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Abstract

The ability to distinguish different circulating pathogen clones from each other is a fundamental requirement to understand
the epidemiology of infectious diseases. Phylogenetic analysis of genomic data can provide a powerful platform to identify
lineages within bacterial populations, and thus inform outbreak investigation and transmission dynamics. However, resolving
differences between pathogens associated with low-variant (LV) populations carrying low median pairwise single nucleotide
variant (SNV) distances remains a major challenge. Here we present rPinecone, an R package designed to define sub-
lineages within closely related LV populations. rPinecone uses a root-to-tip directional approach to define sub-lineages
within a phylogenetic tree according to SNV distance from the ancestral node. The utility of this software was demonstrated
using both simulated outbreaks and real genomic data of two LV populations: a hospital outbreak of methicillin-resistant
Staphylococcus aureus and endemic Salmonella Typhi from rural Cambodia. rPinecone identified the transmission branches
of the hospital outbreak and geographically confined lineages in Cambodia. Sub-lineages identified by rPinecone in both
analyses were phylogenetically robust. It is anticipated that rPinecone can be used to discriminate between lineages of
bacteria from LV populations where other methods fail, enabling a deeper understanding of infectious disease epidemiology
for public health purposes.

to assess the support of the obtained clusters based on boot-
strapped trees, is given as a supplementary rmarkdown file
on the rPinecone GitHub site.

DATA SUMMARY

1. Source code for rPinecone is available on GitHub under
the open source licence GNU GPL 3 (url: https://github.
com/alexwailan/rpinecone).

xwallan/rpinecone) INTRODUCTION
Advances in whole genome sequencing (WGS) permit the
study of bacteria at high resolution and this has created the
opportunity to use WGS data to reliably discriminate

2. Newick format files for both phylogenetic trees have been
deposited in Figshare (url: https://doi.org/10.6084/m9.fig-
share.7022558).

3. Geographical analysis of the S. Typhi dataset using
Microreact is available at https://microreact.org/project/
rlIqkrN1X.

between bacteria that were previously indistinguishable by
alternative means, or to ‘type’ them. Using WGS data to
understand the epidemiology of infections presents distinct

challenges compared with those faced by evolutionary biol-
ogists, more so when aiming to distinguish lineages of bac-
terial populations that are only transiently extant.

4. Accession numbers, metadata and sample lineage results
of both datasets used in this paper are listed in the supple-

mentary tables.
Single nucleotide variants (SNVs) which arise stochastically

may offer no evolutionary benefit to a given bacterial isolate,
and therefore may only transiently be present in a

5. The R code showing the simulation performed to com-
pare rPinecone to hierBAPS as well as SNV distances, and
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population. Despite their lack of evolutionary significance,
however, they may be epidemiologically informative in the
context of localized outbreaks, especially amongst organ-
isms that show low overall population diversity. Traditional
genetic clustering algorithms such as STRUCTURE [1] and
BAPS [2, 3] are not suitable for sub-typing of low-variant
(LV) bacterial populations over small timescales such as less
than 3 years. They assume independence between loci and
require tens to hundreds of SNVs that are shared between
different lineages to confidently cluster populations. Novel
bioinformatic approaches to identify sub-lineages within LV
bacterial populations are therefore needed for epidemiologi-
cal investigations, especially when technological advance-
ments have made genomic studies of outbreaks increasingly
common.

For genomic data, typing tools are used to identify ‘clusters’
or ‘partitions’ to define a group of isolates as a ‘lineage’ or
sub-lineage within a population. These three terms are used
synonymously in this context. However, to provide clarity
we will use the term ‘sub-lineage’ to refer to a defined group
of isolates within a population. In general, typing tools are
non-tree based and fall under two broad approaches, dis-
tance-based methods which calculate a pairwise distance
matrix often using the SNV distances between isolates, and
model-based methods which rely on calculating a popula-
tion genetic model using either Bayesian or maximum-like-
lihood (ML) based methods [1]. For distance methods
samples are considered to be within the same cluster if their
SNV distance is less than or equal to a specified SNV
threshold. An alternative method is the widely used pro-
gram hierBAPS [3] which, when given a multiple sequence
alignment, attempts to identify the lineages of the sequences
that maximizes the posterior probability of the hierBAPS
model. The model is based on a multinomial Dirichlet dis-
tribution and assumes independence between SNV sites.
The algorithm is applied first to identify an initial set of lin-
eages, which is then iteratively repeated to generate subse-
quent sub-lineages within each of the initially defined
lineages. While both types of approaches are suitable for
populations where long-term historical evolution is present,
neither is an appropriate option for short-term clonal
expansions such as populations emerging from point source
outbreaks or locally endemic disease. In the case of Bayesian
approaches, the resulting sub-lineages are not expected to
reflect the phylogenetic data because the underlying popula-
tion genetic model has very limited power to separate such
closely related isolates, whereas methods that use a pairwise
SNV distance approach are unable to infer direction of evo-
lution or common ancestry between sub-lineages, which is
necessary for source and transmission investigations.

Here we present rPinecone, an R package which evaluates
a phylogeny using a root-to-tip approach to define sub-lin-
eages according to SNV distances from ancestral nodes.
rPinecone also determines if two or more sub-lineages
form part of a larger major lineage if they are related by
enough ancestral nodes. To demonstrate this approach,

IMPACT STATEMENT

Whole genome sequence data from bacterial pathogens
are increasingly being used in the epidemiological inves-
tigation of infectious disease, both in outbreak and in
endemic situations. However, distinguishing bacterial
clones which are very similar and which are likely to be
sampled within a limited spatio-temporal range presents
a major technical challenge for epidemiologists. rPine-
cone was designed to address this challenge and utilizes
phylogenetic information to distinguish extant lineages of
bacterial populations. This approach is therefore of great
interest to epidemiologists as it adds a further level of
clarity above and beyond that offered by existing
approaches which have not been designed to consider
bacterial isolates containing variation that only tran-
siently exists, but which is epidemiologically informative.
rPinecone has the flexibility to be applied to multiple
pathogens and has direct application for investigations of
clinical outbreaks and endemic disease to understand
transmission dynamics or geographical hotspots of
disease.

rPinecone was compared to hierBAPS and SNV distance
analysing a simulated dataset of closely related bacteria
(very little variation in the alignment) such as is likely to
be encountered in transmission analyses. We furthermore
demonstrate its use on a local endemic dataset of Salmo-
nella enterica subsp. enterica serovar Typhi (S. Typhi)
from the H58 haplotype [4] as well as a hospital outbreak
of methicillin-resistant Staphylococcus aureus (MRSA)
ST2371 [5].

METHODS
Data simulation

To compare rPinecone with hierBAPS and single-linkage
hierarchical SNV clustering, we simulated data using out-
breakr [6] with a sequence length of 1e+06, sample size 20,
mutation rate 0.1 (representing a low mutation rate), and
migration rate of 0.01 for five populations; for a more
detailed script please see the supplementary rmarkdown file
located in the package GitHub repository.

Assigning support based on bootstrap

To incorporate uncertainty in a phylogeny we allow for
rPinecone to be run separately on bootstrap replicates or
Markov chain Monte Carlo (MCMC) samples from a
Bayesian approach such as BEAST [7]. These are then com-
bined into a co-occurrence matrix where we count the
number of times two isolates appear in the same cluster
across the replicates [8]. From this matrix we can then
generate clusters across the replicates where rPinecone
clusters the isolates together a given percentage of the
time. An example of the use of this additional functionality
is given in the supplementary rmarkdown file.
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Fig. 1. The rPinecone package evaluates a phylogenetic tree in a root-to-tip approach and defines sub-lineages according to SNV dis-
tances from ancestral nodes. (a) Define sub-lineages. The rPinecone algorithm traverses the tree from root-to-tip in the order of nodes
listed by the depth-first search. At each ancestral node, a sub-tree is constructed containing the ancestral and remaining nodes. The
ancestral node becomes the root of the sub-tree and all root-to-tip paths are assessed to identify the maximum root-to-tip branch dis-
tance. If this distance is below or equal to the user-specified SNV distance threshold, the tips of the sub-tree are assigned to a sub-
lineage number. If the distance exceeds the threshold and two or more tips are at zero distance to the root of the sub-tree, only the
tips at zero distance will be assigned a sub-lineage number. The process is repeated throughout the entire tree. (b) Define singletons.
Tips which have not been assigned a sub-lineage number are assigned a singleton number. (c) Define major lineages. Using the entire
tree, the list of ancestral nodes from the root to each sub-lineage and singleton is compiled. A pairwise comparison of these lists is
performed. Sub-lineages and singletons which have the same number of ancestral nodes over the user-specified relatability threshold
will be defined as part of a major lineage. The root, ancestral nodes and tips of the tree are denoted by navy, cyan and white circles
respectively. Singletons, sub-lineages and major lineages are represented by a 'S’ labelled circle, a blue pinecone and a gold pinecone,

respectively.

Phylogenetic tree reconstruction of two case
studies

Data from two studies were re-analysed to reconstruct phy-
logenetic trees for input into rPinecone. Mapping of reads
was performed using SMALT v0.7.4 (http://sanger.ac.uk/sci-
ence/tools/smalt-0/) and SNVs were identified by using
samtools mpileup [9]. Chromosomal phage regions were
identified using the PHASTER (PHAge Search Tool Enhanced
Release) database [10, 11]. Chromosomal recombination
regions were identified using Gubbins [12]. SNVs found
within these regions of the chromosome were excluded
from the SNV alignment. The SNP-sites program was used

to obtain an SNV alignment composed of only variable sites
[13]. ML trees were reconstructed from the SNV alignment
using RAXxML [14] (version 8.2.8) with a GTR model of evo-
lution. The ancestral reconstruction tool pyjar [15] (avail-
able at: http://github.com/simonrharris/pyjar) [15] was used
to reconstruct the ML trees into an ML joint ancestral
reconstruction (JAR) tree. Each JAR tree was used as an
input for rPinecone to define the sub-lineages within respec-
tive populations. The R package for hierBAPS (rhierBAPS,
available at https://github.com/gtonkinhill/rhierbaps) was
used as a comparative benchmark for rPinecone when ana-
lysing each dataset, due to its frequent use in bacterial phy-
logenetics for lineage identification. Input data for this
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Fig. 2. The resolution for rPinecone to identify lineages was compared with hierBAPS and single-linkage hierarchical SNV clustering.
The phylogenetic tree was generated from simulated data. Panels are, from left to right: SNV-scaled phylogenetic tree, rPinecone clus-
tering (blue), SNV single-linkage hierarchical clustering, and clustering by hierBAPS.

package were the SNV alignment used to generate the phy-
logenetic ML tree. A maximum depth level of five and maxi-
mum cluster number of 30 were used for the analysis.

MRSA hospital outbreak

The original study had whole genome-sequenced the MRSA
samples by Illumina MiSeq (Illumina) generating 150 bp
paired-end reads [5]. These samples involved in the MRSA
outbreak were of sequence type 2371, a single locus varjant
of ST22 [5]. In the re-analysis, the short reads of the 45 iso-
lates identified as ST2371 were mapped against the chromo-
some of reference Staphylococcus aureus isolate HO 5096
0412, which was ST22. Reference isolate HO 5096 0412 was
used as an outgroup, to root the tree, and was also removed

from the phylogenetic tree. The tree was rooted on sample
from patient 5 (accession no. ERR070046). Isolate metadata
and lineages defined by rPinecone and rhierBAPS can be
found in Table S1 (available in the online version of this
article).

Endemic S. Typhi in Cambodia

The original study whole genome-sequenced their S. Typhi
isolates with an Illumina HiSeq2000 device, generating
100 bp paired-end reads as described in the original investi-
gation [4]. For the re-analysis, the S. Typhi H58 isolates and
the outgroup were genotyped using the Genotyphi scheme
[16]. The short reads of the 203 S. Typhi H58 Genotyphi
4.3.1 were mapped to S. Typhi reference Genotyphi 4.3.1
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Fig. 3. Robustness and the uncertainty of the clusters generated by rPinecone was assessed using bootstrap replicates of isolates
from simulated data. Clusters were generated from a co-occurrence matrix to represent when rPinecone clusters isolates together at
50 and 95 % of the time (intervals). Panels are, from left to right: original transmission tree, SNV-scaled phylogenetic tree, rPinecone
clustering at the 95 % interval, rPinecone clustering at the 50 % interval and co-occurrence matrix.

isolate 2010 7898 (accession no. GCA_001360555). S. Typhi
isolate Mall017142 Genotyphi 4.1.1 was used as an out-
group to root the tree. The SNV alignment was processed to
remove private SNVs before performing the Bayesian clus-
tering analysis with hierBAPS [3, 17] using five nested lev-
els. Microreact [18] was used to visualize spatial data with
phylogenetic and rPinecone data. Isolate metadata and line-
ages defined by rPinecone and rhierBAPS can be found in
Table S2.

RESULTS

rPinecone is a package developed in R and available under
the open source licence GNU GPL3 at https://github.com/
alexwailan/rpinecone. Input for rPinecone requires two
user-specified integer thresholds for SNV distance and relat-
ability (discussed below), and a rooted phylogenetic tree
(Newick format) where the branch lengths are integers cor-
responding to SNV distance. One type of tree that fits this
criterion is an ML JAR tree.

The rPinecone package has a primary wrapper function to
perform the analysis, which is done in two steps: sub-lineage
definition and major-lineage definition (Fig. 1). rPinecone
will initially prepare for sub-lineage definition by collapsing
zero SNV dichotomies of the tree into polychotomies using

the ape package [19] for R (v4.1) and performing a depth-
first search (DFS) [20] across the resulting tree, to list the
tips and ancestral nodes from root-to-tip. Edges are then
drawn between nodes where the edge distance is the branch
length, i.e. the number of SNV isolates have from an ances-
tral node on a JAR tree. Using the DPS and SNV branch dis-
tance information, rPinecone will then define sub-lineages
by traversing the tree in a root-to-tip direction to assess
each ancestral node. At each ancestral node, a sub-tree is
built with the remaining nodes where the ancestral node
becomes the root of the sub-tree. rPinecone uses two meth-
ods to define sub-lineages: (1) all root-to-tip paths of the
sub-tree are assessed and if the maximum root-to-tip
branch distance is equal to or below the specified SNV
threshold, the remaining tips will be assigned a sub-lineage
number; and (2) if the maximum distance is over the SNV
threshold and there are at least two tips with zero distance
from the ancestral node, rPinecone assigns these tips in zero
distance a sub-lineage number. The process is repeated
throughout the entire tree. Tips that are not assigned a sub-
lineage number will be assigned with a singleton number.

After sub-lineages have been declared, their relatability is
analysed to determine if they form a larger major lineage.
The user-specified relatability threshold is an integer used
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fied by rPinecone, respectively.

to compare the number of ancestral nodes from the root of
the entire tree to each sub-lineage and singleton. Lists of
ancestral nodes for each sub-lineage and singleton are com-
piled. These lists are compared in a pairwise fashion. Sub-
lineages and singletons that have the same intersecting
ancestral nodes over the relatability threshold are declared
to have formed a major lineage within the population,
where a major lineage is composed of at least two sub-
lineages.

Once sub-lineages and major lineages are defined, rPine-
cone outputs a list of six variables each of which is able to
be used for downstream processes, including: the tree used
for analysis, number of sub-lineages, major lineages, single-
tons identified and number of isolates within the tree. The

final variable is a three-column table listing each ‘Taxon’
label of the tree and its respective sub-lineage and major
lineage. Furthermore, phylogenetic trees can be displayed
using the online display tool iTOL [21]. The rPinecone
package includes three functions taking the output from
the primary rPinecone function. These functions parse the
rPinecone output to a file in a format to display in iTOL.
Three files can be generated, a ‘LABELS’ file to change the
tip labels according to their sub-lineage or singleton num-
ber as well as two ‘DATASET_COLORSTRIP’ format files
to display the sub-lineages and major lineages as a colour
strip/block. To show the utility of rPinecone we performed
a comparison with simulated outbreak data, as well as two
case studies on an MRSA hospital outbreak and local
endemic dataset of S. Typhi.
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SIMULATED DATA TO ASSESS
PERFORMANCE AND UNCERTAINTY

Data were simulated using outbreakr [6] to compare the
performance of rPinecone with hierBAPS and single-linkage
hierarchical SNV clustering (Fig. 2). This clearly shows the
strength of rPinecone: being able to distinguish short,
recently emerged but distinct clusters, which can be crucial
in an outbreak scenario, including the distinction of
branches from an unresolved node (polytomy). Both single-
linkage hierarchical SNV clustering as well as hierBAPS lack
the resolution necessary to disentangle closely related iso-
lates. We furthermore used this dataset to demonstrate the
function of assessing uncertainty. Given that tree calcula-
tions are always an approximation of the correct tree given

the available data and choice of model, we added the possi-
bility for the user to assess the level of uncertainty for the
clusters generated, based on the bootstrap support for the
given branches in the tree topology (Fig. 3).

HOSPITAL OUTBREAK OF MRSA ST2371 -
HEALTHCARE WORKERS WERE COLONIZED
BY A MAJOR LINEAGE

In 2011 over a 6-month period, the National Health Ser-
vice Foundation Trust in Cambridge, UK, investigated
transmission of MRSA within the hospital neonatal unit
and community and described a complex transmission
network [5]. We re-analysed the data of this study and
generated a phylogenetic ML tree. From this analysis the
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population had a median pairwise distance of five SNVs.
The phylogenetic tree (Fig. 4) of the outbreak had a struc-
ture that begins with a root isolate (Patient 5), then
expands outwards in a ‘star-burst’-like fashion where each
branch of the tree represents a transmission pathway of
MRSA between infants and their mothers, other mothers
on the ward, and to partners of affected mothers as
described in the original study [5]. rPinecone identified
nine sub-lineages and a major lineage composed of three
sub-lineages (25 isolates) using an SNV threshold of 4 and
a relatability threshold of 3. These sub-lineages corre-
sponded to the transmission pathways determined in the
original investigation using epidemiological data. The
major lineage represents the sub-lineages of MRSA (rPine-
cone sub-lineages 4, 5 and 6) carried by colonized health-
care workers which were associated with subsequent
episodes of MRSA 64 days after the last MRSA-positive
patient left the unit.

The major lineages identified by rPinecone highlight sub-
lineages related by ancestral nodes and potentially lineages
that have separated from the remaining clonal population.
This type of analysis was not performed during the original
analysis, but we successfully identified MRSA transmission
pathways using rPinecone and provided an additional layer
of sub-lineage data to complement the epidemiological data
when associating sub-lineages with likely transmission
events.

LOCALLY ENDEMIC S. TYPHI IN RURAL
CAMBODIA - HIGHER RESOLUTION TO
IDENTIFY CIRCULATING SUB-LINEAGES

In the second example, rPinecone distinguished lineages of
an S. Typhi population circulating in a defined geographi-
cal area causing locally endemic disease, as opposed to a
clonal outbreak. LV bacterial pathogens responsible for
localized, endemic disease present a different challenge; in
this context, it is highly likely that multiple, genetically
similar sub-lineages will be in circulation, and in order to
be epidemiologically informative, phylogenetic analysis
must be able to distinguish these lineages despite the low
variation between them. Whilst hierBAPS is unable to uti-
lize the LV SNV information to define lineages, rPinecone
can be used in such situations. We demonstrate this by
defining sub-lineages in an LV population of S. Typhi H58
responsible for endemic typhoid fever in a rural part of
Cambodia [4]. Re-analysis of these data determined the
population to have a median pairwise SNV distance of 2.
The subsequent phylogenetic tree of the re-analysis can
best be described from root-to-tip (Fig. 5). At the root of
the tree is a ‘root group’ of isolates, then a main branch
consisting of identical isolates which can be referred to as
the ‘primary group’ of the clonal expansion, followed by
‘diverging groups’ of isolates and singletons which have
diverged from this main branch. Using the re-analysed
data, rPinecone identified 14 sub-lineages and a major
lineage composed of two sub-lineages (seven isolates) of S.

Typhi, using an SNV threshold of 2 and a relatability
threshold of 3 (Fig. 5). In total, 27 isolates were also identi-
fied as singletons. By contrast, rhierBAPS identified a max-
imum of nine sub-lineages at level 3 and offered no
further resolution after further analysis (2, 7, 9, 9 and 9
sub-lineages were identified at levels 1-5, Fig. S1). rPine-
cone sub-lineages were nested within the sub-lineages
defined by rhierBAPS. rPinecone also acknowledges single-
ton isolates which have accumulated their own ‘private’
SNVs. Therefore, singletons that have individual SNVs
may be excluded in the definition of sub-lineages. In con-
trast, thierBAPS cannot detect the private SNVs of single-
tons. This is because rhierBAPs seeks to maximize the
posterior probability of a sub-lineage assuming indepen-
dence between SNV sites, and is less suitable for the identi-
fication of singletons. In addition, rhierBAPS also
identifies isolates situated across the tree to be members of
the same sub-lineage. hierBAPS and other similar pro-
grams such as STRUCTURE are not designed to separate pop-
ulation data that would be observed towards the tips of a
phylogenetic tree including those observed with a median
pairwise SNV of 2 as observed here. Rather, they aim to
cluster isolates into groups that are likely to come from
similar source populations. When there are few isolates
and few SNVs there is little information to estimate the
likely distribution of allele frequencies in these source
populations.

In this example, rPinecone provided greater resolution to
distinguish sub-lineages than across five different levels of
rhierBAPS and distinguished additional sub-lineages. The
original study noted their sub-lineages to have significant
geographical variation. The rPinecone sub-lineages pro-
vided a cross-sectional view of the bacterial population,
where some sub-lineages were geographically confined to
districts within one province and others span multiple prov-
inces (Fig. S2).

CONCLUSION

Investigators must be able to distinguish isolates to identify
epidemiologically informative sub-lineages, but this is diffi-
cult for bacterial populations associated with both outbreaks
and endemic disease over small temporal or geographical
distances when the pathogen has a slow mutation rate and
appears to be largely ‘clonal’. The ability to make this dis-
tinction is critical if WGS data are to inform epidemiologi-
cal investigation of such pathogens, whether in epidemic or
locally endemic disease. When aiming to locate hotspots of
disease transmission geographically, it is critical to be able
to incorporate geospatial data associated with samples. rPi-
necone was particularly designed for the analysis of LV pop-
ulations and to be applied to any bacterial species with at
least a median SNV distance of 2 within the population. We
demonstrate the increase in resolution rPinecone provides
compared to two widely used methods, hierBAPS and sin-
gle-linkage hierarchical SNV clustering, in a simulated data-
set of an outbreak with closely related lineages. Using the
genomic data of an MRSA hospital outbreak and endemic S.
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Typhi, we furthermore demonstrate that rPinecone can be
used to identify sub-lineages within LV populations that are
reflective of the phylogenetic data. Furthermore, when com-
pared to rhierBAPS, rPinecone identified additional sub-lin-
eages. We highly recommend using hierBAPS for initial
analysis of phylogenetic data to understand the bacterial
population. Once this has been done, rPinecone will define
sub-lineages of LV bacterial populations to set the platform
for understanding the transmission dynamics or geographi-
cal hotspots of disease.

Funding information

This project and A. M. W. (Postdoctoral Fellow) were supported by a grant
from the Bill and Melinda Gates Foundation (OPP1128444). The Well-
come Trust Sanger Institute is core funded by Wellcome Trust grant
206194.G. T. H.is funded by a Wellcome Trust PhD scholarship grant no.
204016. J. C. was funded by ERC grant no. 742158. F. C. is funded by a
Wellcome Trust Sir Henry Postdoctoral Fellowship (201344/2/16/7).

Conflicts of interest
The authors declare that there are no conflicts of interest.

Data Bibliography
1. Holden, M. T. et al.,, Staphylococcus aureus subsp. aureus str. HO
5096 0412, 2015, accession number HE681097.

2. Pham Thanh, D, et al., Salmonella enterica subsp. enterica serovar
Typhi str. Mal1017142, 2016, accession number ERR279139.

3. Pham Thanh, D, et al., Salmonella enterica subsp. enterica serovar
Typhi str. 2010_7898, 2016, accession number GCA_001360555.

References
1. Pritchard JK, Stephens M, Donnelly P. Inference of population struc-
ture using multilocus genotype data. Genetics 2000;155:945-959.

2. Corander J, Waldmann P, Sillanpaa MJ. Bayesian analysis of
genetic differentiation between populations. Genetics 2003;163:
367-374.

3. Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierar-
chical and spatially explicit clustering of DNA sequences with
BAPS software. Mol Biol Evol 2013;30:1224-1228.

4. Pham Thanh D, Thompson CN, Rabaa MA, Sona S, Sopheary S
et al. The molecular and spatial epidemiology of typhoid fever in
rural Cambodia. PLoS Negl Trop Dis 2016;10:e0004785.

5. Harris SR, Cartwright EJ, Torék ME, Holden MT, Brown NM et al.
Whole-genome sequencing for analysis of an outbreak of meticil-

lin-resistant Staphylococcus aureus: a descriptive study. Lancet
Infect Dis 2013;13:130-136.

20.

21.

Jombart T, Cori A, Didelot X, Cauchemez S, Fraser C et al. Bayesian
reconstruction of disease outbreaks by combining epidemiologic
and genomic data. PLoS Comput Biol 2014;10:e1003457.

Bouckaert R, Heled J, Kiihnert D, Vaughan T, Wu CH et al. BEAST
2: a software platform for Bayesian evolutionary analysis. PLoS
Comput Biol 2014;10:e1003537.

Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse frame-
work for combining multiple partitions. J Mach Learn Res 2003;3:
583-617.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The

sequence alignment/map format and SAMtools. Bioinformatics
2009;25:2078-2079.

. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a bet-

ter, faster version of the PHAST phage search tool. Nucleic Acids
Res 2016;44:W16-W21.

. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast

phage search tool. Nucleic Acids Res 2011;39:W347-W352. (Web
Server issue).

. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al.

Rapid phylogenetic analysis of large samples of recombinant bac-
terial whole genome sequences using Gubbins. Nucleic Acids Res
2015;43:e15.

. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-

sites: rapid efficient extraction of SNPs from multi-FASTA align-
ments. Microb Genom 2016;2:e000056.

. Stamatakis A. RAXML version 8: a tool for phylogenetic analysis

and post-analysis of large phylogenies. Bioinformatics 2014;30:
1312-1313.

. Pupko T, Pe’er |, Shamir R, Graur D. A fast algorithm for joint

reconstruction of ancestral amino acid sequences. Mol Biol Evol
2000;17:890-896.

. Wong VK, Baker S, Connor TR, Pickard D, Page AJ et al. An

extended genotyping framework for Salmonella enterica sero-
var Typhi, the cause of human typhoid. Nat Commun 2016;7:
12827.

. Corander J, Waldmann P, Marttinen P, Sillanpaa MJ. BAPS 2:

enhanced possibilities for the analysis of genetic population struc-
ture. Bioinformatics 2004;20:2363-2369.

. Argimén S, Abudahab K, Goater RJ, Fedosejev A, Bhai J et al.

Microreact: visualizing and sharing data for genomic epidemiology
and phylogeography. Microb Genom 2016;2:e000093.

. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics

and evolution in R language. Bioinformatics 2004;20:289-290.

Prosperi MC, Ciccozzi M, Fanti |, Saladini F, Pecorari M et al. A
novel methodology for large-scale phylogeny partition. Nat
Commun 2011;2:321.

Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool
for the display and annotation of phylogenetic and other trees.
Nucleic Acids Res 2016;44:W242-W245.

the world.

Five reasons to publish your next article with a Microbiology Society journal
1. The Microbiology Society is a not-for-profit organization.

2. We offer fast and rigorous peer review — average time to first decision is 4-6 weeks.

3. Our journals have a global readership with subscriptions held in research institutions around

80% of our authors rate our submission process as ‘excellent’ or ‘very good".
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.



http://www.microbiologyresearch.org

