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There exists a general model framework where dark matter can be a vanilla weakly-interacting-massive-
particle-like thermal relic with a mass of Oð100 GeVÞ, but it still escapes direct detection. This happens if
the dark matter particle is a Goldstone boson whose scattering with ordinary matter is suppressed at low
energy due to momentum-dependent interactions. We outline general features of this type of models and
analyze a simple realization of these dynamics as a concrete example. In particular, we show that although
direct detection of this type of dark matter candidate is very challenging, the indirect detection can already
provide relevant constraints. Future projections of the indirect-detection experiments allow for even more
stringent exclusion limits and can rule out models of this type.
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I. INTRODUCTION

Over recent years the paradigm of dark matter (DM) as a
thermal relic has been heavily challenged by the results
from direct-detection experiments, which systematically
provide more stringent bounds on the strength of the
interaction between dark and ordinary matter [1–3]. One
possible interpretation of these results is that DM con-
stitutes a secluded sector that is very feebly coupled with
the Standard Model (SM). In this type of freeze-in models
[4–6] the portal coupling of Oð10−10Þ allows the observed
DM abundance to be produced out of equilibrium without
ever equilibrating with the SM heat bath. Consequently,
models of this type are usually completely invisible in the
direct-detection experiments.
However, several solutions to address this issue also

within the standard thermal-relic paradigm have been
proposed. For example, a large enough particle content
beyond the SM could make the cross sections probed in
direct-detection experiments distinct from the cross sec-
tions affecting the freeze-out dynamics in the early universe
[7]. Such nonminimal hidden-sector models, on the other
hand, generally extend the usual problems of explaining the

origins and hierarchies of the required mass scales and
couplings.
It would therefore be worthwhile to outline general

features of models where similar effects could be achieved
with minimal particle content. In this paper, we investigate
simple scalar extensions of the SM where the DM arises
as a pseudo-Goldstone boson of an approximate global
symmetry; examples of such models have been studied
recently in, e.g., [8–15]. Since generally the interactions of
Goldstone bosons are momentum suppressed, this will
naturally suppress the DM-nucleon elastic scattering
cross section relevant for direct search experiments, which
operate in the limit of zero-momentum transfer. On the other
hand, the annihilation cross section of pseudo-Goldstone
bosons does not vanish in the nonrelativistic limit, as the
momentum transfer in this process contains a nonzero
contribution from the rest mass of the annihilating particles.
Therefore, in this class of models, DM with the observed
abundance can be produced as a thermal relic, while the
direct-detection cross section is small enough for the DM to
have escaped all present direct searches.
The indirect DM searches, on the other hand, probe the

same annihilation process that is relevant for determining the
DM abundance. Since this scattering amplitude does not
vanish in the limit of zero incoming three-momentum, the
indirect-detection signal expected from a pseudo-Goldstone
DM particle is of a similar magnitude as that of a generic
weakly-interacting-massive-particle (WIMP). Indeed, indi-
rect-detection limits turn out to be very constraining for such
DM candidates, and future prospects for observing pseudo-
Goldstone DM up to a couple hundred GeV masses in
indirect searches are promising.
There is, however, a caveat to the above simple picture:

to account for a finite mass of the Goldstone boson DM
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candidate, an explicit breaking of the global symmetry is
required. Since the vanishing of the direct-detection cross
section at zero-momentum transfer rests on the foundation
of the underlying global symmetry and the resulting
Goldstone nature of the DM particle, it should not be
expected to strictly hold in the presence of explicit
symmetry breaking. This issue has been investigated in
recent works [12–14], where one-loop contributions to the
direct-detection amplitude were considered. It turns out
indeed that the one-loop contribution does not vanish in the
zero-momentum transfer limit, and the resulting prediction
for the direct-detection event rate is considerably larger
than the tree-level prediction. However, for most parts of
the parameter space, the pseudo-Goldstone DM still
remains concealed below the neutrino floor and thus hidden
from direct detection.
To demonstrate these mechanisms and effects quantita-

tively,wewill use an effectivemodelwith theOðNÞ=OðN−1Þ
symmetry-breaking pattern as an example. However, our
analysis can be applied to all models where the hidden-
sector degrees of freedom (d.o.f.) consist of Goldstone
bosons and one massive scalar mixing with the Higgs
boson. We will discuss how the effective theory with the
leading symmetry-breaking operators of dimensions two
and four may emerge from simple high-energy dynamics,
thus approaching the issue of accounting for the effects
of explicit symmetry breaking from a top-down direction,
and compare the results to the bottom-up approach of
computing the radiative corrections in the low-energy
effective theory [10,12–14]. We will present a compilation
of current experimental constraints from direct and indirect
observations on DM scattering as well as from collider
experiments.
The paper is organized as follows: In Sec. II we will

outline the general model framework and relevant con-
straints. Then, in Sec. III we will carry out a detailed
quantitative analysis for single component Goldstone DM
and show how various experimental and observational
constraints operate. In Sec. IV we will present our con-
clusions and outlook for further work. Some analytic results
relevant for the analysis and the nonlinear representation of
the model are collected in the Appendixes.

II. GENERAL MODEL FRAMEWORK AND
CONSTRAINTS

We consider a scenario where DM arises as a pseudo-
Goldstone boson associatedwith the breaking of an approxi-
mate global symmetry. Such a DM candidate emerges
naturally, for example, in models featuring new strong
dynamics leading to a spectrum of mesons at low energies
(see, e.g., Refs. [16–19]). To keep the discussion simple, and
to establish generic features of this type of DM, wewill here
treat the effective theory d.o.f. as elementary fields.
Concretely, we consider extending the SM with a

scalar field, S, transforming under some irreducible

N-dimensional representation of a global symmetry G.
The scalar field is assumed to develop a vacuum expect-
ation value (VEV), hSi ¼ w, such that the symmetry breaks
to a subgroup G0. We consider explicitly a class of models
with the symmetry-breaking pattern OðNÞ=OðN − 1Þ.
Then the relevant low-energy d.o.f. are parametrized in
terms of an OðNÞ vector

Σ ¼ ðη1; η2;…; ηN−1; σÞ; ð1Þ

where σ is the field direction along which the VEV of Σ
develops. Then, the effective Lagrangian for the singlet
sector and its interactions with the visible sector is

L ¼ 1

2
∂μσ∂μσ þ 1

2
∂ηa∂ηa − VðΣ; HÞ; ð2Þ

whereH is the usual SMHiggs field. The potential VðΣ; HÞ
is given by

VðΣ; HÞ ¼ μ2HH
†H þ 1

2
μ2ΣΣ†Σþ λHðH†HÞ2

þ λHΣ

2
ðH†HÞΣ†Σþ λΣ

4
ðΣ†ΣÞ2 þ Vsb; ð3Þ

where Σ†Σ ¼ σ2 þ ηaηa preserves the OðNÞ symmetry and
Vsb contains the contributions containing the symmetry-
breaking linear combination σ2 − ηaηa.
The field ηa will be a DM candidate as it is protected

against decay by a symmetry within G0. Of course, to
constitute cold a DM of thermal origin, it must be massive
and the symmetry G must be explicitly broken. On the
effective Lagrangian level, one could include the leading
symmetry-breaking term M2

ηηaηa, which would arise from
some higher scale physics coupling with Σ and integrated
out to obtain the low-energy effective theory, Eq. (2).
A simple possibility would be a heavy fermion Ψ coupling
with all components ηa via

ΔLUV ⊃ igPηaΨ̄γ5Ψ: ð4Þ

When integrated out, this heavy fermion yields a nonzero
mass for all Goldstone bosons, M2

η ∼ g2PM
2
ψ . Furthermore,

contributions to four point couplings between components
Σa are generated, but these are parametrically smaller, of
order ∼g4P.
Taking into account the coupling with the Higgs would

lead to further explicit symmetry-breaking terms of the
form λXH†Hðσ2 − ηaηaÞ, where λX ∼ λHΣg4P. We will there-
fore take

Vsb ¼ −
1

2
μ2Xðσ2 − ηaηaÞ −

λX
2
ðH†HÞðσ2 − ηaηaÞ: ð5Þ

With these definitions, we can now see how the essential
dynamics for DM scattering on ordinary matter can be
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inferred from the Lagrangian, Eq. (2). As Σ and H obtain
their VEVs, hΣi ¼ w and hHi ¼ v, the effective potential
in Eq. (3) is minimized by requiring

μ2H ¼ −
1

2
ð2λHv2 þ ðλHΣ − λXÞw2Þ;

μ2Σ ¼ −
1

2
ð2λΣw2 þ ðλHΣ − λXÞv2 − 2μ2XÞ: ð6Þ

The scalar field σ will mix with the neutral component the
doublet H; the mass eigenstates are the physical Higgs
boson, h0, and another massive scalar, H0. These mass
eigenstates are given by

�
h0

H0

�
¼

�
cos α − sin α

sin α cos α

��
ϕ

σ

�
; ð7Þ

with

tanð2αÞ ¼ −
ðλHΣ − λXÞvw
λHv2 − λΣw2

: ð8Þ

Now we can solve λΣ from Eq. (8) and trade λH, w, and μ2X
for the masses of the eigenstates, mh0 , mH0 , mη. Identifying
the lightest eigenstate with the SM Higgs,mh0 ¼ 125 GeV,
leaves us with λHΣ, mH0 , mη, α, and λX as input parameters.
The interactions between SM matter and DM arise from

the SMYukawa couplings providing the usual link between
the Higgs doublet and ordinary matter, and from the
coupling of the DM with both the Higgs and the singlet
scalar, σ. Because of the mixing of the scalar, the scattering
of DM on ordinary matter is mediated by both scalar mass
eigenstates, h0 and H0.
Generally, the scattering of Goldstone bosons is propor-

tional to the momentum transfer in the process, and one
expects that the DM scattering cross section on ordinary
matter becomes suppressed. In the model setup described
above, neglecting λX, which we have argued to be sup-
pressed, one finds that

dσSI
d cos θ

∼
λ2HSf

2
Nm

2
N

ðm2
h0 − tÞ2ðm2

H0 − tÞ2 t
2: ð9Þ

The direct-detection cross section vanishes as t → 0.
However, there is an important refinement of this argu-

ment: the effects of the symmetry-breaking contributions
we have introduced above are Oðt0Þ rather than vanishing
proportionally to the momentum transfer. As a result, the
symmetry-breaking contributions can quantitatively be
significant, even if generated at one-loop or higher order,
and must be treated with care. We study this in detail in
Sec. III, where we will also quantify the effects arising from
the nonzero values of the coupling λX.
Let us then consider the general features of the con-

straints from collider searches and cosmological and

astrophysical observations that pertain to the pseudo-
Goldstone DM model. First, the observed abundance of
DM must be produced as a thermal relic. This implies that
the thermal annihilation cross section must satisfy
hσvreli0 ≃ 3 × 10−26 cm3=s. We focus on a scenario where
the DM is the lightest non-SM particle and consider the
annihilation cross section to SM final states.
Second, models with a hidden-sector coupling to the

visible sector via a scalar portal are constrained by collider
experiments in two respects: The mass eigenstates are
mixtures of the neutral component of the SU(2) scalar
doublet and the singlet scalar. The associated mixing angle,
α, is constrained from the Higgs couplings measurements
by sin α≲ 0.3 [20]. Additionally, if the hidden sector
contains states that are lighter than half of the mass of
the Higgs boson, they will contribute to the invisible
Higgs decays. Such decays are currently bounded by
Brðh0 → invÞ ≤ 0.23 [21,22].
Third, direct-detection experiments provide stringent

exclusion bounds for a vanilla scalar DM with a mass of
Oð100 GeVÞ. However, in the framework studied here, the
Goldstone nature of the DM particle relaxes the direct-
detection bounds due to the momentum suppression of the
cross section, as discussed above. Generally, in this scenario
the WIMP couples to the nucleus via the Higgs boson, h0,
and the heavier mass eigenstate, H0. The strength of the
interaction depends on the mixing pattern of the scalars and
whether theWIMP is a scalar or a fermion. In both cases, the
Higgs-nucleon coupling is of the form fNmN=v, with
mN ¼ 0.946 GeV, where we neglect the small differences
between neutrons and protons. The effective Higgs-nucleon
coupling,

fN ≡ 1

mN

X
q

hNjmqq̄qjNi; ð10Þ

describes the normalized total quark-scalar current within
the nucleon. The quark currents of the nucleon have been the
subject of intensive lattice studies, supplemented by chiral
perturbation theory methods and pion nucleon scattering
analysis. Consequently, the current value for fN ≃ 0.3
[23–25] is fairly well determined. The spin-independent
cross section for a WIMP scattering on nuclei is computed
by considering the t-channel exchange of h0 and H0.
Because of the Goldstone nature of the DM candidate, even
in the presence of the symmetry-breaking operators, this
cross section is suppressed, allowing for the compatibility
with the current direct search limits. We will show this in
detail for an explicit model in the next section.
Finally, the model is constrained by indirect detection.

The indirect-detection experiments attempt to observe the
annihilation products of DM particles originating from
regions of high DM number density in the cosmos, such as
the central regions of DM halos. The nonobservation of
such signals leads to an upper limit on the DM annihilation
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cross section. Currently the most constraining limits for our
mass range of interest are from Fermi-LAT observations of
dwarf spheroidal satellite galaxies of the Milky Way [26].
While the direct-detection cross section is strongly sup-
pressed at low momentum transfer for Goldstone DM, this
is not generally true for the annihilation cross section.
Indeed, in the simplest Goldstone-DM models, the anni-
hilation amplitude is an swave, so that a nonzero amplitude
at zero incoming three-momentum exists, making indirect
detection a promising avenue for observing Goldstone DM.
We will quantify all the above constraints in the next

section for an explicit model of Goldstone DM.

III. A MODEL EXAMPLE

We will now consider the model introduced in Sec. II in
the simplest case of O(2) symmetry. This scenario is
equivalent to the extension of the SM with a complex
singlet featuring a global U(1) symmetry [27]. Then the
DM candidate is a single Goldstone boson. Theories where
Goldstone DM forms a degenerate multiplet can easily be
addressed using our results together with simple scaling:
the event rate in direct-detection experiments scales linearly
with the degeneracy, g, while the rate in indirect detection is
independent of g.
For most of the analysis, we set symmetry-breaking

coefficient λX in Eq. (5) to zero and focus on the effect of
the leading symmetry-breaking term, μ2X ≠ 0. We also show
the quantitative effect from λX ≠ 0 on our results.

A. Relic abundance

To determine the relic abundance of the scalar η, we
compute the total annihilation cross section into SM
particles and compare it with the standard thermal annihi-
lation cross section, hσvreli0 ≃ 3 × 10−26 cm3=s, as
described in Sec. II. The following annihilation channels
need to be taken into account: ηη → h0h0, VV, and f̄f,
where V denotes the electroweak gauge bosons, V ¼ W, Z,
and f are the SM fermions.1 The annihilation cross sections
to these three distinct final states are given in Appendix A.
Following Ref. [28], we include the four-body final states
due to the virtualW and Z exchange using the full width of
the Higgs [29] in the calculation of the annihilation cross
section in the mass range mh0=2 ≤ mη ≤ 100 GeV. We
show the curve where hσvreli ¼ hσvreli0 for mH0 ¼ 500,
750 GeV, α ¼ 0.3, λX ¼ 0 in Figs. 1 and 2 along with
the constraints from invisible Higgs decays and direct-
detection searches, and in Fig. 4 together with the indirect-
detection bounds.

FIG. 1. The current limits from XENON1T on the spin-
independent scattering cross section of DM off of nuclei assum-
ing the tree-level momentum-suppressed estimate of the cross
sections (upper purple shaded region) and invisible Higgs decays
(red shaded region on left), and the region where the SI cross
section reaches the coherent neutrino scattering cross section
(lower blue region). The limits are formH0 ¼500GeVandα ¼ 0.3.
The dashed curves show the change for mH0 ¼ 750 GeV. The
yellow shaded region shows where μ2X=μ

2
S > 0.1. The gray solid

(dashed) curve shows where the observed DM abundance is
achieved for mH0 ¼ 500 GeV (750 GeV).

FIG. 2. The corresponding plot to Fig. 1, with the dominant
one-loop contributions taken into account, for the DM-nucleon
cross section (see the text for details). We plot here only the
mH0 ¼ 500 GeV curves for clarity.

1We are interested in the case where η is a Goldstone boson and
thus lighter than H0. Therefore, we do not consider ηη → h0H0,
H0H0 channels.
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B. Invisible Higgs decays

If mη < mh0=2, one needs to take into account the
constraints from invisible Higgs decays, currently bound
to be Brðh0 → invÞ ≤ 0.23 [21,22]. The Higgs total decay
width to the visible SM channels is Γh0 ¼ 4.07 MeV for
mh0 ¼ 125 GeV [30], and the h0 → ηη width is given by

Γh0→ηη ¼
λ2h0ηη

32πmh0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
η

m2
h0

s
; ð11Þ

where

λh0ηη ¼
ðλHS − λXÞm2

h0v

cos αðm2
h0 −m2

H0Þ þ 2λXv cos α: ð12Þ

We show the excluded region as a function of DMmass and
λHS for mH0 ¼ 500, 750 GeV, α ¼ 0.3, λX ¼ 0 super-
imposed with direct-detection bounds in Figs. 1 and 2.
The invisible Higgs decays exclude the full parameter space
for a light DM except for the very narrow resonance region
where mη ≈mh0=2.

C. Direct detection

1. Tree-level estimate

At tree level, the spin-independent (SI) direct-detection
cross section is

dσSI
d cos θ

¼ λ2efff
2
Nm

2
Nμ

2
R

8πm2
η

; ð13Þ

where μR ¼ mNmη=ðmN þmηÞ is the reduced mass of the
η-nucleon system, and

λeff ¼
λHSt

ðm2
h0 − tÞðm2

H0 − tÞ

−
2λX½sin2αðm2

h0 − t=2Þþ cos2αðm2
H0 − t=2Þ�

ðm2
h0 − tÞðm2

H0 − tÞ : ð14Þ

Note that the first term vanishes at zero-momentum transfer,
as expected for a Goldstone boson. Furthermore, note
that this result persists in the presence of the soft sym-
metry-breaking mass term for η; the nonzero contributions
at zero-momentum transfer arise only due to the explicit
symmetry-breaking term, λX, in the scalar potential in
Eq. (3).
We show in Fig. 1 the current limit from XENON1T

experiment [3], along with the tentative boundary of the
coherent neutrino-scattering cross section [31] and the
experimental bound for invisible Higgs decays [21,22] in
the ðmη; λHSÞ plane in the case of λX ¼ 0 for fixed values of
mH0 ¼ 500 GeV and α ¼ 0.3. For higher values of mH0 ,
the boundaries move upwards in the plane; lowering α has
the same effect on the invisible-Higgs-decay boundary. The
dashed curves show the case of mH0 ¼ 750 GeV. We have

chosen a constant incoming velocity of the DM particles,2

vη ¼ 10−3c. The gray solid (dashed) curve shows where the
observed DM abundance is obtained for mH0 ¼ 500 GeV
(750 GeV); the whole curve lies beneath the neutrino floor.
Note that the highly nonperturbative values of λHS in Fig. 1
are shown for illustration only. The allowed region of the
perturbatively computed relic density curve lies in the
domain where the use of perturbation theory is justified.
The yellow shaded region in the lower right corner shows
where the explicit-breaking mass term, μ2X, starts to be
sizable in comparison to the symmetry-preserving one, μ2S.
In Fig. 1 we show μ2X=μ

2
S ¼ 0.1 as a limit for significant

symmetry breaking.

2. One-loop contributions

The soft breaking of the global symmetry by μ2X does not
affect the tree-level estimate of the DM-nucleon scattering
cross section, and the cross section remains momentum
suppressed even in the presence of explicit breaking of the
symmetry. Therefore, one expects the quantum corrections
to induce contributions that scale as the DM mass, mη,
rather than the momentum transfer, t, to the cross section
manifesting the explicit breaking and the pseudo-Goldstone
nature of the DM candidate. This, indeed, turns out to be
the case, and the one-loop contribution to the DM-nucleon
scattering has a piece independent of the momentum
transfer that vanishes in the limit of mη → 0. This con-
tribution dominates the DM-nucleon scattering by several
orders of magnitude and was estimated in Ref. [10] to be

σ1−loopSI ≈
sin2 α
64π5

m4
Nf

2
N

m4
h0v

2

m2
H0m2

η

w6
; ð15Þ

for mη < mH0. The first exact one-loop computations
[12,13] point to the same ballpark region, indicating that
Eq. (15) only slightly overestimates the cross section. For
the purpose of our analysis, we use the conservative
estimate of Eq. (15), noting that an order-of-magnitude
decrease in the cross section does not alter the qualitative
picture.
We show the corresponding plot to Fig. 1, with the

dominant one-loop contribution taken into account, in Fig. 2.
We only show themH0 ¼ 500 GeV curves for simplicity and
refer to Fig. 1 for the change due to increasing the heavy-
scalar mass. The other parameter values are as in Fig. 1.

3. Explicit breaking beyond mass terms

In the presence of the quartic explicit-breaking coupling,
λX, already the tree-level DM-nucleon scattering cross
section is sensitive to the breaking and has a piece that

2We have checked for a sample of parameter points that
integrating over the DM velocity distribution given by the
standard halo model gives similar results.
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does not vanish at zero-momentum transfer: the second
term in Eq. (14).
In the top panel of Fig. 3, we show how the XENON1T

limit changes if the explicit-breaking parameter, λX, is
turned on; we plot the exclusion regions for fixed values of
λX ¼ 0, 2.5 × 10−3, 5 × 10−3, 10−2. The bottom panel of
Fig. 3 shows the XENON1T exclusion and the neutrino
floor along with the curve hσvreli ¼ hσvreli0 in the
ðλX; λHSÞ plane for fixed values of mη ¼ 100 GeV and
α ¼ 0.3. Changing α has little effect on the SI cross section,
and thus varying α does not noticeably change the plots.

These figures show the current direct-detection bounds can
be evaded even if the symmetry is only approximate or
accidental; for example, for mη ∼ 150 GeV non-negligible
couplings of λX ≲ 0.01 are still allowed.

D. Indirect detection

The indirect-detection constraints arise from the annihi-
lation of DM particles. The relevant cross section formulas
are given in Appendix A. To clarify the discussion, we
show here just the annihilation cross section to the b̄b
channel in the limit of λX ¼ 0:

vrel · σηη→b̄b ¼
Ncλ

2
HS

ffiffiffi
s

p
m2

bðs − 4m2
bÞ3=2

4πðs −m2
h0Þ2ðs −m2

H0Þ2 : ð16Þ

Indeed, the cross section does not vanish in the non-
relativistic limit of s → 4m2

η, provided that the process is
kinematically allowed, mη > mb. Figure 4 shows the
constraints from Fermi-LAT dwarf galaxy observations
applicable to the model, translated as an upper limit for the
portal coupling, λHS, as a function of the DM mass.
Superimposed is the line where the observed relic abun-
dance is produced by freeze-out. The dark blue shaded
region is ruled out by the Fermi-LAT data [26], and the
light blue shaded region is the expected exclusion region
with 10 years of data, adapted from Ref. [32].
To produce the exclusion regions, we compare the

annihilation cross section vσðηη → bb̄Þ with the reported
exclusion limit, for mη < mW. For mη > mW the dominant
annihilation channel is WW, for which the constraints are
not available in the Fermi-LAT report. Based on model-
independent analyses presented in Refs. [33,34], we
estimate the constraint for this channel to be vσðηη →
WWÞ ≈ 1.5vσðηη → bb̄Þ in our mass range of interest. That
is, we compare the model prediction for the annihilation
cross section in theWW channel to the reported upper limit
for the bb̄ cross section, scaled by a factor of 1.5, for a
given value of the DM mass. As the DM mass increases
further and the ZZ and h0h0 channels become kinemati-
cally allowed, we also include the annihilation cross section
into these channels. For the purpose of simplicity and
transparency of the analysis, we use the same rescaling
factor for these channels as well; i.e., we compare the sum
of the cross sections ηη → WW, ZZ, h0h0, to the b̄b limit
rescaled by a factor of 1.5. This method will slightly
overestimate the constraint from the ZZ-final state, but will
not change the results qualitatively. Furthermore, the ZZ-
final state is subleading, so quantitatively the effect is also
relatively small.
This procedure results in kinks in the exclusion curve at

mη ¼ mW ,mZ,mh0 . The kinks are nonphysical andwould be
removed by including the contribution from the off-shell
processes ηη → WW�, ZZ� → 4f, etc., where f is a SM
fermion. To give a clearer comparison between this limit and

FIG. 3. Top panel: the current limits from XENON1T on the
spin-independent scattering cross section of DM off of nuclei for
nonzero values of λX. Bottom panel: the limits from XENON1T
and the neutrino floor in the ðλX; λHSÞ plane for a fixed DM mass
of mη ¼ 100 GeV and α ¼ 0.3. The gray curve shows where the
observed DM abundance is obtained.
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the thermal annihilation cross section, shown by the red line,
here we also remove the full-Higgs-width correction from
the relic-abundance computation. The smoothing around the
kinematic thresholds is expected to be similar for both the
exclusion region and the relic-abundance line. A more
detailed analysis of interpreting the Fermi-LAT constraints
in terms of various final states is beyond the scope of
this work.
We conclude that with the treatment described above, the

thermal-relic cross section appears already excluded by the

Fermi-LAT data for mη < mW and will be probed up to
mη ∼ 250 GeV with future data. However, to make con-
clusive statements of the fate of the model in light of
indirect-detection constraints, a detailed analysis of the full
set of annihilation final states is required.

IV. CONCLUSIONS

In this paper, we have considered a model framework
that allows a paradigmatic thermal-relic WIMP to escape
current direct-search limits and remain out of reach also for
future experiments. The effect arises due to momentum-
dependent interactions between the DM and ordinary
matter, and it appears naturally in scenarios where the
DM candidate is a pseudo-Goldstone boson of an approxi-
mate global symmetry [11,14,17,19].
We first outlined the general formulation of this type of

models and then, to illustrate the effect more explicitly,
considered how various observational constraints are
implemented in the case where the hidden sector consists
of a complex singlet scalar with an O(2) global symmetry.
We demonstrated that in this model one can obtain the
correct DM relic density and simultaneously remain out of
the reach of current direct-search experiments.
In the tree-level analysis, the key feature is the momen-

tum dependence of the DM interactions. However, since the
global symmetry is only approximate, the effects of
symmetry breaking must be addressed [12]. Generic and
concrete origins of the slight violation of such symmetry
are interactions with high-energy d.o.f. that are integrated
out above the energy scales of the effective theory for the
DM and the SM. We analyzed how the symmetry-breaking
operators increase the direct-detection cross section. We
found that even when symmetry breaking is present, the
direct detection of such pseudo-Goldstone DM requires the
future experiments to disentangle the signals of DM
scattering from those of the neutrino background.
As our main result, we established how this type of DM

can be observed by indirect detection. The annihilation
cross section of the Goldstone boson DM is not suppressed
by the incoming three-momentum, and therefore the con-
straints are similar to a vanilla WIMP candidate. We
conclude that the future Fermi-LAT observations will be
able to discover or exclude this type of DM with masses up
to a few hundred GeV.
We showed the results for a simple extension of the SM,

where a Goldstone DM consists of a single scalar field. Our
results can be directly applied also to the case of a non-
abelian symmetry where the Goldstone DM arises as a
degenerate multiplet of dark pions [16,17]: On the one
hand, the direct detection will become more efficient as the
event rate will increase proportionally to the DM d.o.f. On
the other hand, the indirect-detection constraint is inde-
pendent of the DM multiplicity, and the conclusions from
the constraints we have presented hold for any Goldstone
DM within the class of models we considered in Sec. II.

FIG. 4. Top panel: the indirect-detection constraints for
mH0 ¼ 500 GeV. Bottom panel: same as the left panel, but for
mH0 ¼ 750 GeV. In both panels the dark blue region is ruled out
by the Fermi-LAT data and the light blue region is the expected
exclusion region with 10 years of data. The red curve shows
where the observed DM abundance is obtained.
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A further interesting extension to study would be a
scenario where the SM scalar sector is enlarged so that both
DM and the Higgs boson arise as pseudo-Goldstone
particles [8,15]. In this type of models, the interactions
between the DM and ordinary matter would be further
suppressed, and the origin of visible and dark matter would
become more tightly tied together.
Finally, it would be interesting to study these models at

finite temperature. This would lead to the determination of
the consequences of such frameworks for the electroweak
phase transition and associated possibilities for electroweak
baryogenesis. A possible first-order phase transition in the
hidden sector would also lead to generation of gravitational
wave signals [35] possibly detectable with future detectors
[36]. Complementary to the cosmological probes, collider
signatures of such frameworks have been studied in [9,37],
which in general are similar to those of a singlet extension
of the SM.
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APPENDIX A: CROSS SECTIONS

Here we give the formulas for the computation of the
annihilation cross section for the model considered in
Sec. III. To make the equations more concise, it is useful
to define the couplings

ληηh0h0 ¼ðλHSþλXÞc2αþ2λSs2α;

ληηH0H0 ¼ðλHSþλXÞs2αþ2λSc2α;

ληηh0 ¼ðλHSþλXÞvcα−2λSwsα;

ληηH0 ¼ðλHSþλXÞvsαþ2λSwcα;

λh0h0h0 ¼6λHvc3αþ3ðλHS−λXÞvs2αcα
−3ðλHS−λXÞwsαc2α−6λSws3α;

λh0h0H0 ¼1

4
½ð6λHþλHS−λXÞvsαþð6λSþλHS−λXÞwcα

þ3ð2λH−λHSþλXÞvs3αþ3ðλHS−2λS−λXÞwc3α�;

λh0H0H0 ¼1

4
½ð6λHþλHS−λXÞvcα−ð6λSþλHS−λXÞwsα

−3ð2λH−λHSþλXÞvc3αþ3ðλHS−2λS−λXÞws3α�;
λH0H0H0 ¼6λHvs3αþ3ðλHS−λXÞvsαc2αþ3ðλHS−λXÞws2αcα

þ6λSwc3α; ðA1Þ

and

yh0 ¼
mf

v
cα; yH0 ¼ mf

v
sα;

gh0Z ¼ vðg2 þ g02Þ
2

cα; gh0W ¼ vg2

2
cα;

gH0Z ¼ vðg2 þ g02Þ
2

sα; gH0W ¼ vg2

2
sα; ðA2Þ

where we have used the shorthand notations sx ≡ sin x and
cx ≡ cos x. The annihilation cross section to fermion final
states is

σηη→f̄f ¼ Ncm2
fβ

3
f

8πβηðs −m2
h0Þ2ðs −m2

H0Þ2
× ½ðλHS þ λXÞs − 2λXðs2αm2

h0 þ c2αm2
H0Þ�2; ðA3Þ

where

βx ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
x

s

r
: ðA4Þ

The annihilation cross section to electroweak vector boson
final states is

σηη→VV ¼ δVβVð12m4
V − 4m2

Vsþ s2Þ
16πsβηðs −m2

h0Þ2ðs −m2
H0Þ2

× ½ðλHS þ λXÞs − 2λXðs2αm2
h0 þ c2αm2

H0Þ�2; ðA5Þ

where δV ¼ 1, 1=2 for W� and Z boson final states,
respectively.
Finally, the cross sections for annihilation into the h0h0

final state is

σηη→h0h0 ¼
βh0

32πsβη

�
16λ4

ηηh0

ðs−2m2
h0Þ2

þ
�
ληηh0h0þ

λh0h0h0ληηh0

s−m2
h0

þλh0h0H0ληηH0

s−m2
H0

�
2

−
8λ2

ηηh0

s−2m2
h0

�
ληηh0h0þ

λh0h0h0ληηh0

s−m2
h0

þλh0h0H0ληηH0

s−m2
H0

��
:

ðA6Þ

In our scenario, the pseudo-Goldstone boson, η, is lighter
than the scalarH0, and we do not consider final states h0H0

and H0H0. However, in a general setup, the cross section
for the H0H0 final state can be obtained from Eq. (A6) by
exchanging h0 ↔ H0. The cross section for the mixed final
state h0H0 is lengthy and not particularly illuminating, and
we do not report that explicitly here.
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APPENDIX B: THE NONLINEAR
REPRESENTATION TREATMENT

In the nonlinear representation, our starting point is the
Lagrangian

L ¼ 1

2
Tr½∂μS†∂μS� − VðH; SÞ; ðB1Þ

where

H¼
� πþ

1ffiffi
2

p ðvþϕþ iπ0Þ
�
; S¼wþσffiffiffiffi

N
p eiη

aXa=w; ðB2Þ

and Xa, a ¼ 1;…; N, are the broken generators. The scalar
potential is given by

VðH; SÞ ¼ μ2HH
†H þ 1

2
μ2STr½S†S� þ λHðH†HÞ2

þ λHS

2
ðH†HÞTr½S†S� þ λS

4
Tr½S†S�2

−
1

4
μ2XðTr½S2� þ Tr½S†2�Þ; ðB3Þ

where we have for simplicity set the quartic symmetry-
breaking coupling, λX, to zero.
The minimization conditions are as in Eq. (6) for λX ¼ 0,

μ2H ¼ −λHv2 −
1

2
λHSw2;

μ2S ¼ −λSw2 −
1

2
λHSv2 þ μ2X; ðB4Þ

and we again define the mass eigenstates via a rotation

�
h0

H0

�
¼

�
cos α − sin α

sin α cos α

��
ϕ

σ

�
; ðB5Þ

with the mixing angle defined as

tanð2αÞ ¼ −λHSvw
λHv2 − λSw2

: ðB6Þ

The parameters λH, λS, λHS, and μ2X can then be rewritten
in terms of the masses of the scalars and their mixing angle,

λH ¼ 1

4v2
½ðm2

H0 þm2
h0Þ − ðm2

H0 −m2
h0Þ cosð2αÞ�;

λS ¼
1

4w2
½ðm2

H0 þm2
h0Þ þ ðm2

H0 −m2
h0Þ cosð2αÞ�;

λHS ¼
sinð2αÞ
2vw

ðm2
H0 −m2

h0Þ;

μ2X ¼ 1

2
m2

η: ðB7Þ
In the following, we will compute the effective couplings

entering the direct- and indirect-detection cross sections to

be compared with the linear-representation results, Sec. III
and Appendix A. For simplicity, we will fix N ¼ 1. The
relevant terms of the Lagrangian for direct and indirect
detection and relic density calculations are

V int ⊃ −
m2

η

w
½sin αh0 − cos αH0�η2

þ 1

w
½sin αh0 − cos αH0�ð∂μηÞ2; ðB8Þ

with the corresponding diagrams shown in Fig. 5. For
indirect detection we show here only the fermionic final
states for simplicity.
In the direct-detection process, λeff corresponding to that

of Eqs. (13) and (14) has the form

λNLeff ¼ sinð2αÞðm2
h0 −m2

H0Þ
vwðm2

h0 − tÞðm2
H0 − tÞ ð−m

2
η − ð−p1 · k1ÞÞ

¼ sinð2αÞðm2
h0 −m2

H0Þ
vwðm2

h0 − tÞðm2
H0 − tÞ

�
−m2

η −
1

2
ðt − 2m2

ηÞ
�

¼ sinð2αÞðm2
h0 −m2

H0Þ
vwðm2

h0 − tÞðm2
H0 − tÞ ·

−t
2
: ðB9Þ

Writing λNLeff in terms of λHS using Eq. (B7), we obtain the
same expression (up to an overall sign) as in the linear
case, Eq. (14).
In the indirect detection, on the other hand, the corre-

sponding effective coupling is given by

λNLeff;ID ¼ sinð2αÞðm2
h0 −m2

H0Þ
vwðm2

h0 − sÞðm2
H0 − sÞ ð−m

2
η − ðp1 · p2ÞÞ

¼ sinð2αÞðm2
h0 −m2

H0Þ
vwðm2

h0 − sÞðm2
H0 − sÞ

�
−m2

η −
1

2
ðs − 2m2

ηÞ
�

¼ sinð2αÞðm2
h0 −m2

H0Þ
vwðm2

h0 − sÞðm2
H0 − sÞ ·

−s
2
: ðB10Þ

Again, writing λNLeff;ID in terms of λHS using Eq. (B7), we
recover the same cross sections as in the linear case in the
limit λX ¼ 0; see, e.g., the cross section to fermionic final
states, Eq. (A3).

FIG. 5. Relevant diagrams for direct and indirect detection.
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