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Abstract—Gap filling has emerged as a natural sub-problem of many de novo genome assembly projects. The gap filling problem

generally asks for an s-t path in an assembly graph whose length matches the gap length estimate. Several methods have addressed

it, but only few have focused on strategies for dealing with multiple gap filling solutions and for guaranteeing reliable results. Such

strategies include reporting only unique solutions, or exhaustively enumerating all filling solutions and heuristically creating their

consensus. Our main contribution is a new method for reliable gap filling: filling gaps with those sub-paths common to all gap filling

solutions. We call these partial solutions safe, following the framework of (Tomescu and Medvedev, RECOMB 2016). We give an

efficient safe algorithm running in OðdmÞ time and space, where d is the gap length estimate andm is the number of edges of the

assembly graph. To show the benefits of this method, we implemented this algorithm for the problem of filling gaps in scaffolds.

Our experimental results on bacterial and on conservative human assemblies show that, on average, our method can retrieve over

73 percent more safe and correct bases as compared to previous methods, with a similar precision.

Index Terms—de novo assembly, gap filling, safe solutions, dynamic programming, graph connectivity

Ç

1 INTRODUCTION

ACOMMON gap filling instance is the reconstruction of
the missing sequence between contigs, once their rela-

tive order and distance is known from the scaffolding
step [1], [9], [14], [21], [23], [29]. Another one is filling the
missing sequence between the two reads in a paired-end
read [18], [28], [36], [40], [42]. In projects with a known refer-
ence, gap filling is applied when assembling novel long
insertions in a donor, given length estimates derived from
mate-pair alignments to the reference [20].

In the gap filling problem we are given a sequence X
containing gaps (e.g., scaffolds produced by a de novo
assembler) and a set of sequencing reads. A gap filler aims
at filling the gaps in X using the sequencing reads. A natu-
ral formulation of the gap filling problem builds an assem-
bly graph of the sequencing reads, and fills a gap by finding
an s-t path whose length is consistent with the gap length
estimate (here s and t correspond to the two sequences
flanking the gap) [25], [26], [40]. (In this paper we allow
paths to have repeated vertices.) Since this problem is NP-
hard [19], [25], [26], some methods use the heuristic of a
shortest s-t path whose length is also consistent with the
gap length estimate [15], [40]. Other methods are based on
various extension heuristics when navigating the assembly
graph from s to t [14], while others patch a gap only with
those reads whose pair reliably maps to one of the two
sequences flanking the gap [1], [35]. In [25], [26] we showed

that the gap filling problem can be solved by dynamic
programming in pseudo-polynomial time by an algorithm
scaling to real data. On the bacterial and human datasets in
the GAGE benchmarks [27], our method can fill in total
76 percent more gaps with 136 percent more sequence than
previous methods, with a comparable error level.

In this paper we focus on gap fillers that take as input a
set of sequences containing gaps and a set of short paired-
end or mate-pair sequencing reads. The gap filling problem
has also been addressed using preassembled contigs or long
reads [7], [13]. Additionally, assembly reconciliation tools
such as GAM [3], GAA [41], GAM-NGS [37], and Mix [30]
are also able to perform some gap filling, but their aim is
rather to merge two or more assemblies into a coherent sin-
gle assembly.

As new methods filling more gaps and scaling to larger
genomes are being developed, the strategies for decreasing
the error rate and guaranteeing reliable results become
more important. These are even more crucial when consid-
ering clinical applications, for example in detecting novel
variants in tumors [24]. In Section 1.1 we review some reli-
able gap filling criteria proposed so far in the literature.

In this paper we address the gap filling problem with the
“safe and complete” framework proposed in [33] for the con-
tig assembly problem. This framework defines an algorithm
for a problem to be: (i) safe, if it returns only partial solutions
that are common to all solutions to the problem (these com-
mon partial solutions are also called safe), and (ii) complete, if
it returns all safe solutions. In terms of the gap filling prob-
lem, a safe solution is a path of the assembly graph that is
a sub-path of all possible s-t paths whose length matches
the gap length estimate. This approach applies to all cases
when the entire solution is not unique. For example, in Fig. 1
we show a real assembly graph instance with thousands of
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possible filling paths, but nevertheless most of the gap is
safe. To transform these safe paths into a filling sequence
usable in downstream analysis, we fill the gap with an arbi-
trary filling path, in which we mark the safe and un-safe
sub-sequences (e.g., in upper- and lower-case). Fig. 2 shows
a simple example.

1.1 Previous Work on Safe Solutions

The safest criteria for having a reliable filling sequence is
that the filling path is unique. This strategy is mentioned
by Wetzel et al. [40] in connection with s-t paths whose
length matches the gap length estimate. Due to the
computational complexity of this latter problem, Wetzel
et al. [40] fill a gap with the heuristic criterion of finding a
unique shortest s-t path only. To our knowledge, Konnec-
tor [36] is the only method dealing with multiple s-t paths
in a systematic way (Konnector underlies Sealer [21],
which is a gap filler of scaffolds). It exhaustively enumera-
tes all s-t paths in a de Bruijn graph (up to a user defined
threshold), and attempts filling a gap only when there are
at most a given number of paths (Sealer’s manual recom-
mends 10). It then heuristically computes a multiple align-
ment of the strings spelled by these paths and takes as
filling sequence this consensus sequence (ambiguous posi-
tions are encoded with IUPAC codes). Other methods [18]
iteratively extend the filling path with a new character if
this is well-represented in the consensus of the reads over-
lapping it.

The idea of this paper originates from a more general
research question in bioinformatics about partial solutions
common to all solutions. The typical example is the contig
assembly problem, where contigs are those strings that are
part of all possible genomic reconstructions from an assem-
bly graph (be they Eulerian, Hamiltonian, or just node/
edge covering paths)—see e.g., [33]. Another example is the
sequence alignment problem, where some studies consider
reliable partial alignments [12], [16], [34], or base-pairings
common to all optimal or almost-optimal alignments [4],
[38]. In the combinatorial optimization community this
problem is sometimes called persistency: persistent edges
present in all maximum matchings of a bipartite graph [5],
or persistent vertices present in all maximum stable sets of a
graph [2].

1.2 Contributions of the Paper

The main contribution of this paper is a new approach for
reliable gap filling based on the notion of safe solution with
a strong theoretical foundation.

Second, we propose an efficient safe algorithm for the
gap filling problem, running in time OðdmÞ, where d is the
gap length estimate and m is the number of edges of
the assembly graph. The algorithm is based on finding all
sub-paths present in all s-t paths of an unweighted DAG
constructed from the assembly graph. As opposed to [21],
[36], this avoids exhaustively enumerating all paths, thus
scaling to instances (such as in Fig. 1) with an arbitrary
number of paths.

Third, we implement this algorithm as a gap filler of scaf-
folds. Although this algorithm is not also complete, our
experiments on the bacterial assemblies and conservative
human assemblies from the GAGE study [27] show that it
retrieves, on average, over 73 percent more safe and correct
bases as compared to previous methods differentiating
between ambiguous and unambiguous positions, with a
similar precision.

2 METHODS

2.1 Problem Definition

In this paper by graph we mean a directed graph. Paths can
have repeated vertices, and we will use the term simple path
when we need to emphasize that a path does not have
repeated vertices. For example, all paths in a directed acy-
clic graph (DAG) are simple. A path from s to t is called an
s-t path. By maximal path satisfying a property P we mean a
path that is not a sub-path of another path satisfying prop-
erty P. In an edge-weighted graph, the length of a path
equals the sum of the weights of its edges.

We re-state below the Exact Path Length problem from
[19], with the restriction that the edge lengths are positive.

Problem 1 (Exact Path Length (EPL) with positive
weights). Given a directed graph G ¼ ðV;EÞ, a weight func-
tion w : E ! Zþ, two vertices s and t, and an integer d, find
an s-t path in G of length d.

In [25], [26] we showed that also this restricted version of
the problem is NP-complete, by giving a reduction from the

Fig. 1. Two de Bruijn graphs (k ¼ 31) on staph data corresponding to two gaps in the SGA assembly. They consist of all vertices and edges on an s-t
path of length ‘ 2 ½d� d; dþ d� (graphs Gd;dðs; tÞ); notice that these two instances are already acyclic. We represent unary paths by numbers indicat-
ing their length. The sub-paths in black are safe i.e., common to all s-t paths. Top: The gap length estimated by SGA is 488, and so we look for paths
whose length is approximately d� þ k ¼ 519 (the path in the de Bruijn graph includes the left and right flanking k-mers adding k to the length).
The closest value for which there is at least one s-t path is d ¼ 521. In total, there are 256 paths with length in the allowed interval. The safe sub-paths
have length 234 and the precision of Gap2Seq Safe on these sub-paths is 100 percent. Bottom: The gap length estimated by SGA is 547 resulting in
a path length estimate of 578, but the closest value for which there is at least one s-t path is d ¼ 559. In total, there are 2,304 paths whose length is
in the allowed interval. The safe sub-paths have length 214 and the precision of Gap2Seq Safe on these sub-paths is 100 percent. Notice that most
of the bubbles of this graph are caused by single nucleotide mismatches (sequencing errors, SNVs present in the sequenced cell population, or
SNV-like differences between different copies of a repeat), because their two parallel unary paths have k internal nodes.
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Subset Sum problem [8]. Nonetheless, we showed that it
can be efficiently solved by dynamic programming in
pseudo-polynomial time OðdmÞ, where m is the number of
edges of G.

We briefly sketch our modeling from [25], [26] of the gap
filling problem by the EPL problem, and refer the reader
to [25], [26] for other technical details. The input graph can
be either a de Bruijn graph [22] or a string graph [17] built
on the entire collection of reads. Our implementation uses a
de Bruijn graph; in this way, all vertices are labeled by the
k-mers of the reads and all edges have weight 1. Given the
estimate d on the gap length and vertices s and t represent-
ing the sequences flanking the gap, we look for an s-t path
whose length is within a range (i.e., distance) d around
dþ k, and is closest to dþ k. The spelling of this path is the
string used to fill the gap.

One way to define the safe and complete gap filling prob-
lem is as follows; see also Fig. 2.

Problem 2 (Safe and complete gap filling). Given a
directed graph G ¼ ðV;EÞ, a weight function w : E ! Zþ,
two vertices s and t, and an integer d, find all maximal paths in
G that are sub-paths of all solutions to the EPL problem on this
instance. That is, find all maximal paths in G that are sub-
paths of all s-t paths in G of length d.

However, as mentioned above, the gap length d is usually
inexact, since it has been obtained from previous upstream
analyses (e.g., the scaffolding step). We can thus assume to
have also a likely maximum distance d between d and the
true gap length. As such, we can consider a generalization of
Problem 2 in which we look for paths common to all EPL
problems for all lengths in the given interval ½d� d; dþ d�.
More formally, we have the following problem:

Problem 3 (Safe and complete gap filling—extended).
Given a directed graph G ¼ ðV;EÞ, a weight function w : E !
Zþ, two vertices s and t, and integers d; d, find all maximal
paths in G that are sub-paths of all s-t paths of length in the
interval ½d� d; dþ d�.
Clearly, Problem 3 generalizes Problem 2 when taking

d ¼ 0. Moreover, to simplify our complexity bounds, we
will assume throughout this paper that d ¼ OðdÞ.

We leave open the existence of an (efficient) algorithm for
these two safe and complete gap filling problems (Problems 2

and 3). However, in the next section we propose an efficient
safe algorithm for them. We will show experimentally,
in Section 4, that this algorithm applied to Problem 3 has
very good performance both in terms of running time and
amount of safe paths that it retrieves.

2.2 A Safe Algorithm Based on Paths Common
to All s-t Paths in a DAG

We assume here that the length of each edge of G is 1, other-
wise we can subdivide an edge of length w into w edges of
length 1 (observe that de Bruijn graphs already satisfy this
property). Given G, we denote by Gd;dðs; tÞ the graph made
up of all the vertices and edges on all s-t paths inG of length
‘ 2 ½d� d; dþ d�. See Fig. 1 for two graphs Gd;dðs; tÞ, built on
real read data for two gaps in the SGA assembly. The fol-
lowing lemma shows that we can compute Gd;dðs; tÞ within
the time bound OðdmÞ.
Lemma 1. Given a graph G ¼ ðV;EÞ, vertices s; t 2 V , and dis-

tance d and range d ¼ OðdÞ, the graph Gd;dðs; tÞ can be con-
structed in time OðdmÞ, wherem ¼ jEj.

Proof. Let aðv; ‘Þ equal 1 if there is an s-v path of length
‘ � dþ d, and 0 if no such path exists. Values að�; �Þ can
be computed in time OðdmÞ by dynamic program-
ming [25], [26].

Also, for every i 2 f0; . . . ; dþ dg, let Vi be the set of ver-
tices v of G such that there is an s-v path in G of length i,
and a v-t path of length in the interval ½maxð0; d� i� dÞ;
d� iþ d�. It is clear that V ðGd;dðs; tÞÞ ¼ [dþd

i¼0Vi.
To construct the sets Vi and the graph Gd;dðs; tÞ, we ini-

tialize Vdþd :¼ ftg if aðt; dþ dÞ ¼ 1, otherwise Vdþd :¼ ;
For the remaining values i 2 f0; . . . ; dþ d� 1g, in
decreasing order, we compute Vi as follows.

If i 2 ½d� d; dþ dÞ and aðt; iÞ ¼ 1, then initialize as
above Vi :¼ ftg, otherwise Vi :¼ ;. To Vi we add all in-
neighbors v of the vertices of Viþ1 for which aðv; iÞ ¼ 1
holds. During this computation we can also extract all
edges from such vertices v to vertices in Viþ1.

There are dþ dþ 1 sets Vi, thus each edge of G is
inspected at most OðdÞ times. Thus, the complexity of
computing Gd;dðs; tÞ is OðdmÞ. tu
Given Gd;dðs; tÞ, we compute the graph GSCC

d;d ðs; tÞ of

strongly connected components of Gd;dðs; tÞ. The graph
GSCC

d;d ðs; tÞ is usually defined to have as vertices, sets of verti-
ces of Gd;dðs; tÞ, i.e., its strongly connected components.
However, to simplify notation, if a strongly connected com-
ponent of Gd;dðs; tÞ consists of a single vertex v, we consider
that the corresponding vertex of GSCC

d;d ðs; tÞ is v, instead
of fvg. Such strongly connected component will be called
trivial. Overloading notation, we denote by s also the vertex
of GSCC

d;d ðs; tÞ corresponding to the strongly connected
component of Gd;dðs; tÞ to which s belongs, and similarly for
t. By the construction of Gd;dðs; tÞ, the undirected graph
underlying GSCC

d;d ðs; tÞ is connected, s is the unique source of
GSCC

d;d ðs; tÞ and t is the unique sink of GSCC
d;d ðs; tÞ. Moreover,

it is a standard result that GSCC
d;d ðs; tÞ is a DAG and can be

computed in time linear in the size of Gd;dðs; tÞ [31].
The following lemma is the key for transferring sub-

paths of all s-t paths in GSCC
d;d ðs; tÞ to safe paths in G. See also

Fig. 3.

Fig. 2. Top: A directed graph G with all edges of weight 1. The three s-t
paths in G of length 7 are drawn in light gray, dark gray, and black.
The maximal paths that are sub-paths of all these three paths are ðsÞ,
ðf; g; hÞ and ðh; tÞ. Bottom: The gap filling solution is an arbitrary s-t path
of length d, in which these three safe sub-paths are marked (e.g., in
upper-case): SbdeFGHT .
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Lemma 2. Let P be a path in GSCC
d;d ðs; tÞ that is a sub-path of all

s-t paths in GSCC
d;d ðs; tÞ, and let Q be a sub-path of P made up

of only vertices corresponding to trivial strongly connected
components of Gd;dðs; tÞ. Then Q is a sub-path of all s-t paths
of Gd;dðs; tÞ of length in the interval ½d� d; dþ d�.

Proof. It is enough to show that Q is a sub-path of all s-t
paths of Gd;dðs; tÞ, since among the s-t paths of Gd;dðs; tÞ
there are also all those of all lengths in ½d� d; dþ d�. To
show this, let R be an arbitrary s-t path in Gd;dðs; tÞ. Let
RSCC be the path in GSCC

d;d ðs; tÞ made up of those strongly
connected components whose vertices are used by R
(observe that RSCC is indeed an s-t path in GSCC

d;d ðs; tÞ). By
the assumption on P , we have that P is a sub-path of
RSCC . By transitivity, it follows that also Q is a sub-path
of RSCC . Since Q is made up of only vertices correspond-
ing to trivial strongly connected components of Gd;dðs; tÞ,
we get that Q is a sub-path of R. tu
Wewill now show that all such paths P fromLemma 2 can

be found efficiently, using Tarjan’s algorithms for finding all
bridges and cut vertices of an undirected graph [11], [32].

Theorem 1. LetH ¼ ðV;EÞ be a DAG, with a unique source s, a
unique sink t, and where the undirected graph underlying it is
connected. We can find all maximal paths that are sub-paths of
all s-t paths ofH in time OðmÞ, wherem ¼ jEj.

Proof. It is enough to find all vertices and edges that appear
on all s-t paths of H; we can then pick an arbitrary s-t
path P and remove from P those edges e and those verti-
ces v (and edges incident to v) that do not appear on all
s-t paths ofH.

Let HU be the undirected graph underlying H. Recall
that a bridge in HU is an edge whose removal makes HU

disconnected, and a cut vertex is a vertex whose removal
makes HU disconnected. We now prove that an edge e
appears on all s-t paths of H if and only if the corre-
sponding undirected edge eU ofHU is a bridge.

ð)Þ Suppose that e appears on all s-t paths ofH. Since
s is a source and t is a sink, then any undirected s-t path
in HU must be directed from s to t in H. Therefore, eU

also belongs to all undirected s-t simple paths in HU .
Therefore, removing eU disconnects s and t, and thus H.
Therefore, eU is a bridge.

ð(Þ Let e be an edge of H and suppose that the undi-
rected edge eU ofHU is a bridge. Suppose for a contradic-
tion that there is an s-t path P in H on which e does not

appear, and let PU be the corresponding undirected
path in HU . In any DAG with a unique source s and a
unique sink t, for every vertex v there is an s-v path Pv and

a v� t pathQv. Let P
U
v andQU

v be the corresponding undi-

rected s� v and v� t paths in HU . By removing eU from

HU , at least one of PU
v orQU

v still remains inHU � feUg, for
every vertex v. Moreover, PU is still a path of HU � feUg,
since e does not appear on P . In summary, from every ver-

tex v there is a path inHU � feUg to either s or t, and s and

t are connected by a path in HU � feUg. Thus, HU is con-

nected, which contradicts the fact that eU is a bridge ofHU .
In an entirely analogous manner we can prove that a

vertex v appears on all s-t paths of H if and only if v is a
cut vertex of HU . All bridges and cut vertices of HU can
be found in time OðmÞ using Tarjan’s algorithms [11],
[32], which gives the desired result. tu
The safe algorithm for the gap filling problem, running in

time OðdmÞ, is summarized in Algorithm 1. It starts by com-
puting the graph Gd;dðs; tÞ made up of all the vertices and
edges of G on all s-t path of all lengths ‘ 2 ½d� d; dþ d�. It
then considers its graphGSCC

d;d ðs; tÞ of strongly connected com-
ponents, and finds, using Theorem 1, all paths of GSCC

d;d ðs; tÞ
common to all s-t paths of GSCC

d;d ðs; tÞ. By Lemma 2 we know
that these paths are safe for the gap filling problem.

Algorithm 1. An Efficient Safe Algorithm for the Gap
Filling Problem

INPUT: A directed graph G, two vertices s and t, a length d
and a range d.
OUTPUT: An s-t path of length ‘ 2 ½d� d; dþ d� in G with
some vertices and edges belonging to all s-t of all lengths
‘ 2 ½d� d; dþ d�marked.______________________________________________________

1 compute Gd;dðs; tÞ; (by Lemma 1)
" all s-t paths of length ‘ 2 ½d� d; dþ d� in G are also s-t paths of
length ‘ in Gd;dðs; tÞ, but Gd;dðs; tÞ may also have other s-t paths;

2 compute GSCC
d;d ðs; tÞ; (using [31])

" Lemma 2 tells how sub-paths of all s-t paths ofGSCC
d;d ðs; tÞ induce

sub-paths of all s-t paths of all lengths ‘ 2 ½d� d; dþ d� in G;
" To find all sub-paths of all s-t paths of GSCC

d;d ðs; tÞ we apply the
proof of Theorem 1, as follows:

3 compute the set B of bridges of the undirected graph under-
lying GSCC

d;d ðs; tÞ; (using [32])
4 compute the set C of cut vertices of the undirected graph

underlying GSCC
d;d ðs; tÞ; (using [11])

5 find one s-t path P inGwhose length belongs to ½d� d; dþ d�;
(i.e., solve Problem EPL)

6 mark as safe the edges of P belonging to B;
7 mark as safe the vertices of P corresponding to trivial

strongly connected components and belonging to C;
8 return P .

3 IMPLEMENTATIONS

We implemented the algorithm described in Section 2.2 as
version 2.1 of Gap2Seq [25], [26], which is our tool for filling
gaps in scaffolds.

Gap2Seq v1.0 [25], [26] builds a de Bruijn graph of order
k from all the reads, in which all k-mers have abundance at
least r, using GATB [6]. We used the default values (k ¼ 31
and r ¼ 2) on the bacterial data sets and k ¼ 61 and r ¼ 2 on

Fig. 3. The DAGGSCC
d;d ðs; tÞ of strongly connected components ofGd;dðs; tÞ.

Here, G is the graph from Fig. 2, and Gd;dðs; tÞ is the subgraph of G made
up only of all those vertices and edges on all s-t paths ofG of length d ¼ 7.
In this example, we assume d ¼ 0. The only non-trivial strongly connected
component of Gd;dðs; tÞ is fh; i; jg. The paths ðsÞ and ðf; g; fh; i; jg; tÞ, in
gray, are the maximal sub-paths of all s-t paths of GSCC

d . Their sub-paths
ðsÞ, ðf; gÞ and ðtÞ, dashed black lines, are the maximal ones made up only
of vertices corresponding to trivial strongly connected components of
Gd;dðs; tÞ. They are also sub-paths of all s-t paths ofG of length d.
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the human chromosome 14 data. For each gap, it locates
in the de Bruijn graph the last e k-mers (default e ¼ 10)
of the left flanking contig (and adds s as in-neighbor of
these vertices), and the first e k-mers of the right flanking
contig (and adds t as out-neighbor of these vertices).
It then computes the values aðv; ‘Þ equalling 1 if there is
an s-v path of length ‘, and 0 if no such path exists
(recall proof of Lemma 1).

It then finds the value d0 that is closest to the estimated
gap length (i.e., marked by N’s inside the scaffold) and for
which there is at least one s-t path of length d0. This value d0

is the one used in later steps. If no such value exists within a
user specified distance d to the gap length estimate (default
d ¼ 500), then the gap is left unfilled. Gap2Seq v1.0 traces
back in this dynamic programming table an arbitrary s-t
path of length d0 (see [25], [26] for further implementation
details and optimizations).

Gap2Seq v2.1 uses the values aðv; ‘Þ computed previ-
ously, for all ‘ � dþ d, to construct the graph Gd;dðs; tÞ and
continue as in Algorithm 1. The default value for d is, as
above, d ¼ 500. It then outputs the spelling of an arbitrary
s-t path P of length d0, where d0 is chosen as above for
Gap2Seq v1.0. However, in the spelling of P safe bases are
now marked in upper-case, and un-safe ones in lower-case.
A base is considered safe if at least one k-mer (i.e., vertex in
the de Bruijn graph) containing that base has been classified
as safe. Otherwise a base is considered un-safe.

Gap2Seq v2.1 runs in parallel on the gap level, whereas
Gap2Seq v1.0 is parallelized only on the scaffold level. We
included a parameter (-all-upper) in Gap2Seq v2.1 which
omits running Algorithm 1 and reports all filled bases in
upper case, thus mimicking the behavior of Gap2Seq v1.0. In
the experimental results Gap2Seq Safe denotes Gap2Seq
v2.1 with default parameters and Gap2Seq denotes Gap2Seq
v2.1 run with the -all-upper parameter.

We compared the quality of our method to other tools for
filling gaps in scaffolds, namely GapFiller [1], SOAP-
denovo’s [14] stand alone tool GapCloser, and Sealer [21]
(part of the ABySS distribution). GapFiller v1.10 and Gap-
Closer v1.12 were run with default parameters. GapFiller
accepts either BOWTIE or BWA read alignments to the con-
tigs, and we tested both versions. Sealer v1.9 was run as
suggested in the manual (using parameters -k90 -k80

-k70 -k60 -k50 -k40 -k30 -j 8 -P 10). Thus, Sealer
builds different de Bruijn graphs for k 2 f90; 80; . . . ; 30g,
and for each instance it runs the gap filler Konnector [36]. It
then merges all gap filling solutions into a single solution.
Parameter P ¼ 10, suggested by the manual, forces Konnec-
tor to fill a gap only if there are at most 10 s-t paths. We also
tested other larger values of P , but P ¼ 10 gave the best
results: see Section 4.4.

For GapFiller and GapCloser, all bases in filled gaps were
considered safe because the tools do not differentiate
between safe and unsafe bases. Sealer outputs ambiguous
bases using IUPAC codes and so we considered bases out-
putted as A, C, G or T as safe, and all other bases as unsafe.
For Gap2Seq Safe we consider only bases that were declared
safe by Algorithm 1. We also implemented a version of
Gap2Seq in which we fill a gap only if there is a unique s-t
path of length d [40], and declare all its bases as safe, which
we call Gap2Seq Unique.

4 EXPERIMENTAL EVALUATION

We experimented with the data sets from the GAGE bench-
mark [27], using the scaffolds produced by nine genome
assemblers for Staphylococcus aureus, Rhodobacter sphaeroides
and human chromosome 14 data (hereafter called staph,
rhodo, and human14, respectively). The GAGE read sets
from these organisms are described in Table 1. See the GAGE
study [27] for details on the nine assemblers and their scaf-
folds. We report aggregate results over scaffolds produced
by different assemblers. The detailed results for scaffolds
produced by each assembler are available in the Supplemen-
tary Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2017.2785831. All experiments were run on a
32 GB RAMmachinewith 8 cores.

As observed in [26], the quality of the gap filling results
heavily depends on the quality of the previous contig
assembly and scaffolding steps. Thus, as done in [26], we
will divide the results on human14 depending on the qual-
ity of the initial assembly. We classified these initial assem-
blies as: conservative, if they have less than 10 misassemblies
(ABySS and SGA),moderate, if they have less than 100 misas-
semblies (ABySS2, Allpaths-LG, CABOG), and aggressive
otherwise (Bambus2, MSR-CA, SOAPdenovo, Velvet). From
the Supplementary Material, available online, one can also
observe that all aggressive assemblies had in fact more than
1,000 misassemblies, and also most bacterial assemblies fall
into the conservative category.

4.1 Evaluating the Practical Strategy from
Section 2.2

Reducing Gd;dðs; tÞ to its DAG of strongly connected com-

ponents GSCC
d;d ðs; tÞ makes unretrievable the safe paths

inside non-trivial strongly connected components. How-
ever, as shown in Table 2, most of the graphs Gd;dðs; tÞ
do not contain any non-trivial strongly connected com-
ponents (i.e., they are DAGs themselves and GSCC

d;d ðs; tÞ ¼
Gd;dðs; tÞ).

Next, we tested howmuch overhead Algorithm 1 adds to
the running time of Gap2Seq, by measuring the wall clock
running time and the peak memory usage of both Gap2Seq
and Gap2Seq Safe on the bacterial genomes (Table 3). We
observe that the runtime increases by less than 25 percent.
The increase in runtime is largely due to Gap2Seq Safe
searching for all paths in the interval ½d� d; dþ d�, whereas
Gap2Seq does not need to look for paths that deviate from d
more than the optimal solution.

TABLE 1
Read Data Sets Used in the Evaluation

Organism Library Mean
insert size

SD of
insert size

Read
length

Coverage

staph short frag 180 30 101 45x
staph long frag 3,500 300 37 45x
rhodo short frag 180 30 101 45x
rhodo long frag 3,500 300 101 45x
human14 short frag 155 20 101 42x
human14 long frag 2,500 381 101 26x
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4.2 Evaluating the Filled Sequence

4.2.1 Global Evaluation

There are two perspectives of evaluating the filled scaffolds.
The first one is to evaluate the quality of the entire filled
scaffold. This can be done by aligning it to the reference
genome and measuring overall assembly metrics with a tool
like QUAST [10]: e.g., NGA50 [27] and the number of misas-
semblies. In this case, it is undesirable to mask the unsafe
bases with N’s, since the safe bases may form too short
sequences to be aligned reliably. This could lead to, e.g.,
artificially decreasing the NGA50 value or increasing the
number of misassemblies. Recall also that gaps usually arise
in complex, often repeated regions of the genome, making
their alignment even more difficult. Thus, the safe bases
outputted by Gap2Seq Safe cannot be used alone (i.e., with-
out the unsafe ones) for a global assembly evaluation. Con-
sidering both safe and unsafe bases is equivalent to the
output of Gap2Seq v1.0.

In [25], [26] we performed a global assembly evaluation
usingQUAST v2.3 [10] for GapCloser, GapFiller andGap2Seq

v1.0. In the Supplementary Material, available online, of
this paper we complement that evaluation with Sealer’s
results. Recall that Sealer outputs ambiguous bases using
IUPAC codes. For the same reason that we cannot use only
safe bases in an overall evaluation, we replaced each such
IUPAC code with one of the bases it encodes, at random.
Sealer offers no other conversion indication, and this is
also inline with e.g., Gap2Seq, which chooses a filling s-t
path at random.

Tables 2 and 3 from the Supplementary Material, avail-
able online, show that Gap2Seq v1.0 generally outper-
forms also Sealer on the bacterial data sets. Tables 4, 5,
and 6 from the Supplementary Material, available online,
show that on the human14 data set Gap2Seq v1.0 outper-
forms Sealer on the conservative assemblies, whereas
Sealer is better on the aggressive assemblies. See [26] for a
detailed discussion on such an evaluation. These tables
also contain the absolute numbers on the length of all
gaps in the original assemblies, and the length of the filled
sequences.

TABLE 2
Statistics of the Extracted Subgraphs Gd;dðs; tÞ ¼ ðVd;dðs; tÞ; Ed;dðs; tÞÞ and GSCC

d;d ðs; tÞ ¼ ðV SCC
d;d ðs; tÞ; ESCC

d;d ðs; tÞÞ
on the Staph, Rhodo, and Human14 Data Sets

Organism Gaps Gap
Length

jVd;dðs; tÞj jEd;dðs; tÞj Nontrivial SCCs
in Gd;dðs; tÞ

Vertices in nontrivial
SCCs in Gd;dðs; tÞ

jV SCC
d;d ðs; tÞj jESCC

d;d ðs; tÞj

staph 853 423.0 1,030.8 1,043.2 0.197 417.5 613.5 617.2
rhodo 776 459.0 1,184.0 1,268.0 0.084 318.4 865.6 871.3
human14 33,568 234.0 11,276.1 11,570.8 0.230 8,404.5 2,871.9 2,934.7

The presented numbers are averages over the graphs Gd;dðs; tÞ and GSCC
d;d ðs; tÞ constructed on all gaps on all assemblies.

TABLE 3
Sum of Running Times and Peak Memory Usage over All Assemblies

staph rhodo human14

Gap filler Runtime
(s)

Peak memory
(GB)

Runtime
(s)

Peak memory
(GB)

Runtime
(s)

Peak memory
(GB)

GapCloser 220 0.747 272 0.609 17,630 11.982
GapFiller Bowtie 2,308 0.175 4,277 0.244 237,328 3.725
GapFiller BWA 4,034 0.195 10,371 0.260 364,425 3.731
Gap2Seq 454 0.531 35,732 16.675 5,399,851 28.219
Gap2Seq Safe 567 0.528 41,652 16.125 6,108,602 28.182
Sealer 1,167 0.528 1,524 0.528 39,461 0.646

TABLE 4
The Ratio of Bases in Unaligned Filled Gaps over the Total Number of Filled Bases (Columns “% of Total Filled”),

and over the Total Number of Gap Bases in the Original Scaffolds (Columns “% of Total Gap”) Aggregated
over All Assemblies for Which the Methods Could Run

Gap filler staph rhodo human14 (conservative) human14 (moderate) human14 (aggressive)

% of % of % of % of % of % of % of % of % of % of

total filled total gap total filled total gap total filled total gap total filled total gap total filled total gap

GapCloser 16% 8% 37% 2% 28% 15% 32% 12% 60% 12%
GapFiller Bowtie 63% 9% 69% 2% 53% 27% 61% 11% 81% 20%
GapFiller BWA 57% 10% 64% 4% 52% 29% 65% 15% 83% 27%
Gap2Seq 14% 12% 7% 2% 5% 1% 25% 5% 33% 1%

Sealer 11% 4% 1% 0% 1% 0% 7% 0% 13% 1%
Gap2Seq Safe 15% 12% 8% 2% 5% 1% 26% 5% 33% 1%
Gap2Seq Unique 0% 0% 0% 0% 0% 0% 0% 0% 19% 0%
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4.2.2 Gap-Level Evaluation

The second perspective is to evaluate how correct are the
bases reported as safe. This pertains especially to Gap2Seq
Safe, Gap2Seq Unique and Sealer. As mentioned above, we
cannot align to the reference safe sequences alone, because
they may be too short to be aligned reliably. Therefore,
using again QUAST v2.3 [10] we produced alignments to
the reference of the entire filled scaffolds. These scaffolds
were the ones with both safe and unsafe bases for Gap2Seq
Safe, and with IUPAC codes converted to bases for Sealer,
as explained above. For Gap2Seq Unique, all bases are
safe by definition. As mentioned before, for GapFiller,
GapCloser and Gap2Seq v1.0 we considered all bases as
being safe. For each tool, we classified each filled gap as:

� aligned: if QUAST reported an alignment of the gap
filling sequence together with its flanking 100 bases
on both sides from the filled scaffold; if a gap is
closer than 100 bases from the extremity of the scaf-
fold, the flank is that sequence until the extremity;

� unaligned: otherwise.
This alignment condition ensures that the filling sequence

truly belongs between the corresponding flanking contigs.
For example, we want to classify as an error a safe sequence
in the middle of a gap that has no occurrence in the reference
between its two flanking contigs. Recall again that gaps often
correspond to repeated regions.

In Table 4 we show how many filled gap bases belong
to unaligned filling sequences. When unable to fill a gap
completely, GapCloser and GapFiller attempt to find a par-
tial filling sequence by extending the flanking sequences.
QUAST is unable to form continuous alignments for such

partially filled gaps and thus, GapCloser and GapFiller pro-
duce larger amounts of filled bases that are not aligned
according to the above criteria. When compared to methods
producing only complete filling sequences (Sealer and
Gap2Seq Unique), Gap2Seq Safe is the method penalized
the most by this additional correctness condition. Nonethe-
less, we will see below that its performance over all gaps
(aligned, unaligned or unfilled) is still better than Sealer’s
and Gap2Seq Unique’s on the bacterial data sets and on con-
servative human assemblies.

Having an aligned filled sequence, we counted how many
of its safe bases match the corresponding bases in the refer-
ence genome. Each such match was considered a correct safe
base. An incorrect safe base is thus one that either does not
belong to an aligned filling sequence, or it does not match
the base to which it was aligned. Having these numbers, we
computed the following accuracy metrics:

� precision = #correct safe bases / #safe bases, where “#safe
bases” is the total number of bases declared safe
(in both aligned or unaligned filled gaps); thus preci-
sion measures how many of all safe bases appear in
an aligned filling sequence and match the corre-
sponding characters in the reference;

� recall = #correct safe bases / #total gap bases, where “#total
gap bases” is the total number of gap bases (i.e., char-
actersN) in the original input scaffolds, independently
of whether they were aligned, unaligned or unfilled;
thus recall measures how many of all original gap
bases appear as safe in an aligned filling sequence,
and also match the corresponding characters in the
reference.

TABLE 5
Precision and Recall

Gap filler staph rhodo human14 (conservative) human14 (moderate) human14 (aggressive)

precision recall precision recall precision recall precision recall precision recall

GapCloser 0.839 0.449 0.587 0.027 0.714 0.379 0.660 0.242 0.390 0.079

GapFiller Bowtie 0.365 0.049 0.296 0.008 0.459 0.232 0.378 0.069 0.186 0.045
GapFiller BWA 0.424 0.078 0.341 0.020 0.478 0.269 0.339 0.078 0.171 0.056
Gap2Seq 0.841 0.668 0.918 0.205 0.947 0.243 0.732 0.138 0.663 0.026

Sealer 0.891 0.291 0.979 0.034 0.986 0.120 0.922 0.057 0.869 0.039

Gap2Seq Safe 0.952 0.503 0.949 0.172 0.968 0.216 0.795 0.089 0.763 0.022
Gap2Seq Unique 1.000 0.250 0.996 0.063 0.995 0.090 0.989 0.006 0.811 0.012

We show aggregate values over all assemblies. Sealer was run for a week on the SGA assembly of staph and it did not finish. The gaps in the SGA assembly of staph on
which Sealer did not finish running were not used to penalize its recall. We marked in bold the best results among rows 1–4, and among rows 5–8, respectively.

TABLE 6
Precision and Recall of Gap2Seq Safe and Sealer, When Restricted to Gaps Where Gap2Seq Finds More Than 10 s-t

Paths of Length ‘ 2 ½d� d; dþ d�

Gap2Seq Safe Sealer

Data set No. of gaps Sum of gap lengths Precision Recall Precision Recall

staph 263 (23%) 157,828 (36%) 0.858 0.365 0.873 0.227
rhodo 143 (5%) 122,529 (8%) 0.802 0.443 0.958 0.077
human14 conservative 2,370 (11%) 911,254 (7%) 0.879 0.693 0.968 0.238
human14 moderate 1,175 (12%) 647,165 (15%) 0.751 0.427 0.852 0.113
human14 aggressive 4,265 (5%) 1,063,668 (1%) 0.615 0.391 0.913 0.265

The percentages in columns 2 and 3 indicate the ratio of the total number of gaps, and of the total gap length of the assembly, respectively. Recall is relative to
these gaps with more than 10 paths.
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Intuitively, precision measures how correct the safe
bases are, and recall measures how much of all the gaps
of the original scaffolds was filled correctly by safe bases.
Ultimately, recall is the most important metric, but at the
same time bases should be declared safe with a high pre-
cision. See Table 5 and Fig. 4 for results on precision and
recall.

4.3 Evaluating Complex Gaps

We also evaluated how many gaps have more than 10 s-t
paths of length ‘ 2 ½d� d; dþ d�, their proportion of all
the gaps, and what is the precision and recall of Gap2Seq
Safe and Sealer on these gaps. We chose the value 10
because this is the value of the parameter P for which Sealer
gave best results. See Table 6.

4.4 Evaluating Sealer for Multiple Bounds on the
Number of Filling Paths

We studied how Sealer’s performance is influenced by the
parameter P , the maximum number of s-t paths allowed
for a gap to be filled. Sealer’s manual suggests setting
P ¼ 10, but we tested P 2 f10; 100; 1000; 10000g. As we
can see from Table 7, the results do not improve for larger
P . This behavior might be due to the heuristic strategy of
computing an iterative alignment of the increasing num-
ber of possible filling sequences of a gap. Sealer’s running
time for varying P might also be explained by the addi-
tional internal choice that Sealer makes concerning the de
Bruijn graph with which it works (recall that it tries
k 2 f90; 80; . . . ; 30g). Since P ¼ 10 gives the best results,
all other experimental results concerning Sealer refer only
to parameter P ¼ 10.

5 DISCUSSION

5.1 Bacterial Data Sets

Among the gap fillers that do not differentiate between safe
and unsafe bases (GapCloser, GapFiller and Gap2Seq),
Gap2Seq has the best overall precision and recall, with
almost double precision and almost 8 times better recall on
the rhodo data set. This is consistent with our previous
results [25], [26] and due to the fact that we look for paths in
the entire de Bruijn graph between the gap flanks, and that
we are guided by the gap length estimate. However, we
note that the precision and recall of GapCloser and GapFil-
ler are adversely affected by the high proportion of
unaligned bases, as noted in Section 4.2.2. Nevertheless, as
discussed in Section 4.2.1 and Supplementary Material,
available online, Gap2Seq globally outperforms GapCloser
and GapFiller.

Gap2Seq Unique provides a baseline for the performance
of gap fillers distinguishing between safe and unsafe bases
as even a simple method should be able to classify as safe
gaps with a unique path. The precision of Gap2Seq Unique
is very high but its recall, especially on rhodo, is low.

On the staph data Gap2Seq Safe has a higher precision
than Sealer, but on the rhodo assemblies the precision of
Sealer is higher. However, the overall recall of Gap2Seq
Safe is clearly better than the recall of Sealer: 73 percent bet-
ter recall on staph, and 406 percent better recall on rhodo.
Our experiments suggest this is the case because Gap2Seq
Safe scales to gaps where the number of paths is large.
Indeed, Table 6 (and recall also Fig. 1) shows that a non-
negligible proportion of the total gap length is complex, and
Gap2Seq Safe has a precision and recall consistent with the
full results. Table 6 shows that Sealer is able to deal with

Fig. 4. Precision and recall of the gap fillers for each assembly of staph, rhodo, and human14. See the supplementary material, available online, for
the exact values for each assembly.

TABLE 7
Precision, Recall, and Total Running Time of Sealer, over All Assemblies on Staph and Rhodo,

for Varying Values of its P Parameter

staph rhodo

P Precision Recall Runtime (s) Precision Recall Runtime (s)

10 0.891 0.291 1,167 0.979 0.034 1,524
100 0.680 0.274 893 0.863 0.034 1,532
1,000 0.683 0.278 931 0.780 0.033 2,785
10,000 0.681 0.278 918 0.774 0.033 1,578
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some of these complex gaps because it tries filling them for
multiple values of k. However, especially on the rhodo data
set, the recall of Sealer is low. Note that the same heuristic
strategy of using multiple values of k could also be applied
to Gap2Seq, but then it is harder to definewhat a safe base is.

Comparing the best of the above two categories (i.e.,
Gap2Seq and Gap2Seq Safe), we observe that Gap2Seq Safe
is able to correctly classify as safe a large proportion of the
total gap length correctly retrievable by Gap2Seq. This
shows that our definition of safe filling path is a well-
motivated one. Recall also that the output of Gap2Seq Safe
also contains the unsafe bases. Thus the remaining sequen-
ces that add up to the recall of Gap2Seq come from bubbles
and other more complex regions of the assembly graph. We
leave it as future work to identify and extract the safe bases
from these regions. The precision of Gap2Seq Safe is better
than that of Gap2Seq on most assemblies, with a more sig-
nificant increase on staph than on rhodo.

5.2 Human14 Data Set

As observed also in [26], the results on human assemblies
heavily depend on the quality of the initial assembly. For
example, on the ABySS assembly (conservative), Gap2Seq
generally fills paths or reports that no path exists, whereas
on the SOAPdenovo assembly (aggressive), Gap2Seq aban-
dons many longer gaps because it exceeds the memory limit
[26, Fig. 5].

On the conservative and moderate assemblies, where
Gap2Seq outperforms Sealer in the global evaluation (recall
Section 4.2.1), we see that also Gap2Seq Safe generally out-
performs Sealer on the gap level evaluation (Table 5): on
conservative assemblies Gap2Seq Safe has almost double
recall, with a small drop in precision, and on moderate
assemblies Gap2Seq maintains the double recall, with a
larger drop in precision. This suggests that Sealer avoids
making wrong predictions by not filling complex gaps with
many paths. This interpretation is also supported by the
drop in recall. Similar to the results on bacterial genomes,
Table 6 shows that Gap2Seq Safe can fill many complex
gaps with safe bases correctly. Sealer is also able to fill some
of these gaps due to its strategy of trying multiple values of
k but it clearly has a lower recall than Gap2Seq Safe.

We also observe that Gap2Seq Safe has a similar
behavior with respect to Gap2Seq as in bacterial genomes.
Namely, the precision always increases, with only a slight
drop in recall.

To conclude, Gap2Seq Safe is naturally limited by the
performance of Gap2Seq, which is best seen on complex
gaps and on aggressive assemblies. On correct initial
human14 assemblies, Gap2Seq Safe shows a similar behav-
ior as in the bacterial data sets.

6 CONCLUSION

In this paper we studied safe (partial) solutions to a gap fill-
ing instance, and showed that they are well-motivated in
practice, especially on correct initial assemblies. Indeed, on
bacterial genomes and on conservative human assemblies,
our method can detect as reliable at least 73 percent more
gap bases as compared to the few previous methods distin-
guishing between ambiguous and unambiguous filling
bases, with a comparable precision level.

To improve the runtime of Gap2Seq, we could apply a
similar approach as when extending Gap2Seq for genotyp-
ing insertions [39]. Similar to GapFiller [1], for each gap we
would first determine a subset R0 of reads whose mates
align on the flanks of the gap. The traversal of the graph
when closing this particular gap would then be limited to
those vertices derived from the reads R0.

Our method outputs entire filling sequences—thus being
compatible with later downstream analyses—but it cannot
improve global assembly metrics such as NGA50. However,
by marking the safe bases, it can provide a more informed
answer on the gap filling sequence. This is a challenging
problem considering that gaps arise in complex regions of a
genome.

Gap2Seq 2.1 is freely available at http://www.cs.helsinki.
fi/u/lmsalmel/Gap2Seq/.
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