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Abstract

Instructors of introductory programming courses
would benefit from having a metric for evaluating
the sophistication of student code. Since introductory
programming courses pack a wide spectrum of topics in
a short timeframe, student code changes quickly, raising
questions of whether existing software complexity
metrics effectively reflect student growth as reflected in
their code. We investigate code produced by over 800
students in two different Python-based CS1 courses to
determine if frequently used code quality and complexity
metrics (e.g., cyclomatic and Halstead complexities)
or metrics based on length and syntactic complexity
are more effective as a heuristic for gauging students’
progress through a course. We conclude that the
traditional metrics do not correlate well with time
passed in the course. In contrast, metrics based on
syntactic complexity and solution size correlate strongly
with time in the course, suggesting that they may be more
appropriate for evaluating how student code evolves in
a course context.

1. Introduction

Introductory programming courses cover huge
amounts of interconnected concepts, as illustrated by
Tew and Guzdial in their content analysis of most widely
adopted introductory programming (CS1) textbooks [1].
Prerequisites between the concepts guide course design
and restrict the order in which various topics may be
introduced [2, 3, 4, 5]. Sorva and Seppälä argue that
from a pedagogical view point, the concepts should
be introduced first in isolation and later combined
with other topics [4]. Many introductory programming
courses follow this approach. However, this could go too
far. Several groups have noted that typical assessments
contain a large (15+) number of concepts [6, 7, 5], and
Luxton-Reilly has raised the concern that our tendency
to evaluate material in combination is unreasonable
given the brief amount of time in a typical course [8].

As students learn to program, they become
increasingly capable of solving different and more
challenging problems. To some extent, complexity of
the code correlates with skills: students demonstrate
their ability to use various concepts together and build
something nontrivial but meaningful. However, a simple
problem can also be solved with complex code. Thus,
complexity can indicate a lack of skill.

Also, sometimes the difficulty of the tasks is related
to problem solving, and sometimes it’s related to
complexity of software constructs needed in the task.
Often the algorithmic difficulty is combination of both
of these aspects. The extent to which concepts are
applied in combination raises the questions of how
the complexity of student code increases over the
term, and whether existing software complexity metrics
can effectively measure the increase in complexity of
student code – just like complexity measures such
as Halstead’s difficulty [9] and McCabe’s cyclomatic
complexity [10] have been used to predict the difficulties
what professional programmers experience in reading
and modifying code [11]. In this study, we answer the
following research question: How do the selected code
quality metrics correlate with time passed in the course?

To explore this question, we evaluate code produced
by over 800 students in two different Python-based CS1
courses using a variety of heuristics. We compare
frequently used code quality and complexity metrics
(e.g., cyclomatic complexity and Halstead difficulty) to
ones currently used in computing education that are
based on syntactic complexity.

The various complexity metrics and how they
have been previously applied in computing education
research is discussed in Section 2. Details of the data
collection will be provided in Section 3. The relevant
results, including the correlations, will be provided in
Section 4. Finally, implications to computing education
(research) and concluding remarks will be provided in
Sections 5 and 6.
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2. Background

Failure rates in CS1 have been observed to exceed
30% [12], and this observation has driven efforts in the
computing education community to identify the causes
of the difficulty. One thread of research has explored the
assessments we use. In this context, even the definition
of difficulty is not straightforward. It can be estimated
by using self-reported and automatically collected data
(e.g., time needed to solve a task), but commonly used
measures to may not correlate with each other [13]. In
this study we focus on automatically extracted features
from the code itself.

The first reviews of computing assessments
focused on exams. They found that exam question
difficulty varied significantly [14, 15, 16] and that
most exam questions contained multiple concepts [17].
Furthermore, they argued that while academics
can evaluate the difficulty of their exams, exam
questions often included more conceptual elements
than an instructor or researcher would independently
identify [17, 18]. Taken together, these results suggest,
as several groups have argued, that we may simply
be asking too much of our students by the end of the
course [6, 8], which then leads to the question, “Are we
expecting too much too quickly throughout the course?”

2.1. Evaluating Complexity in Computing
Courses

The “difficulty” and “concepts” attributes that
various groups used to evaluate computing assessments
were not precisely defined. Difficulty was frequently
evaluated by manually categorizing items using a
learning taxonomy. The SOLO taxonomy, which had
been successfully used to evaluate student responses
to questions [19, 20, 21], was not as reliable when
used to evaluate assessments or prompts [14, 16],
and another group had difficulty applying Bloom’s
taxonomy for a similar task [17]. Furthermore, the
idea of “concepts” varied significantly across groups.
Most used definitions for concepts that corresponded
with sections of computing courses, as they were derived
from surveys of instructors [22, 23], rather than directly
from code. Later efforts used data mining techniques
to identify particularly difficult concepts (see [24] for
an overview of educational data mining in computing
education), with the most recent efforts using syntactic
structures as a proxy for “concepts” [7, 5]. These efforts
have confirmed that assessments used in computing
courses typically include large numbers of syntactic
elements.

However, we do not yet know how complexity
increases within courses. We have some evidence that

there are particularly difficult points in CS courses [22,
25, 26], but we have little information about how quickly
difficulty increases in courses. The work on learning
curves, by Rivers et al [26], is most relevant, as it
identifies topics where students appear to learn (their
rate of error production decreases), but it does not seek
to compare the relative difficulty of topics through a
course.

2.2. Code Complexity

Thus far, in computing education, evaluating code
complexity has either involved expert evaluation or
the use of convenient heuristics, such as the number
of syntactic elements in a piece of code. This
work considers metrics that have been used as proxies
for code complexity in software engineering, to see
whether they are more effective than the concept-based
heuristics used in computing education. We selected
the heuristics in our study based on their use in recent
studies comparing metrics [27] or due to their use in
computing education [7, 28]. We omitted metrics for
object-oriented code, as the CS1 courses we studied
introduced objects late in the term, as a last or second
to last topic.

While metrics-driven software engineering has
fallen out of favour, the metrics we are studying remain
in common usage as they are a convenient quantitative
method for measuring code [29]. They have also been
well studied. Lines of code (LOC) and the Halstead [30]
and McCabe (cyclomatic) [10] metrics, which can
be computed using syntactic elements in code, were
examined in the 1970’s and early 1980’s [11, 31].
Whereas McCabe focuses on the control flow graph
by measuring the number of linearly independent paths
through a program, Halstead metrics (there are many
of them) are based on length (number of operators
and operands) of and vocabulary (number of distinct
operators and operands) used in a program.

While not all of these metrics are applicable across
languages or when used to predict quality [32], they
have the virtue of being easy to calculate using
just student code and may still have validity for
evaluating student performance. Recent work in
computing education has suggested that, if these metrics
were used to evaluate individual student performance,
length-based metrics of student code correlate positively
with student performance and that the Halstead metrics
correlate negatively [28]. A naı̈ve interpretation of the
results is that students struggling with difficult code (in
terms of Halstead) may write more brief (or incomplete)
answers.

One concern in applying metrics from software
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engineering to student work is that professional
development is significantly different from the tasks
performed by students. Work in both software
engineering and computing education has compared
students and professionals [33, 34, 35, 36, 37] and, in
many cases, has found differences in performance and
approach. This work applies a range of heuristics to
student code to see if the heuristics exhibit desirable
behaviours in a computing course context.

2.3. Code and Conceptual Complexity

It isn’t immediately obvious that simple metrics for
measuring code complexity, like lines of code or number
of syntactic elements, are at all related to the cognitive
complexity being encountered by the author or reader
of the code. Classic work in computing education
and in learning theory argues that learners accumulate
schema, rather than building up their knowledge from
a thorough understanding of each small element of
the code [38, 39]. The application of this work in
computing pedagogy, however, leads to courses that
focus on pattern acquisition [2]. Errors, in this model,
occur when a schema is applied in an unfamiliar
context or modified in a way that reveals a flaw in the
learner’s understanding of the elements that compose
the schema [38, 40, 41]. After a break in the 90’s, the
idea has seen increased interest, with new work using
schema theory to identify complex tasks or particularly
difficult elements of courses, much like the work in data
mining [42, 43, 44].

This work does not seek to explore the cognitive
tasks that novices perform as they learn to code.
We believe that, regardless of the method used in
instruction, that it is likely that code complexity may
still be used as a proxy for increasing difficulty. We
seek to identify heuristics that can be applied to code
artifacts produced in courses and explore whether these
heuristics behave “nicely” in terms of gauging progress
through a course.

3. Methodology and Data

3.1. Data Collection

Our analysis is based on two datasets of student code
obtained from different universities. Both courses are
taught in Python and make extensive use of automated
assessment: on a weekly basis, brief exercises are
assigned in an online system, and students receive
automated feedback immediately upon submission. The
data was collected from two institutions so that we do
not simply measure the influence of a single instructor
or mode of instruction on code style.

The first dataset (A) is from a research intensive
North American university and consists of submissions
to an online programming exercise system as well as
standalone assignment submissions. The course lasts
12 weeks, with students completing sets of short, online
exercises every week in addition to larger, multi-week
assignments submitted in weeks 5, 9, and 12. The course
is taught without any expectation that students have
prior experience but aims to prepare students to enter
the computer science program, so topics introduced
range from basic syntax (types, expressions, variables,
conditionals, loops, and functions) to software tools and
processes (including unittests, test-driven development,
and stylistic issues) and small tastes of later computer
science topics (sorting algorithms, complexity, and
object oriented design). Data was collected in Fall 2017,
with 912 students providing consent for their data to be
analyzed. This resulted in 61524 exercise submissions
from 88 problems and 2175 submissions across three
assignments.

The second dataset (B) is from a research intensive
North European university. The course lasts 15 weeks,
and grading is based on weekly, automatically assessed
programming tasks. There is no clear distinction
between assignment and exercises as students receive
immediate automated feedback from all the tasks they
do. From a few tasks, students get additional feedback
from the teaching assistants (e.g., about how the code
is organized). Although the difference is small, we will
refer to exercises with manual feedback as assignments
to be consistent with the other data set. The course
is taught without prerequisites and is provided for all
first year students in the university. Topics covered
in the course are similar to Course A except that
test driven development is not discussed. Data was
collected in Spring 2017, when 161 students working
with 102 separate programming exercises producing
8997 submissions.

Both datasets contain submissions from multiple
weeks and multiple exercises per week. For all tasks,
only students’ last submissions are included. The
number of exercises and assignments due to each week,
and the average number of exercises submitted by each
student is provided in Table 1. The fairly large number
of exercises in week 3 of Course A is explained by an
administrative requirement: students can add the course
through the second week, so to avoid disadvantaging
them, all of the work assigned in the first two weeks is
actually due in the third week.
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Table 1. Descriptive statistics of both datasets with the number of exercises each week, the average number of

exercises solved by each student, and number of students submitting exercise each week

Week
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
ou

rs
e

A Available - - 28 16 10 2 6 7 2 3 7 7 - - -
Submitted - - 24.1 14.2 8.7 2.0 5.1 5.8 1.9 2.9 6.7 5.4 - - -
Students - - 902 832 797 624 768 736 605 639 648 647 - - -

C
ou

rs
e

B Available 7 13 8 7 10 11 9 7 5 4 9 4 5 2 1
Submitted 6.5 11.6 7.2 5.4 8.2 8.0 6.7 5.6 3.1 2.4 5.6 1.7 2.9 1.4 1
Students 152 150 139 129 129 116 111 104 94 78 83 63 57 28 13

3.2. Analysis

First, for all the final submissions, we calculated
the following metrics: lines of code in the submitted
files, concept count, number of operators, number
of unique operators, number of operands, number of
unique operands, Halstead metrics (content, length,
difficulty, effort, time, error, delivered bugs), and
McCabe’s cyclomatic complexity. The Radon software
package was used to calculate all of the metrics except
for concept count [45]. Concept counts were derived
directly from an abstract syntax tree by assigning each
token to one of the categories defined in Luxton-Reilly
and Petersen’s work [7]. Metrics were calculated per-file
(“per-module”) except for McCabe’s complexity. For
example, when calculating concept count, every concept
identified in the file was counted. When calculating
McCabe’s complexity, the complexity of each function
in the file as well as the complexity of the code at
the top level was computed. We report on both the
maximum McCabe complexity obtained and the sum of
the McCabe complexities.

Next, we grouped this data by student and week
and, for each group, emitted the maximum in each of
the previously listed metrics. In other words, for each
student, we calculated how complex the metrics get
every week. It should be noted metrics are selected
independently. For example, maximum source lines of
code for a student in week 1 may be related to a different
exercise than the highest cyclomatic complexity by the
same student. As the primary goals of this study
is to investigate how metrics correlate with the time
passed in the course, we calculated Spearman’s rank
correlations between all the metrics and week numbers.
In Course A, assignments were designed to be very
different from the exercises. For example, assignments
were clearly larger than exercises (Figure 1). Thus,
correlations were calculated for exercises only. In
Course B, exercises and assignments were designed
to be comparable so the correlations were calculated

for exercises and assignments together. The number
of available distinct assignments in both course was
relatively small so correlations were not calculated
separately for them.

4. Results

Static code metrics are often based on or highly
correlated with lines of code. Therefore, we start
our analysis by looking at the length of the solutions
in different weeks. The distribution of the largest
submission made by each student each week is provided
in Figure 1. Exercises in Course A are smaller than
in Course B, but the assignments are bigger, so they
stand out from the exercises. Exercises and assignments
are nearly interchangeable in Course B (as explained in
Section 3.1).

The fact that assignments are so different from
the exercises in Course A provides an interesting
opportunity to compare the metrics to each other. We
created plots similar to Figure 1 for all the metrics.
Assignments stand out from exercises in all dimensions
except for concept count and the number of unique
operators. In other dimensions, the assignments were
at least an order of magnitude more “complex” than the
exercises. As an example, the scatter plot of the number
of concepts in submissions to assignments and exercises
in Course A is provided in Figure 2. As a result, we only
consider the exercises in Course A in our next step.

Table 2 records the Spearman rank correlations,
corrected for multiple comparisons using the Holm
method, between the complexity metrics and the amount
of time passed in the course. While many correlations
are significant, most are weak. Only the concept count
and lines of code (loc) metrics are strongly correlated
with the time passed in the course. Towards the end of
the course, students produce bigger programs and utilize
more concepts in their programs. However, the Halstead
metrics and cyclomatic complexity do not correlate well
with the time passed in the course. The moderate
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Figure 1. Submissions sizes of largest submitted assignments each week measured in source lines of code (sloc).

Course A is to the left, and Course B is to the right. Assignments are shifted slightly right in the visualization to

avoid overlapping with the exercises in the same week. Assignments are in green, and exercises are in orange.
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Figure 2. Scatter plot of highest weekly concept

count per student in Course A. Assignments are in

green, and exercises are in orange.

correlation seen when the cyclomatic complexities for
each function are added together (“sum(mccabe)”) is
explained by the increasing length of the solutions (i.e.,
there are more (cyclomatically) simple functions in the
submission than earlier in the term).

5. Discussion

This multi-institutional and multi-national study was
set up to explore how various static complexity measures
capture students growth in introductory programming
courses, with the goal of identifying whether any
simple metrics might reflect our expectations of
students. Our hope was that metrics in use in software
engineering would provide additional insight, but
neither the Halstead metrics (or any of their constituent
components) nor McCabe’s cyclomatic complexity were
strongly correlated with time passed in the courses we
studied. Instead, simple counts of syntactic elements
(aggregated into “concepts”) and lines of code have a
stronger relationship with student progress in a course.

5.1. Halstead and McCabe Metrics

The Halstead metrics behaved slightly differently
in courses A and B. In course A, correlations were
significant, if weak. (In course A, the number of
unique operators, which is a component of some
Halstead metrics, reached a moderate correlation.)
The correlations were not significant in Course B.
Course A had many more students in it than course
B, however, which might simply mean that course B’s
population does not reflect the distribution as accurately.
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Table 2. Spearman rank correlations between the metrics and time passed in the course (week in the course).

Significance values are corrected (Holm) for multiple comparisons.

Course A Course B Course B
exercises exercises both

concepts 0.815∗∗ 0.673∗∗ 0.695∗∗

operators 0.184∗∗ -0.050 0.097∗∗

operands 0.202∗∗ -0.076 0.075∗

unique operators 0.433∗∗ 0.045 0.097∗∗

unique operands 0.250∗∗ 0.025 0.185∗∗

Halstead content 0.324∗∗ 0.043 0.196∗∗

Halstead length 0.207∗∗ -0.067 0.083∗

Halstad difficulty 0.161∗∗ -0.178∗∗ -0.177∗∗

Halstead volume 0.240∗∗ -0.044 0.109∗∗

Halstead effort 0.273∗∗ -0.069 0.052
Halstead time 0.273∗∗ -0.069 0.052
Halstead error estimate 0.273∗∗ -0.069 0.052
lines of code (loc) 0.798∗∗ 0.563∗∗ 0.632∗∗

blank loc 0.879∗∗ 0.594∗∗ 0.639∗∗

lines of code and comments -0.050∗∗ 0.413∗∗ 0.407∗∗

lines of code (sloc) 0.631∗∗ 0.511∗∗ 0.612∗∗

McCabe -0.506∗∗ -0.026 0.078
sum(McCabe) 0.425∗∗ 0.262∗∗ 0.423∗∗

∗p<0.05; ∗∗p<0.01; metrics with correlations > 0.6 italicized

Alternatively, some of the earlier tasks in Course B
may be designed so that the a typical solution has high
Halstead metrics – in which case there relation is no
longer monotonic.

Similarly, we saw a significant, moderate correlation
between McCabe’s complexity and time in the course
for Course A but not Course B. The relationship in
course A is negative, suggesting that students write
simpler code, from a cyclomatic perspective, later in
the course than they do earlier in the course. This
probably reflects the course content, which emphasizes
conditionals early in the semester, providing several
complex examples per week. Examples with sequential
and nested if statements are rare in the second half
of the term, as other material is being emphasized.
Only students struggling with the course will still be
(rarely) writing complex conditionals, as Castellanos et
al. found when they stated that “cyclomatic complexity
is negatively correlated to learning strategies like the
effort regulation, elaboration of ideas and critical
thinking” [28]. From this point of view, it is good that
the only clear correlation (with the time passed in the
course in Course A) is negative.

Overall, our sense is that traditional software
engineering code metrics are less effective at measuring
growth throughout the course because typical tasks
in courses are limited in size. Halstead metrics, in

particular, rely on a comparison between code size and
the variety of operators used. Cyclomatic complexity
focuses on control flow structures, and the exercises,
being brief, typically focus on a small number of
such structures in each exercise. In the educational
context, it may be common for a brief exercise to
be filled with complex constructs. These issues align
with previous observations that “software complexity
metrics, for example, rarely measure the ‘inherent
complexity’ embedded in software systems, but they do
a very good job of comparing the relative complexity of
one portion of a system with another” [46].

5.2. Concept Counts and Lines of Code

The number of concepts and several of the variants
of lines of code were strongly correlated with the
progress in both courses. We argue that compared to
the other metrics, concept count is most directly related
to how we currently teach courses. Exercises are often
designed to showcase or to practice new material and
assume familiarity with previously introduced ones. As
a result, the number of syntactic elements in code (and
hence, the number of concepts) increases each week.

Furthermore, building on previous concepts requires
more space, so the increase in lines of codes is
inevitable. The high correlation with blank lines of code
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and stems from a similar source. We typically use blanks
to separate blocks of code, both between functions and
within them. As we ask students to write more functions
or to incorporate sequences of logical blocks within
functions, blank lines naturally increase.

We need to emphasize that while the number of
concepts and the number of lines of code are related,
it’s the number of concepts driving code size in courses
and not the number of lines driving the number of
concepts. As revealed in Figures 1 and 2, concept counts
in Course A increase even as lines of code do not (see
weeks 4-8), suggesting that attempts to restrict the size
of exercises do not necessarily throttle the number of
concepts that are required.

These results bring us back to our original context.
We began this work because we were concerned by
results that suggested that students were being assessed
on too many items, simultaneously, at the end of
their course. This data suggests that the number of
concepts students engage with is the most accurate
metric we have for gauging students progress through
the course and, furthermore, that the number of concepts
approaches the levels seen in exams (15+) by week
4 and appears to increase throughout the course [7,
5]. There are no particular points in the term where
complexity, as measured by concept count, increases
dramatically, though course structure (the use of larger
assignments) can lead to points where students are
expected to integrate even more ideas together than they
are typically required to do.

This is a strong and concerning result, as it
suggests that, if the number of concepts being assessed
simultaneously is, in fact, a problem, then the means of
assessment used throughout the term are as or even more
problematic than the exams being used at the end of the
term.

5.3. Validity

There are at least three factors that should be
considered when evaluating these findings, in addition
to those raised earlier. First, the grading scheme in
Course B allows skipping entire exercise weeks if a
student has collected enough points from the earlier
weeks. Indeed, when looking at the number of active
students each week (Table 1) the number of students
submitting code in CourseÃ decreases at the end of
the term. This can create a selection bias as the
remaining students may be either the strongest or the
weakest (who have not collected enough points to
earlier). Our anonymized data does not allow us to
check. However, the amount of students in the Course
B remains consistent throughout the course. Therefore,

we assume that the trends we see in both of the courses
(see Table 2) are real, in a sense that they reflect what
could be seen in other courses.

Second, we are only considering two courses taught
in a single language with a relatively similar style. Both
courses defer objects until late in the course and rely
on weekly practice. Courses taught in other languages
could reveal other trends, as could courses that rely
solely on assignments.

Third, we made several decisions about how to
organize the data for analysis that may impact the
results. All of the exercises that are due are assigned to
a particular week, but not all of the exercises serve the
same purpose. Some may introduce a single concept in
isolation, while others may be asking students to review
material from previous weeks, to apply it in a more
complex situation, or to combine multiple previously
identified concepts. A more precise analysis might
reveal additional, or different trends. However, this also
suggests that any metrics need to be applied to a time
window, rather than to individual code artifacts: local
changes are natural when tasks vary, so to characterize
performance accurately, metrics must be applied to all of
the tasks a student is being asked to perform in a given
time period.

6. Conclusion

Our analysis of code produced by over 800 students
in two different Python-based CS1 courses suggests
that syntax-based concept counts and, to a lesser
extent, lines of code are more effective and consistent
measures of student progress through a course than
more sophisticated measures popularized in software
engineering. Syntax-based concept counts and lines of
code are both strongly correlated with progress in the
course for both courses observed. While some weaker
results were observed for both Halstead and McCabe
complexity metrics in one course, the results were not
uniform across both courses, which makes the strong
and consistent correlation observed for concept counts
more notable. While validation in additional contexts
is required, we believe this result provides positive
evidence that syntactic concept counts may be useful
as a heuristic for gauging progress through a course
or identifying whether code may be too complex for
students at a particular point in a course.

This result also extends existing work in computing
education that has found that end of term assessments
involve unexpectedly large numbers of concepts. The
fact that concept counts rise rapidly – reaching a max
of 15 concepts as early as week 4 – and then gradually
increase through the course suggests that students are
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being asked to integrate multiple syntactic structures
from very early in the programming career. If the
number of concepts being assessed is a problem, as
has been hypothesized by Luxton-Reilly [8], or if
mixing or modification of schema (or patterns) is the
source of errors, as others have argued [38], then this
result suggests that there may be a problem with how
some introductory computing courses are formulated.
Additional work will be required to determine if the
number of syntactic concepts students are being asked
to work with is too ambitious. However, if it is the
case, then scaffolding may be required to help learners
quickly achieve the proficiency required to deal with the
levels of complexity we require.
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V. Thurner, “Development of a classification scheme for
errors observed in the process of computer programming
education,” in 1st International Conference on Higher
Education Advances (HEAD’15), pp. 475–484, Editorial
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