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Abstract
Rapid antidepressant effects of ketamine becomemost evident when its psychotomimetic effects subside, but the neurobiological
basis of this Blag^ remains unclear. Laughing gas (N2O), another NMDA-R (N-methyl-D-aspartate receptor) blocker, has been
reported to bring antidepressant effects rapidly upon drug discontinuation.We took advantage of the exceptional pharmacokinetic
properties of N2O to investigate EEG (electroencephalogram) alterations and molecular determinants of antidepressant actions
during and immediately after NMDA-R blockade. Effects of the drugs on brain activity were investigated in C57BL/6 mice using
quantitative EEG recordings. Western blot and qPCR were used for molecular analyses. Learned helplessness (LH) was used to
assess antidepressant-like behavior. Immediate-early genes (e.g., bdnf) and phosphorylation of mitogen-activated protein ki-
nase—markers of neuronal excitability—were upregulated during N2O exposure. Notably, phosphorylation of BDNF receptor
TrkB and GSK3β (glycogen synthase kinase 3β) became regulated only gradually upon N2O discontinuation, during a brain
state dominated by slow EEG activity. Subanesthetic ketamine and flurothyl-induced convulsions (reminiscent of electrocon-
vulsive therapy) also evoked slow oscillations when their acute pharmacological effects subsided. The correlation between
ongoing slow EEG oscillations and TrkB-GSK3β signaling was further strengthened utilizing medetomidine, a hypnotic-
sedative agent that facilitates slow oscillations directly through the activation of α2-adrenergic autoreceptors. Medetomidine
did not, however, facilitate markers of neuronal excitability or produce antidepressant-like behavioral changes in LH. Our results
support a hypothesis that transient cortical excitability and the subsequent regulation of TrkB and GSK3β signaling during
homeostatic emergence of slow oscillations are critical components for rapid antidepressant responses.
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Introduction

Major depression is a highly disabling condition, the most
significant risk factor for suicide and one of the biggest con-
tributors to the global disease burden [1]. Many patients re-
spond poorly to standard antidepressants, and with those who
do respond, the therapeutic effects become evident with a
considerable delay. Furthermore, the clinical diagnosis of ma-
jor depression and the treatments in current use are lacking
objective biomarkers [2].

The remarkable ability of NMDA-R (N-methyl-D-aspartate
receptor) blocker ketamine, a dissociative anesthetic drug, to
ameliorate depressive symptoms rapidly after a single
subanesthetic intravenous infusion has stimulated great enthusi-
asm among scientists and clinicians [3, 4]. Reported response
rates to ketamine are impressive, but many patients remain
treatment-refractory [3]. Therefore, extensive research efforts
have been invested to find predictive efficacy markers and to
uncover the precise pharmacological basis governing ketamine’s
antidepressant effects. Experimental evidence suggests that ke-
tamine increases glutamate release and enhances glutamatergic
AMPA-R (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor) function, which in turn augments synaptic plas-
ticity through the BDNF (brain-derived neurotrophic factor) re-
ceptor TrkB [5–10]. Indeed, positive allosteric AMPA-R mod-
ulators increase BDNF synthesis in the brain and produce
antidepressant-like effects in rodents [11]. Inhibition of
GSK3β (glycogen synthase kinase 3β), another molecular
event tightly connected with ketamine’s therapeutic effects
[12], also contributes to the enhanced AMPA-R function [13].

The antidepressant effects of subanesthetic ketamine become
most evident when its psychotropic actions and acute pharma-
cological effects on NMDA-R fade [3, 14], but the neurobiolog-
ical basis of this Blag^ remains unclear. Indeed, after systemic
administration, ketamine is readily distributed in the body and it
undergoes rapid elimination and metabolism [15]. Notably, a
recent animal study suggests that some of the metabolites of
ketamine, especially hydroxynorketamines that preferentially
act throughAMPA-R,may account for the antidepressant effects
of ketamine [16] (However, see 17). This hypothesis, however,
conflicts with earlier investigations emphasizing the critical role
of NMDA-R blockade and the promising clinical observations
with some other NMDA-R antagonists in depressed patients
[18]. Of these agents, nitrous oxide [19] (N2O, Blaughing gas^)
is particularly interesting since (in both mice and humans) it has
extremely fast kinetics and is essentially not metabolized in the
body. Notably, in this small pilot study conducted byNagele and
colleagues [20], the antidepressant effects of N2Owere observed
few hours after the gas administration, a time period when the
drug has been essentially eliminated from the body. Moreover,
rapid improvement of depression has been occasionally reported
after electroconvulsive therapy (ECT), a non-pharmacological
treatment where an electric pulse is delivered into the scalp

to induce transient epileptiform activity in the EEG
(electroencephalogram) [21]. Analogous effects are produced
by some pharmacological convulsants such as GABAA-R (γ-
aminobutyric acid receptor type A) antagonist flurothyl [22–24],
which are however no longer used in clinical practice.

Postictal (i.e., after seizure) emergence of slow EEG activ-
ity within the delta (1–4 Hz) and theta range (4–7 Hz) and/or
burst suppression pattern has been associated with the efficacy
and onset-of-action of Bconvulsive therapies^ [25].
Interestingly, acute administration of subanesthetic doses of
NMDA-R antagonists ketamine and MK-801 has also been
associated with gradual increases in slow EEG activity
[26–28]. These slow oscillations are thought to emerge as a
homeostatic response of neuronal networks to the preceding
cortical excitation, which in the case of ketamine is suggested
to result from the preferential inhibition of NMDA-R located
on inhibitory interneurons and the following disinhibition of
pyramidal neurons [9, 29, 30]. Notably, slow oscillations are
characteristic of deep NREM (non rapid-eye movement) sleep
and can also be increased directly and without preceding cor-
tical excitation with diverse hypnotic/sedative agents [31].
One of these drugs is medetomidine, a selective α2-adrenergic
autoreceptor agonist commonly used to produce sedation and
anesthesia in veterinary medicine.

To provide a better understanding of the rapid antidepressant
mechanisms, we took advantage of the rapid pharmacokinetic
and dynamic properties of N2O to investigate potential shared
EEG alterations and the regulation of the molecular determi-
nants of antidepressant actions during and after NMDA-R
blockade. Our findings suggest that N2O, similarly to that with
subanesthetic ketamine and fluorothyl, produces a transient pe-
riod of cortical excitation during gas administration which is
followed by rebound emergence of homeostatic slow EEG os-
cillations after the gas flow is suspended. Most interestingly,
TrkB and GSK3β signaling alterations remain unchanged dur-
ing N2O exposure but are evoked gradually upon gas discon-
tinuation along with slow oscillations. The positive correlation
between the emergence of slow EEG oscillations and TrkB and
GSK3β signalingwas further strengthenedwithmedetomidine.
Medetomidine did not, however, facilitate markers of neuronal
excitability or produce antidepressant-like behavioral changes
in LH. This study supports a hypothesis that transient cortical
excitability and the subsequent regulation of TrkB and GSK3β
signaling during rebound slow oscillations are critical compo-
nents for rapid antidepressant responses.

Methods and Materials

Animals

Adult C57BL/6JRccHsd mice (Harlan Laboratories, Venray,
the Netherlands) were used. Animals were maintained in the
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animal facility of University of Helsinki, Finland, under stan-
dard conditions (21 °C, 12-h light-dark cycle) with free access
to food and water. The experiments were carried out according
to the guidelines of the Society for Neuroscience and were
approved by the County Administrative Board of Southern
Finland (License: ESAVI/10527/04.10.07/2014).

Pharmacological Treatments and Sample Collection

Medical grade N2O (Livopan 50% N2O/O2 mix, Linde
Healthcare; Niontix 100% N2O, Linde Healthcare) and med-
ical grade oxygen (Conoxia 100%O2, Linde Healthcare) were
mixed with 100%N2O to achieve > 50% N2O concentrations.
After habituation to the experimental conditions, the gas was
administered into airtight Plexiglass chambers (for biochemi-
cal analyses (width × length × height): 14 cm × 25 cm × 9 cm;
for biochemical and EEG analyses: 11.5 cm × 11.5 cm ×
6.5 cm) with a flow rate of 4–8 l/min. O2 or room air was used
as control gas.

To induce myoclonic seizures, 10% flurothyl liquid (in
90% ethanol; Sigma-Aldrich) was administered into the cot-
ton pad placed inside the lid of an airtight Plexiglass chamber
(13 cm × 13 cm × 13 cm) at the flow rate of 100–200 μl/min
until the mice exhibited seizures. The lid was removed to
terminate the seizure. Animals were euthanized at indicated
times post-seizure. Ethanol solution was given for the sham
animals.

Ketamine-HCl (7.5–10 mg/kg; Ketaminol®, Intervet
International B.V.) and medetomidine-HCl (0.05–0.3 mg/kg,
i.p./s.c.; Domitor®, Orion Pharma) were diluted in isotonic
saline solution and injected intraperitoneally with an injection
volume of 10 ml/kg.

Animals were euthanized at indicated times after the treat-
ments by rapid cervical dislocation followed by decapitation.
No anesthesia was used due to its potential confounding ef-
fects on the analyses [32, 33]. Bilateral medial prefrontal cor-
tex (including prelimbic and infralimbic cortices) was rapidly
dissected on a cooled dish and stored at − 80 °C.

Western Blotting and Quantitative RT-PCR

For western blotting, the brain samples were homogenized in
lysis buffer (137 mM NaCl, 20 mM Tris, 1% NP-40, 10%
glycerol, 48 mM NaF, H2O, Complete inhibitor mix
(Roche), PhosStop (Roche)) [33]. After ~ 15 min incubation
on ice, samples were centrifuged (16,000×g, 15 min, + 4 °C)
and the resulting supernatant collected for further analysis.
Sample protein concentrations were measured using Bio-
Rad DC protein assay (Bio-Rad Laboratories, Hercules,
CA). Proteins (40–50 μg) were separated with SDS-PAGE
under reducing and denaturing conditions and blotted to a
PVDF membrane as described. Membranes were incu-
bated with the following primary antibodies (see (32)):

anti-p-TrkB (#4168; 1:1000; Cell signaling technology
(CST)), anti-TrkB (1:1000; #4603, CST), anti-Trk (sc-11;
1:1000; Santa Cruz Biotechnology (SCB);), anti-p-CREB
(#9191S; 1:1000; CST), anti-p-p70S6K (#9204S; 1:1000;
CST), anti-p-GSK3βS9 (#9336; 1:1000; CST), anti- p-p44/
42-MAPKThr202/Y204 (#9106, 1:1000, CST), anti-GSK3β
(#9315, 1:1000, CST), anti-p70S6K (#2708, 1:1000, CST)
anti-p44/42-MAPK (#9102, 1:1000, CST), and anti-GAPDH
(#2118, 1:10000, CST). Further, the membranes were washed
with TBS/0.1% Tween (TBST) and incubated with horserad-
ish peroxidase conjugated secondary antibodies (1:10000 in
non-fat dry milk, 1 h at room temperature; Bio-Rad). After
subsequent washes, secondary antibodies were visualized
us ing enhanced chemi luminescence (ECL Plus ,
ThermoScientific, Vantaa, Finland) for detection by Biorad
ChemiDoc MP camera (Bio-Rad Laboratories, Helsinki,
Finland).

For qPCR, total RNA of the sample was extracted using
Trizol (Thermo Scientific) according to the manufacturer’s
instructions and treated with DNAse I mix. mRNA was re-
verse transcribed using oligo (dT) primer and SuperScript III
Reverse Transcriptase mix (Thermo Scientific). The amount
of cDNA was quantified using real-time PCR. The primers
used to amplify specific cDNA regions of the transcripts are
shown in Table S1. DNA amplification reactions were run in
triplicate in the presence of Maxima SYBRGreen qPCR mix
(Thermo Scientific). Second derivate values from each sample
were obtained using the LightCycler 480 software (Roche).
Relative quantification of template was performed as de-
scribed previously using standard curve method, with cDNA
data being normalized to the control Gapdh and ß-actin level.

EEG Recordings and Data Analysis

For the implantation of electrodes, mice were anesthetized
with isoflurane (3% induction, 1.5–2% maintenance).
Lidocaine (10 mg/ml) was used as local anesthetic and
buprenorphine (0.1 mg/kg, s.c.) for postoperative care. Two
epidural screw EEG (electroencephalogram) electrodes were
placed above the fronto-parietal cortex. A further screw served
as mounting support. Two silver wire electrodes were im-
planted in the nuchal muscles to monitor the EMG (electro-
myogram). After the surgery, mice were single-housed in
Plexiglas boxes. After a recovery period of 5–7 days, animals
were connected to flexible counterbalanced cables for EEG/
EMG recording and habituated to recording cables for 3 days.

Baseline EEG (10–15 min) recordings of awake animals
were conducted prior the treatments. All injection treatments
were conducted in the animal’s home cages during light peri-
od. N2O treatment was delivered in homemade anesthesia
boxes for indicated time periods with a flow rate of 8 l/min.
The EEG and EMG signals were amplified (gain 5 or 10 K)
and filtered (high pass: 0.3 Hz; low pass 100 Hz; notch filter)
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with a 16-channel AC amplifier (A-M System, model 3500),
sampled at 254 Hz or 70 Hz with 1401 unit (CED), and re-
corded using Spike2 (version 8.07, Cambridge Electronic
Devices). The processing of the EEG data was obtained using
Spike2 (version 8.07, Cambridge Electronic Devices). EEG
power spectra were calculated within the 1–50 Hz frequency
range by fast Fourier transform (FFT = 256, Hanning window,
1.0 Hz resolution). Oscillation power in each bandwidth (del-
ta = 1–4 Hz; theta = 4–7 Hz; alpha = 7–12 Hz; beta = 12–
25 Hz; gamma low = 25–40 Hz; gamma high = 60–100 Hz)
was computed in 30–300-s epochs from spectrograms (FFT
size: 1024 points) for each animal. Representative sonograms
were computed using a Hanning window with a block size of
512.

Learned Helplessness

Animals were placed in a shuttle box (Panlab LE100-26,
LE900; Software: Bioseb Packwin) and let habituate for
3 min. On day 1, a pre-test was conducted consisting of 140
randomly paced (at 25, 30, or 35 s intervals) inescapable foot
shocks (0.45 mA, 20 s duration). The pre-test was repeated on
day 2. On day 3, testing was conducted starting with 1-min
habituation and followed by 15 randomly paced (at 25, 30, or
35 s intervals) escapable shocks (0.45 mA, 20 s duration).
During testing, animals were able to interrupt the shock
delivery/escape by crossing to another chamber. If the animal
failed to escape during the first 10 s of a test shock, the trial
was considered as a failure. If more than 50% of the 15 trials
led to a failure, the animal was considered helpless. After
testing, animals were injected (i.p.) with saline, ketamine
(15 mg/kg), or medetomidine (0.05 mg/kg). Learned helpless-
ness was re-evaluated 24 h post-injection.

Statistical Analyses

Depending on whether data were normally distributed or not,
either parametric or nonparametric test was used for statistical
evaluation. In case of more than two groups, analysis of var-
iance (ANOVA) with post hoc test was used. All statistical
analyses were performed with the Prism 7 software from
GraphPad (La Jolla, CA, USA). All tests were two-sided; a
P ≤ 0.05 was considered significant. Details of statistical tests
and n numbers for each experiment are shown in Table S2.

Results

Markers of Neuronal Excitability Are Upregulated
During N2O Exposure

Clinically effective rapid-acting antidepressants have the ca-
pacity to rapidly yet transiently increase cortical excitability.

To test whether N2O produces similar effects, we adopted the
treatment protocol used in the clinical study by Nagele et al.
[20] and investigated how biological markers associated with
neuronal excitability are regulated. Mice received continuous
50% of N2O for an hour after which the animals breathed
room air for another hour. We focused our analyses to the
medial prefrontal cortex (mPFC), a brain region associated
in the pathophysiology of depression and antidepressant ac-
tions. This N2O treatment increased the expression of several
mRNAs of activity-dependent immediate-early genes (c-fos,
arc, bdnf, zif-268, homer-1A, egr-2, mkp-1, synapsin)
(Fig. 1a).

To investigate whether these responses appear during N2O
exposure or withdrawal, we carried out an experiment in
which a subgroup of animals breathed contiously 50% N2O
for 2 h and samples collected immediately thereafter.
Importantly, arc, bdnf, and c-fos mRNA levels were readily
upregulated also by this treatment (Fig. 1b). Moreover, c-fos
mRNA levels and phosphorylated mitogen-activated protein
kinase (MAPKT202/Y204), another marker of increased neuro-
nal excitability, increased already 30 min after the onset of
N2O administration (Fig. 1c). Altogether, these data indicate
the facilitation of cortical activity under N2O. Notably, these
acute changes induced by N2O resemble those produced by
electroconvulsive therapy (ECT) [34, 35], and sleep depriva-
tion [36], which also rapidly alleviate depression in a subset of
patients.

Subanesthetic Ketamine and N2O Evoke Rebound
Slow EEG Activity Upon Drug Discontinuation

Acute administration of low doses of NMDA-R antagonists
has been associated with gradual increase in slow EEG activ-
ity after the acute effects on cortical excitability subside.
Similarly to what has been reported earlier [37], a
subanesthetic dose of ketamine initially increased gamma os-
cillations (Fig. 2a; see also Fig. S1), a neurophysiological sign
of ongoing cortical excitability, which lasted around 30–
50min. After this time period, i.e., after the peak of ketamine’s
pharmacological effects (serum t1/2 (mouse): ~ 15 min, see
[38], slow-wave delta oscillations gradually increased above
baseline compared to saline treated controls. The ability of
N2O to regulate various biological markers associated with
neuronal excitability encouraged us to test whether similar
phenomenon might occur following the treatment to N2O.
Apart from the dampening of low gamma oscillations, no
clear EEG alterations were observed during exposure of
50% N2O (Fig. 2b). Upon gas withdrawal, however, slow
EEG oscillations increased above baseline values. The peak
of slow-wave delta emerged at around 40 min post-N2O and
reduced thereafter towards baseline.

The duration of exposure and concentration of inspired
N2O can be easily controlled by mixing it with oxygen to
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varying degrees. We therefore tested if short exposures to
higher N2O concentrations evoke more substantial increase
in slow EEG oscillations following drug discontinuation.
Indeed, slow EEG oscillations, especially within the delta
range, increased rapidly after a 20-min exposure to 75%
N2O in both male and female mice and such effect could be
rapidly reproduced with intermittent dosing (Fig. 2c; Fig. S1).
Beta and low gamma oscillations were reduced during such
N2O treatments, but these alterations normalized upon gas
withdrawal (Fig. S2).

TrkB and GSK3β Signaling Alterations Emerge
During Rebound Slow EEG Activity

Activation of BDNF receptor TrkB has been causally connect-
ed with antidepressant effects in rodents [39, 40]. Upon acti-
vation, TrkB receptors undergo phosphorylation within

specific tyrosine residues within the intracellular domain [8,
39, 41–43]. These effects set forth regulation of several intra-
cellular cascades [42] of which activation of MAPK [44] (see
Fig. 1) and mTor (mammalian target of rapamycin) [5], and
inhibition of GSK3β [12] has been strongly implicated in
ketamine’s antidepressant effects. We thus next sought to in-
vestigate how TrkB, mTor, and GSK3β phosphorylation are
regulated during N2O exposure and withdrawal. We first ex-
posed animals to N2O for a period of 30-min and collected
brain samples immediately thereafter. Interestingly, phosphor-
ylation of TrkBY816, phosphorylation of GSK3β at the inhib-
itory serine-9 residue (GSK3βS9), and phosphorylation of
p70S6kT421/S424 (downstream target of mTor) remained unal-
tered in these samples indicating that ongoing NMDA-R
blockade is not directly associated with TrkB and GSK3β
signaling alterations (Fig. 3a), although MAPK phosphoryla-
tion is concomitantly increased.

Fig. 1 a Levels of arc, bdnf, c-
fos, egr-2, homer-1a, mkp-1,
synapsin 1, and zif-268 mRNA
after continuous administration of
N2O (50%) for 1 h and a 1-h
washout period. b arc, bdnf, and
c-fos mRNA levels are similarly
upregulated by 2-h continuous
N2O (50%) and 1-h N2O (50%)
followed by a 1-h washout period.
c c-fos mRNA and p-MAPKT202/

Y204 levels are increased after
30 min of N2O (50%)
administration. Data are means ±
S.E.M. *< 0.05, **< 0.01,
***< 0.001 (for statistical
analyses and n numbers, see
Table S2)
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To test the possibility that TrkB and GSK3β signaling al-
terations become evident upon withdrawal of N2O exposure
(i.e., after NMDA-R blockade), we collected brain samples for
western blot analyses 5 and 15 min after exposing the animals
to varying N2O concentrations (50–75%) for 20 min. These
data, shown in Fig. 3b, c, indicate that N2O can indeed induce
TrkBY816 and GSK3βS9 phosphorylation but only upon gas
withdrawal when slow EEG oscillations become also
facilitated.

TrkB and GSK3β Signaling During Postictal State
Induced by Flurothyl

Postictal emergence of slow EEG oscillation is also observed
in patients after the delivery of flurothyl or ECT [22], and this
phenomenon has been considered to predict the efficacy and
onset-of-action of convulsive therapies [25]. We sought to
recapitulate this in rodents and to further test whether TrkB
and GSK3β signaling is altered during a brain state dominated

Fig. 2 a Representative time frequency EEG spectrogram and
normalized power of EEG oscillations after a subanesthetic dose of
ketamine (KET; 10 mg/kg, i.p.) Subanesthetic ketamine evokes rebound
delta oscillations gradually after the acute effects of the drug on high
gamma oscillations have dissipated. b Slow wave delta (1–4 Hz) and

theta (4–7 Hz) EEG oscillations are transiently increased upon N2O
(50%) withdrawal. c Rebound delta oscillations after discontinuation of
75% N2O treatment. Data are means ± S.E.M. (for n numbers, see
Table S2)
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by slow EEG activity. Flurothyl was evaporated into the cage
until the mice exhibited a generalized seizure, which terminat-
ed within seconds upon drug withdrawal. A robust increase in
slow EEG oscillations, particularly within the delta range (1–
4 Hz), emerged gradually and peaked within 10 min after the
flurothyl-induced seizure (Fig. 4a). Notably, alpha oscillations
(7–12 Hz), beta oscillations (12–30 Hz), and high-frequency
gamma oscillations (> 25 Hz) were reduced during the
postictal period. At the behavioral level, the mice appeared
motionless and sedated; a state also correlated with reduced
electromyogram (EMG) activity (Fig. 4a). Most importantly,
phosphorylation levels of TrkBY816, p70S6kT421/S424, and
GSK3βS9 were robustly elevated in samples collected
10 min after flurothyl (Fig. 4b). Collectively, our data so far
suggests that rapid-acting antidepressants evoke TrkB and
GSK3β signaling alterations during slow EEG oscillations

that are generated as a withdrawal rebound response to the
transient increase of cortical excitability induced by the drugs.

Towards a Homeostatic Basis of Rapid Antidepressant
Effects

To test whether these molecular alterations are dependent on
preceding cortical excitability, we subjected mice to an acute
treatment with medetomidine, a hypnotic-sedative agent that
directly facilitates slow EEG activity (Fig. 5a). However,
TrkBY816, p70S6kT421/S424, and GSK3βS9 phosphorylation
levels were significantly increased also by this treatment
(Fig. 5b) while it concomitantly brings unnoticeable acute
effects on IEG expression and reduces gamma oscillations
(Fig. 5c). This finding suggests that ongoing slow EEG activ-
ity, regardless of how it is regulated, positively correlates with

Fig. 3 a Levels of p-TrkBY816, p-
GSK3βS9, and p-p70S6kT421/424

after 30 min of N2O (50%)
administration. b Levels of p-
TrkBY816, p-GSK3βS9, and p-
p70S6kT421/424 at 5-min post-
N2O exposure (50–75%). c
Levels of p-TrkBY816, p-
GSK3βS9, and p-p70S6kT421/424

at 15-min post-N2O exposure
(65%). Data are means ± S.E.M.
*< 0.05, **< 0.01, ***< 0.001
(for statistical analyses and n
numbers, see Table S2)
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molecular changes intimately connected with rapid antide-
pressant responses.

A single subanethetic dose of ketamine has been shown to
produce rapid and long-lasting antidepressant-like behavioral
changes [5, 39]. In addition to TrkB-mTor and GSK3β path-
ways, activation of MAPK signaling has been strongly impli-
cated in the behavioral effects produced by antidepressants
[44, 45]. While medetomidine readily regulates TrkB and
GSK3β signaling, MAPK phosphorylation is strongly re-
duced by this treatment (Fig. 6a). It is thus tempting to spec-
ulate that the mechanisms of rapid antidepressant treatments
are related to the combination of both excitation induced
changes in gene expression and the subsequent homeostatic
activation of key neurotrophic signaling pathways during
postictal-like slow EEG oscillations. We tested this hypothesis
with medetomidine in the learned helplessness paradigm,

which has strong construct validity regarding depression. In
this model, a rodent is exposed to inescapable mild foot
shocks and subsequently tested for a deficit (helplessness) of
acquired avoidance. A single subanesthetic dose of ketamine
ameliorated the avoidance deficit within 24-h while
medetomidine showed no such effect (Fig. 6b).

Discussion

Despite great recent progress, the precise neurobiological basis
governing rapid antidepressant effects remain obscure and de-
bated [6, 17, 18, 46]. To get further insights into rapid antide-
pressant mechanisms, we investigated how N2O, another
NMDA-R blocking dissociative anesthetic and a putative
rapid-acting antidepressant [20], regulates EEG and the

Fig. 4 a Representative time
frequency EEG spectrogram and
normalized power of major EEG
oscillations after flurothyl-
induced seizures. Flurothyl
evokes rebound emergence of
slow-wave delta and theta
oscillations. b Levels of p-
TrkBY816, p-GSK3βS9, and p-
p70S6kT421/424 10 min after
flurothyl (FLUR) administration.
Data are means ± S.E.M. *< 0.05,
***< 0.001 (for statistical
analyses and n numbers, see
Table S2)
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molecular level alterations previously implicated in rapid anti-
depressant mechanisms. The rapid pharmacokinetic properties
of N2O allowed us to specifically and relatively precisely inves-
tigate these changes during the period of peak pharmacological
effect and subsequently following NMDA-R blockade. Indeed,
the antidepressant effects of subanesthetic ketamine become
most evident few hours after infusion [3], at the time-point when
the psychotomimetic effects of the drug have subsided.

Similarly to other clinically effective rapid-acting antidepres-
sants, N2O increased biological markers related to increased
cortical excitability. These changes, the upregulation of IEGs
and the activating phosphorylation of p44/42-MAPKT202/Y204,
appeared very rapidly and already during gas administration. In

contrast, phosphorylation of TrkBY816 and GSK3βS9 remained
unaltered during N2O exposure and became regulated only
gradually following drug discontinuation, during a brain state
dominated by slow EEG activity and behavioral immobility.
Importantly, and as previously shown, subanesthetic ketamine
and flurothyl similarly evoked slow EEG oscillations that were
generated after the peak of pharmacological effects had already
passed. Moreover, TrkB and GSK3β signaling were robustly
regulated during postictal slow EEG oscillations, a phenome-
non previously associated with the efficacy and onset-of-action
of ECT. While direct facilitation of slow EEG activity with
medetomidine also produced robust phosphorylation of TrkB
andGSK3β, no changes were present in the expression of IEGs

Fig. 5 a Representative time
frequency EEG spectrograms and
normalized power of major EEG
oscillations during 30-min saline
and medetomidine (MED;
0.3 mg/kg, i.p.) treatment. b A
low dose of medetomidine
(0.05 mg/kg, i.p.) rapidly
increases phosphorylation of
TrkBY816, GSK3βS9, and
p70S6kT421/424 in the mouse
medial prefrontal cortex. c Levels
of c-fos, arc, bdnf, zif-268, homer-
1A, egr-2, mkp-1, and synapsin
mRNA 2 h after medetomidine
(0.3 mg/kg, i.p.) administration.
Data are means ± S.E.M. *< 0.05,
**< 0.01, ***< 0.001 (for
statistical analyses and n
numbers, see Table S2)
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and the phosphorylation of p44/42-MAPK was significantly
decreased. Unlike ketamine, medetomidine failed to produce
antidepressant-like behavioral responses in the learned helpless-
ness paradigm. Taken together, these findings support a hypoth-
esis that consecutive facilitation of cortical excitability and the
regulation of TrkB and GSK3β signaling during the rebound
slow EEG oscillations are essential for rapid antidepressant
responses. Comparing the effects of rapid-acting antidepres-
sants andmedetomidine provides an excellent strategy to reveal
the different neurobiological effects and phenomena set forth
by direct vs. homeostatic facilitation of slow EEG oscillations
and TrkB signaling.

This report proposes a novel link between a specific brain
state, characterized by slow EEG oscillations and sedation, and
the orchestrated and sequential regulation of multiple molecular
targets implicated in rapid antidepressant responses.
Furthermore, we demonstrate that this state and the accompa-
nying regulation of molecular targets can be indirectly achieved
by different excitatory interventions and speculate that this in-
direct homeostatically regulated state may be particularly im-
portant for rapid antidepressant effects. In a more general sense,
this work urges shifting the attention towards understanding

rapid antidepressant actions through alterations triggered within
the brain as an adaptive consequence of a drug challenge. That
said, interconnecting the present observations with the recently
proposed effects of ketamine and other NMDA-R blockers on
intrinsic homeostatic plasticity processes [9, 29, 30, 47–50],
also evident as dynamic and circadian fluctuations in slow
EEG oscillations [51–53], is instrumental in providing a more
precise understanding of rapid antidepressant actions.
Altogether, translating the emerging mechanistic evidence and
hypotheses between cortical excitation and slow waves
[54–57], such as the synaptic homeostasis hypothesis (SHY)
of sleep [58, 59], to rapid antidepressant effects is essential in
the future. The unique pharmacokinetic and pharmacological
properties of N2O and related Bfast-acting^ medicines may be-
come critical tools for these future efforts guiding the develop-
ment of novel interventions against major depression.
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