about the state x before the assimilation. The probability p(y|x) is
the likelihood for the observation y, if the true state was x. The probability for the ob-
servation p(y) works as a normalisation coefficient, p(y) =

∫
p(y|x)p(x) dx, which makes

sure the above equation is indeed a probability distribution. In the following calculations
we can drop the probability p(y) since it doesn’t depend on the state x, in which we are
interested, and can thus be treated as a constant.

We will take a closer look at the Bayes’ theorem in a simple scalar case and derive
a basis for data assimilation following the deduction from [20]. We are interested in an
unknown true state. The state x represents the true state but since we can not be certain
what the true state is, we associate an uncertainty for x by assuming it to be a normally
distributed scalar variable x ∼ N (µx, σ

2
x), with mean µx and variance σ2

x. By assuming
the state to be a Gaussian variable we get a well known probability density function as our
prior distribution p(x). The probability for the observations y = (y1, . . . , yn) conditioned
on a realisation x of the state is

yi|x ∼ N (x, σ2),

with mean x and observational error variance σ2. This is the likelihood distribution and
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since it is also Gaussian we know its probability density function is

p(y|x) =
n∏
i=1

1√
2πσ2

exp

{
− 1

2σ2
(yi − x)2

}

∝ exp

{
− 1

2σ2

n∑
i=1

(yi − x)2

}
.

As mentioned above, the probability p(y) doesn’t depend on the state so we can be
drop it from the Bayes’ theorem. The posterior distribution can now be written as a
product of the likelihood and the prior distribution

p(x|y) ∝ p(y|x)p(x)

∝ exp

{
− 1

2σ2

n∑
i=1

(yi − x)2

}
exp

{
− 1

2σ2
x

(x− µx)2
}

∝ exp

{
−1

2

(
n∑
i=1

(yi − x)2

σ2
+

(x− µx)2

σ2
x

)}

∝ exp

{
−1

2

(
n∑
i=1

y2i − 2xyi + x2

σ2
+
x2 − 2xµx + µ2

x

σ2
x

)}

∝ exp

{
−1

2

[
x2
(
n

σ2
+

1

σ2
x

)
− 2x

(
n∑
i=1

yi
σ2

+
µx
σ2
x

)
+

n∑
i=1

y2i
σ2

+
µ2
x

σ2
x

]}

∝ exp

{
−1

2

(
n

σ2
+

1

σ2
x

)[
x2 − 2x

(
n

σ2
+

1

σ2
x

)−1( n∑
i=1

yi
σ2

+
µx
σ2
x

)

+

(
n

σ2
+

1

σ2
x

)−1( n∑
i=1

y2i
σ2

+
µ2
x

σ2
x

)]}

∝ exp

−1

2

(
n

σ2
+

1

σ2
x

)[
x−

(
n

σ2
+

1

σ2
x

)−1( n∑
i=1

yi
σ2

+
µx
σ2
x

)]2 ,

where the last term in the second to last formula doesn’t depend on x so we can modify
is to get the required form and the proportionality still holds.
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Now the posterior is a Gaussian x|y ∼ N (µx|y, σ
2
x|y), where

µx|y =

(
n

σ2
+

1

σ2
x

)−1( n∑
i=1

yi
σ2

+
µx
σ2
x

)
and

σ2
x|y =

(
n

σ2
+

1

σ2
x

)−1
.

The expected value for x|y is the mean µx|y, which can also be written as

E(x|y) =
σ2σ2

x

σ2 + nσ2
x

(
n

σ2
ȳ +

1

σ2
x

µx

)
= wyȳ + wµxµx.

Here ȳ = 1
n

∑n
i=1 yi is mean over the observations and wy + wµx = 1, when

wy =
nσ2

x

σ2 + nσ2
x

and wµx =
σ2

σ2 + nσ2
x

.

The posterior mean is the weighted average of the data mean and the prior mean. With
some simple manipulation the posterior mean can also be written as

E(x|y) = µx +
nσ2

x

σ2 + nσ2
x

(ȳ − µx)

= µx +K(ȳ − µx), (2.1)

in which the prior mean is adjusted towards the data mean according to a gain K. This
is the basis for the Kalman filter method introduced in the next chapter.
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Chapter 3

Kalman filter method

In this chapter we will first go through the Kalman filter method, which was introduced by
Rudolf Kalman in 1960 in his paper A New Approach to Linear Filtering and Prediction
Problems [14]. The other methods discussed in this thesis are based on Kalman filter so
to understand them it is important to first understand how the Kalman filter works.

The Kalman filter is an elegant and simple method for estimating and updating the
state variables as they move in time while giving a measure on the uncertainty of the
estimates [11]. However the Kalman filter method is optimal, in a minimum variance
sense, only when the operators are linear and the statistics Gaussian.

The model and observation operators are not always linear and this has motivated
people to develop methods to extend it into more complicated situations. Later in this
chapter we will introduce the extended Kalman filter which mimics the KF in a non-linear
case and in the next chapter we will look at ensemble methods which offer ways to avoid
the problems with large dimensions and non-linearity.

3.1 Kalman filter
Let the sequence of unknown true state vectors be xk ∈ Rm, with a time index k = 1, 2, . . .
denoting time tk of an observation and let the observation vectors be yk ∈ Rn. The
evolution of the system is modelled iteratively with two equations

xk = Mkxk−1 + ηk and (3.1)
yk = Hkxk + εk. (3.2)

The linear model operator Mk ∈ Rm×m holds the information about how the model
moves the state forward in time. Likewise the linear observation operator Hk ∈ Rn×m
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describes the measurement method and is a function from the model space to the obser-
vational space. The errors in the model, ηk ∈ Rm, and the observations, εk ∈ Rn, are
assumed to be independent white noise processes i.e. Gaussian with zero mean and co-
variance matrices Qk ∈ Rm×m and Rk ∈ Rn×n respectively. This assumption is necessary
for the optimal KF method but in practical problems it often doesn’t hold.

The Kalman filter works in two steps; forecast and analysis step. The forecast step
moves the state forward in time with the model operator

xfk = Mkx
a
k−1, (3.3)

and the analysis step updates the state given by the forecast step with the information
from the observations

xak = xfk + Kk(yk −Hkx
f
k), (3.4)

where the difference y − Hxf , referred to as the innovation, describes the difference
between the measurements and the projection of the state in the observational space.

Note that the forecast and analysis states are equivalent to the prior and posterior
equations derived in the previous chapter and are often referred to as such. In both of
these steps an error covariance matrix is computed to estimate the uncertainty of the
estimate. The Kalman gain K is chosen to minimise the trace of the analysis error
covariance matrix Pa defined below.

Theorem 3.1.1. When the forecast and analysis states, xfk and xak, are defined as in
equations (3.3) and (3.4), the corresponding error covariances are given by

Pf
k = MkP

a
k−1M

T
k + Qk and Pa

k = (I−KkHk)P
f
k ,

and the optimal Kalman gain matrix is

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)

−1.

Proof. We follow the reasoning from [3] and start by writing the estimation errors for
both steps as

efk = xfk − xk and eak = xak − xk,

where xk is the true state. Then by definition the error covariance matrices for the forecast
and analysis states are

Pf
k = cov(efk) = E(efk(e

f
k)
T ) and Pa

k = cov(eak) = E(eak(e
a
k)
T ). (3.5)
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Let us look at the forecast error covariance first, in this proof we drop the time index
k from the model and observational operators for simplicity but they can be added back
without any change to the reasoning. When we substitute the forecast state xfk from
equation (3.3) and the true state xk from equation (3.1) into the above equation we get
the desired form

Pf
k = E

[(
Mxak−1 −Mxk−1 + ηk

)(
Mxak−1 −Mxk−1 + ηk

)T]
= E

[(
M(xak−1 − xk−1) + ηk

)(
M(xak−1 − xk−1) + ηk

)T]
= E

[
M(xak−1 − xk−1)(xak−1 − xk−1)TMT + M(xak−1 − xk−1)ηTk

+ ηk(x
a
k−1 − xk−1)TMT + ηkη

T
k

]
= MPa

k−1M
T + Qk.

The last equality follows from the fact that the errors ηk are assumed to be zero mean
Gaussian with covariance matrices Qk. We also needed to assume that the analysis errors
eak−1 are independent of ηk for every k = 1, 2, . . . .

Next we wish to find the analysis error covariance. We begin by taking a look at the
analysis state (3.4), which can be written as

xak = xfk + Kk(Hxk + εk −Hxfk),

when we substitute the observation vector from equation (3.2) into it. We use this form
of the analysis state in the equation for the analysis estimation error and get

eak = xfk + Kk(Hxk −Hxfk + εk)− xk
= Kk(−H(xfk − xk) + εk) + (xfk − xk)
= Kk(εk −Hefk) + efk .

Now we can use the above equality and substitute it into equation (3.5) for the analysis
error covariance

Pa
k = E

[
(Kk(εk −Hefk) + efk)(Kk(εk −Hefk) + efk)

T
]

= E
[
efk(e

f
k)
T − (KkHe

f
k)(KkHe

f
k)
T + Kkεk(Kkεk)

T
]

= (I−KkH)Pf
k(I−KkH)T + KkRKT

k , (3.6)

where the second equality follows from the assumption that the estimate errors are unbi-
ased and so have expected value of zero.
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For the final part of the proof we need some properties from matrix differential calculus
[16]. For any matrices B and C of appropriate sizes it holds that

∂

∂C
Tr(CTB) = B and

∂

∂C
Tr(CBCT ) = CBT + CB,

where the partial derivative with respect to a matrix is defined elementwise.
Lastly we wish to find the optimal Kalman gain K which minimises the trace of

the analysis error covariance Pa. The reason we wish to minimise the trace is because it
contains the estimation error variances for the components of the state and we are looking
for the minimal variance solution. To do this we will take the derivative of the trace of
the analysis error covariance with respect to the gain

∂

∂Kk

Tr(Pa
k) =

∂

∂Kk

Tr
(
Pf
k −KkHPf

k −Pf
kH

TKT
k + Kk(HPf

kH
T + R)KT

)
= −2(HPf

k)
T + 2Kk(HPf

kH
T + R),

where we used the fact that Pf is symmetric. From this we get the optimal Kalman gain
matrix by setting the above result to zero

Kk = Pf
kH

T (HPf
kH

T + R)−1,

which we then substitute into the equation (3.6) for the analysis error covariance and get
the desired form

Pa
k = (I−KkH)Pf

k .

The error covariance matrices Pf and R give us a way of deciding how much trust
we put on the forecast state and observations. The balance between trusting the obser-
vations versus the forecast is determined by the Kalman gain. If R is large we consider
the observations to be untrustworthy and the new analysis state will stay close to the
forecast state. Also Pa will be close to Pf . On the other hand, if R is small we consider
the observation to be good and the analysis state will be close to the projection of the
observation to the model space. In this case Pa will be clearly smaller than Pf .

However, Pf affects the gain in the opposite direction. If Pf is small we we trust the
estimate a lot and the observations need to be really good to have a considerable effect
on the analysis state. And similarly is Pf is large we rely on the observations even if they
aren’t that good.

We talked about covariance matrices as being large or small since it it easier to imagine
all the variances increasing or decreasing. However it should be noted that we have a
variance for each element of the state and observation vector and it is their relative size
to the corresponding element that determines how we update that particular element.
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3.2 Extended Kalman filter
As stated before, the Kalman filter is optimal only when the operators are linear and
the statistics Gaussian. The need for the linear operators is based on the fact that we
need linear algebra to work with the covariance matrices, linearity also preserves the
Gaussianity. The Extended Kalman filter method, EKF, can be used if the operators are
non-linear. [4] In EKF the true state, the observation vector, the forecast and analysis
state are defined using the non-linear operators

xk =Mkxk−1 + ηk,

yk = Hkxk + εk,

xfk =Mkx
a
k−1 and

xak = xfk + Kk(yk −Hkx
f
k).

However in the covariance matrices and the Kalman gain the model and observational
operators need to be linear. This is achieved by replacing the non-linear operators with
their tangent linear approximations i.e. taking the first order derivative of the operators
with respect to the state

Mk =
∂Mkx

a
k−1

∂x
and Hk =

∂Hkx
f
k

∂x
.

The EKF works only for reasonably small breaches of linearity. For example, if the
time step is long enough for the model’s non-linearity to show, the forecast error covariance
may be underestimated and this can cause filter divergence, which will be discussed in
section 4.2. [3]
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Chapter 4

Data assimilation using ensemble
methods

In this chapter we introduce two ensemble methods based on the Kalman filter. They can
be used when the system is, for instance, computationally too large for the traditional
Kalman filter method to work. The advantage of these methods is that we avoid having
to store and develop the full covariance matrices by replacing the forecast error covariance
matrix with sample covariance at each time step.

Ensemble methods are widely used and the most common ones have software platforms
accessible to anyone. This was one of the reasons we decided to use an ensemble method.
Although our model is simple enough for the EKF method to work as well. Another
reason for using an ensemble method was that it would have been extremely hard to
estimate the initial error covariance for our model.

In all ensemble-based method an initial ensemble needs to be created. This is done
by adding perturbations to a best-guess estimate of the state based on its uncertainty.
Luckily small differences in the perturbations done to create the initial ensemble don’t
affect the results much over a long enough time period. [8] Over time, when we’ve run
several iterations, the covariances develop and become more accurate than after the first
iteration.

4.1 Ensemble Kalman filter
The Ensemble Kalman filter, EnKF, was first introduced in 1994 by Geir Evensen [7] and
has been modified several times for example in 1998 by Burgers et al. [6] and Evensen in
2003 [8]. The EnKF method has been applied to a large range of problems for example
in ocean and atmospheric science applications and is still widely used in many fields.
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We start by initialising an ensemble of states {xfi }i=1,...,d, for which we have a mean
and covariance by definition

xf :=
1

d

d∑
i=1

xfi and Pf
e := E[(xf − xf )(xf − xf )T ]. (4.1)

For the EnKF method to hold the observations need to be treated as random variables.
Whenever observations become available an ensemble of observations yi = y+εi is drawn,
where εi ∼ N (0,R). The ensemble observational error covariance matrix is Re = E(εεT ).

The ensemble Kalman gain matrix is defined similarly as before but using the ensemble
statistics

Ke = Pf
eH

T (HPf
eH

T + Re)
−1.

Each of the ensemble members is updated separately according to the Kalman filter
analysis step, where the observational operator can be non-linear,

xai = xfi + Ke(yi −Hkx
f
i ),

from which we can compute the ensemble mean

xa = xf + Ke(y −Hkx
f ),

this is how the mean was defined in the method though it is only valid when Hk is not too
strongly non-linear. The analysis state and its mean are then used to compute analysis
the error covariance matrix

Pa
e = E[(xa − xa)(xa − xa)T ]

= (I −KeH)Pf
e (I −HTKT

e ) + KeReK
T
e

= Pf
e −KeHPf

e −Pf
eH

TKT
e + Ke(HPf

eH
T + Re)K

T
e

= (I −KeH)Pf
e ,

which is now defined analogous to the Kalman filter method but with the ensemble statis-
tics. Lastly, the next forecast is computed from the obtained analysis states

xfi =Mkx
a
i ,

and the forecast statistics are calculated as in equations (4.1) using the new ensemble
states.
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4.2 Filter divergence
Filter divergence is a phenomenon that may happen if some of the errors are not included
in the error covariances. When that happens the forecast error covariance gets repeatedly
underestimated and the filter starts to trust its own estimates more and more and the
observations have less and less effect on the estimate. Different error sources that are
hard to incorporate into the covariances are, for example, the model and sampling error
or errors from linear approximations.

Let us look at the error covariance matrices in the traditional Kalman filter.

Pf = MPaMT + Q ↔ Pa = (I−KH)Pf

The point of the analysis is to improve the forecast and it always gives smaller or equal
uncertainty, i.e. Pa ≤ Pf . This holds because KH can only have values between zero
and one. The uncertainty for Pf is predicted from the previous analysis uncertainty using
M with additional model error Q. The effect M has on Pa depends on the application
but it rarely increases the covariance enough on its own to obtain balance between Pf

and Pa over time. Hence if Q is underestimated the filter diverges. However in practice
estimating Q is hard. The model error consists of uncertainties in the model structure,
inputs and parameters and there is no way of knowing the error caused by the model
structure exactly.

In the ensemble methods Pf is calculated from the sample variance. The effect of
the model on slightly different states within the ensemble is used to estimate the model
uncertainties. This method still often underestimates the error covariances and we are
faced with filter divergence. This is again due to the fact that we are unable to estimate
the model error. Next we discuss some methods to handle filter divergence.

Randomising the observations in the EnKF method is one way of reducing filter di-
vergence since it introduces an extra source of error to the covariance matrices. EnKF
was first introduced without the perturbations, but later the method was corrected in
[6] because without randomising the observations the analysis error covariance matrix
would be underestimated and it wouldn’t be equivalent to the Kalman filer theory. This
is due to the observational error covariance R not having a counterpart in the ensemble
method without perturbing the observations, all the states would be updated using the
same measurement and this would cause correlations between them. [6]

One way to counteract filter divergence is to inflate the filter error covariance matrix
P by multiplying it with a constant factor slightly greater than 1 before or after analysis.
Inflation methods can also be additive or applied to the ensemble members instead of the
covariances. There are also several different adaptive inflation methods where the factor
is a variable. [3] In our application we will apply a simple constant inflation factor to
the forecast error covariance. Inflation is quite an artificial method for reducing filter
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divergence and there is no exact way of choosing the inflation factor. Nevertheless it is an
effective and transparent way of controlling filter divergence, which makes it widely used.

4.3 Ensemble Adjustment Kalman filter
The Ensemble Adjustment Kalman filter, EAKF, was first introduced by Jeffrey Anderson
in 2001 [1] as an alternative to EnKF. Both of these ensemble methods preserve informa-
tion about the structure and higher-order moments of the prior ensemble. In EAKF this
is done in the analysis step with a matrix A, which we will talk about at the end of this
section.

In this method we define a joint state-observation vector z ∈ Rm+n as

z = (x,Hx),

which contains the state and the projection of the state to the observational space. One
advantage of this method is that there are no restrictions on H. Same holds for the EnKF
even though it isn’t as transparent. The projection to the observational space can be
obtained from the joint state vector with a linear operator H ∈ Rn×(m+n) which is defined
as H[j, j + m] = 1, j = 1, . . . , n, and zero everywhere else. Now it holds that Hz = Hx.
This linear H is used when calculating the mean and covariance for the joint state vector.

First we will draw an ensemble of joint state vectors zfe as our initial forecast ensemble.
The initial ensemble is drawn from a Gaussian distribution with mean equal to our best-
guess estimate for the state and variance determined based on its uncertainty. From this
ensemble we get the sample mean zfe and covariance Pf

e . The forecast ensemble should
be approximately Gaussian and can be represented by the calculated mean and variance,
zf ∼ N (zfe ,P

f
e ).

Now that we have the forecast ensemble we want to update it based on information
from the observations. The covariance and mean for the probability p(za) = p(zf |y) are
given by

Pa
e = [(Pf

e )
−1 + HTR−1H]−1 (4.2)

and
zae = Pa

e [(P
f
e )
−1zfe + HTR−1y]. (4.3)

These can be derived from the Bayes’ theorem in the same way we did in chapter 2. The
likelihood for the observations given the joint state vector is p(y|zf ) ∼ N (Hzf ,R). We
can now calculate conditional probability p(zf |y) ∝ p(y|zf )p(zf ) ∝ exp

{
−1

2
U
}
, where

U = (y −Hzf )TR−1(y −Hzf ) + (zf − zfe )T (Pf
e )
−1(zf − zfe )

= yTR−1y − yTR−1Hzf − (zf )THTR−1y + (zf )THTR−1Hzf

+ (zf )T (Pf
e )
−1zf − (zf )T (Pf

e )
−1zfe − zTe (Pf

e )
−1zf + (zfe )

T (Pf
e )
−1zfe .
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Next we gather the terms with zf and denote v = (Pf
e )
−1zfe + HTR−1y so that we can

write U as

U = (zf )T (Pa)−1zf − vTzf − (zf )Tv + {yTR−1y + (zfe )
T (Pf

e )
−1zfe}

= (zf − zae)T (Pa)−1(zf − zae) + {yTR−1y + (zfe )
T (Pf

e )
−1zfe − vTPav},

where the terms in the curly brackets do not contain zf and can thus be treated as
constants. From this form it is easy to see that equations (4.2) and (4.3) hold.

To get from the forecast ensemble to the analysis ensemble with the above statistics
EAKF uses the following equation

zai = AT (zfi − zfe ) + zae ,

where the index i = 1, . . . , d denotes the members of the ensemble. The matrix A ∈
R(m+n)×(m+n) is such that the sample covariance of the updated ensemble is identical to
(4.2) and the sample mean is equal to (4.3). The matrix A is calculated using several
different rotation and scaling matrices and the derivation for it can be found in the
appendix A of [1].

The analysis step, specifically the matrix A, does many things to the prior ensemble.
First the prior ensemble in rotated into a coordinate system, where Pf and HTR−1H
become diagonal. Next this diagonal Pf is scaled to be an identity matrix and the same
scaling is applied to the diagonal HTR−1H. In this transformed space the mean zae
is calculated. Then the analysis ensemble can be obtained by shifting the transformed
ensemble to the new mean zae and contracting it along the transformed coordinate axes
according to the transformed HTR−1H. Finally the respective inverse transformations
are applied to the transformed ensemble to return to the original state space. [9]
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Chapter 5

Application to soil organic carbon
modelling

In this chapter we will introduce the Yasso model, our observations and the DART soft-
ware. Yasso is a model for the decomposition of soil organic carbon, later referred to
as SOC. Our research project focused on enhancing the estimates of the Yasso15 model
which is the latest version of the Yasso model. [13] The observations are from different
sites across Europe, where the amount of organic carbon in the soil was measured reg-
ularly for several decades. Lastly we will discuss what the necessary computations were
and how the data assimilation was run with the software platform DART.

5.1 Yasso model

Figure 5.1: Decomposi-
tion of the SOC pools.

Soil organic carbon can be divided into five pools based on decompo-
sition rate; acid soluble (A), water soluble (W), ethanol soluble (E),
non-soluble compounds (N) and humus (H). The decomposition of
the first four may result in the formation of carbon dioxide or com-
pounds of another pool. This is demonstrated in the figure 5.1, where
the most likely results of decomposition for each pool are denoted by
arrows.

The pools decompose at their own rate, which depends on tem-
perature and precipitation. Also in the case of woody litter, such as
stems and stumps, size affects the decomposition rate. The humus
pool is the slowest to decompose and stores the long-term SOC, which
was the focus of the experiments from which we got the measurements
introduced in the next section.
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The model state vector x(t) = [xA, xW , xE, xN , xH ]T denotes the mass of each pool
and the change of the state in time is modelled as

dx(t)

dt
= Dx(t) + b(t), (5.1)

where D describes how SOC decomposes and moves between the pools or leaves the
system as carbon dioxide due to soil respiration. The last term b(t) is possible litter input
which enters the system. The above equation is a first order non-homogeneous linear
differential equation and we will solve it later. In the solution we will consider D and b
to be constants. This can be done because Yasso is run one year at a time and for this
time period D and b are determined and constant. The matrix D actually depends on
environmental conditions and is defined as

D =


−1 pWA pEA pNA 0
pAW −1 pEW pNW 0
pAE pWE −1 pNE 0
pAN pWN pEN −1 0
pH pH pH pH −1

G,

where pih is the the relative flow from pool i to pool h and i, h ∈ {A,W,E,N,H}. The
humus pools differs from the others. There is no flow from the humus pools to the other
pools, pHh = 0. Also the relative flow from every other pool to humus is the same,
piH = pH . The matrix G = diag(gA, gW , gE, gN , gH) contains the decomposition rates gi
for the pools, which are defined as

gi =
αi
J

J∑
j=1

exp(βi1Tj + βi2T
2
j )(1− exp(γiP ))u(s), (5.2)

where T ∈ RJ is temperature and P is annual precipitation. The parameter αi is a
decomposition rate for a pool without considering temperature and precipitation, βi1 and
βi2 are temperature dependencies and γi is a precipitation dependence. The decomposition
slows down the larger the litter is due to the fact that it takes more time for the bacteria
to reach the inside of the litter. This is described by u(s) = min((1 + φ1s + φ2s

2)r, 1),
where φ1, φ2 and r are parameters and s is the diameter of the woody litter.

The temperature vector T is a sinusoidal that takes into account the seasonal variations
during one year. It is calculated from an annual mean Tm and an amplitude defined as
Ta = 1

2
(Tmax − Tmin), where the maximum and minimum temperatures are the mean of

the warmest and coldest months of the year.
The equation (5.2) for temperature, precipitation and size dependence was obtained in

articles [17], [18] and [19]. In [17] the equation for temperature dependence is chosen em-
pirically from six different models. Similarly in [18] it was described how the precipitation
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dependence was chosen from different alternatives so that it had the highest probability
with respect to measurements. Lastly the size dependence term u(s) was obtained in [19]
by considering three different models of which this form gave the highest posterior proba-
bility using Bayesian model comparison theory. The model parameters we used had been
calibrated using experimental data and Bayesian inference by utilising MCMC simulation
algorithm.[13] [10]

When the parameters, initial state x0, and the environmental conditions are deter-
mined and for a constant litter input b we can solve the differential equation (5.1) for
x(t). The solution for this type of ODE, with constant D and b, is

x(t) = eD(t−t0)x0 + eDt
∫ t

t0

e−Dq dqb

= eDtx0 + eDt
∫ t

0

e−Dq dqb

= eDtx0 + eDt(−D−1e−Dt + D−1)b

= eDtx0 −D−1b+ D−1e−Dtb

= D−1[eDt(Dx0 + b)− b],

where we defined x(t0) = x0 and t0 = 0. We also used the fact that every matrix
commutes with its exponential, i.e. eAtA = AeAt. The above equation is used as the
model operatorM in the data assimilation.

5.2 Observational data
The data we used to test the data assimilation is from a long-term vegetation-free ex-
periments where the decay of SOC was monitored for decades after all inputs of carbon
had stopped. The time it takes for a carbon atom bounded to a plant to return to the
atmosphere is called turnover time. The study focused on carbon that has a turnover
time of centuries or more. The duration of the experiments was short compared to the
turnover time and this was taken into consideration when estimating the uncertainties for
the data. The sites were kept vegetation-free for at least 25 years and the amount of SOC
was measured regularly. [5] Note that our model state consists of the five pools whereas
our observations are their sum, so the model state is not directly observed, which is often
the case.

The sites of the experiment were located in Europe in different climate conditions and
had different soil types. We used measurements from five different locations of which one
had two fields so six in total.
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Site Years Duration in years Number of observations
Askov B3 1956-1987 31 30
Askov B4 1956-1987 31 29
Grignon 1959-2008 49 11
Rothamsted 1959-2008 49 7
Ultuna 1956-2007 51 18
Versailles 1928-2008 80 9

In addition to these measurements we had daily weather data from each of these sites
for the duration of the experiment. From the weather data we got the annual precipitation
and minimum, maximum and mean temperatures for each year, which were given as input
to the model.

5.3 Computations and the DART toolbox
The software platform DART was designed for running different types of data assimilation
problems. A user can implement their own types of observations and model into DART
and then run data assimilation using a filter of their choosing e.g. EAKF or EnKF. [2] We
used a previous version of DART called Classic, and not the newest version Manhattan.

Both DART and Yasso are coded using FORTRAN so adding Yasso into DART re-
quired just a few lines of code when reading and writing the states in and out of the
model. From the input file Yasso reads the current state and the length of the time step.
Yasso and DART handle the state data files in different format so we also needed to add
a code to convert the data in to the right format between DART and Yasso.

Before running our assimilation we needed to define new types of observations in
DART and tell DART how to handle them. This was made quite easy and required only
simple additions to a few files and changes in some settings. Before the observations could
be added they were written in a file format that DART can read.

We got the initial states for the sites from [15], where the history of each site was taken
into account when estimating the carbon in each pool at the beginning of the experiments.
The initial ensemble of states was also created with R by taking the initial state for the
pools as the mean and with a 10% variance. The distribution for the initial ensemble for
each site can be seen on figure 5.2.

DART reads the start time from the initial ensemble and checks if there is an observa-
tion at that time. If there is, the observation is used to compute a new analysed ensemble.
This is then give to the model which moves the states forward in time one by one until
the time of the next observation. This is repeated until the last observation. We ran the
assimilation with inflation factors ranging from 1.0 to 1.5, with which the forecast states
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were multiplied. In the results in the next chapter we will show the assimilations done
without inflation or with an inflation factor of 1.25.

Figure 5.2: The distribution of the initial ensembles for each site
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Chapter 6

Results and discussion

Here we present the results we got from running our data assimilation problem with DART
using the EAKF filter. The results were plotted using MATLAB. The different sites, and
the measurements made in them during the experiments, can be seen in figures 6.1 and
6.2. In all the figures we can also see the model prediction without data assimilation for
comparison.

In figure 6.1 we have plotted the forecast state at each time step, i.e. when all the ob-
servations before that time have been assimilated into the estimation. This demonstrates
how the filter works over a long period of time with several observations and at each point
we see the forecast that our model gave for that time. The figure shows assimilations that
were done with no inflation and with an inflation factor of 1.25.

We notice that in both of the Askov fields there is a systematic change in the obser-
vations during the experiment, in field B3 in 1977 and in B4 in 1966. We also see how
filter divergence affects the estimate without inflation after a few observations. Even after
the systematic change in the measurements the analysis trusts the previous forecast more
than the observations. Whereas the estimation with inflation factor 1.25 corrects towards
the new trend in the observations.

In Grignon and Rothamsted we have fewer observation than in Askov. In both we
see an improvement that is quite consistent with and without inflation. In Ultuna we see
a clear correction at the third observation because we are looking at the forecast states.
The measurement error in Ultuna is also smaller than in the other sites and the variance
in both of the estimates stays very small after the first three observations. The initial
ensemble in Versailles, that was seen in figure 5.2, seems have a bimodal rather than
a normal distribution. We ran the computations also with an initial ensemble that has
clearly normally distributed and this didn’t have any significant effect on the results. So
even though the initial ensemble was bimodal by chance the ensemble method gave stable
results.
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Figure 6.1: Forecast for the total amount of SOC in each year without inflation and with
inflation factor 1.25
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Next we took the first four analysis states, calculated with an inflation factor of 1.25,
as initial states and ran the model onward, as can be seen in figure 6.2. With these four
cases we can see how with just a few observations the filter enhances the future forecasts.
We could have made these same estimates at the time of the fourth observation in each
site.

Again we notice the systematic change in Askov. This time we assimilated observations
only before this change so the model estimates follow the trend from the measurements
before the change. After the change our estimates are clearly worse than the original
model estimate.

In Grignon and Ultuna the model estimates are considerably closer to the measure-
ments compared to the original estimate and we see clear improvement even after the
second observation. Rothamsted has the fewest number of observations overall but they
have a quite clear trend that we were able to follow after assimilating the first three ob-
servations. However in Versailles assimilating the first four measurements isn’t enough to
enhance the initial estimate. From these we can see that assimilation enhances the model
estimate quite fast and just few observations are enough to have an effect.

24



Figure 6.2: Estimates when assimilating the first four observations with inflation 1.25.
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Figure 6.3: The estimates for the pools in Askov B4 with inflation 1.25

Next we were interested in seeing how data assimilation affected the model state, i.e.
the five carbon pools, since the observations were only of the total amount of SOC. In
figure 6.3, we take a look at how the soil organic carbon is distributed among the pools
during assimilation with an inflation factor of 1.25 in Askov B4. In this figure we can see
how the error covariance matrix affects all the pools during the assimilation according to
the correlations between the pools. When the total amount of carbon decreases it is not
taken evenly off the pools but we even see growth at times. This is something that we
would expect to be happening in reality and it demonstrates that the model is able to
represent the actual chemical reactions the way we understand them.
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Chapter 7

Conclusion

In this thesis we have discussed data assimilation and derived the Kalman filter equations
from the Bayes’ theorem and proved that the error estimation process is optimal. We
also discussed the Extended Kalman filter which provides a way to deal with non-linear
systems. We introduced ensemble methods based on the Kalman filter and discussed filter
divergence and ways to handle it.

We then introduced the Yasso model for soil organic carbon decomposition. We had
observations form several bare fallow experiments and Yasso was used to estimate the
amount of SOC in the fields during these experiments. The Ensemble Adjustment Kalman
filter was used to enhance the estimates of the Yasso model with information from the
observations. We were able improve the estimates with data assimilation and it also
showed that the model understands the physical processes of SOC decomposition in a
realistic way. The results were promising and further work should be done in more complex
systems, e.g. with decaying plant litter in the system.
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