
UralicNLP: An NLP Library for Uralic Languages
Mika Hämäläinen1

1 Department of Digital Humanities, University of Helsinki

DOI: 10.21105/joss.01345

Software
• Review
• Repository
• Archive

Submitted: 09 March 2019
Published: 09 May 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Introduction

In the past years the natural language processing (NLP) tools and resources for the
small Uralic languages have received a major uplift. The open-source infrastructure by
Giellatekno (Moshagen, Pirinen, & Trosterud, 2013) has served a key role in gathering
these tools and resources in an open environment for researchers to use.

However, the many of the crucially important NLP tools, such as FSTs (finite-state trans-
ducers) (cf. Beesley & Karttunen, 2003) for processing morphology and CGs (constraint
grammars) (cf. Karlsson, Voutilainen, Heikkilä, & Anttila, 1995) for syntax, require spe-
cialized tools with a learning curve. Their use for a researcher who is not familiar with
them can be challenging, and ultimately lead to simply ignoring the existence of the
resources.

This paper presents UralicNLP, a Python library, the goal of which is to mask the actual
implementation behind a Python interface. This not only lowers the threshold to use the
tools provided in the Giellatekno infrastructure but also makes it easier to incorporate
them as a part of research code written in Python.

Functionalities

This section describes the current functionalities of the Python library. At the time of
writing, the library focuses on low-level NLP tasks. Additionally, semantic models are
provided for a limited number of languages.

Morphology

The FST models provided in the Giellatekno infrastructure are built on HFST (Helsinki
Finite-State Technology) (Lindén et al., 2013), which is an open-source tool for compil-
ing and running scripts that follow the FST formalism. UralicNLP uses the compiled
FST models available through the Online Dictionary of Uralic Languages (Hämäläinen &
Rueter, 2018).

The library provides morphological analysis on a word level for all supported languages.
This means that it will output all the possible morphological readings for an input word
form. The morphological analyzers provide typically a lemma, part-of-speech tag and a
list morphological tags such as the number and case of the word from. The list of possible
readings may include weights indicating the probability of the analysis. However, these
are not currently implemented in any of the FST models. For example, for the Finnish
word voit, the analyzer gives readings voi (butter) as a noun in the plural of nominative
and voida (can) as a verb in the second person of singular.

Hämäläinen, (2019). UralicNLP: An NLP Library for Uralic Languages. Journal of Open Source Software, 4(37), 1345. https://doi.org/10.
21105/joss.01345

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/224641562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.21105/joss.01345
https://github.com/openjournals/joss-reviews/issues/1345
https://github.com/mikahama/uralicNLP
https://doi.org/10.5281/zenodo.2668061
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01345
https://doi.org/10.21105/joss.01345


Given a lemma, part-of-speech tag and morphological tags separated by a plus sign, it
is possible to use UralicNLP to generate word forms. This inflection mechanism can
be useful in various natural language generation tasks. For instance, giving the Finnish
word kissa, and the morphological tags plural and genitive, the library inflects the word
as kissojen.

Disambiguation

Whereas the morphological functionality does the analysis only on the word level, the dis-
ambiguator applies CG rules to rule out the morphological readings that are not suitable
in the context by using the VISL CG-3 tool (Bick & Didriksen, 2015). These CG rules
originate from the Giellatekno repository, but they are downloaded through the Online
Dictionary of Uralic Languages.

Depending on the language, the disambiguator can often output multiple readings because
the rules are not sufficient to fully disambiguate the sentence. It is important to take this
into account when using the functionality.

Lexical Lookup

The API of the Online Dictionary of Uralic Languages provides essentially the same
data as in the Giellatekno multilingual XML dictionaries in a JSON format. The actual
contents of the data depend on the language, but information such as semantic tags, URLs
to audio files, example sentences and translations in multiple languages is oftentimes
provided.

In order to use the lexical lookup, the ISO code of the minority language needs to be
specified. This will limit the query into the dictionary of that language. Queries can be
done either with a lemma or with an inflectional form. It is also possible to query in one
of the languages the minority language words are translated to.

Semantics

UralicNLP provides an easy to use programmatic interface to SemFi and SemUr databases
(Hämäläinen, 2018a). These databases contain semantic information of words given their
syntactic relations. For example, the database can be used to list out all the verbs that can
have koira (dog) as a subject together with the frequency of the co-occurrence of the verbs
and the noun koira in a corpus. SemFi has previously been used in the computationally
creative task of poem generation (Hämäläinen, 2018b).

SemUr consists of databases for endangered Uralic languages that have been translated
automatically from SemFi. Both of SemFi and SemUr are structurally identical SQLite
databases which makes it possible to query them with the same methods provided by
UralicNLP.

Universal Dependency Parser

UralicNLP comes with functionality to parse Treebanks. The parsed Treebanks can be
queried effectively with the different universal dependency annotations such as part-of-
speech, dependency relation and lemma. The queries support regular expressions. This
functionality is useful with the growing number of UD Treebanks available for Uralic
languages.

Hämäläinen, (2019). UralicNLP: An NLP Library for Uralic Languages. Journal of Open Source Software, 4(37), 1345. https://doi.org/10.
21105/joss.01345

2

https://doi.org/10.21105/joss.01345
https://doi.org/10.21105/joss.01345


Distribution

UralicNLP is distributed as an installable package through PyPi with the name uralic-
NLP1. The source code is released under the Apache open source license on GitHub.

References

Beesley, K. R., & Karttunen, L. (2003). Finite-state morphology. In (pp. 451–454).
Stanford, CA: CSLI Publications.

Bick, E., & Didriksen, T. (2015). CG-3 — beyond classical constraint grammar. In Pro-
ceedings of the 20th nordic conference of computational linguistics, NODALIDA 2015, may
11-13, 2015, vilnius, lithuania (pp. 31–39). University of Southern Denmark, Denmark;
Linköping University Electronic Press, Linköpings universitet.

Hämäläinen, M. (2018a). Extracting a semantic database with syntactic relations for
Finnish to boost resources for endangered Uralic languages. In Proceedings of the logic
and engineering of natural language semantics 15 (LENLS15). Retrieved from https:
//helda.helsinki.fi/handle/10138/282733

Hämäläinen, M. (2018b). Harnessing NLG to create Finnish poetry automatically. In
Proceedings of the ninth international conference on computational creativity (pp. 9–15).

Hämäläinen, M., & Rueter, J. (2018). Advances in synchronized XML-MediaWiki dictio-
nary development in the context of endangered Uralic languages. In Proceedings of the
eighteenth EURALEX international congress (pp. 967–978).

Karlsson, F., Voutilainen, A., Heikkilä, J., & Anttila, A. (1995). Constraint grammar: A
language-independent system for parsing unrestricted text. Walter de Gruyter.

Lindén, K., Axelson, E., Drobac, S., Hardwick, S., Kuokkala, J., Niemi, J., Pirinen, T.
A., et al. (2013). HFST a system for creating NLP tools. In International workshop on
systems and frameworks for computational morphology (pp. 53–71). Springer. doi:10.
1007/978-3-642-40486-3_4

Moshagen, S. N., Pirinen, T. A., & Trosterud, T. (2013). Building an open-source devel-
opment infrastructure for language technology projects. In Proceedings of the 19th nordic
conference of computational linguistics (NODALIDA 2013); may 22-24; 2013; oslo uni-
versity; norway. NEALT proceedings series 16 (pp. 343–352). University of Tromsø,
Norway; Linköping University Electronic Press.

1pip install uralicNLP

Hämäläinen, (2019). UralicNLP: An NLP Library for Uralic Languages. Journal of Open Source Software, 4(37), 1345. https://doi.org/10.
21105/joss.01345

3

https://helda.helsinki.fi/handle/10138/282733
https://helda.helsinki.fi/handle/10138/282733
https://doi.org/10.1007/978-3-642-40486-3_4
https://doi.org/10.1007/978-3-642-40486-3_4
https://doi.org/10.21105/joss.01345
https://doi.org/10.21105/joss.01345

	Introduction
	Functionalities
	Morphology
	Disambiguation
	Lexical Lookup
	Semantics
	Universal Dependency Parser

	Distribution
	References

