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1. Introduction

1.1 Background and motivation

The spatial gap between people of different socio-economic backgrounds and

ethnicities is widening in all capital cities across Europe, which is made visible by

rising levels of residential segregation (Marcińczak et al. 2015; Musterd et al 2017).

Recently, this development has raised a discussion about the less addressed but notably

segregated contexts of life that are also partly affected by residential segregation. These

contexts include places of education, workplaces, leisure and other places people visit

in their daily routines – the segregation of which can result in overall minimal exposure

to diversity in people’s daily lives (Boterman & Musterd 2016; van Ham & Tammaru

2016). The effects of residential segregation are not only translated to these other

domains of life by physical distances, but also by administrative divisions that separate

neighborhoods into school districts, hospital districts, catchment areas of public

transport stops, et cetera.

The influence and power of different district divisions is well acknowledged in

electoral districting, since it’s consequences are widely discussed in the public every

few years – especially in cases, where the election result is somehow in conflict with

the popular vote or seems to be somehow affected by the division of the state into

voting districts. How other, more mundane local level districting divisions affect our

lives, how they create and realize domains of segregation in our everyday lives, is a

much less acknowledged and addressed issue.

Political parties have used strategic districting as a means of affecting election

outcomes for their benefit for centuries – the first documented case, based on which the

term gerrymandering was coined, dates back to 1810s (Hardy 1990). Because of this

history, the term strategic districting is easily associated with corruption and

manipulation that leads to unbalanced and unnatural outcomes, while neutrality is

usually considered a desirable objective in districting. This association, though, is more

related to the history of abuse (see e.g. Hardy 1990, Johnston 2002) than the method or
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practice of strategic districting itself. While in many cases neutrality and evenness are

rational and appropriate takes on a districting problem, there are cases and situations

where strategic districting could be used to hinder the segregation in important domains

of life – and to benefit the society as a whole.

In Finland, one of the critical contexts of life that are becoming increasingly socially

polarized are the places of education. Though the Finnish school system is

internationally regarded as one of the most successful schooling systems on the scale of

equality of educational opportunities (OECD 2004, OECD 2018b), lately the

differences between schools’ learning outcomes have been on rise, especially inside

larger cities and most notably in the capital city Helsinki (Kuusela 2010; Bernelius

2013; Kupari et al. 2013). This development has been strongly linked to growing

residential segregation, which is inevitably affecting the social compositions of both

school districts and schools (Bernelius 2011).

Educational segregation is problematic, because it tends to lead to differentiation of

overall student performance and learning outcomes on both school and individual level

– a differentiation that cannot be explained only by the individual backgrounds of the

students (e.g. OECD 2004; Rumberger & Palardy 2005; Mickelson & Bottia 2010,

Perry & McConney 2010). This means that while the individual skills and backgrounds

of students affect individual achievement, so does the characteristics of their schools

and their student compositions. However, it is possible to influence the polarization of

schools’ student compositions and prevent educational segregation by redrawing the

school district borders in a manner that optimizes the social evenness between school

districts.

Unfortunately, the current GIS-tools are practically non-existent or inadequate for

district of optimization – although there are several commercial and open-source GIS

tools available for quick and easy evaluation of a particular partitioning of the city, they

are generally not capable of solving the combinatorial challenge of finding an optimal

or nearly-optimal partitioning of the city into school districts. With the current software,

the amount of manual work that would be needed for comparing all the possible

alternative plans makes the evaluation of the best or even nearly optimal district
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division practically impossible. For this purpose, more powerful tools are needed –

tools that can model and produce multiple, differently weighted optimal districting

plans effectively.

The motivation for this master’s thesis study arises from the realization that a)

differences between schools’ student compositions produce asymmetric learning

outcomes, b) the differences between schools are growing, and c) this development can

be influenced by strategic districting. As mentioned, one significant barrier hindering

the ability to influence school segregation is the lack of appropriate tools for

redistricting and school district planning. While automation and artificial intelligence is

penetrating to almost every aspect of people’s lives and business, it is still largely

underutilized in the decision supporting and information producing processes of the

public sector. This aspect brings up the final realization d) – new tools are needed for

effective strategic districting.

1.2 The objectives and design of this study

The main objective of this master’s thesis study is to develop an algorithm for school

district optimization and pilot its application in the context of Helsinki. The aim is to

model a socially more even school district plan – a plan that would consist of internally

more heterogeneous and externally more homogeneous school districts in terms of

social compositions, but also to find out the scale in which the optimization would be

theoretically possible in Helsinki. This scale is studied by producing alternative

districting plans that maximize the social variance inside individual school districts and

minimize it between the school districts, while accounting for travel times and schools’

student capacities. The optimized districting plans are then compared to the district plan

of the current school year (2018–2019).

The methods used in the model development have been inspired by the large body of

studies made on automated electoral districting. The model developed utilizes local

search techniques to iteratively improve the current school district division until the

optimal division under specific restriction rules is found. In previous studies, this

approach to district optimization has been found to be among the most feasible, and
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consequently also one of the most utilized. The approach chosen is experimental, and

does not pursue to find a single, objectively optimal redistricting solution directly

applicable to real world, but rather to pilot a possible approach to the existing school

districting problem in Helsinki and demonstrate the need for automated districting

approaches and initiatives.

This study is also an initiative towards a data-oriented and machine learning based

districting procedure. A step towards a decision-making system, where technology is

utilized for extracting information of different options, and for comparing plans and

their consequences in an effective manner. In the Helsinki context, the modeling of

school district optimization has never been done before, which makes this study the

first one of its kind.

1.3 Outline

This thesis is divided into the following five parts: (1) introduction, (2) theory and

literature, (3) methods, (4) results, (5) discussion and (6) conclusions.

Chapter 2 presents relevant theories, concepts and previous research. The topics

covered include the history of districting and district optimization both on a general

level and from the perspective of school districting. The previous district optimization

initiatives and methods are presented, and the problem defined with some mathematical

formalism. In this chapter, I also go through the aspects and research related to

educational segregation, its causes and consequences, and introduce the context of the

pilot study: the city of Helsinki.

In chapter 3, I give a detailed explanation of the optimization algorithm developed in

this study, as well as its implementation and piloting in the Helsinki context. First, I

summarize the model’s features, after which I explain the logic of the model through a

simple metaphor. Last, I explain the details related to the piloting and implementation

of the model, as well as the details of applying the model to Helsinki school district

division.
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In chapter 4, I present the key findings from the empirical part of this study: the

application of the school district optimization model on Helsinki school district

division. The resulting optimized district plan is also compared to the original district

division to measure the scale in which the districts are optimizable with chosen

parameters.

Chapter 5 provides a critical analysis of the developed model and the empirical results.

The findings are evaluated, and the limitations are discussed. Also, recommendations

for future research are given.

Chapter 6 summarizes the findings of this thesis.



6

2. Theory

2.1 Introduction to automated districting

2.1.1 What is districting?

Districting, also known as zone design is a process in which an administrative area –

political unit of any size – is divided into smaller regions for administrative purposes

(e.g. Williams 1995; Vanneschi et al. 2017). It is used at all levels of administration,

ranging from international (f.ex. EU NUTS categorization) and state-level (e.g.

electoral district planning) to for example land use, rescue service or school attendance

zoning practiced by municipality officials. Though districting can simply be seen as a

practical measure of organizing public services for citizens, it’s also an allocation of

real-world physical, social and human resources: space, people, communities and

neighborhoods. The allocation outcomes may define – depending on the society and the

districting objective–, which public and social resources are within the citizens’ reach:

which school their children may attend, which public health care unit they have access

to, who they can vote for in parliamentary elections, what kind of public transport is

offered and how much a trip costs, or how far is the closest fire station. Districting is a

political process that shapes the social environment and people’s activity spaces, and

thus has real social and human influences. Some of these influences may lead to

residential choice patterns and direct effects in housing prices (e.g. school quality’s

effect on the school’s attendance zone’s housing prices, see Cheshire & Sheppard 2004;

Brunner et al. 2012; Danielsen et al. 2015), while others may have major state-level

political effects (e.g. the effect of electoral districting on parliament compositions, see

Johnston 2002).

Districting decisions, like other resource allocation decisions in the public sector, are

complex problems both politically and practically. The political complexity arises from

the number of conflicting interests and interest groups at stake: the criteria for different

districting initiatives reflect contestable objectives, and not all even seemingly neutral

objectives benefit all demographic groups equally. The practical complexity arises from

the difficulty of “measuring, assessing and evaluating the quality and quantity of
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impacts associated with alternative allocation patterns” (Malczewski & Jackson 2000).

And not only the impacts of this multi-dimensional problem are difficult to verify, but

it’s also practically impossible for anyone to imagine all possible alternative districting

solutions and compare them. Even a small-scale districting problem, due to its

combinatorial nature, has easily thousands of alternative solutions that are impossible to

enumerate explicitly (Keane 1975; Garey & Johnson 1979; Altman 1997).

Electoral district planning is one of the best known and most studied examples of

districting, with gerrymandering being among the most infamous – yet popular –

examples. Gerrymandering as a term denotes the “deliberate manipulation of district

borders in order to give a particular party, candidate or group a distinct advantage or

disadvantage in an election” (Williams 1995). The term was originally coined in a

Boston Weekly Messenger cartoon after the Democratic-Republican party and its

governor Elbridge Gerry manipulated Massachusetts’ electoral districts’ borders to win

the state election against popular vote in 1812 (Hardy 1990; Bozkaya et al. 2003;

Hunter 2011; Liu et al. 2016), and it became widely used to refer to politically biased

districting. The case caused a vast amount of criticism calling for political neutrality

and fair representation in electoral districting. In one of the earlier studies on fair

minority representation, Stanwood (1871) writes:

“The alleged failure of the district system, and the apparent unfairness to

minorities which it involves, have led thinkers in this country, and to a still greater

extent in Europe, to cast about for a new plan which shall both do greater justice to

the several factions in a constituency and secure a higher order of talents in the

representative.”

Since then, while maintaining its popularity in the field of political studies and

operations & management science, discussion of fair, unbiased and optimal districting

procedures has emerged in also other fields like geography, social sciences and

economics. One of the most important empirical twists to the research and discussion of

districting, however, has come along with the improvements in computer technology.
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2.1.2 The rise of automation

The idea of generating algorithmically optimized district plans developed in 1960s,

during a decade when the foundations for mathematical theory of artificial intelligence

were established – or which Russell & Norvig (2003) call the era of “early enthusiasm,

great expectations” in the history of AI. Since, automated districting through computer

modeling has been applied to a plethora of zoning task. Some of the examples include:

- Defining electoral districts of equal population and compact form for a state or a

country (e.g. Nagel 1964; Garfinkel & Nemhauser 1970; Horn 1995; Hojati 1996;

Mehrotra et al. 1998; Bozkaya et al. 2003; Rincon-Garcia et al. 2013; Vanneschi et al.

2017).

- Determining an optimal partitioning of two-level telecommunication network into

local networks (clusters) and deciding a hub location for each cluster (Park et al. 2000)

- Redistricting urban police departments’ command boundaries in order to both

maximize an effective use of patrol cars and balancing the workload between officers in

different districts (D’Amico et al. 2002; Camacho-Colladosa et al. 2015).

- Defining sales districts for traveling salesperson team to balance workloads between

employees (Hess & Samuels 1971; Easingwood 1973; Shanker et al. 1975; Zoltners &

Sinha 1983)

- Assigning students to schools (forming school districts) while both minimizing travel

or busing costs and balancing student distribution by social attributes and school

capacity (Heckman & Taylor 1969; Ferland & Guénette 1990; desJardins et al. 2007)

- Optimizing tickets pricing zones to correspond better to the use of the public

transportation network (Tavares-Pereira et al. 2007)

- Maintaining Census output geographies in order to make them suitable for a new

publication of Census data (Cockings et al. 2011)

Initially, the goal of automated districting was to produce unbiased, politically neutral

electoral district plans, which computer modeling was seen as a means to achieve

(Vickrey 1961; Williams 1995). Throughout history (and in many cases today), district

plans had been designed and drawn manually, and the partitioning decisions had been

based on local knowledge, intuition, and the designers’ subjective insight (Cockings et

al. 2011). These processes usually lacked objectivity while being time consuming and
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resource intensive. The automation was argued to remove these problems, as it would

work as a veil of ignorance (in the Rawlsian manner), since the objectives and criteria

would be agreed upon beforehand while the eventual, actual districting solution would

be unknown to all parties until the algorithm was run (Vickrey 1961; Browdy 1990;

Altman 1997). Eliminating human intervention in the actual calculation process was

seen as promoting fair outcomes.

This idea has since been criticized for ignoring that the original problem of conflicting

interests does not disappear with automation – goal-setting, choosing parameters for

objective functions and choices regarding utilized methodologies contain conflicting

values and outcomes, which makes the process of districting inherently political

(Altman 1997). District optimization approaches have further been blamed for being

incomprehensible to interested parties (like administrators, taxpayers, parents, teachers,

students), for implicitly assuming a social consensus, for frequently failing to

implement criteria or goals that decision-makers keep important (Malczewski &

Jackson 2000) and for often being computationally too heavy. The criticism aims to

underline that there is rarely one, objectively most optimal solution for districting, and

stresses the magnitude of the obviously enormous solution spaces of potential real-

world use cases.

Some of the early developers of automated districting already saw the role of

automation not as replacing human influence but rather as a tool for decision making,

comparison and generating sophisticated information about existing alternatives. As

Heckman & Taylor state in their 1969 article on school district optimization:

“In practice, one always wants to compute optimal solutions under a variety of

racial balance assumptions and examine the trade-off between integration

achieved and cost of doing so. This point is crucial. Our view is that the role of the

management scientist is not to provide one optimal plan under a given set of

assumptions, but to provide a set of efficient options or alternatives together with

some measure of their feasibility or cost.”

This has since become the prevalent sentiment among researchers especially what

comes to less obvious and more political districting problems, like school districting.
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Since the beginning of the millennium, the focus in districting literature has further

shifted from trying to create one, objectively optimal plan to generating several

possible and better options:

“The goal is to create a decision support system that allows one to contextualize a

particular redistricting map by creating an ability to understand a range of

possible redistricting maps for a particular geographic area. –– No single plan will

satisfy every interested stakeholder – there is no perfect plan. If there is no perfect

plan for every constituent, then it makes sense that we will instead be choosing

from a bounded set of “reasonably imperfect plans”. The discrete optimization

framework is ideal as a vehicle for identifying large sets of “reasonably imperfect”

redistricting plans.” (Liu et al. 2016 about their method for electoral districting)

“The basic idea of this work is to provide the decision makers, in this case

politicians, with good viable plans (solutions to the problem). These plans should

not be affected by political criteria and should be seen as options which can be

considered before a final decision is made.” (Bação et al. 2005 about their method

for electoral districting)

“Because of the complexity of the decision-making problem, tools are needed to

help end users generate, evaluate, and compare alternative school assignment

plans. A key goal of our research is to aid users in finding multiple qualitatively

different redistricting plans that represent different trade-offs in the decision

space.” (desJardins et al. 2007 about their method for school attendance zoning)

Those nowadays reproducing the idea of theoretical neutrality achieved via automation

also do admit that the algorithm’s objectivity and performance in “fairness” is strongly

dependent of the method’s ability to model real-world phenomena and parametrize

different criteria into the objective function:

“Automated procedures offer more efficient, systematic, and objective

methodologies for designing optimised zoning systems than manual methods,

although their success is still dependent on the extent to which it is possible to
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model real-world phenomena, whether it is feasible to parameterise the required

design criteria, and the effectiveness of the zoning algorithm(s) employed.”

(Cockings et al. 2011)

Inevitably, with the current computing power and optimization techniques, computers

are capable of producing enormous amounts of viable information in a form of different

and differently weighted districting options, which can be used to support planning and

political decisions. The manually produced districting solutions tend to be haphazard

because of the very limited amount of different solutions they can evaluate – on the

other hand, a computer model can compare several different objective functions in a

relatively short time and with minimal resources. But – to be realistic –, as some

districting criteria are not easily reduced to a mathematical formula, manual post-

processing may be necessary to couple with the current optimization techniques to

make the plans feasible. This reminds the enthusiast of the role of computational

districting models, which inevitably is of a tool’s, not of a decision-maker’s.

2.2 School districting – a special districting case

2.2.1 School districting in practice: overview of OECD countries

School districting is the activity of dividing an administrative area to school attendance

zones, also called school catchment areas or school districts. The division defines,

which schools the children living inside the administrative area can attend. Student

allocation systems based on school districting are widely used in OECD countries,

while the level of the plans’ authority and the body responsible for the allocation varies

(OECD 2018a). In most countries, the decisions regarding school districting is done on

local level, usually by a municipal authority or a regional school board. In some

schooling systems the school admissions are completely determined by the districting

procedures of local authority, and the parents either have no direct way to influence it

(like in Israel) or the possibilities are very limited and uncertain (like in Norway)

(OECD 2018a).
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In most systems, though, while districting guarantees a school place to every child, the

parents are free to choose another school if available places exist (e.g. in Finland,

Sweden, Denmark, Hungary, Iceland and Japan). Usually districting is done based on

the nearest school -principle, meaning that children have a right to attend a school that

is nearest to their residence. In some countries, on the other hand (like in Latvia,

Belgium, Czech Republic and Italy), the parents can freely choose any school without

regional restrictions, and the final admission is usually dependent on the availability of

places in the chosen school (OECD 2018a). While the decision-making procedures are

versatile, so are the methods and criteria used in school admissions. In countries where

law protects parental free choice, the authorities’ possibilities to influence for example

schools’ student compositions and travel distances to schools are very limited. In many

schooling systems, though, the admission plans are carefully crafted to meet certain

objectives.

In the systems utilizing districting, school district plans have traditionally been created

manually to determine the nearest school for each neighborhood. Historically, the most

usual objective of school districting has been minimizing total travel distances to

schools while considering some other criteria on the side, but probably the most large-

scale school attendance zoning initiative was sparked by social factors and equality

aspirations. In the US, drawing school attendance zones based on geographical

distances was made mandatory for public schools by Supreme Court in 1968 in order to

force racial desegregation in public schools (Robertson et al 2010). This legal-political

process introduced the novel methods of management science to the field of

educational systems planning (e.g. Heckman & Taylor 1969), and algorithmic school

district planning has since been utilized to differing scales around the world, but most

extensively in the US.

As in electoral districting, the initial goal of algorithmic approach in school districting

was to remove certain biases from the process and in this case base the admissions

purely on legal requirements for racial balance and overall general utility of the system.

But, nowadays, despite of the already long history of school districting in the legal

framework of racial balance, the school district plans in US have been accused of

emphasizing racial segregation of schools or at least not effectively preventing it
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(Chang 2018). Among researchers, though, manipulating the districts to promote

equality of learning outcomes and societal coherence seems to be sparking a growing

interest.

2.2.2 General criteria and objectives in school districting

While school districting problems include many of the elements that electoral

districting problems consist of, they usually differ quite fundamentally from them in

terms of optimization criteria. Most frequently, the optimization criteria used in

electoral districting include equal population (by some marginal), compactness and

contiguity (e.g. Bozkaya et al. 2003). These criteria are more concerned of large-scale

geometries of the districts than the human geographies of the real world. On the

contrary, school districting usually must consider many physical, infrastructure-related

aspects like the existing school infrastructure (representing natural district centers),

road-network based travel distances (school accessibility) and sometimes

infrastructure-related safety aspects regarding school trips (rivers, railways, hi-traffic

roads etc. crossing school districts).

desJardins et al. 2007 also list the following elements differentiating school districting

from other districting problems: Firstly, while compactness is desirable both for the

sense of community and for minimizing travel distances, it is not as important as in

other fields of districting. Secondly, redistricting of schools occurs more frequently

than in most districting cases (sometimes annually), while the district division also

affects the daily lives of families and school-aged children in the area. Shifting school

district borders may affect the students negatively if it leads to situations where the

children are required to change school repeatedly during their school career. This makes

minimizing the annual changes in a districting plan an important criterion. In most

desirable case, annual redistricting should only concern the children starting their first

grade. Thirdly, according to desJardins et al., the nature of the decision-making process

in school districting makes generating multiple plans for comparison representing

different trade-offs particularly desirable.

Caro et al. (2004) have identified 7 desirable properties that a good school district plan

should satisfy. The criteria have been defined in the context of Philadelphia, but can
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largely be generalized to school districting everywhere:

1) Each block or neighborhood needs to be assigned to exactly one school.

2) School assignments may not exceed the school capacities.

3) Each school district must be contiguous in a way that allows for travelling from any

unit inside the district to any other unit belonging to the same district without leaving it

on the way.

4) The school district boundaries cannot cut across railroads, rivers, or streets with

heavy traffic.

5) The total distance traveled by students is minimized with a restriction that none of

the school trips may exceed a specified maximum distance.

6) All students living in the same block must go to the same school. If this is not

possible due to school grade capacities, at least all students on the same grade must go

to the same school. The district division should not go against the residents’ sense of

neighborhood.

7) A new redistricting plan must maintain a certain similarity to the former/existing

plan. The yearly changes in the districts should stay moderate in the long run.

This example requirement listing reflects the nature of school attendance zoning as a

practical and political challenge. The first criterion is purely practical and reflects the

main objective of school districting: every child must be pointed to a school

unequivocally. The second criterion is related to the practical limitations set by the

existing infrastructure. One must note that the infrastructure related limitations are

usually only short-term hindrances, since school buildings can often be refurbished to

meet the desired capacities. The third and the sixth criterion are related to preservation

of neighborhood communities and to political legitimacy, i.e. the sense of justified

attendance division in the eyes of public. In the districting literature, the third criterion

contiguity is usually not justified with anything; its justification is seen as self-evident.

Technically, though, the districts could be scattered as well if it would help in achieving

other, more complex districting objectives (like racial balance). At the same time, travel

times to schools could still be optimized.

The fourth criterion is related to the safeness of children’s school trips – which again,

like the fifth criterion for average school trip length, is related to school accessibility. In
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general, the districting systems and models weigh either efficiency or equity criteria

when evaluating accessibility from students’ homes to places of education (Malczewski

& Jackson 2000). Efficiency criterion is usually formalized as minimization of total

costs of travel, while equity criterion is more concerned about minimizing the range (or

variance) of travel costs – regardless of whether they are measured in time, distance or

money (Malczewski & Jackson 2000). The fifth criterion of this example listing regards

both of these. The seventh criterion is related to the coherence and convenience of

children’s school careers and district planning’s overall legitimacy in the eyes of

public.

What is notable in the above requirement listing is that it lacks the requirement for

geographical compactness, which is a common requirement in other fields of

districting. Geographical compactness means that a district should have a smooth and

somewhat circular form. While it could be easily seen as a desirable criterion with the

same justification used for contiguity and neighborhood preservation, it’s quite often

sidelined or seen as internalized in accessibility criteria. The reason for this is that quite

often compactness is conflicting with other objectives regarded as more important.

What comes to segregation, for example, or other spatially polarized phenomena, a

zoning plan that maximally minimizes polarization is hard to implement with

geographically compact districts, which may actually make compactness a somewhat

undesirable objective in that particular environment. For example, Bouzarth et al.

(2018) noticed that in their bi-objective model for school redistricting, the objectives

for minimizing total school busing distance and balancing the socioeconomic

compositions of the schools were in direct conflict. As Bouzarth et al. note, some trade-

offs must be made with distance- or compactness-related objectives if there is will to

reduce the impact of spatially polarized phenomena on districts. On the other hand,

Caro et al. (2004) argue that contiguity as a constraint may pose a similar problem: in

their school redistricting case study in Philadelphia they found that “there is a clear

trade-off between achieving certain racial balance and keeping contiguous (and

compact) districts.” For this reason, some studies focused on school district

optimization have decided fully giving up the requirement for both contiguity and

compactness (e.g. Clarke & Surkis 1968), while others have ended up generating
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multiple different districting alternatives weighing the conflicting objectives differently

in each one (desJardins et al. 2007).

Many of the already early school districting studies emphasize that they regard full

automation of school redistricting process infeasible, since there are so many less

tangible social and acceptability aspects that are not easily reducible to mathematical

functions (Ferland & Guénette 1990; Caro et al. 2004). This might be true, as school

districting is a more complicated problem than many other districting problems -  the

requirements are more versatile and dimensional (like school trips’ safeness). Some

have even suggested that automated optimization methods would be only used as the

very first step in districting, after which there would be a phase of manual post-

processing (e.g. Ferland & Guénette 1990). Though this conflicts with the idea of

unbiasedness, it might be necessary in the actual cases. In addition, machine learning

could be utilized in first tracking and later predicting the post-processing patterns, and

these predictions could be again used to train the optimization model itself to produce

more sophisticated results.

2.3 Districting algorithms: history and current state

2.3.1 Districting – a challenging combinatorial problem

Districting problem is a close relative of more widely known clustering problem, and

they share the same basic constraints. Clustering means the identification of natural

groups in an environment, usually referring to groups of objects that are similar to each

other and different from others in some specified terms (e.g. Naderi & Kilic 2016). On

the contrary, districting can represent either a partition of space to as homogeneous

groups as possible (like is usually the case in electoral districting and school districting)

or to “natural groups” that are internally homogeneous and externally heterogeneous in

the specified measure (like in land use planning and landscape classification).

Bação et al. give the following definition of the shared constraints in their 2005 article

Applying genetic algorithms to zone design. Let X = {x1, x2, …, xn} be a set of small,

basic geographic units. Let’s the assume that there are k districts/clusters, and that the
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district/cluster Zi is a subset of X. Now the following rules apply for both clustering and

zoning problems:

1. Zi ≠ {} for i = 1, 2, …, k, which means that all of the clusters/districts are nonempty

sets,

2. Zi ∩ Zj = {} for i ≠ j, which means that intersections of the sets are always empty

(none of the districts/clusters are overlapping, so each xn can belong to only one Zi),

3. ∪
௜ୀଵ

௞
ܼ௜ = ܺ, meaning that together the districts/clusters contain all the geographic units

in set X and nothing else.

In districting problems, at least the following two constraints (or objectives depending

on the problem definition) are generally considered in addition: contiguity and some

degree of geographical compactness (e.g. Williams 1995; Bação et al. 2005; Ricca et al.

2013; Rincón-García et al. 2017; Vanneschi et al. 2017). Contiguity means that all

geographical units belonging to a zone must share a border with another unit in the

same zone in a way that allows traveling from any point inside the zone to any other

point in the zone without leaving it on the way (Williams 1995). This rule ensures that

the zones don’t become disconnected and scattered, and that they feel intuitive, justified

and unbiased from the citizen’s perspective (Williams 1995). Geographical

compactness means that a zone’s perimeter may not grow too much in relation to its

area. This simplifies the forms the zones can take, as the more complex thin,

meandering tentacle formations are not possible. As in the previous constraint, the aim

of this is to make the zones more “acceptable” by making them seem less biased and

politically manufactured.

Districting, just like clustering, is a discrete problem in a sense that the search space is

not continuous but divided into discrete base units, which makes the problem finite and

theoretically solvable (Williams 1995). It’s also a NP-complete combinatorial problem

with a solution space that grows very rapidly as the number of districts and their base

units increase: the amount of possible solutions grows both as a function of the number

of base units in the model - and to a more limited extent - as a function of the number
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of districts being formed (Altman 1997). The time needed for finding a solution to a

districting problem grows exponentially as a factor of both districts and geographic

base units, which makes the problem computationally intractable (Garey & Johnson

1979; Altman 1997). Usually the real-world problems that would benefit from

automated districting are so large and multidimensional that explicitly enumerating all

the possible solutions becomes extremely difficult if not impossible (Williams 1995;

Altman 1997).

Some exact optimization algorithms have been proposed for solving the districting

problem (for example Garfinkel & Nemhauser 1970, Caro et al. 2004). Unlike heuristic

methods that only go through a fraction of all the possible solutions, exact methods are

exhaustive in the sense that they search the whole search space and end up in a

provably optimal solution. Due to the size of the real-world problems’ solution space,

they have either shown to be infeasible or applicable to only small or medium-sized

problems (Browdy 1990; Williams 1995; Altman 1997; see also Bação et al. 2005 for a

definition of a medium-sized problem’s solution space). Although heuristic methods

cannot guarantee finding the absolute optimal solution to a districting problem, they

have been able to offer largely better partitions than traditional methods in many

districting cases (see e.g. D’Amico et al. 2002; Bozkaya et al. 2003; desJardins et al.

2007; Ricca & Simeone 2008). As Altman (1997) notes regarding the real-world

districting cases, “political solutions may not require the precision that theory

demands.”

2.3.2 Early districting algorithms

The idea of using an algorithmic approach in districting dates back to 1961, when

William Vickrey suggested in his article On prevention of gerrymandering that “the

human element must be removed as completely as possible from the redistricting

process. In part, this means that the process should be completely mechanical, so that

once set up, there is no room at all for human choice” (Vickrey 1961). Just a few years

later in 1963, Weaver & Hess developed the first heuristic procedure for redistricting

electoral districts in FORTRAN. Their procedure aimed to maximize compactness

while forming districts close to equal in population size (Williams 1995, Weaver &
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Hess 1963). Their heuristic is a local search algorithm that iteratively improves the

created partition and stops when it’s overall compactness stops improving. To avoid

getting stuck to a bad local optimum, the algorithm is rerun with different “initial

guesses” that work as a seed for the partition and represent the centroids of the districts.

The initial guesses are formed based on the researchers’ subjective insight (Weaver &

Hess 1963).

After Weaver & Hess, numerous different heuristics have been developed and proposed

for the zone design problem in different fields. Williams (1995) and Bação, Lobo and

Painho (2005) divide these methodology proposals into three categories based on their

approach: in the first the individual districts are built one by one and then aggregated to

form a plan. In the second approach, the districts/zones are formed by simultaneously

assigning the base geographic units to predefined district centers. In the third approach,

an existing plan is modified by swapping base geographic units between the districts

(local search methods). According to Williams (1995) these approaches tend to have the

following drawbacks: the first may not succeed in forming districts that fit well

together and may leave problematic or infeasible enclaves. The second approach, on the

other hand, while avoiding the problems of the first, may be unable to ensure that any

particular district will meet particular criteria, since the optimization function operates

on the plan-level rather than on the district-level. The third approach, as Williams notes,

may be politically most feasible since it only improves the existing plan by some

measure, and the deviation from the original plan can be minimized. This, on the other

hand, may generate path-dependent, locally optimal solutions that only marginally

improve the original plan.

2.3.3 Recent and current approaches to automated districting

After 1995, many new approaches have been adopted and proposed for solving the

problem. A good review of these more recent districting algorithms are given in Ricca,

Scozzari & Simeone’s meta-analysis from 2013. Some of the most interesting

approaches include evolutionary algorithms (like genetic algorithm, see Bação et al.

2005; Liu et al. 2016), tabu search (a version of local search, e.g. Bozkaya et al. 2003;

Ricca & Simeone 2008), Lagrangian relaxation combined with either local search,
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network modeling or fuzzy zoning (e.g. Hojati 1996; Naderi & Kilic 2016), graph

partitioning models (Park et al. 2000), a discrete adaptation of artificial bee colony

(DABC) and discrete method of musical composition (DMMC) (Rincon-Garcia et al.

2017), et cetera. The above-mentioned approaches have been modified to address most

of the inevitable criticism and issues raised on the earlier implementations. Already at

the beginning of the millennium, several metaheuristics such as simulated annealing,

tabu search and genetic algorithms had shown to be successful in finding reasonably

good solutions for many combinatorial optimization problems (e.g. D’Amico et al.

2002; Bação et al. 2005).

Some challenges, however, still remain. Some of the seemingly well-performing newer

models are computationally too heavy to be applicable on most of the real-life

problems (e.g. Minimum Cost Centered Partition Problem, see Ricca et al. 2013), some

struggle with the objective function formulation, balancing criteria and result quality

(for example many genetic algorithm implementations are not able to guarantee

contiguity, see e.g. Ricca et al. 2013), some require extensive manual post-processing

to guarantee the meeting of some requirements, and even of the very promising

methods most are only tested on a single, relatively small and specific case (Ricca et al.

2013). All in all, despite of great advancements in the field, there has been no miracle

invention that would work flawlessly on all districting problems. All methods tend to

lead to solutions that largely depend on the algorithm implementation, objective

function encoding and the solution seed (the initial starting point) and are not very

easily generalized and applied to other districting problems. Still, interest on

automation is keen, and new models are suggested frequently. As the computational

technologies advance, more systematic development and research is needed.

2.3.4 School districting models

School district plan optimization for racially balancing the student compositions and for

lowering the overall cost of transportation (e.g. school busing costs) has a long reaching

history as well (see e.g. Clarke & Surkis 1968; Heckman & Taylor 1969), but in the

history of districting automation largely dominated by electoral districting research it’s

barely an offshoot. This may be due to its local nature – while electoral districting is
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done on the state-level, school districting is largely done on the municipality level with

less resources and less political and public interest. The existing school districting

papers largely refer to electoral districting automation studies (e.g. desJardins et al.

2007) or to school districting models created before 1990s (e.g. Bouzarh et al. 2018).

As Caro et al. (2004) note in their districting method review, the attempts to

automatically create school districting plans have been in a decline after 1980’s. At the

same time, electoral and other districting models have been developed quite

continuously.

Most of the earlier school district optimization models consider a linear, single attribute

objective function (for example minimizing total busing distances to schools), while the

other objectives (like not exceeding school capacities) are constrained to fall within

some acceptable range (Caro et al. 2004, Bouzarth et al. 2018). Also, goal programming

approaches (extension of linear programming that permits more than one objective to

be integrated in the model) have been adopted (Knutson et al. 1980; Brown 1987).

According to Caro et al. (2004), most of the earlier research achieve optimal or near-

optimal solutions, but due to the methods’ computational limitations, the case studies

are either small or non-real example cases. Another limitation of these approaches is

that they can only optimize linear parameters like compactness and travel distances,

which are easily reduced to linear functions, while many of the interesting and relevant

parameters (like social compositions of schools) are by nature non-linear: their values

vary unpredictably in the search space. This is why most of these models have reduced

the more complex parameters to simple constraints (e.g. the share of non-white students

may not exceed a certain limit in any school).

Despite of having less degrees of freedom than districting problems without natural

district centers, the solution spaces of school districting problems remain extremely

large. While the simplest school district optimizations (like total busing cost/distance

optimization) can be formulated as linear models, the more complex objective

formulations are usually nonlinear, multi-objective, NP-complete and well beyond the

capabilities of standard GIS tools (Caro et al. 2004). The objective of this work is to

optimize a nonlinear social measure while constraining both linear and nonlinear

attributes. In this manner the model developed here differs from the mainstream of
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automated school districting studies, while approaching the tradition of electoral

districting. While school districting fundamentally differs from electoral districting,

method-wise there is a lot of underutilized information in the political districting field

to be applied on school districting.

2.4 School districting and educational segregation

2.4.1 The link between residential segregation and educational segregation

Educational segregation or School segregation denotes a phenomenon where schools

are disproportionately composed of students of different ethnicities or/and

socioeconomically different backgrounds relative to the community's composition. In

other words, the students of different backgrounds go to different schools, meaning that

the schools have relatively high concentrations of students with similar backgrounds

(e.g. Mickelson & Bottia 2010). School segregation is strongly predictive of

performance differences between schools: socioeconomically less advantaged students

and schools tend to perform less well on measures of academic achievement than their

more socially advantaged peers and counterparts (Perry & McConney 2010). In the

majority of OECD countries, the average socioeconomic background of students in a

school is also strongly linked to the learning outcomes on individual student level

(OECD 2004).

Educational segregation is largely an outcome of school market function (e.g. school

choice patterns), school admission policies and residential segregation (Karsten 2010).

Residential segregation means “the degree to which two or more groups live separately

from one another, in different parts of the urban environment” (Massey & Denton

1988). It may take multiple spatial forms, appear on any level of spatial organization

(e.g. house-level, block-level, neighborhood-level, city-level, country-level), and

appear on many levels and forms at the same time. Massey and Denton (1988) divide

the dimensions of residential segregation to the following five categories: evenness,

exposure, concentration, centralization, and clustering. Evenness means the uniformity

of distribution of different social groups across the city. Exposure refers to the degree of

social contact, i.e. the possibility for everyday interaction between members of different



23

social groups within the city. Concentration means the relative amount of space

occupied by a group in the urban environment – if a group occupies a small share of the

total area in a city, it’s residentially concentrated. Centralization refers to the degree to

which a group occupies the central areas of an urban area, while clustering, the last

dimension, refers to the extent to which the houses, blocks or neighborhoods occupied

by a particular group adjoin or cluster in the space (Massey & Denton 1988). Because

schools typically get a great share of their students from their neighboring areas

regardless of the existing student allocation policies, segregation inevitably ends up

affecting their student compositions.

Recently, there has been more discussion about the exposure dimension: the form of

segregation that reaches beyond the neighborhood, i.e. the residential context. Until

recently, segregation was mostly studied from the viewpoint of residential structure,

because it’s easily measurable and observable. However, there is an increasing

academic interest towards the segregation that occurs in different domains of daily life

– in the workplaces, schools, hobbies, transport, social media, and others – the

residential domain being just one of them (Boterman & Musterd 2016; van Ham &

Tammaru 2016). On the level of an individual, these domains together form an activity

space, consisting of the locations that individual visits to perform her daily routines

(Schnell & Yoav 2001; Wong and Shaw 2011; Boterman & Musterd 2016; van Ham &

Tammaru 2016). Activity space is an important concept for understanding the scale of

exposure to diversity that people face in their daily lives. Not surprisingly, individual

level ethnicity and income are strongly related to the exposure to diversity: according to

a Dutch study, highest and lowest income groups have least exposure to diversity in

their neighborhoods, workplaces and daily transport, which together form a great deal

of these people’s activity spaces (Boterman & Musterd 2016). As Boterman & Musterd

argue, non-exposure to diversity will quite certainly block different groups of people

the opportunities to come closer to each other, while also creating a risk of

estrangement between different groups of people.

While school districting based on distance or transportation costs typically provides

convenience for families and seems like a utility-maximizing choice, it effectively
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zones by socioeconomic status (Bouzarth et al. 2018). This happens because people of

similar economic backgrounds tend to occupy the same neighborhoods. In other words,

school district boundaries are mechanisms for translating residential demographic

patterns into the ethnic and socioeconomic compositions of schools – a districting plan

can either exacerbate, duplicate or challenge the homogeneous ethnic and

socioeconomic compositions of many residential neighborhoods in the partition

(Mickelson & Bottia 2010). The extent to which it is possible to challenge the patterns

of residential segregation by careful school districting is dependent on the scale and

dimensions of segregation listed before. If for example clustering is strong but at the

same time the clusters are small and quite evenly scattered around the city, school

districts can be made socially fairly even quite easily. But if the distribution of social

groups is very uneven, and e.g. the city is divided into wealthy south and poor north,

accomplishing a non-segregated school district plan becomes far more difficult.

What makes educational segregation such a troubling issue is a group of phenomena

generally referred to as school effects. A large body of studies have shown that

differences in student compositions tend to lead to differentiation of overall student

performance and learning outcomes on both school and individual level (e.g. OECD

2004; Rumberger & Palardy 2005; Mickelson & Bottia 2010; Perry & McConney

2010; Bernelius 2011; Schwartz 2011; Rothwell 2012). This means that while the

individual backgrounds of students can affect individual student achievement, so can

the compositional characteristics of their school’s student body. The compositional

effects are revealed when the aggregate of person-level variables (including the school

they attend) are related to outcomes even after controlling for the effects of individual

characteristics (Rumberger & Palardy 2005).

The issue with school segregation is not small. The scale of the phenomenon is exposed

in PISA-report from 2004, which concluded that while differences between countries

are large, on average in OECD countries the schools with higher than average

socioeconomic status perform better than would be predicted by their actual

socioeconomic intake and schools with lower than average socioeconomic status

perform below their expected value in PISA tests. According to the 2004 report,
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“in the majority of OECD countries the effect of the average economic, social and

cultural status of students in a school – in terms of performance variation across

students – far outweighs the effects of the individual student’s socio-economic

background” (OECD 2004).

On average in OECD countries,

“differences in the performance of 15-year-olds between schools account for 34

per cent of the OECD average between-student variance” (OECD 2004).

In the light of these findings, one can quickly conclude that the situation is problematic

from the viewpoint of equality of opportunity. If a student has no possibility or ability

to affect which school they attend, e.g. for financial, social, educational or

administrative reasons, the effect that a school independently produces on their

performance is not in their power. Still, whether the problem – variation in learning

outcomes produced by schools – needs actions to be taken against school segregation

per se is another question. If the social composition affects students’ performance

because of its relationship to such aspects about the schools that are at least seemingly

alterable, like resources (e.g. teacher-pupil ratios, physical school spaces, education

materials) or structures and practices, then the problem may not be the segregation

itself (Rumberger & Palardy 2005). In that case, increasing school resources and

reforming school structures and practices may be sufficient to address the gap in

equality of opportunities between students in low and high performing schools

(Rumberger & Palardy 2005).

However, if the effects of student base’s social composition cannot be explained by

such school characteristics that can be changed or fixed, then the effects of segregation

per se become the problem. Or, as Rumberger and Palardy (2005) explain,

“–– even if the effects of segregation can be explained by seemingly alterable

school characteristics but such characteristics appear to be triggered by the social
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makeup of the students served for example, educators and school officials

consistently respond to high concentrations of poor minority students with lower

expectations and a less challenging curriculum then segregation is again

problematic.”

Peer effects are widely believed to influence children's school performance. According

to peer effects theories, socially and educationally advantaged students positively

influence the “pro-education beliefs, values, and behaviors of other students with whom

they attend school through a variety of sociological, cultural, and psychological

dynamics” (Mickelson & Bottia 2010). In other words, students who attend diverse

schools benefit from social interactions with their more advantaged peers through their

social capital and networks, cultural habits, values, beliefs, motivations and other pro-

education attitudes and behaviors. But the effect of student composition can also come

in other ways: in their 2005 study Rumberger & Palardy found four significant

explaining variables behind the school effect: (1) teachers’ expectations about students’

ability to learn, (2) the average hours of homework that students completed per week,

(3) the average number of advanced (college prep) courses taken by students in the

school and (4) the percentage of students who reported feeling unsafe at school. All of

these four aspects are seemingly alterable in theory, but besides being unsure in

effectiveness, the actions and resources needed for making the changes in practice are

likely to be far beyond just mixing the student compositions between schools by careful

redistricting.

2.4.2 The role of school choice and selective migration in educational segregation

School choice is the process of active school selection practiced by parents and students

to either access or avoid particular schools. According to multiple studies, parents tend

to regard the schools with a high average socioeconomic status of the student base and

with ethnic composition resembling their own as most suitable schools for their

children (Henig 1990; Karsten et al. 2003; Bernelius 2013). In other words, the

motivation behind school choice is often the attempt to access “superior” peer groups

and avoid less privileged peer groups (Saporito 2003; Allen 2007; Musset 2012;

Bernelius 2013; Bernelius & Vaattovaara 2016). Parents tend to make conclusions

about the quality of school environments based on the imagined quality of their
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surrounding neighborhoods in terms of ethnicity and social status: according to

Bernelius & Vaattovaara (2016), in Helsinki school choices have a clear link to the

socio-economic and ethnic characteristics of the school’s catchment area, and

especially the rejection of particular schools seems largely consistent with socio-spatial

segregation (Bernelius & Vaattovaara 2016).

While school admission policies in most OECD countries allow some flexibility in

school choice within municipality borders, it’s usually very limited by the availability

of free places, since the schools must by default guarantee a place for each school-aged

child living in their attendance zone (Musset 2012; OECD 2018). Because of this, in

many countries the only way for families to guarantee a place in a particular school for

their children is via selective migration, i.e. making residential choices based on the

perceived quality factors of schools. The perceived quality of a school and its student

composition have been shown to affect migration decisions of middle-class and

wealthy families in particular (Brunner et al. 2012; Kosunen 2014; Danielsen et al.

2015). Practically this means that educational segregation is not just the outcome of

residential segregation and school choice, but the link works also the other way around:

school segregation actually tends to further exacerbate residential segregation via

families’ migration decisions. In systems with a determinative districting policy and

limited school choice, access to high-performing schools is unequal by social status

because of housing availability and cost: it’s very difficult – if not financially

impossible – for families of lower economic status to get access to the highest-

performing schools via migration, while this opportunity always stays open for wealthy

families (Rothwell 2012).

The association between perceived school quality and residential prices have been

proved before in several studies (see e.g. Cheshire & Sheppard 2004; Gibbons &

Machin 2008; Brunner et al. 2012; Rothwell 2012; Harjunen et al. 2018). For example,

across the 100 largest metropolitan areas in US, the housing costs in areas near high-

performing public schools have been shown to be on average 2.4 times as much as in

areas near low-performing public schools, which translates to average home prices

being $205,000 higher near well-performing schools (Rothwell 2012). The same has
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been also been discovered inversely: free school choice programs have been found to

reduce residential segregation and enhance the attractiveness and prices of residences

located near poorly performing schools (Brunner et al. 2012; Danielsen et al. 2015).

According to a common argument by school choice advocates, free school choice can

weaken the effects of residential segregation on educational segregation by loosening

the link between the schools’ and the neighborhoods’ social compositions, and by

allowing more educational opportunities for residents of lower-status neighborhoods

(see e.g. Musset 2012).

Unfortunately, the free school choice policy does not seem to be able to tackle

educational segregation but have even shown to exacerbate it (Saporito 2003; Musset

2012; Bernelius & Vaattovaara 2016; Yang Hansen & Gustafsson 2016; Kosunen et al.

2016). The reason behind this is that active school selection is mostly exercised by

advantaged and achievement-oriented families (Musset 2012). Many studies show that

middle-class families use school choice as a strategy for avoiding disadvantaged peer

groups, which means that free school choice actually ends up enhancing the

opportunities of the already well-off, while potentially worsening school segregation

and harming families of lower socio-economic status (Saporito 2003; Allen 2007;

Musset 2012; Malmberg et al. 2014; Bernelius & Vaattovaara 2016; Kosunen et al.

2016). While expanding free school choice policies don’t seem to provide a shortcut to

educational desegregation, careful districting may be a more feasible strategy to reduce

the perceived quality differences between schools.

2.5 School districting and educational segregation in Helsinki

2.5.1 The legal framework for school districting in Helsinki

According to the Finnish Basic Education Act (1998/628), a municipality is obliged to

arrange basic education for children living inside its borders. The compulsory education

(grades 1 to 9) is entirely publicly funded, typically part of the funding coming from

municipal taxes and part from government subsidies (OECD 2018a). General and

vocational upper secondary education are also completely publicly funded, and the

financial responsibilities are shared between the state and the municipalities. Even
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though private schools exist, they are also funded publicly and are not allowed to

charge tuition fees or other fees. In Finland generally, only a fraction of comprehensive

school pupils attends a private or state school.

According to the Basic Education Act’s 6th section, the municipality is obliged to point

a school for each school-aged child living inside its borders in a way that the child’s

school trips become as short and safe as possible:

“Education shall be arranged in municipalities so as to make pupils' travel to and

from school as safe and short as possible in view of the habitation, the location of

schools and other places of education, and public transportation. In the

arrangement of preprimary education, account shall additionally be taken of the

participating children's access to day-care services.” (Amendment 1288/1999)

Each child has a right to attend the exact school they are pointed to. Alternatively, a

child has a right to attend another appropriate school pointed by the municipality, if

they want to study a language that is not offered in the closest school’s curriculum.

Additionally, a child may also apply to any other school within the municipality’s

borders, and the education provider may accept the application if the school’s capacity

is not exceeded. In practice, the applications are always accepted if the school’s

capacity allows it.

In the framework set by the national regulations, the municipalities have extensive

autonomy what comes to organizing basic education. The local education committees

define the principles regarding schools’ student intake and attendance planning that are

not stated in the law (see e.g. Helsinki’s Educational Administration’s Rules of

Procedure 2010, 5 §). These principles include, for example, the rules for setting

school-specific student capacities for students starting their first grade and creating a

school districting plan according to which the first graders are allocated to specific

schools. According to a decision document of Helsinki’s Education Committee (2014),

the capacity-setting is done in order to guarantee regionally and educationally balanced

development.
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Figure 1. Finnish-language primary school districts (white borders) and corresponding primary schools

(black dots) of school year 2018–2019.

The 2nd section of the Basic Education Act, which defines the objectives of education,

states that “Education shall promote civilisation and equality in society and pupils'

prerequisites for participating in education and otherwise developing themselves during

their lives.” While the law states that fostering equality in society is one of the main

objectives of education, it does not define any objectives or guidelines related to e.g.

the evenness of social compositions between schools (this kind of statement could be

for example, that the school districts must be drawn in a way that fosters diversity

within schools as much as possible). Instead, treating these issues belong to the scope

of municipal autonomy and local authorities. From this point of view, the law weights

efficiency (e.g. the school trips must be as short as possible) more than aspects related

to the equality of educational outcomes. This may be partially because a) in Finland,

school segregation is more local than a national problem, and b) the divergence of

learning outcomes and schools’ student bodies has been discovered quite recently in

Helsinki (Bernelius 2011; Välijärvi et al. 2015).
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2.5.2 Educational segregation in Helsinki

Finland has a reputation of excellent educational equality, and for a reason: the variance

in student performance has been – and still is – low by international standards.

Precisely, the variance has been more than 15 percent below the OECD average

variance (OECD 2004). Also, the proportion of between-school performance variance

has been about 10 per cent of the OECD average level, which means that on

international standards, the effect of school on individual student’s performance has

seemed low in the light of PISA studies (OECD 2004). The problem with these

numbers, though, was that they were based on the results of only a few schools and thus

were inadequate to depict the variance of school and student performance inside the

Helsinki metropolitan area (Bernelius 2011; Nissinen 2015). While on average the

effect of school on individual students’ performance in other parts of Finland has been

around 3–10%, in Helsinki it has been as high as 18% (Kuusela 2006).

The more recent PISA studies have shown a drop in Finnish students’ results, and what

is most worrying, the bottom decile of schools saw a markedly larger drop in student

performance than most of the schools, while some even fell below the OECD average

(Kupari et al. 2013). At the same time, signs of independent school effects in Helsinki

have been found in several studies (Kauppinen 2008; Bernelius 2011; Nissinen 2015).

This has been largely attributed to a growing educational segregation, more specifically

the differentiation of student compositions between schools (Bernelius 2011). These

differences have been shown to form specifically as a consequence of residential

segregation and active school choices by families (Bernelius & Vaattovaara 2016)

Since 1970s, the city of Helsinki has actively been mixing social socio-spatial patterns

by forcing diversification of different housing types in its planning of neighborhoods.

Part of this policy has been a practice of locating the city’s own affordable housing

projects in upscale residential areas. When combined with a fairly even distribution of

wealth across the population, these policies have kept the differentiation of

neighborhoods’ social compositions on a relatively low level across Helsinki (Bernelius

& Vaattovaara 2016). Despite of these efforts and low levels of segregation on

international standards, ethnic and income differences between neighborhoods have
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been on a steady growth for the last 20 years (Kortteinen & Vaattovaara 2015;

Bernelius & Vaattovaara 2016). More specifically, some neighborhoods have seen a

substantial rise in wealth and income, while others have been quite stagnant in terms of

income development (Vilkama et al. 2014). At the same time, the immigrant population

has grown significantly and concentrated strongly on certain areas of the city (Vilkama

et al. 2014).

These developments have led to significant spatial concentration of advantage and

disadvantage by national standards, creating propitious conditions for growing

educational segregation. Studies reveal that the ethnic differentiation among children in

Helsinki is greater than ethnic differentiation among the whole population, while the

differentiation between schools is even greater than the differentiation among children

between residential or school districts (Riitaoja 2010; Bernelius 2013). According to

Vilkama (2011) in certain neighborhoods “the share of the immigrant population is

close to 40%, exceeding 50% for school-aged children”. In addition, these

neighborhoods cluster close to each other, which also signals about a larger regional

pattern. As an example can be mentioned the clustering of schools getting additional

financial support (for a challenging operative environment) into the Eastern and

Northeastern major districts of Helsinki (Bernelius 2013).

The picture below (figure 2) presents the share of population with immigrant

background in statistical grid cells in Helsinki as measured in 2018. The black lines

represent the school district division for school year 2018–2019 (as in figure 1).
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Figure 2. Share (%) of population with immigrant background in statistical grid cells (250m) in Helsinki,

as measured in 2018. The black lines represent the school district borders of school year 2018 – 2019.

The grid cells with population less than 10 have been removed from the review. Data source: Register

data, SeutuCD’18.

One can quickly notice, that the spatial distribution of population with immigrant

background varies locally but also contains a clear macro pattern. The next image

(figure 3) presents the translation of this distribution into population patterns on school

district level.
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Figure 3. Share (%) of population with immigrant background in primary school districts of Helsinki as

measured in 2018. Data source: Register data, SeutuCD’18.

In Helsinki, residential segregation is the single most important reason for

differentiation of student compositions between schools (Bernelius 2013). Residential

spatial patterns are reflected strongly on schools because the majority of Helsinki’s

school aged children attend the school which they are allocated to by the school

districting plan. In 2016, a bit over two-thirds of primary school students and nearly

half of the secondary school students in Helsinki attended their ”proximity school”, i.e.

the school they were allocated to by the districting plan (Bernelius 2013; Bernelius &

Vaattovaara 2016). Residential segregation is further exacerbated by families making

migration choices based on perceived school qualities (especially the assumed pupil

composition). The patterns of school rejection are also reflected in housing prices in

Helsinki (Harjunen et al. 2018). For families with children, a large proportion of

immigrants has been shown to be among the major reasons to reject a residential area in

migration choices across Helsinki metropolitan area (Kuukasjärvi 2013).
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Another reason behind educational segregation in Helsinki is the free school choice

policy: as stated before, in Finland parents are free to apply for a place for their child in

any school within the municipality borders, and in most cases a school approves an

application if free places exist. In Helsinki, the school choices have been shown to

follow the internationally familiar pattern of middle class parents avoiding less

advantaged peer groups (Kosunen 2014; Bernelius & Vaattovaara 2016). This habit

further aggravates school segregation: in their 2016 analysis Bernelius & Vaattovaara

discovered that school choice produces an independent effect for student compositions

between schools, differentiating them further from each other. They found that

“a high percentage of immigrants (R = 0.40) and poorly educated adults (R =

0.30) are particularly statistically significantly linked to the school being rejected

in school choices, whereas high income level and a high education level of adults

(R= -0.35) are linked to a smaller likelihood of the school being rejected in the

choices.”

According to Kuusela (2006), drawing the school districts such that the school

capacities would be filled, i.e. the schools would have minimal number of extra places

for students applying from other districts, would be the most effective way to control

and prevent school segregation alongside with residential planning policies.

Helsinki has long been working for improving the equality of education, both by

careful school district drawing and directing targeted funding for schools located in less

advantaged areas. The schools receiving additional targeted funding are defined based

on an index of Positive Discrimination, which is calculated based on a school

catchment area’s social features and features of the school’s student base. These

features include share of population with immigrant background (measured as the

percentage of non-native Finnish or Swedish speakers attending the school), average

level of parental education (the percentage of adults without education past basic

schooling in the catchment area), average income level (household’s average income in

the catchment area), and popularity of the school (number of students rejecting the

school compared to the number of students attending the school but living in some

other school’s catchment area) (Silliman 2017). The targeted funding policy have
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turned out to have a large positive impact on low-performing native students and

students of immigrant backgrounds (Silliman 2017). More specifically, according to

Silliman, “native students are 3 percentage points less likely to drop out of education

after middle school and that students from an immigrant background are both 6

percentage points less likely to drop out of education as well as 7 percentage points

more likely to attend the academic track of upper-secondary school as a result of the

[positive discrimination] policy”.

Despite of the promising effects of the positive discrimination policy, the differences

between school districts and schools’ social compositions remain large in Helsinki.

While targeted funding may weaken the effects of school segregation on students, its

effectiveness in preventing or reversing school segregation has not been proved.

Instead, redrawing school districts can have an instant effect on the student composition

differences between schools. On the other hand, inequality of educational outputs may

require inequality of inputs even, when the school districts are drawn as carefully as

possible regarding student compositions. Careful district planning and targeted funding

are not mutually exclusive, but rather complementary strategies in the prevention of

school segregation and negative school effects, as the benefits from exposure to

diversity remain significant.
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3. Methods: a pilot model for school district optimization in

Helsinki

3.1 Study setting & data

The aim of this study is to (1) pilot school district optimization in the context of

Helsinki, and (2) find out, how much the social variation between the current primary

school districts in Helsinki could be reduced if constraints of compactness, travel times

and student capacity were relaxed, and the districts reshaped. For this purpose, I have

developed a computational optimization approach and tested it on Helsinki school

district plan. The resulting district division demonstrates the scale in which the school

districts of school year 2018-2019 are optimizable in terms of social compositions. The

optimization parameter I have chosen to use in this pilot model is the share of

population with immigrant background, since while it has been found to correlate

significantly with socioeconomic measures of disadvantagedness in Helsinki (Vilkama

2011, Kortteinen & Vaattovaara 2015), it is also particularly significantly linked to a

school being rejected in school choices (e.g. Bernelius 2013; Bernelius & Vaattovaara

2016). Also, as an already binary variable it is the simplest one, at this phase, to base

the optimization function on. The approach chosen is experimental, and does not pursue

to find a single, objectively optimal redistricting solution directly applicable to real

world.

The model developed in this study utilizes geographic data from the following sources:

1) SeutuCD 2018, which is a GIS dataset published annually by Helsinki Region

Environmental Services Authority (SeutuCD 2018). The data consists of municipal

register data of Helsinki Metropolitan Area’s municipalities, presented as unit-specific

geographic information. The information extracted from SeutuCD 2018 for this study

are population, population with immigrant background (measured as population with

some other mother tongue than Finnish or Swedish), and the amount of 7-year-olds, all

presented as a building-level geographic information.

2) The school districting plan for school year 2018–2019, provided as a GIS dataset by

the Education division of Helsinki and Urban Environment Division via Helsinki
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Region Infoshare (The Education division of Helsinki 2018). The dataset consists of

primary school district polygons (78 pcs).

3) MetropAccess distance matrices (Toivonen et al. 2014), a geographic dataset

consisting of travel times and distances along the road network from each statistical

grid cell (YKR cell, 13,230 pcs) to all other grid cells inside Helsinki metropolitan area.

The modes of transport cover travel by foot, public transport and private car. The model

utilizes walking distance data from this dataset for measuring accessibility between

schools and places of residence.

The model developed in this study can be run on different weights and levels of

relaxation of the original districts’ parameters, and in chapter 4 (results chapter) I will

demonstrate how altering of the weights will affect the optimization result, i.e. the

optimized school districting plan. In order to separate these alternative runs with

alternative weights from the two main runs of the model, I will call the main runs

simply the main example optimizations. In the following sections, I will first give

general-level overview of the model and it’s functioning, and then explain it’s working

and data generation process in more technical detail.

3.2 Model summary

The model developed in this study, inspired e.g. by the work by Farmer et al. (2004),

utilizes a version of heuristic optimization technique known as local search. Local

search techniques (e.g. simulated annealing, see Browdy 1990; Altman 1997; D’Amico

2002; and hill climbing, see Altman 1997; desJardins et al. 2007) have been regarded as

one of the most feasible approaches to districting and other combinatorial optimization

problems, not only due to their simplicity and relatively low computational complexity

but also because of their good performance on discrete, nonlinear, multi-attribute

problems (Ingber & Rosen 1992; D’Amico 2002; Russell & Norvig 2003; Ricca &

Simeone 2008; Rincon-Garcia et al. 2013). In practice, the algorithm applied in this

study is a mix of hill climbing and simulated annealing: it advances by searching and

choosing the best values in the neighborhood (as in hill climbing, see desJardins et al.

2007), but on each iteration also has a diminishing probability for choosing a random

value instead (as in simulated annealing, see e.g. Ingber & Rosen 1992; Russell &



39

Norvig 2003). By sometimes choosing a random value, the procedure is trying to avoid

getting stuck in a bad local optimum. This, though, is not enough for solving the

optimization problem, as with declining randomness included the algorithm is

stochastic and likely ends up finding different local optimums on each run. To

approximate the global optimum, the algorithm is run multiple times with diminishing

amount of random selection, and the best outcome is selected among the set of possible

solutions. When the amount of times the procedure is run is sufficient, the final

selection from the plethora of districting assignments should represent a nearly optimal

configuration. In both main example optimizations of this study, the model was run 100

times, meaning that in both the “optimal” districting plan was chosen from 100 semi-

optimal divisions.

As the optimization piloted is a real-world case, many mundane aspects must be taken

into account in the calculation. While the aim is to produce a district division that is

socially as even as possible, it cannot happen completely on the cost of travel distances

to schools, ignore the current school infrastructure or break the school districts into

scattered blocks. As a contrast to the term optimized by the objective function – the

share of population with immigrant background –, these mundane aspects are treated in

the model as hard constraints (the constraint method, see Eiselt & Laporte 1987;

Malczewski & Jackson 2000), which is a common approach in multi-criteria

optimization problems (Eiselt & Laporte 1987; for example applications see Bozkaya et

al. 2003 and Bação et al. 2005). The constraints of the model on the general level are as

follows:

- Travel distances are restricted to not surpass a district’s individual, original maximum

travel distance multiplied by a chosen factor (e.g. 1.15 times the original maximum

distance).

- The areal contiguity of the districts are preserved, meaning that the districts must be

traversable from any point to any other point inside the district without crossing the

district’s border on the way.

- The district’s student base may not exceed the district’s initial student base multiplied

with a chosen factor (e.g. 1.15 times the original student base).
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The optimization is not started from random seeds or even from the schools’ locations,

but instead the model uses the original school district configuration as a starting point,

trying to gradually improve the districts by swapping small areal units, blocks, between

them. The requirement for circumferential compactness has been relaxed in the model

at this stage as it – regarding Helsinki’s residential segregation – very likely conflicts

with the model’s main objective.

3.3 Model logic

3.3.1 Logic overview

The logic of the optimization model can be best understood through a metaphor. Let’s

imagine that the optimization model is a board game, played by the school districts.

The game consists of rounds, and as in board games usually, during a round each

district has one turn. The board game board consists of small residential blocks that are

divided between the districts as the game starts. During its own turn, a district can

choose one residential block in its neighborhood, and dissolve that block to itself – or in

other words, adopt one block from another district. The adoption is always made

according to a set of specific rules. The game continues until none of the districts want

to adopt new blocks, and the situation stabilizes. When this happens, the game ends,

and the result – the division of residential blocks between the school districts – is the

optimized district plan.

The objective of the game from the districts' point of view is trying to bring their own,

initial optimization value (the share of population with immigrant background) closer

to the global mean, so on each turn they aim to choose a new block that has the greatest

averaging impact on their own value. There are a few twists in the game, though. In the

beginning of their turn, a district must first roll a dice. If the district has “bad luck” and

the dice gives a large number, it must adopt a random block instead of “the best” block

in its neighborhood. But on each round, the dice is replaced with a new one, and the

new dice always has a smaller largest number than the previous one. This means that

probability of having to adopt a random block is larger when the game starts, but it

gradually diminishes and reaches 0 as the game advances, so towards the end of the
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game the districts can adopt only best blocks. The randomness factor makes the game

stochastic, which means that each game ends differently, even though the players are

always the same and they always start with the same initial division of residential

blocks. If we step out of the game metaphor for a moment, this means that on each run,

the model finds a different local optimum. But because the aim of the optimization is to

approximate the global optimum, the model is run multiple times and the best result

chosen among the multiple resulting divisions. So, the game is played multiple times in

a row, and only the best result of all games is chosen among the multiple end results.

3.3.2 Rules concerning block adoption

Whether the district can adopt a new block on its turn, a random or the best, depends on

a set of rules that define which blocks the districts can dissolve to themselves. A district

can’t adopt a new block if none of the neighboring blocks satisfy the rules. As adopting

a block results in removing the block from another district, the rules cover also aspects

related to the consequences of removing a block from another district. To minimize the

amount of calculation needed, the computationally most simple rules are verified first,

and only the blocks satisfying the rule are selected on the next round of rule-verifying.

During a district’s turn, the rules are verified in the following order:

1. According to the first rule, a district can only adopt a block that it touches. This

refers to the blocks that the district shares a border – a line segment – with (“rook”

contiguity). However, the block must not already belong to the district (the district can’t

adopt the blocks that already belong to it).

2. According to the second rule, a district cannot adopt a block that contains a school

building. This ensures that the school buildings stay in their original districts.

3. The third rule states that a district can’t adopt a block that would make it exceed its

individual student limit by a chosen marginal. For example, in the two main example

optimizations, this marginal is 12.5 % in the first run and 20 % in the second run, and

it’s calculated based on the initial amount of 7-year-olds living inside the district.

4. The fourth rule ensures that a district can't adopt a block that is too far away. What is

too far away, is measured as a maximum road-network based walking distance. For

example, in the two main example optimizations, the maximum walking distance is
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based on the district's original maximum walking distance from a block to the district’s

school, multiplied by a factor of 1.125 in the first run and 1.20 in the second run.

5. The fifth rule ensures that a district can't adopt a block that would break some other

district's contiguity. If adopting a block would result in cutting another district into

pieces, adopting the block is forbidden.

If the district is to adopt a random block, it adopts it at this point by drawing it among

the blocks that satisfied the above rules. The drawing is made by generating a random

number and choosing the block according to it. If none of the blocks satisfied the rules

listed above, the district doesn’t adopt a new block. On the other hand, if the district is

to adopt a best block, it will further to testing the following two rules:

6. The sixth rule is that the district can only degrade another district's value (take

another district’s value further away from the mean) when taking a block from it, if it

will result in decreasing the numerical distance between the values of these two

districts. As this rule is the most complex one to understand, it will be further explained

in the next chapter (3.3.3).

7. The seventh rule is that from the blocks that satisfy all the rules listed above, the

district always chooses the block that improves its own value the most, i.e. has the

greatest averaging impact on its own value.

After selecting a block that satisfies the 6th and 7th rule, the district dissolves the block

to itself, which results in the block being removed from its previous host. If none of the

blocks satisfied the 6th and 7th rule, the district doesn’t adopt a new block.

3.3.3 The logic behind rule 6

The sixth rule is that the district can only degrade another district's value (take another

district’s value further away from the mean) when taking a block from it, if it will result

in decreasing the numerical distance between the values (share of population with

immigrant background) of these two districts. The point of this rule is ensuring in a

Rawlsian manner (e.g. Browdy 1990) that the worst-off districts enjoy a kind of a veto

right – they may improve themselves on the cost of others and the whole plan, unless it

would result in other districts big losses while bringing very little help for the worst-off
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districts trying to improve themselves. More concretely, when a district is trying to

improve its own social value, it cannot do it on the cost of a district that is even further

away from the mean (and on the same side of the mean). On the other hand, a district

trying to improve its own value may do it on the cost of another district, if afterwards

the two districts have a smaller distance between them in terms of the optimization

value.

To demonstrate this rule, let's imagine there are two districts, A and B, that are on the

same side of the mean value (10). Let's say that the district A has value 12 and B has

value 14. Rule 6 makes the situation asymmetric in the sense that now district B can

improve its value on the cost of district A to a defined extent, but district A cannot do

the same. Let's first imagine that A (the better-off district) has a turn. Now, A cannot

choose any block from the district B (the worse-off district) that would result in B's

value shifting further away from the global mean, because it would increase the

numerical distance between them. For example, if adopting a block from B would

result in A’s value shifting from 12 to 11, but as a result B's value would change from

14 to 15, the numerical distance between them would grow from 2 to 4, which is

against the rules. Now let’s imagine the same initial starting point of A having value 12

and B having value 14, but this time it's district B's turn to adopt a block. Now, B can

actually adopt a block from A, even if this would result in A's value shifting from 12 to

13 and B's value shifting from 14 to 12, which would actually make B the "better off"

district on the cost of district A. This is because numerical distance between 12 and 13

is smaller than between 12 and 14.

The 6th rule is tested with the following formula:

|(Ioc - μg)  - (Isc - μg)| > |(Ion - μg) - (Isn - μg)|

where

μg is the global mean of districts’ social indexes

Ioc stands for the current social index of the block’s current district (”other” district)

Isc stands for the current social index of the district in turn

Ion stands for the social index of the block’s current district (”other” district) after
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adoption

Isn  stands for the social index of the district in turn after adoption

If the formula’s left side is strictly greater than the right side, the rule is satisfied, and

the district can move on to test the final (seventh) rule. In the above example, the case

of district A adopting a block from B would not satisfy the rule, as |(14 - 10) - (12 - 10)|

≯ |(15 - 10) - (11 - 10)|,  but district B adopting a block from A would satisfy the rule,

as |(12 - 10) - (14 - 10)| > |(13 - 10) - (12 - 10)|. Using the numerical distance in rule 6

confirms that extremities have a reasonable weight in the optimization. This means that

the districts cannot greedily optimize themselves on the cost of a single district, but

rather the model is also optimizing the range of the districts on the global level.

3.4 Model implementation & specifications

On the code level, the model consists of classes and functions. The classes define the

data structures, attributes and class functions that construct the core geographic objects

used in the optimization: the school districts and the blocks. In the model, the blocks

are formulated as instances of class Block, which is a representation of residential block

unit. The school districts are formulated as class SchoolDistr, which represents a

primary school attendance district. In this particular implementation of this model, the

instances of class SchoolDistr are polygons representing Helsinki’s school districts of

school year 2018 – 2019, and the residential blocks that make up the game board are

250 meters * 250 meters polygons based on Finnish census grid (YKR).  The model

should preferably be implemented with a more natural representation of residential

blocks than a census grid but defining such a division and producing the data for it

would require a study of its own.

Both classes have class attributes that contain the information required in optimization.

The block instances contain information about their geography (coordinates), total

population, amount of 7-year-olds, population with immigrant background, current

school district and whether they contain a primary school building. The districts contain

information about their geography (coordinates), a dictionary of residential blocks

currently belonging to them, a road-network based distance matrix, information about
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the original student base size and original maximum travel distance to the district’s own

school, as well as their current social structure (total amount of 7-year-olds and the

share of population with immigrant background living inside them).

The model’s main function consists of three nested loops (figure 4). The outermost loop

is responsible for running the individual games. The actual optimization happens in an

inner while-loop that runs the game and its rounds until the situation stabilizes and no

more blocks are swapped between the districts. The rounds make up the third loop,

inside which the districts make their turns and adopt new blocks.

On each round, the district in turn will check its neighboring blocks and choose among

them either a random or the best block and adopt it, depending on the value of the dice.

The dice is a random number generated between a ceiling and a floor value (in a classic

dice the ceiling value is 6 and the floor value is 1). The district will have to adopt a

random block if the random number generated is larger than the break value (in a

classic dice the break value could be for example 4). The break and the floor values are

fixed values throughout all games and rounds, but the ceiling value changes in two

dimensions.

The first dimension is inside a single game – the model’s second loop. When the game

starts, the ceiling value is always at its highest, and in the end of each round, the ceiling

value drops. In a classic dice, this would mean that on the second round the dice would

only have numbers from 1 to 5, on the third from 1 to 4, et cetera. As the break value, 4,

keeps constant, the probability for having to choose a random block drops on each

round. While on the first round the probability was 2/6 (= 1/3), on the second round it

drops to 1/5. On the third round, as the ceiling value drops to 4 – to the level of the

break value – the probability for having to choose a random value drops to zero, since it

is no longer possible to get values over 4. After this, the ceiling keeps dropping further

and the districts deterministically improve their values until a stable state is reached and

no more adoptions are made.

The second dimension in which the ceiling value changes is inside the outermost loop.

The outermost loop runs the game for a fixed amount of times (in the main example
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optimization 100 times) with a ceiling value that grows every time a new game is

started. This means, for example, that in the first game the ceiling value

Figure 4. Flow chart of the optimization’s main function. In the chart, black color represents the runs,

green color represents a single optimization (game), violet color represents a round and orange color

represents a turn. The graph structure presents how the processes are nested: a turn happens inside a

round, a round happens inside a game, and the game is run 100 times by the optimization.
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starts its ascend from value 6, but in the second game it starts its ascend from value 7,

in the third game from value 8, et cetera. The first game is always deterministic: the

ceiling value starts descending from the level of the break value. But as more games are

played, the diminishing randomness parameter always starts from a higher value, and

the following games have more rounds with a possibility of having to adopt a random

block. For example, in the main example optimizations, in which the game is played

100 times, the ceiling value is 50 on the first game’s first round. Also, the break value is

50, and as there is no possibility of getting values over 50 by tossing a dice with values

from 0 to 50, no random adoptions are made. As the rounds inside the first game

further, the ceiling value keeps dropping lower. Each time a new game is started,

however, the ceiling value starts lowering from a higher value. When the second game

starts, the ceiling value is 51 on the first round. And when the 50th game is starts, the

ceiling value is 87 on the first round. In the last game, the 100th game, the ceiling value

starts lowering from value 124. This means that as the ceiling value drops by 5 on each

round, the last game has total 15 rounds where random adoptions can happen, but the

probability for random adoption is diminishing as the rounds in this game further.

When the ceiling value reaches the break value after 15 rounds, the rest of the game is

played without random adoptions.

A game is ended when no more districts adopt new blocks on their turns. The value

tracking this and the advancement of the optimization, hereafter referred to as the

cumulative z-value, is calculated as the sum of the differences between the of share of

population with an immigrant background of each zone and the average share of

population with immigrant background of all the zones, standardized with the standard

deviation. This function can be expressed in mathematical terms as follows:

෍ฬ ௝ܲ − ߤ
ߪ ฬ

௝

where Pj represents the share of population with immigrant background in the jth

district, μ represents the average share of population with immigrant background per
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district, and σ represents the districts’ population standard deviation in share of

population with immigrant background. When this value stops improving, i.e. the

optimization reaches a plateau and stays on it for four rounds, the game is ended.

The model has a constant space complexity, as it only keeps in memory the current

state of the districts and the currently best game result – the paths to these are not

stored. As a new game is played, it’s result is only saved if it’s better than the previous

best result – and the previous best result is erased when a better one is generated. The

time complexity, on the other hand, is a function of games, rounds, districts and blocks.

The number of rounds needed in a single game depends on the model restriction factors

(i.e. the maximum travel times), the amount of randomness included (how many rounds

there is with random adoptions), and the number of blocks in the game. The execution

time grows steeply as the number of blocks and randomness are increased and as the

restrictions are relaxed, as does the problem’s solution space.

3.5 Specifications for the example optimizations

3.5.1 Data preparation

To create suitable dataset for instances of class block, the school district IDs were first

joined spatially to seutuCD points from school district polygons. The seutuCD points

were then joined to fishnet to form a spatially contiguous polygon pattern. As the

available distance matrices are based on Finnish census grid (YKR-grid) polygons, the

fishnet was created with matching dimensions to the census grid. After that, the IDs

from the census grid were joined to the fishnet. Finally, only the polygons covering

Helsinki and land (not sea) were selected in the dataset.

The instances of class SchoolDistr (the school districts) were generated by grouping the

blocks by their original school district ID’s. Because some of the original school

districts have complex forms, a few districts did not generate as contiguous in the

district generation process. The non-contiguity was partly caused by a few small

islands, and partly by small complex forms in the original districts causing some blocks

to become imperfectly attached to their respective districts. The problem was solved by
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removing 17 blocks from the block data and generating the districts without these

blocks. In the final dataset, there are 3,703 blocks and 78 school districts. The specs of

the removed 17 blocks are presented below.

Table 1.  This table presents properties for the 17 blocks that were removed from the district

configuration. Data source: Register data, SeutuCD’18

3.5.2 The example optimizations

First, a sensitivity analysis was run on the model to compare alternative outputs

generated with alternative restriction weights and to test, which levels of randomness

produce the best outputs. The districts were optimized 16 times with mutually growing

restriction weights for maximum travel time and student capacity, ranging from 1.025

times the original to 1.40 times the original, adding 0.025 between the optimizations.

Inside each optimization, the model was run 20 times. The ceiling randomness

parameter ranged from 50 (the first run value and the break value) to 126 (the last run),

Population
Population with

immigrant
background

Number of 7-year-
olds

505 154 1
540 44 10
442 40 4
11 4 0

125 3 2
40 2 0
24 1 1

134 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Total: 1821 249 18
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growing by 4 on each run. Inside the individual runs, the ceiling value decreased by 5

on each round.

Based on the results from the sensitivity analysis, the parameters for the main example

optimizations of the model were decided. In the two main example optimizations, the

model was run 100 times. The ceiling randomness parameter in the runs ranged from

50 (the first run) to 124 (the last run). The break value used was 50, and the ceiling

value increased by 0.75 after each game. Inside the individual runs, the ceiling value

decreased by 5 on each round. The maximum distance was restricted to not surpass

1.125 times the district’s original maximum distance in run A and 1.20 times in run B,

and the amount of 7-year-olds was restricted to not surpass 1.125 times the original

amount of 7-year-olds in run A and 1.20 times in run B.

The runs of the model were executed on a laptop with an Intel Pentium 2020M

processor at 2.4 GHz and 6.4 GB DDR3 RAM. Running the optimization 100 times

took approximately 20 hours, which means that on average, a single run on the model

with this computer took approximately 12 minutes.
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4. Analysis / Results

4.1 Sensitivity analysis

In the sensitivity analysis the optimization was run multiple times with gradually

relaxing restriction weights for maximum travel time and student capacity (ranging

from 1.025 to 1.4 times the districts’ original values). The purpose of this analysis was

to test, how sensitive the optimization result is for the level of constraint relaxation. The

results from sensitivity analysis are presented in the enclosed table (table 2).

Table 2. This table presents the results for the sensitivity analysis. The presented values are

absolute values, i.e. the values represent the different district divisions’ actual statistics before

and after optimization, with gradually growing levels of constraint relaxation.

The table’s values describe the variation in the share of population with immigrant

background within a particular district division. In the table’s first row are presented the

values for original, unaltered district division and in the other rows are the values for

optimized district divisions accordingly. The first column, level of constrain relaxation,

states the used constraint factor which is used to multiply the districts’ original
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maximum walking distances to their schools and original amount of 7-year-olds to form

the reference values that cannot be surpassed in the optimization. Cumulative z-value

shows the districts’ values’ cumulative standardized distance from the global mean. The

minimum and maximum values refer to the district division’s minimum and maximum

values, i.e. the districts having smallest and greatest shares of population with

immigrant background. The range refers to the absolute difference between the values

of the districts having smallest and greatest shares of population with immigrant

background, and the standard deviation means simply the standard deviation of the

districts’ shares of population with immigrant background. Suomenlinna island, which

has the lowest share of population with immigrant background of all the districts has

been excluded from the calculation of minimum and range values, as it is not connected

to the mainland via land route and thus could not be optimized.

The following table (table 3) shows the proportional change of the optimized district

divisions’ values compared to the original district division as the level of constraint

relaxation is increased.

Table 3. This table presents the results for sensitivity analysis as a proportional change from

the original district division as the level of constraint relaxation is increased.
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As the table shows, a relatively large change in the cumulative z-value, maximum

value, range and standard deviation happens already at the smallest constraint

relaxation level. This suggests that significant improvements could be already made

with relatively small changes to the districts. After the first rounds, the values keep

optimizing as the level of constraint relaxation is increased, but the change slows down.

Also, the optimization results’ values don’t improve deterministically as relaxation is

increased, but despite of the clear improving trend they show significant random

variation, also to worse. This is a consequence of both the stochastic nature of the

model and the increasing number of possible solutions as the constraints are relaxed,

but it also confirms that running the model 20 times isn’t a sufficient number for the

main example optimizations. Theoretically, if the model is run sufficient number of

times the results should only improve (though the magnitude of improvement can vary

significantly) as the constraints are relaxed further.

Particularly notable is, that compared to the original districts and the districts optimized

with a constraint relaxation level of 1.40, nearly half of the optimization has happened

in terms of cumulative z-value already with the relaxation level of 1.05. The following

histograms show how the distribution of the districts change with relaxation levels 1.05

and 1.40 compared to the original districts.
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Figure 5. The histograms of original district division and optimized district divisions with constraint

relaxation levels of 1.05 and 1.40.

The histograms demonstrate how the distribution of districts narrows as a result of

optimization, and the districts’ shares of population with immigrant background start to

center between 10% and 20%. While three districts in the right tail clearly separate

from other districts in both the original and optimized divisions, the worst-off districts

also see a clear improvement in both optimization results. The same convergence can

be seen in the maps below, presenting the forms that the optimized districts take on

both levels of constraint relaxation.
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Figure 6. Maps of original and optimized district divisions with constraint relaxation levels 1.05 and

1.40. The coloring of the maps represents the z-value of the districts, calculated as the district’s values

difference from the global mean and standardized by the standard deviation. Data source: Register data,

SeutuCD’18.
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The following graphs (figure 7) are representations of the previous tables’ second and

fourth columns, and they describe the optimization result’s reactiveness to the level of

constraint relaxation from the cumulative z-value’s perspective and maximum value’s

perspective. In both graphs, the form of the line shows a slowing level of optimization

as the constraint relaxation level increases.

Figure 7. The optimization result’s reactiveness to the level of constraint relaxation from maximum

value’s perspective (the topmost graph) and the cumulative z-value’s perspective.
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As the graphs and the tables show, the optimizations with constraint relaxation levels

1.125 (=12.5%) and 1.20 (=20 %) provide relatively effective results. These two

relaxation levels produce small but significant optimization peaks compared to the next

and previous relaxation levels. While this is partially the result of randomness and

small amount of runs inside single optimization, these optimization peaks also suggest

that these levels of relaxation can provide good results in relation to the compromised

walking distances and school capacities. Both relaxation levels are also somewhat

realistic regarding the real-world context, and thus these relaxation levels, highlighted

in the above graphs with red vertical lines, were chosen for the two main example

optimizations. The example optimization with relaxation level 1.125 is hereafter

referred to as example optimization A and the other optimization with relaxation level

1.20 is hereafter referred to as example optimization B.

4.2 The main example optimizations

As specified in the chapter 3.5, both main example optimizations A and B include 100

individual runs of the model with altering levels of randomness. The following graphs

(figure 8) present the progress of the optimization as the final cumulative z-values of

individual runs. In example A, the best result was generated on 31th run, and in example

B, the best result was generated on 28th run. In the graphs, the runs that generated the

best result in terms of cumulative z-values are highlighted with a red point.

As can be seen in the graphs below, the variability in the 100 run results inside both

optimization examples is significant but not extremely large. Additionally, none of the

run result values in the graphs are significant outliers, which shows that the number of

runs included in the optimizations have most likely been sufficient. Compared to the

first, deterministic result (there is no randomness included in the first round), the best

runs’ end results are significantly smaller, showing that random adoptions have pushed

the districts beyond bad local optimums.
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Figure 8. In example A, the 31st run generated the best result, while in example B, the 28th run generated

the best result.

In the graphs below are also presented all the optimization curves for both example

optimizations, and the highlighted curve is the optimization curve of the best run. In

example A, the best run diverges from the other runs fairly early (around round 8),

whereas in example B the divergence happens fairly late (around round 15).
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Figure 9. Optimization curves of all 100 runs in example optimizations A and B. The red line shows the

optimization curve of the run generating the best result.
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The optimization curves are formed based on the cumulative z-value of the districts on

each round. Cumulative z-value is used as a tracking value of the model, and its

function is further explained in chapter 3.4.

Table 4. Key values from the main example optimization results and the original district division. The

topmost section presents the absolute values, the middle section presents the absolute differences (A’s

and B’s values minus the original values) and the bottom section presents these differences as

proportional to the original district division.

The key values of the original district division and the optimized district divisions A

and B are presented above in table 4. As in previous tables, Suomenlinna island has

been removed from the review. The values of the original district division are presented
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in the second column. As can be observed in the table, the original district division’s

disparities in the share of population with immigrant background are large, ranging

from 3.8% to 39.0%. In the example optimization A, the range of the share of

population with immigrant background drops from 35.2 percentage points to 31.3

percentage points, equivalent to 11.1% drop. The cumulative z-value, which is the

aggregate measure of district’s variation from the global mean, drops from 61.85 to

50.77, which equals 17.9 % proportional decrease. The standard deviation drops by 1.1

percentage points, equivalent to 13.6% proportional decrease, and the maximum value

decreases by 3.4 percentage points, which equals a proportional drop of 8.8%. These

improvements were achieved with 12.5% relaxation to the original district division’s

maximum travel times and school student capacities.

With the 20% relaxation level in example B, the values optimize further, but the drop is

not proportionally as large in relation to the relaxation level, as it is in example A. In

example B, the range of the districts’s values drops from 35.2 percentage points to 29.5

percentage points, meaning a 16.2% proportional drop. The standard deviation of the

districts drop from 8.0 percentage points to 6.7 percentage points, equivalent to 16.6%

proportional decrease, and the maximum value drops from 39.0% to 34.8%, equivalent

to 10.6% proportional decrease. The cumulative z-value drops from 61.85 to 49.30,

which equals 20.3% proportional decrease.



62

Figure 10. The histograms of original district division and optimized district divisions. The first

histogram shows the frequency distribution of the original district division, and the second and the third

show the frequency distributions for example A and example B respectively.

The above histograms show the frequency distribution of the districts in terms of the

share of population with immigrant background. The variance of the districts is visually

smaller in the optimized district divisions as compared to the original, as the values of

the optimized districts accumulate towards 10 and 15 percent. Still, three districts
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holding the right tail persist clearly separated from the rest of the districts in both

optimization results, despite of their values’ clear improvement.

In the following figures (11 and 12) are presented maps of the optimized district

divisions together with a map of the original district division. The value plotted with a

red color in the maps are the districts’ z-values, calculated as a difference between a

district’s share of population with immigrant background and the average share of

population with immigrant background based on all districts, standardized with the

standard deviation. As can be observed in the map of the original division, the districts

with large share of population with immigrant background are clustered in the North-

Western and Eastern parts of Helsinki. The regional dimension of segregation in

Helsinki, i.e. the regional disparity of the placement of population with immigrant

background, makes the optimization difficult especially from the most disadvantaged

districts’ point of view, as they are surrounded by other disadvantaged districts. Despite

of this, significant improvements are achieved in the values of these districts in

example optimizations A and B, and also the differences across all districts are visibly

flattened.

In both example optimizations, the forms of the optimized districts turn up complex and

tentacular. This happens because the compactness of the districs is not restricted in the

optimization at this stage, but instead the optimization is allowed to happen on its cost.

Some of the districts turning up most complex are also regionally the most evened-out:

for example in the northernmost area, a group of districts with relatively high

differences in their original values have blended and optimized substantially. For some

districts, however, the non-inhabited areas seem to form a barrier that prevents further

optimization: the maximum travel time constraint is reached before inhabited blocks

with desired impact are found. This seems to have happened at least in the Norteastern

and the Northwestern regions, where differences between some districts have remained

surprisingly large.
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Figure 11. Maps of original district division and optimized district division A. The coloring of the maps

represents the z-value of the districts, calculated as the district’s values difference from the global mean

and standardized by the standard deviation. Data source: Register data, SeutuCD’18.
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Figure 12. Maps of original district division and optimized district division B. The coloring of the maps

represents the z-value of the districts, calculated as the district’s values difference from the global mean

and standardized by the standard deviation. Data source: Register data, SeutuCD’18.

The effect of the uninhabited areas combined with travel time restriction can be

observed by comparing the map of Helsinki presenting inhabited statistical grid cells

and the share of population with immigrant background (figure 2) to the maps

presenting the absolute change (percentage points) in district’s respective values after
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optimization (figure 13). As can be observed, the greatest improvements in terms of

reverting towards the global mean happen inside regions that don’t have large spatial

discontinuities in inhabitation (e.g. the northernmost region).

Figure 13. The absolute change in districts’ share of population with immigrant background, measured in

percentage points. The red color represents increase, and the blue color decrease, while the intensity of

the color represents the magnitude of the change. Data source: Register data, SeutuCD’18.
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5. Discussion

5.1 The quality of the results: compactness, fairness & legitimacy

The results of this study show that optimization of school districts in Helsinki is

possible, and substantial improvements can be reached with relatively small changes to

the districts from travel distances’ and existing school network’s point of view. When

looking at the results, though, the inevitable question that rises is about the districts’

complex forms – or in other words, their lack of compactness. The question about

whether compactness is a desirable feature in a school district or not and whether

compactness should be included in the optimization as a parameter or not isn’t simple.

There is no absolute need for compactness, neither from the legal, the technical, nor

from the systemic point of view. The complex forms don’t break anything on the

technical or administrative level. Actually, the complex and tentacular district forms are

the most classic example about gerrymandering: the strategic manipulation of a district

division for achieving a particular objective - which is exactly the aim of this study.

Nevertheless, a geometry-oriented vision of a school district as a compact, circular

catchment area makes the tentacular districts feel unnatural. The desire for compactness

is in great part psychological – we prefer easily understandable solutions over those

that can’t be figured out at a glance. Another aspect related to this is that complex

forms are, compared to compact forms, more likely to split the natural community

borders and functional areas in multiple directions. Preserving the natural communities

in school district division is usually considered desirable (see e.g. Caro et al. 2004). But

again, breaking socio-spatial patterns is exactly the aim of the optimization, and in

many cases splitting communities is the only way to achieve a socially mixed district

division. In a socio-spatially diverged urban environment, complex and tentacular

school districts have a greater potential than compact districts to radically alter the

socio-spatial interactions that schools generate.

Regardless of whether the desire for compact districts is mainly irrational, it can make a

complex and non-compact district plan infeasible: if the district plan is commonly not

seen as legitimate and justified, it can be politically impossible to implement. As stated



68

earlier, none of the districting solutions benefit everyone equally, and in school

districting there is always a complex set of interests at stake. While in principle

everyone is an advocate of educational equality, in practice families exercise school

choice diligently and are willing to pay more for a home near a particular school – as a

proof of which can be mentioned discontinuity in home prices at the school district

borders in Helsinki (Harjunen et al. 2018). As the parents are usually not very willing to

compromise their children’s perceived benefit for common good, some of them are

very likely to strongly oppose changes to the school districts, especially if those

changes would result in longer distances between homes and the assigned school, and a

larger and more diverse (on average more disadvantaged) student composition.

When looking at the results generated by the pilot optimizations in this study, another

question that rises instantly is about the significance of optimization achieved. While

the optimized district divisions are notably more even than the original district division,

is the difference significant enough considering the effort of redistricting and the losses

of efficiency what comes to travel times? Are the benefits from this scale of

optimization sufficient to cover the inconvenience caused and the political turbulence

stirred? As noted, evidence regarding the benefits of socially diverse schools on

learning outcomes is extensive both on the level of individual and the system

(Mickelson & Bottia 2010), but studies that measure benefits for learning outcomes

gained from mixing the student compositions of advantaged and disadvantaged schools

(by e.g. granting children from disadvantaged neighbourhoods places in schools with

higher social status) are case-specific results that are not directly generalizable to other

cities and educational systems. Additionally, the effects of school district optimization

are largely dynamic, most likely affecting patterns of school choice and selective

migration. This means, that exact predictions regarding the effects of optimization on

student achievement are impossible.

However, Bernelius & Vaattovaara (2016) have found that in Helsinki, only 30% of

parents are happy with their child attending a school where the proportion of students

with immigrant background is between 20–50%. This means, that when the proportion

rises over 20% in a school, the school will most likely be increasingly rejected in

school choices, which again aggravates school segregation. The optimization piloted in
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this study was able to decrease the amount of schools crossing this 20% “tolerance

limit” on the district level and bring those still crossing it closer to the lower end of the

20–50% range. In this way, the optimization of school districts can be predicted to at

least decrease rejection of schools by making the schools’ perceived quality differences

notably smaller.

Predicting the effects of school district optimization on learning outcomes is also

difficult because the divergence of schools’ student compositions is only one aspect

affecting the equality of educational opportunities in schools. Even if all social

variation between schools’ student compositions could be erased with school district

optimization, educational segregation would still exist as within-school segregation

related to weighted-curriculum education and students’ social networks in the schools

(Rumberger & Palardy 2005). It’s impossible to completely erase these forms of

segregation with any justifiable intervention. Still, a schooling system with strong

within-school segregation in otherwise socially diverse schools create better

possibilities for interaction between students of different backgrounds than a schooling

system with strong segregation between schools. So, while it’s impossible to eliminate

the inequalities of educational opportunities just by optimizing school districts, the

bases for pursuing such goals are better in socially diverse schools.

One may still wonder, whether the optimized plans that compromise travel times,

school capacities and compactness are fair and utility-maximizing on the system level.

This depends largely on the chosen viewpoint. If only judged from the travel time and

infrastructure capacity aspects, the optimized district plans are not efficient. One may

also point out that they may be unlawful – the Finnish law requires that children’s

school trips are as short as possible. Despite of that, even now the school districts in

Helsinki are not perfect catchment areas based on distances and school capacities, so

the definition of “as short as possible” is in reality somewhat flexible in relation to

other objectives set by the local authorities. School district planning is all about value

choices and priorities – about how aspects of equal opportunity and efficiency are

weighted in the policy choices in relation to each other. From the equality of

opportunities point of view, a socially more even district division is provenly fairer than
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a polarized division, but from the efficiency and travel-time point of view, it might not

be.

One may also ask, why not only focus on targeted funding of lowest-performing

schools instead of massive redistricting efforts, if it has shown to be effective in

improving students’ learning outcomes. The question is good, but it forgets the larger

context of school segregation: the bidirectional link between residential and school

segregation (e.g. Bernelius 2013), importance of social networks and other peer effects,

the benefits from exposure to diversity, et cetera. Additionally, while targeted funding

has been able to mitigate the effects of school segregation in Helsinki (Silliman 2017),

it has not proven to be able to decrease school segregation itself. So, what comes to the

prevention of divergence in the equality of educational opportunities, the targeted

funding alone is most likely an alleviation of symptoms – but not a cure to the disease

of segregation itself, and as such largely an answer to a wrong question.

The significant factors affecting the optimization result of a heuristic model, in addition

to optimization parameters and logic, include the spatial structure of the optimization

environment (e.g. the regional distribution of population), and the state from which the

optimization is started from (i.e. the “seed”). This is also one of the most important

things to note about the results of this study: as the optimization in this study was based

on improving the existing school district plan with somewhat realistic parameters, the

results only show how the current division could be improved with minimal changes to

the system. If instead the optimization was started from a random amount of seeds with

random locations (in that case seeds being the school buildings), the results would more

accurately represent the theoretically optimal school district division and likely show

much higher scales of evenness. In that case, however, the result would be only suitable

for purely theoretical review, and likely have little practical significance.

In addition to the results obtained by piloting the application of the model, the other

main result of this study is the model itself. Next, I will go through the main limitations

of the model from technical point of view and present some future avenues for study.
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5.2 Model limitations and future development targets

The main limitations of the model developed in this study include time complexity and

scalability aspects. While local search algorithms are generally known for their relative

efficiency (e.g. Ingber & Rosen 1992; Russell & Norvig 2003), the combinatorial

nature of the problem requires special emphasis on powerful and efficient data

structures. Though the model developed in this study already utilizes many powerful

data structures, it’s development has been mostly logic-oriented. This said, the

implementation of the developed algorithm could very likely be optimized further to

reduce its overall run time. Reducing the run time would enable improving the result

accuracy further: the randomness included in the model could be increased, as more

model runs and result evaluations could be executed in a reasonable time.

One concrete example of potential inefficiency in the implementation is that the

algorithm developed in this study can be argued to be “wasteful” of function

evaluations: a district does not remember which blocks it has already evaluated and

therefore evaluates partially the same blocks on each of its turns (see e.g. Wolpert et al.

1997 for prevention of wastefulness). From the model logic’s point of view, however,

re-evaluating the same blocks on each turn is at least partially necessary, as the point is

to always search for the current best move in the neighborhood. One possible

improvement, though, could be made by storing some information about the blocks

when first evaluating them. Based on this stored information the district could quickly

sort out the most likely “bad” blocks in the beginning of its turn, and thus avoid doing

expensive calculations on those no-go blocks on every turn. However, in order to avoid

getting stuck on plateaus and bad local optimums, some of these no-go blocks should

still be regularly re-evaluated and also sometimes randomly accepted.

Another technical benefit could be acquired by dividing the execution of the model for

multiple processors. This would enable running multiple versions of the model

parallelly, with differing amounts of randomness. This would also help to mitigate the

poor upward scalability of the model – as noted, the running time required for the

execution of the model grows as a factor of the number of blocks and districts in the

model. This means that the running time grows steeply as the number of blocks and
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districts in the model increase. While distributing the model execution to different

processors does not change the demanding combinatorial nature of the problem or

remove its computational intractability, it would make the runs with larger problems

feasible on a somewhat average computer.

In addition to time complexity issues, another clear target for further development of

the model is the incorporation of an important optimization parameter – the safety of

children’s school trips – to the model. The safety aspect could be included in the model

for example as a cost distance matrix. Another possible approach would be breaking the

blocks into discontinuous regions by major roads and railways and run the

optimizations separately for each region. The question about school trips’ safety is,

however, more complex than this. Not all railways or major roads are dangerous for

children, and not all small roads are safe. A single crossing on the same road can be

hazardous, while the next one may be not. The question is about the quality of urban

planning and traffic planning, which can vary greatly even within a small region.

Also, while compactness is a debatable objective, testing its inclusion in the model

either as a constraint or optimization parameter would definitely be an important step

towards increasing its practical value and applicability in real-life contexts. However,

as noted, the inclusion of compactness parameter may in practice be a significant

obstacle for optimization in a segregated environment, since it would significantly

reduce the number of possible solutions by preventing the formation of complex forms.

This conflict has already been discovered in the previous studies (Caro et al. 2004;

desJardins et al 2007; Bouzarth et al. 2018).

Another interesting development target for this work would be changing the model

from “hard” constrained single-objective optimization to “soft” multi-objective

optimization. In multi-objective optimization, the constraints could be included in the

actual optimization function and weighted with different powers and multipliers. In this

way, the optimization could be made more flexible, as no moves would be prohibited.

With this logic, the optimization would move from happening only between the district

to also happening between the optimization parameters: a district could choose a block

that is far away if choosing it would significantly improve its social composition, but
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leave a block that would only minimally diversify its social composition while

deteriorating its other optimization measures.

In addition to the development targets listed above, the optimization parameter

measuring social composition could be extended to include also other measures, like

household income and adult population’s level of education. While these measures

have been found to strongly correlate in space with the share of population with an

immigrant background (Vilkama 2011, Kortteinen & Vaattovaara 2015), they are also

important, independent measures of social diversity. In the next phases of development,

the model should preferably also be implemented with a block data that represents the

natural neighborhoods better than the census grid units – or even with building-level

polygons.

After proving that significant homogenization of the school districts can be achieved

with local search approach, it would be both interesting and beneficial to test also other

sophisticated methods for solving the problem. For example, approaches including

genetic algorithms with nested local search have shown excellent results in other fields

of research and could significantly increase efficiency compared to only local search-

based approaches (Bação et al. 2005; Vanneschi et al. 2017). Also, more novel

approaches like artificial bee colony (ABC) and method of musical composition (as in

Rincon-Garcia et al. 2017) have given very promising results in electoral districting

when compared to other automated districting approaches. However, to my knowledge,

these novel methods have not yet been applied to school districting problems.

As a complex problem with multiple, sometimes conflicting objectives, school

districting will probably always stay a somewhat ill-defined problem. As Caro et al.

(2004) note, it’s very likely that new criteria emerge and existing criteria require

modification during a districting process. Because of this, interactive districting tools

utilizing integrated optimization algorithms are needed in the future. These kinds of

tools could also cater for manual post-processing, easy exclusion of certain areal units

from the optimization and calculation of different starting points (seeds) for

optimization. Most importantly, adoption of machine-learning based approaches for

school districting would be a step towards ensuring the quality of the district plans – a
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step that would make comparison of alternative plans easy, and a step towards ensuring

that the generated output actually matches the defined goals in the best possible

manner.
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6. Conclusions

Angel Gurria, the OECD Secretary-General wrote in the latest Education at a glance

the following:

“The conditions and social environments we are allotted at birth may seem as

random as a lottery draw, yet they will define our starting position on the path of

life by affecting not only the opportunities available to us, but also the social and

emotional capital needed to ease our way.” (OECD2018b)

How the positions people are born to affect their educational careers and social

interactions early in life is not, however, completely beyond our reach. In the light of

numerous studies, one important tool for building equality of educational opportunities

is ensuring that school districts are drawn to maximize social diversity within and

evenness between the schools’ student compositions.

The aim of this study was to develop a model for automated school districting and pilot

its application in the context of Helsinki. While Helsinki is still only moderately

segregated compared to other European capital cities, on the level of schools’ student

compositions social divergence is clear. The results generated with the pilot model

show that significant homogenization of school districts could be achieved in Helsinki

even with relatively small changes to student intakes and travel distances. While the

model developed in this study can provide valuable insight into school district

optimization, the approach still needs further development before being able to provide

optimized school district divisions readily applicable to the real world.

As Mickelson and Bottia (2010) write, an integrated and diversity-enhancing

educational system is not a weather-like phenomenon, that is largely beyond the reach

of human efforts to affect or create. On the contrary, our educational systems are built

based on highly conscious policy choices. This is best demonstrated by the diversity of

different educational systems across the OECD countries, showing that wealthy

societies are capable of creating a great variation of more and less effective, more and

less inclusive, more and less socially integrated and more and less equal learning

outcomes producing educational systems (OECD 2018a). Schools are contexts of life,
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where the foundations for future social life, educational career and social class are laid.

If this important life domain becomes increasingly segregated, it both threatens the

equality of educational opportunity and has potential of increasing segregation in other

important contexts of life. Hindering this development, however, is neither out of our

reach nor an overly complicated effort. In the end, the way school districts are drawn is

simply a matter of values and knowledge put into practice.
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Appendix: model source code

Model source code also available in https://github.com/herttale/School-district-optimization

classes.py

1. from shapely.ops import cascaded_union
2. from copy import deepcopy
3. import random
4. from shapely.geometry import LineString
5.
6. class SchoolDistr:
7. """ The class representing the school districts """
8.
9. def __init__(self, school_id, blocks, td_matrix):
10.
11. # class attribute 1: the school id number
12.         self.school_id = school_id
13. # class attribute 2: the blocks belonging to the district (as a dict,
14. # with keys corresponding to the td_matrix keys).
15.         self.blocks = blocks
16. # class attribute 3: distance matrix (as a dict, with keys
17. # corresponding to the blocks keys).
18.         self.td_matrix = td_matrix
19. # class attribute 3: the geometry of the district (shapely polygon)
20.         self.geometry = None
21. # class attribute 4: the maximum allowed distance from block to the
22. # district's school
23.         self.max_distance = None
24. # class attribute 5: the amount of 7-year-olds living inside the
25. # district
26.         self.students = None
27. # class attribute 6: the maximum amount of 7-year-olds that the
28. # district can host
29.         self.student_limit = None
30. # class attribute 7: the current value of the optimization parameter
31.         self.optimization_value = None
32. # function call: initiate district attributes
33.         self.initiate_distr_attrs()
34.
35. # Method for initializing attributes
36. def initiate_distr_attrs(self):
37.         self.geometry = self.calculate_geometry()
38.         self.max_distance = self.calculate_max_distance()
39.         self.students = self.calculate_student_base()
40.         self.student_limit = self.students*1.20
41.         self.optimization_value = self.calculate_optimization_value()
42.
43. # Method for updating attributes
44. def update_distr(self):
45.         self.geometry = self.calculate_geometry()
46.         self.students = self.calculate_student_base()
47.         self.optimization_value = self.calculate_optimization_value()
48.
49. # Method for calculating the district's geometry as cascaded union of the
50. # block geometries

https://github.com/herttale/School-district-optimization
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51. def calculate_geometry(self):
52.         geom_list = []
53. for key, block in self.blocks.items():
54.             geom_list.append(block.geometry)
55. return cascaded_union(geom_list)
56.
57. # Method for calculating the district's maximum distance constraint. The
58. # travel time data must not include infinite distance values.
59. def calculate_max_distance(self):
60.         maxt = 0
61. for key, block in self.blocks.items():
62.             ttime = self.td_matrix[key]['walk_d']
63. if ttime > maxt:
64.                 maxt = ttime
65. return maxt * 1.20
66.
67. # Method for calculating the current value of the optimization parameter
68. def calculate_optimization_value(self):
69.         majority_pop = 0
70.         minority_pop = 0
71. for key, block in self.blocks.items():
72.             majority_pop += block.lang_majority
73.             minority_pop += block.lang_other
74. return minority_pop/(minority_pop + majority_pop)
75.
76. # Method for calculating the current amount of 7-year-olds living
77. # inside the district
78. def calculate_student_base(self):
79.         student_sum = 0
80. for key, block in self.blocks.items():
81.             student_sum += block.student_base
82. return student_sum
83.
84. # Method for calculating the district's neighbourhood: which blocks
85. # the district shares a line segment with
86. def touches_which(self, blocks_dict):
87.         neighbors = []
88. for key, block in blocks_dict.items():
89. if type(self.geometry.intersection(block.geometry)) == LineString:
90. if key not in self.blocks:
91.                     neighbors.append(block)
92. return neighbors
93.
94. # Method for calculating whether a block is too far for adoption
95. # Returns True if the block is too far
96. def is_too_far(self, block):
97.         dist = self.td_matrix[block.block_id]['walk_d']
98. return dist > self.max_distance
99.
100. # Method for adopting a selected block
101. def add_block(self, block):
102. if block == None:
103. return
104. else:
105.            block.school_id = self.school_id
106.            self.blocks[block.block_id] = block
107.
108. # Method for removing an adopted block
109. def remove_block(self, block):
110. if block == None:
111. return
112. else:
113. del self.blocks[block.block_id]
114.
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115. # A method for testing if adopting a block would break another district's
116. # contiguity. Returns True if contiguity would break.
117. def break_contiguity(self, block):
118.        blocks_copy = deepcopy(self.blocks)
119.
120.        geom_list = []
121. for key, item in blocks_copy.items():
122.            geom_list.append(item.geometry)
123.        geom1 = cascaded_union(geom_list)
124. del blocks_copy[block.block_id]
125.
126.        geom_list = []
127. for key, item in blocks_copy.items():
128.            geom_list.append(item.geometry)
129.        geom2 = cascaded_union(geom_list)
130.
131. return type(geom1) != type(geom2)
132.
133. # A method for selecting the best block in neighbourhood
134. def select_best_block(self, blockset, districts, global_mean,
135.                          global_st_dev):
136.        majority_pop = 0
137.        minority_pop= 0
138.
139. for key, value in self.blocks.items():
140.            majority_pop += value.lang_majority
141.            minority_pop += value.lang_other
142.
143.        best_block = None
144.
145. for block in blockset:
146. # test for rule 2
147. if block.contains_school == False:
148. # test for rule 3
149. if (block.student_base + self.students) <= self.student_limit:
150. # test for rule 4
151. if self.is_too_far(block) == False:
152.                        current_district = districts[block.school_id]
153. # test for rule 5
154. if current_district.break_contiguity(block) == False:
155. # calculate specs for the block's current district
156.                            current_district_majority_pop = 0
157.                            current_district_minority_pop= 0
158.
159. for key, value in current_district.blocks.items():
160.                                current_district_majority_pop += \
161.                                        value.lang_majority
162.                                current_district_minority_pop += \
163.                                        value.lang_other
164.
165.                            current_d_new_value = ((current_district_minority_pop
166.                                                    - block.lang_other)/
167.                                                    (current_district_minority_pop
168.                                                     - block.lang_other +
169.                                                     current_district_majority_pop
170.                                                     - block.lang_majority))
171.                            current_d_current_value = ((current_district_minority_pop)/
172.                                                       (current_district_minority_pop
173.                                                       + current_district_majority_pop))
174.
175. # test the adoption outcome in relation to current state
176. if best_block == None:
177.                                own_new_value1 = ((minority_pop + block.lang_other)/
178.                                                  (minority_pop + block.lang_other +
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179.                                                   majority_pop + block.lang_majority))
180.
181. # test for the rule 6
182. if (abs(current_d_new_value - global_mean) <=
183.                                    abs(current_d_current_value - global_mean) or
184.                                    abs((current_d_current_value - global_mean) -
185.                                        (self.optimization_value - global_mean)) >
186.                                        abs((current_d_new_value - global_mean) -
187.                                            (own_new_value1 - global_mean))):
188.
189. if (abs(own_new_value1 - global_mean) <
190.                                         abs(self.optimization_value - global_mean)):
191.                                         best_block = block
192.
193. # test the adoption outcome in relation to the current best_block
194. else:
195.
196.                                own_new_value2 = ((minority_pop + block.lang_other)/
197.                                                  (minority_pop + block.lang_other +
198.                                                   majority_pop + block.lang_majority))
199.                                current_best = ((minority_pop + best_block.lang_other)/
200.                                                (minority_pop + best_block.lang_other +
201.                                                 majority_pop + best_block.lang_majority))
202.
203. # test for the rule 6
204. if (abs(current_d_new_value - global_mean) <=
205.                                       abs(current_d_current_value - global_mean) or
206.                                       abs((current_d_current_value - global_mean) -
207.                                           (self.optimization_value - global_mean)) >
208.                                           abs((current_d_new_value - global_mean) -
209.                                               (own_new_value1 - global_mean))):
210.
211. if (abs(own_new_value2 - global_mean) <
212.                                        abs(current_best - global_mean)):
213.                                        best_block = block
214. # return the best block
215. return best_block
216.
217. # A method for selecting a random block in neighbourhood
218. def select_random_block(self, blockset, districts):
219.        blocklist = []
220. for block in blockset:
221. # test for rule 2
222. if block.contains_school == False:
223. # test for rule 3
224. if (block.student_base + self.students) <= self.student_limit:
225. # test for rule 4
226. if self.is_too_far(block) == False:
227.                        current_district = districts[block.school_id]
228. # test for rule 5
229. if current_district.break_contiguity(block) == False:
230.                            blocklist.append(block)
231.
232. if len(blocklist) > 0:
233. # generate a random number for selecting a block
234.            randomindx = random.randint(0,len(blocklist)-1)
235. # return a random block according to the random number generated
236. return blocklist[randomindx]
237.
238.class Block:
239. """ The class representing the residential blocks """
240. def __init__(self, geometry, block_id, lang_majority, lang_other, student_base,
241.                 school_id, contains_school):
242.
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243. # class attribute 1: the geometry of the block (shapely polygon)
244.        self.geometry = geometry
245. # class attribute 2: block id
246.        self.block_id = block_id
247. # class attribute 3: the amount of population with Finnish or Swedish as
248. # their mother tongue
249.        self.lang_majority = lang_majority
250. # class attribute 4: the amount of population with other languages than Finnish
251. # or Swedish as their mother tongue
252.        self.lang_other = lang_other
253. # class attribute 5: the amount of 7-year-olds living in the block
254.        self.student_base = student_base
255. # class attribute 6: the id of the school district the block currently
256. # belongs to
257.        self.school_id = school_id
258. # class attribute 7: True if the block contains a school, otherwise False
259.        self.contains_school = contains_school

main.py

1. # the main optimization function
2. def main(districts_orig, blocks_dict_orig):
3.
4. import numpy as np
5. import statistics as st
6. import random
7. from classes import Block, SchoolDistr
8. from copy import deepcopy
9.
10.     current_best_cumul_zvalue = None
11.     current_best_distr_division = None
12.     current_best_curve = None
13.     all_optimization_curves = []
14.
15. for iteration in range(0,100):
16.
17. print(iteration)
18.         districts = deepcopy(districts_orig)
19.         blocks_dict = deepcopy(blocks_dict_orig)
20.
21. # create a list for tracking the change in cumulative z-value
22.         cumulative_zvalues_list = []
23. # create a variable for tracking the iterations inside while-loop
24.         main_iteration = 0
25. # set the ceiling value for probability calculation (now it ranges from
26. # 50 to 124 adding 0.75 on every iteration
27.         ceil = np.floor(0.075 * iteration * 10 + 50)
28.
29. # calculate the global mean and standard deviation for original
30. # districts' optimization values
31.         districts_values_list = []
32. for key, item in districts.items():
33.             districts_values_list.append(item.optimization_value)
34.         global_mean = sum(districts_values_list)/len(districts)
35.         global_st_dev = np.std(districts_values_list, ddof = 0)
36.
37. while True:
38.
39. # calculate the current cumulative z-value
40.             cumulative_zvalue = 0
41. for key, distr in districts.items():
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42.                 cumulative_zvalue += abs((distr.optimization_value -
43.                                           global_mean)/global_st_dev)
44.             cumulative_zvalues_list.append(cumulative_zvalue)
45.
46. # test whether the optimization can be terminated - if yes, return
47. # optimized district division and corresponding optimization curve
48. if main_iteration >= 12:
49.                 checkvalue = st.mean([cumulative_zvalues_list[main_iteration],
50.                                       cumulative_zvalues_list[main_iteration-1],
51.                                       cumulative_zvalues_list[main_iteration-2],
52.                                       cumulative_zvalues_list[main_iteration-3]]) \
53.                                         - cumulative_zvalues_list[main_iteration]
54.
55. if round(checkvalue, 5) == 0 or main_iteration > 40:
56. break
57.
58. # increase iteration
59.             main_iteration += 1
60. print("main_iteration round:", main_iteration,
61. ', current cumulative z-value:', cumulative_zvalue)
62.
63. # iterate the districts
64. for key in list(districts.keys()):
65. # generate a random number for defining whether a best or a random
66. # block will be chosen on this turn
67. if ceil >= 50:
68.                     random_int = random.randint(0, ceil)
69. else:
70.                     random_int = 0
71.
72. # check what blocks the district in turn touches
73.                 neighbors = districts[key].touches_which(blocks_dict)
74. # select best or random block based on random_int
75. if random_int > 50:
76.                     block_to_add = districts[key].select_random_block(neighbors,
77.                                             districts)
78. else:
79.                     block_to_add = districts[key].select_best_block(neighbors,
80.                                             districts, global_mean, global_st_dev)
81.
82. if block_to_add != None:
83. # remove block from its previous owner and update values
84.                     districts[block_to_add.school_id].remove_block(block_to_add)
85.                     districts[block_to_add.school_id].update_distr()
86.
87. # add block to the new district
88.                     block_to_add.school_id = key
89.                     districts[key].add_block(block_to_add)
90.                     districts[key].update_distr()
91.
92. # decrease ceiling value
93.             ceil -= 5
94.
95.         all_optimization_curves.append(cumulative_zvalues_list)
96.
97. if (current_best_cumul_zvalue == None or
98.             cumulative_zvalue < current_best_cumul_zvalue):
99.             current_best_cumul_zvalue = cumulative_zvalue
100.            current_best_distr_division = districts
101.            current_best_curve = cumulative_zvalues_list
102.
103. return({"current_best_distr_division":current_best_distr_division,
104. "current_best_curve":current_best_curve})
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