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1 INTRODUCTION 

1.1 Spatiotemporal water scarcity: assessing rainwater harvesting potential (RRWHP) in 

a holistic way 

“There is no absolute water scarcity, there is spatiotemporal scarcity – Oyelowo 2018” 

 

Water is one of the most crucial resources, necessary for the survival and sustenance of our 

society. Despite this, many people lack access to potable and regular water supply. In 2015, 29 % 

of World’s population was lacking the access, which is a major setback to socioeconomic 

development (SDG6, 2018). Water and sanitation have been linked to the alleviation of poverty 

and realization of sustainable development (WSSD, 2002).  

 

Africa has about 3,991km3 annual freshwater resources, but many people continue to face 

water scarcity. Water poverty in Africa has stemmed also from the 40 billion hours being wasted 

on carrying water mostly by females, while the effective solution would be to have close access to 

water from home. This is especially important in areas with sparse population where it might be 

prohibitively high to harness surface and groundwater resources. Rainwater is far from being 

maximally utilized in Africa (ICRAF & UNEP, 2005). 

 

In recent years, there has been an unprecedented increase in rainwater harvesting in Kenya, 

in order to answer to water problems prevalent all around the country (Recha, Mukopi, & Otieno, 

2015). Water harvesting has proved to be very useful in mitigating water scarcity during the dry 

seasons as it provides water for domestic, agricultural and even commercial purposes (Gould, 

2015; J. Mwenge Kahinda, Taigbenu, & Boroto, 2010). By extension, this provides means to 

ameliorate poverty, as water plays a critical role in health and food security of the people. Hence, 

it is crucial to secure and manage this important resource in every community (Priscoli, 2004). 

 

Furthermore, rain water harvesting has been recognized by the government, NGOs and 

international bodies as a viable means to mitigate the water problems plaguing the country in a 

decentralized manner. Despite the known benefits, quite several projects degrade in a short period 



 

 2 

and some do not even see the light of the day.  Thus, this raises the question of sustainability which 

must be addressed, in order to provide a long-term solution to water problems, especially in the 

rural communities (Thomas & Martinson, 2007). 

 

This study investigates the status quo, major socio-economic challenges, and the needs and 

the viability of rooftop rainwater harvesting in addressing these issues sustainably and scalable 

manner in the Taita Hills, Kenya. 

1.2  Rationale behind study: Spatiotemporal water scarcity  

Over the years, stakeholders and organizations have had slow progress in the advocacy of 

rainwater harvesting. A major issue they have faced has been the inability to find concrete and 

substantiated scientific findings to show and convince policy makers where rainwater harvesting 

can be effectually utilized. Such need has necessitated the use of GIS to manipulate, manage and 

utilize data to disseminate information in a simple way (ICRAF & UNEP, 2005). 

 

While many studies have assessed rainwater harvesting, not so much has been done 

specifically on rooftop rainwater harvesting. Only a few studies have assessed rooftop rainwater 

harvesting potential (RRWHP), but they have only given a broad generalization by focusing on 

the spatial aspect and totally neglecting the temporal aspect of it (Gaikwad, 2015; Giridhar, S, & 

Viswanadh, 2013; Shadeed & Lange, 2010). Studies have not been able to provide a synergistic 

framework for accessing RRWHP spatiotemporally (Dadhich & Mathur, 2016; Giridhar et al., 

2013; Liaw & Chiang, 2014; Ojwang, Dietrich, Anebagilu, Beyer, & Rottensteiner, 2017; 

Traboulsi & Traboulsi, 2017; Zain M. Al-Houri, Oday K. Abu-Hadba, & Khaled A. Hamdan, 

2014; Zende, 2015). My opinion is that water is not necessarily absolutely scarce, but 

spatiotemporally scarce. Therefore, I refer it to be “spatiotemporal water scarcity”. In most 

scenarios, water scarcity is seasonal across space. This underscores the importance of considering 

the temporal aspect alongside the spatial context, to give a deeper insight into how the RWHS can 

be better utilized and supplemented when temporally scarce. 

 

Recent studies in rainwater harvesting cover only small areas due to the manual digitization 

of roofs to estimate RRWHP (Dadhich & Mathur, 2016). It is very cumbersome and requires much 



 

 3 

manpower to digitize many buildings. This is inefficient when covering large areas as humans are 

prone to errors, as well as inaccurate as buildings can also be omitted. On the other hand, other 

studies which have utilized automated building extraction do not go further in using the result for 

water harvesting application (El-Deen Taha & Ibrahim, 2016; Hu & Ye, 2013; Wang, Lodha, & 

Helmbold, 2007). Furthermore, the extraction methods are usually not very open and repeatable; 

and/or substantially validated (Lupia, Baiocchi, Lelo, & Pulighe, 2017; Nthuni, Lübker, & Schaab, 

2014; Shinde & Gaikwad, 2016). Therefore, I have adopted an automatic approach in the 

extraction of footprints of buildings’ roofs in Taita Hills from LiDAR data, with measurable and 

open validation which compares LiDAR data from two different airborne campaigns in the same 

area. The two data have different quality in terms of point density. I have evaluated the effect of 

the quality of the data on the accuracy of feature extraction, which is how well to extract buildings. 

A rainfall model generated from CHELSA to estimate precipitation for each month in the Taita 

Hills was validated with precipitation data from the ground weather stations managed by Taita 

Research Station of the University of Helsinki. 

 

 Lastly, considering that water scarcity is a problem that affect the people, it is salient to 

also understand the social context by having a physical presence and firsthand feel of the water 

related issues in the locality. With these, water problems can be evaluated holistically and logically 

connected to the derived RRWHP model from geospatial analysis. 

1.3 Objectives of this thesis 

1.3.1 Main objectives 

a) To provide a novel framework for understanding the spatiotemporal pattern of rooftop 

rainwater harvesting potential in Taita Hills region, and thus, create a decision support for 

RRWH implementation in the Taita Hills area. 

b) To understand the spatiotemporal pattern of potential satisfaction of the people’s water-use 

by rooftop rainwater harvesting. 

1.3.2 Other objectives 

a) Automate the process of creating, regularizing and validating buildings geodatabase 

for Taita Hills. 
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b) Understand the effect of lidar’s pulse density and point spacing on the accuracy of  

buildings’ footprints extraction. 

c) Validate rainfall model for the area. 

d) Understand the social context of water related problems in the area 

1.4 Research questions 

c) Is there a distinct spatiotemporal pattern to rooftop rainwater harvesting in Taita? Is water 

absolutely scarce or spatiotemporally scarce? 

d) How can the spatiotemporal modelling be well combined with the social context, to give a 

holistic picture about rooftop rainwater harvesting potential? 

e) Does the water consumption vary between the highlands and the lowlands of Taita Hills?  

f) What challenges do people face in getting water? Do they vary considerably between the 

highland and lowland? 

g) Is the rooftop rainwater harvesting system a viable solution? 

h) How can the LiDAR data and rainfall data be validated?  

1.5 General methodology and structure of the thesis 

This project is divided into seven chapters. In the first chapter, I give a general overview 

of present water situation in the region and my approach to understand and investigate the problem 

to offer a sustainable solution. The second chapter dives deeper into what the system is like and 

the approaches of previous studies. Chapter three describes the physical and socioeconomic 

aspects of the study area. Thereafter, I describe my data in chapter four. The methodologies and 

results are presented in chapters five and six, respectively. Lastly, I end by recapitulating, 

evaluating and concluding the study in chapters seven and eight. Figure 1 gives a general idea of 

how the entire work flow of this project was executed.  
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Figure 1. The workflow of the project. 
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2 BACKGROUND 

2.1  Rainwater harvesting  

Rainwater harvesting is the collection and storage of rainwater runoff for use (Siegert, 

Chapman, & Finkel, 1991). Therefore, rainfall can be used more efficiently for domestic and non-

domestic purposes by capturing it onsite where it falls (Ziadat, Mazahreh, & Oweis, 2006). This 

originates from over 4 millennia ago (Critchley, 1989). This water can be used for domestic 

purposes to supplement the already existing sources or for biomass production (Malesu & 

Resilience, 2014; Mati et al., 2007). Rainwater harvesting systems have been classified based on 

the used catchment surface such as roof catchment, groundwater catchment systems, dams and 

rock catchment (Gould, 1999, 2015). This paper focuses on the roof catchment system. 

 

RRWH technique involves catching rainwater from the rooftop and channeling it through 

gutters, which can then be stored in tanks and utilized thereafter. It provides an inexpensive, 

convenient accessible water source for domestic purposes. The water is delivered directly to the 

house, hence, not affected by topography or geology and can be managed at household level 

(Figure 2). It also poses lower chemical and biological risk. Furthermore, roof rainwater harvesting 

can also help to reduce pressure on all these other water sources. This is especially important in 

addressing the increasing water scarcity and mitigating the consequences of climate change in the 

region.  

 

Figure 2. Rainwater path (Thomas & Martinson, 2007). 
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Rooftop rainwater harvesting can help to provide water to thousands of households, thus, 

it is encouraged to have water tank as much as possible in every household. Compared to other 

means, the existing roof structure poses a lesser negative effect on the environment for the 

development of water resources (Shadeed & Lange, 2010). Interestingly, rainwater collected from 

the roof is less contaminated than the surface runoff (Thomas & Martinson, 2007). The RRWHS 

can also help the people to reduce the dependency of the people on the government on water 

supply, as this can be unreliable. In Figure 3, according to an anecdotal information by a 

respondent these pipes are meant for a water project in Taita Hills but have been left unused for 

two years. 

 

Figure 3. Abandoned water project in the Taita Hills (Oyelowo, 2018). 
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2.2 Description of rainwater harvesting system 

The RRWHS comprises three major parts. This includes the catchment (roof), the gutter 

(runoff delivery system) and a storage tank (Figure 4). 

 

Figure 4. Parts of rooftop rainwater harvesting system (Zhe Li & Fergal Boyle, 2010). 

2.2.1 Catchment  

 

Typically, the catchment is the rooftop for domestic rainwater harvesting. Hence, it should 

be impermeable and safe for the rainwater. The effectiveness of the system and the water quality 

mainly depends on the roof material and the effective roof area (Abdulla, 2009). Such effective 

roof materials include the galvanized, tiles and corrugated-iron sheets (Zhe Li & Fergal Boyle, 

2010). The preferred qualities of these materials are the following: smoothness, impermeability, 

accessibility, affordability. Clean flat cement roof can also be utilized (Gould, 2015). 

 

By and large, the surface of the roof should be unpainted and uncoated. Additionally, an 

effective roof catchment is smooth, considerably large enough to provide good water quality and 

enough water quantity. An efficient roof usually has high runoff coefficient ranging from 70 % to 

80 %. The quantity of the water delivered to the storage tank is reduced by spillage, leakage and 

evaporation (Zhe Li & Fergal Boyle, 2010).   
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2.2.2 Gutter  

This includes the gutters and pipes that transport the roof rainwater into the storage tank. 

These gutters are usually around the edges of the roof hanging close to the eaves, with the 

downpipes receiving the water into the tank. It is recommended to have a minimum of 1cm2 cross-

sectional area of gutter per m2 of roof area (Gould, 2015). This is crucial to capture considerable 

amount of water and with support of a splash guard, can prevent overflow. Furthermore, filters 

and/or other cleaning materials are used to prevent the entry of foreign materials such as leaves, 

stones, insects etc. (Zhe Li & Fergal Boyle, 2010). 

 

The downpipes could have a smaller cross-sectional area as it is usually positioned 

vertically and can deliver water faster than it receives. It is also important to do a regular 

maintenance to keep the system effectual. Mainly, a well-designed and effectual system could 

deliver 90 % of the water into the storage tank. However, this could be also lesser to about 70-80 

%.  

2.2.3 The Storage Tank 

This is the container where the rainwater is delivered into and stored. Generally, the tank 

is the most expensive part of the system, which could take more than half of the entire cost. 

Therefore, the tank must be made properly. It is easy to detect leakages, damages and drain out 

dirty water in above-ground tanks, thus cheaper maintenance cost. Also, water can more easily be 

delivered for domestic use via gravity, without having to pump it up like the underground 

counterpart. In addition, underground tanks are much more expensive to construct due to the 

excavation cost. They are also susceptible to ground and flood water contamination. Nonetheless, 

aboveground tanks also take up space and more exposed to the hot temperature. All in all, the 

advantages of the aboveground outweighs the disadvantages, when compared to the underground 

tanks (Traboulsi & Traboulsi, 2017). 

 

 Furthermore, tanks could be rectangular, square or circular in shape. However, the 

rectangular and square are recommended for above-ground location because they are cheaper 

while the circular tanks for underground to withstand pressure from soil exerted on the wall of the 

tank when empty. Common materials used include the concrete cement, plastic, clay and metal. 



 

 10 

Another thing to bear in mind is the size of the tank. Storage tanks should be appropriately sized. 

An undersized tank might not provide enough water for the household as the tank is filled very 

fast and exhausted quickly, too. On the other hand, an oversized tank will not only be unnecessarily 

too expensive but also have infrequent cycling. Consequently, the water quality diminishes as the 

water might hardly be exhausted for fresh rainwater to come in. This will also depend on the 

household size and other uses such as farming (Zhe Li, Fergal Boyle, 2010). 

 

The construction of RWH tanks in Kenya dates to early 1900’s. However, they became 

more common during recent decades. The corrugated galvanized iron sheets were in vogue in the 

1970’s and 1980’s, but due to corrosion, these tanks were dumped in no time. Some NGOs also 

promoted another kind of tanks made of stick and branches, but they were quickly destroyed by 

insects such as termites. In 1980, the ferro-cement tank first constructed in Kibwezi, Kenya in 

1978 became widespread. However, due to the substandard materials used by the builders, these 

tanks had several issues, but afterwards solving the issues they have become successful and 

ubiquitous in Kenya due to their affordability and durability. Plastic tanks made by local 

companies have also become popular (Ojwang et al., 2017). Figure 5 shows various kinds of water 

storage tanks used in Taita Hills. 
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Figure 5. Various types of storage tanks used in Taita Hills. 

 

2.3 Domestically Harvested Rainwater 

2.3.1 Quality 

The quality of water derived from roof rainwater harvesting depends on the design, 

maintenance, materials used, roof cleanliness and environment. Dust, leaves, insects, chemical 

deposits and birds’ droppings are major sources of contamination for rooftop RWH tanks. If 

properly designed and maintained, they can provide a good quality water (Zhe Li & Fergal Boyle, 

2010). 
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The roof is the most contaminated part of the system as it is very exposed. It contains 

particles, heavy metals and microorganism, for example. As a result, the first few millimeters of 

rainwater should be diverted away from the tank, in the other words to wash the roof. This is 

referred to as the first flush, after which the rainwater is harvested  (J. Mwenge Kahinda, Taigbenu, 

Sejamoholo, Lillie, & Boroto, 2009). A technique has also been created to determine the amount 

of first flush (Thomas & Martinson, 2007). It is recommended to have the storage tanks cleaned 

regularly, to remove particles and substances that might be in the tank, if the water is rarely 

exhausted.  Also, the tank should be properly covered to prevent insects leaves and other foreign 

materials (Zhe Li & Fergal Boyle, 2010). 

 

Birds and other animals could infect the roof and tanks with bacteria, protozoa and other 

micro-organisms (Jean Marc Mwenge Kahinda, Taigbenu, & Boroto, 2007), which renders the 

water not fit for drinking. In the absence of light and organic material, bacteria and pathogens die 

slowly after some days (Gould, 2015). 

 

2.3.2 Water-Related Diseases  

 

Domestic rainwater harvesting provides a convenient means of getting access to water 

without having to walk long distance, especially in developing countries (Jean Marc Mwenge 

Kahinda et al., 2007). The hygiene of a household and public health is dependent on the amount 

of water that can be accessible (Bartram & Howard, 2003).  

 

Water is an essential integral part of life and lack of it aggravates the challenges of 

susceptible groups including those infected by diseases, children, elderly, handicapped and those 

exposed to waterborne diseases. This is a major impedance to escaping poverty by these groups. 

Many households only have access to poor quality water. Domestic Rainwater Harvesting 

(DRWH) can provide much cleaner water for these households. There is insufficient data on the 

water quality of rainwater in quality. This data inadequacy in a global phenomenon and worse in 

developing countries  (Jean Marc Mwenge Kahinda et al., 2007). 
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There are dichotomous conclusions in various literature for the quality of DRWH. Some 

studies show that the roof water quality is potable enough, and is in line with the international 

guidelines (Ojwang et al., 2017). Conversely, some studies have reported that the physicochemical 

and microbiological contamination do not meet up with these international guidelines of potable 

water (Abbott et al., 2006; Nevondo and Cloete, 1999). Vector insects such as mosquito, also can 

use the water in the storage tank and this is a source of malaria. Error! Reference source not 

found. shows the path of contamination of the water (Jean Marc Mwenge Kahinda et al., 2007). 

 

Figure 6. Contamination paths DRWH systems collecting water from rooftop (Kahinda et al., 

2007). 
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2.3.3 Treatment 

 

Due to the water related diseases, it is very critical to treat the rainwater. A simple treatment 

could increase the water quality significantly for other domestic purposes, besides drinking. 

However, it requires more expensive and advanced techniques to make the quality of sufficient 

drinking quality. Simple treatments include chlorination, disinfection, slow sand filtration, and 

pasteurization (Zhe Li & Fergal Boyle, 2010).  

 

Chlorination is the mostly used and affordable means to easily exterminate most 

microorganisms. This is used after the water is transported from the storage tank as it might react 

with some organic materials to produce some unpleasant substances that settle on the tank’s 

bottom. 0.4–0.5 mg/l free chlorine is the recommended and effective level of chlorination (O.R. 

Al-Jayyousi, 2003). However, some parasites have been shown to withstand low level of chlorines. 

Disinfection can also be applied to the rainwater to reduce microbiological contamination (Sazakli, 

2007). Slow sand filtration, on the other hand, uses sands to filter the water, with the coarsest sand 

particles coming before the finest at the bottom. This filtration process is more of a biological 

treatment than physical (Helmreich & Horn, 2009). The efficacy is depended on a constant flow 

of water through it. This technique is only able to decrease, rather than exterminate the 

microorganisms in the water (Zhe Li & Fergal Boyle, 2010).  

 

Lastly, pasteurization is a reliable and inexpensive water treatment technique utilizing the 

heat energy from solar radiation. Temperature of above 50°C is crucial for the effectiveness of this 

technique and with complete oxygenation of the water. This technique is effective for treating 

some bacteria, but is limited beyond 10mg/l suspended solids concentration (Helmreich & Horn, 

2009).  

 

From the foregoing, a combination of the treatment techniques would be required for an 

effective water treatment. It is enough to utilize the simplest method for domestic use like toilet 

flushing. This water would not be suitable for consumption, nonetheless, using a complex means 

would be prohibitively expensive. Membrane filtration and disinfection system can be used for 

more complex and effective treatment for potable water. Boiling also helps to treat against larger 
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viruses and bacteria before drinking. However, this method calls for a lot of maintenance, hence, 

much more cost (Zhe Li & Fergal Boyle, 2010). 

 

2.3.4 Benefits  

The Domestic roof water harvesting is a low cost means of getting water that can help to 

reduce pressure on other water sources, especially from the community and government. This 

proves to be useful when there is an interruption from other sources. Besides this, simple treatment 

would be sufficient and cost effective if the water is not meant for drinking.  It can also be easily 

installed in new and old homes.  From environmental perspective, if the system is installed in 

considerable number of homes, it can help to reduce surface runoff, consequently upon which 

flooding, and erosion is reduced (Jean Marc Mwenge Kahinda et al., 2010). 

 

2.4 Application of GIS in the evaluation of rooftop rainwater harvesting 

2.4.1 Automatic Building Extraction  

 

Geographic information systems (GIS) in combination with hydrological response models, 

enables the planning and evaluation of runoff harvesting sites which facilitates a rational decision-

making system (de Winnaar et al., 2007). It provides a means to collect, store, analyze, describe, 

transform and show both spatial and aspatial data for specific uses (Coskun & Musaoglu, 2004). 

By using GIS, potential runoff harvesting sites can be identified with respect to where the runoff 

is concentrated and can be properly stored and distributed. 

 

Over the years, professionals have widely used building footprints for several purposes. 

Application includes, the modeling of pollution, disaster planning, forestry, urban planning and 

modelling, and building extraction (Goodwin, Coops, Tooke, Christen & Voogt, 2009; Jawak, 

Panditrao, Luis, & Sada, 2014; Wang et al., 2007). These building footprints can be generated 

manually or based on architectural blueprints. However, these are usually very tedious and require 

high modelling expertise. Besides, blueprints are mostly available for modern buildings, as 

opposed to the old ones. Therefore, it is critical to device means to automate the generation of the 
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footprints that would be cost effective and faster. This will help to speed up several urban 

modelling and simulations, which will propel the decision-making processes. In this regard, the 

airborne LiDAR (Light Detection and Ranging) comes into play. The urban models aims to create 

a 3D navigable area of the city (Wang et al., 2007). 

 

 LiDAR is a relatively cheap and accurate technology which is used for creating dense, 

detailed and accurate 3D point clouds that are spaced irregularly for extracting topographic 

features (Jawak et al., 2014). It utilizes a laser scanner mounted on an aircraft. The system’s 

components include a laser range finder, GNSS (Global Navigation Satellite System GNSS), 

inertial measurement unit (IMU) and a computer.  The GNSS provides information about the 

position of the aircraft, in terms of altitude, latitude and longitude (x, y, z) while the IMU obtains 

the angular attitude of the aircraft as it is taking measurements as roll, pitch and yaw. The IMU 

provides very high accuracy of all the three dimensions as the aircraft moves vertically and 

horizontally in flight. Based on this, the pulses are transmitted towards the Earth’s surface from 

the laser scanner, with the records of the laser beams travel time and the energy reflected by the 

surface.  

 

The aircraft collects data as set of overlapping strips as it moves along several flight lines 

over an area. Thereafter, the data can be post-processed to differentiate different structures on the 

Earth’s surface (Frueh & Zakhor, 2004). Five various multiple returns can be recorded by the 

airborne laser scanners, with the first returns coming from roof tops or trees (Figure 7). Some 

pulses can also penetrate the tree to be intermediate returns or last returns when coming from the 

ground (Dowman, 2004). 
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Figure 7: Illustration of LiDAR (Dowman, 2004). 

2.4.2 Accuracy Assessment and Validation 

 

The accuracy of LiDAR depends on the sampling density. A major setback in many 

algorithms that uses data-driven building creation is the presence of a lot of noise in the point 

around building edges. This noise could be from the sensor, trees or from the result of 

classification. The accuracy of building footprints generated from LiDAR has been accessed by 

comparing with those from architectural blueprints or aerial photo. Previous works have used pre-

existing building footprints directly for their modelling techniques. This knowledge assumes a 

priori knowledge of individual locations and shapes of buildings. Multispectral reflectance has 

also been used to calculate the edges of images (Brenner et al. 2000). Edge detection techniques 

have also been applied on air photos to determine building boundaries (Rottensteiner et al., 2004). 

Bayesian networks have also been used for edge detection (Kim & Nevatia, 2004).  

 

Characteristics such as size, shape and height have been used to extract building footprints 

from DEM or other class (Haithcoat et al., 2001). Thresholds are also applied to remove what 

could be too small or too big to be a building, for example a car. Thereafter, the rasterized data is 

used to produce the building footprint and simplified thereafter (Wang et al., 2007). This 
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simplification assumes some form of orthogonality of the buildings. In order to yield high 

accuracies, some studies go further to trace and regularize the boundaries of the buildings and filter 

non-buildings based on the slope or morphological filtering (Sampath et al., 2007; Zhang et al., 

2006). 

 

  High resolution satellite images have been used for automatic building extraction by 

utilizing the spectral signatures of houses. However, the lack of information about height makes it 

difficult to differentiate house from other objects. There has also been attempts to combine spectral 

data with LiDAR data to utilize the strength of both data types (Ekhtari et al., 2009). LiDAR gives 

information about height and intensity while high resolution images can give information about 

spectral signatures, which can help to increase the accuracy of building extraction. LiDAR has a 

high spatial resolution and is able to detect distances (Lillesand et al., 2008). There has also been 

an effort to identify and separate buildings in a complex landscape with hills and dense vegetation 

(Awrangjeb et al., 2012). LiDAR can be used to detect isolated buildings by using identical heights 

and homogenous Normalized Differential Vegetation Index (NDVI) of the surface. (Awrangjeb et 

al., 2010). 

 

Various data sources and algorithms are currently used for the extraction of the building 

footprint. Although many extraction methods that have been devised, most of the evaluation 

methods have utilized several criteria, which makes it cumbersome to compare the approaches 

(Wang et al., 2007). They either often use redundant metrics (Awrangjeb et al., 2010) or not 

empirically evaluate or validate the accuracy of the extraction (Song, 2005). This research tries to 

use a simple clear-cut technique to evaluate the extraction of the building footprints. The object 

(building) and the background are considered when doing the evaluation. By comparing with 

reference objects, a matrix can be created to assess the true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN) as seen from Table 1.  

 

Table 1. Accuracy metrics (Wang et al., 2007). 

TP  Area shared by the extracted and reference objects 

TN  Area not in both the extracted and reference objects 

FP  Area in the extracted but not the reference object 
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The above-mentioned metrics are especially common with image classification assessment 

and give information about the omission and commission errors. However, they have also been 

adopted in feature-based applications (Awrangjeb et al., 2010). Omission error is the percentage 

not found in the extracted but in the reference objects while commission error is for the extracted 

buildings that are detected incorrectly (Song, 2005). 

 

We can determine the completeness or producer’s accuracy and the correctness or user’s 

accuracy. Completeness shows the ratio of buildings that are correctly detected to the reference 

data. The user’s accuracy gives information about the buildings that are correctly detected with 

respect to all the extracted buildings (Wang et al., 2007). Other methods have also been used for 

measuring shape similarities (Dungan, 2006), but are not well defined (Zeng, Wang, & Lehrbass, 

2013). Pixel and object-based analysis have been utilized (Awrangjeb et al., 2010, Rutzinger et al, 

2009), with both the raster and vector data models. 

 

Positional accuracy is another important metric, but is rarely used because it is not deemed 

to be important and also due to the limitations of available data and methods (Zeng et al., 2013). 

The Root Mean Square Error (RMSE) has also been adopted for assessing the positional errors 

between the points in the extracted and the reference maps, mostly by using corner points of 

buildings (Wang et al., 2007). Also, Euclidean distance has been utilized in similar vein, by 

considering the center of mass of the extracted and reference objects (Song, 2005). In a nutshell, 

building extraction techniques are assessed mainly based on the shape similarity, matched rate and 

positional accuracy (Zeng et al., 2013). 

 

2.4.3 Rainfall Modelling 

 

The spatial distribution of rainfall is required for several applications in environmental 

studies. Such include the hydrologic and ecologic modeling, irrigation scheduling and water 

FN  Area in the reference object but not the extracted object 
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resources management. However, it is more challenging to assess rainfall distribution in 

mountainous areas due to the topographical effect on the patterns of distribution of rainfall over 

short distances. A dense network of rain gauges would be required to considerable cover and 

characterize the rainfall pattern of the area accurately. The cost of installation and maintenance 

would, however, be prohibitively high. Regardless of the foretasted, hydrologists still have to cover 

the unrecorded area. To solve this issue, it is important to design the network of the available rain 

gauge optimally and choose the appropriate interpolation. This necessitates a good understanding 

of the rainfall spatial variability. 

 

Some of the interpolation techniques that have been adopted include: the station-average, 

Thiessen polygon, isohyetal methods and inverse distance weighting (IDW) (Thiessen, 1911; 

McCuen, 1989). In recent times, geostatistical techniques are utilized for estimating rainfall 

according to regionalize variables (Goovaerts, 1997). Geostatistical methods have been found to 

derive better precipitation estimates for ungauged locations than conventional methods, as it takes 

into consideration the spatial correlation between neighboring observations (Campling et al., 2001; 

Buytaert et al.. 2006). Furthermore, geostatistics allows the incorporation of densely sampled 

secondary data from satellite and elevation with sparsely sampled primary data from rain gauge. 

 

Kriging is another popular method used in geostatistics for rainfall modelling. It is a 

generalized least-squares regression method that utilizes the data available in a neighborhood to 

estimate the values for unsampled areas (Goovaerts, 1997; Deutsch & Journel, 1998). Furthermore, 

linear regressions can be used by finding the relationship between the rainfall data and the 

elevation of the area. The elevation is usually generated from a Digital Elevation Model (Daly et 

al., 1994).  
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3 STUDY AREA 

The study area is located in Taita Taveta County, southern Kenya, which is between 2° 46 

south and 4° 10 south and longitude 37° 36 east and 30° 14 east (Taita Taveta County, 2015). Taita 

Hills is a mountain massif located in a semi-arid part of south-eastern Kenya, approximately 150 

km from the Indian Ocean. The highest peak, Vuria reaches up to 2000 meters. Kenya is in the 

Eastern part of Africa and is bordered by Ethiopia and South Sudan to the north; Somalia to the 

east; Uganda to the west; and Tanzania to the south. The country covers about 581,309 km2 with 

a population of 48 million (CIA, 2013). Figure 8 shows the study areas, which was determined by 

the extent of the LiDAR data from the 2015 flight campaign. 

 

Figure 8. Study area Taita Hills in Taita Taveta County, Kenya. 
 

Taita Taveta County covers about 17,048 km2, with two national parks included (Taita 

Taveta County Government, 2013).  The Taita Hills of approximately 850 km2 consists of bedrock 

from Precambrian era surrounded by Tsavo plains of about 1000 meter above sea level. The rainfall 

pattern is affected by the movement of the Intertropical Convergence Zone (ITCZ), which causes 

bimodal rainfall pattern and the orographic effect which causes the uplift of the humid air masses 

from the Indian Ocean. As a result, there are two rainy seasons in a year, between March and May; 
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and November to December, respectively. The annual rainfall is as much as 1500 mm (Erdogan et 

al., 2011), while lowlands receive on average of 440 mm (Taita Taveta County Government, 

2015). As the rains come from the east, the eastern part of the hills receive more rain, while the 

western parts remain in a rain shadow. Consequently, the highland area has a denser vegetation 

and more favourable conditions for agriculture. The lowlands’ dry climate (Figure 9) has resulted 

in more livestock farming and less crop production. 

 

 

 

Figure 9. Water Scarcity in Taita region. 

 

The lowland has arid and tropical savanna climate while the highland with more abundant 

rainfall has a monsoon climate due to the orographic effects. The average temperature in the 

highland is about 17 °C compared to about 25 °C in the lowland. There has been a depletion in the 

water availability in the area, as a result of population growth and climate change (Kivivuori, 2013; 

Hohenthal et al., 2014). The vegetation in the area has also been depleted over the years, leaving 

little forest fragments in the mountain tops. Dry forests and woodlands can be found in the 

midlands at about 1200 meter above sea level (Krhoda, 1998: 32). The lowland area is largely 
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covered by bushland and thicket, with a few trees distributed sparsely (Jaetzold & Schmidt 1983: 

248).  Deforestation has further increased the vulnerability of the area to erosion (Hermunen et al., 

2004). 

 

The isolation of Taita Hills has made it as a habitat to various endemic plant and animal 

species and it is considered as one of the world’s 25 biodiversity hotspots (Myers et al., 2000). The 

common crops found in Taita Hills include peas, maize, banana, beans, tomatoes and so on. The 

farming techniques are mainly manual, with the use of hand-held hoes, cutlasses and animal-driven 

ploughs. These crops are mostly terraced, as are other parts of East-African highlands (Soini, 

2006). There are also reserved fields for animals to graze, with the locals rearing mainly chicken 

and cattle. Figure 10 shows some other water uses in Taita. 

 

   
 

Figure 10. Water is used for irrigating fields, for animals and other livelihoods like making bricks. 

 

According to the 2009 census, the population of the county was 284,657 and there has been 

an annual growth rate of 1.6 % between 1999 and 2009 (KNBS, 2010). Agriculture is the 

predominant rural occupation and largely small-scale and rain-fed. It mainly involves the 

cultivation of small-scale vegetables and crops for the local markets (Hohenthal et al., 2015). 

About 57.2 % of the people live below poverty line of KSH 1562 (15 USD) per month (Taita 

Taveta County Government, 2013). Furthermore, rooftop rainwater harvesting is used in many 

households to supplement other sources. 
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Figure 11. Unclean water being used for domestic purposes in Taita Taveta County. 

 

The competition between wildlife, livestock and the people has led to the decline of the 

water resources. About 75 % of the people do not have access to potable water supply, as shown 

in Figure 11. (Taita Taveta County Government 2014). This can also be attributed to the 

deforestation, as the “water towers” are on the decline. These “water towers” are cloud forests that 

are found in the forested highland and help in generating moisture from fog (Hohenthal et al., 

2015). The highland area around Wundanyi catchment area are densely populated, mostly 

cultivated and least water scarce while the lowlands are suffering from water shortages.   
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4 DATA  

4.1 LiDAR data 

The Optech ALTM 3100 sensor was used to obtain the LiDAR data in the flight campaign in 

February 2013. The sensor recorded the first, last and two intermediate pulses.  More information 

can be found in Table 2. The second campaing was carried out using Leica ALS60 over a period 

of one year with several flight campaigns (Table 3). 

 

Table 2. Parameters of sensor and settings of the 2013 LiDAR data. 

Parameters Configuration settings 

Date of Acquisition February 2013 

Sensor Optech ALTM 2100 

Maximum can angle ± 16° 

Pulse frequency (KHz) 100 

Scan frequency (Hz) 36 

Average point density (pulses m-2) 9.7 

Average return density (return m-2) 11.4 

Average flying height (m) 750 

Beam divergence at 1/e2 (mrad) 0.3 

Average footprint diameter (cm) 22.5 

Coordinate system UTM zone 37S (WGS 1984) 

 

 

Table 3. Parameters of sensor and settings of the 2015 LiDAR data. 

Parameters Configuration settings 

Acquisition Dates 26th January, 6th & 8th February, 2014 

& 5,6,11 & 13 February, 2015 

Sensor Leica ALS60 

Maximum scan angle ± 16° 

Pulse frequency (KHz) 58 

Scan frequency (Hz) 66 

Average range (m) 1460 

Average point density (pulses m-2) 3.1 

Average return density (returns m-2) 3.4 

Range of Pulse density (pulses m-2) 1.0-4.9 

Beam divergence at 1/e2 (mrad) 0.22 

Average footprint diameter (cm) 32 

Coordinate system UTM zone 37S (WGS 1984) 
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4.2 Rainfall data 

The mean monthly and mean annual rainfall datasets were acquired from Climatologies at 

high resolution for the Earth land surface areas (CHELSA).  The data was obtained from 

CHELSA’s project’s website. CHELSA is a high resolution (30 arc sec, ~1 km) climate data set 

for the land surface areas of the Earth that incorporates topoclimate (e.g. orographic rainfall & 

wind fields). It consists monthly and annual average patterns of temperature and precipitation from 

1979 till 2013. CHELSA_v1 was derived by statistically downscaling the ERA interim global 

circulation model, with a GPCC and GHCN bias correction. (Karger et al., 2017). ERA-Interim is 

a global atmospheric reanalysis from 1979 which is updated in real time continuously. GPCC 

analyses global precipitation and is utilized for monitoring and studying the global climate. The 

centre was contributed by Germany to WCRP and GCOS. GHCN-M is a temperature dataset 

which was first developed in the early 1990s, with second and latest versions released in 1997 and 

2011 respectively. 

 

The CHELSA rainfall data are in a geographic coordinate system referenced to the WGS 

84 horizontal datum, in which the horizontal coordinates are in decimal degrees.  The layer extents 

of CHELSA are due to the coordinate system which derived from the 1-arc-second GMTED2010 

data. This also inherited the extent of its grid from the 1-arc-second SRTM dataset. Due to the 

pixel center referencing the input data - GMTED2010, the full extent of every CHELSA grid 

(outside the vertices of the cells) is different from an integer value of longitude or latitude by 

0.000138888888 degree (or 1/2 arc-second). 

 

4.3 Survey data 

A qualitative approach was used by having households survey to get insight into the water 

situation in the area. The fieldwork took place from 2nd August until 13th August 2018. Due to 

the rough terrain of the area, the fieldwork had to be done by sampling houses along the roads in 

various parts. I also tried to reach some houses away from the roadside. To ensure quality response, 

I worked with a field assistant who is a local and was able to communicate in the local kitaita 

language. 120 questionnaires were administered, out of which 105 were recovered. 46 households 

were sampled in the lowlands while 59 were sampled in the highlands. 
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4.4 Other dataset 

 

Rainfall datasets were obtained from ground weather stations managed by Taita Research 

Station in 6 different locations in the study area. The data existed separately and had to be 

aggregated and cleaned by Python 3.7. Google satellite imagery was used for digitizing the 

buildings which were used to validate the rainfall model obtained from CHELSA.  
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5 METHODOLOGY 

5.1 Software and Workflow 

The processing of the LiDAR data was done in with lastools in the windows command line. 

All the analysis of the RRWHP modelling and data cleaning were done in Python 3.7. The 

development environments used were the spyder IDE and visual studio code editor. Some of the 

libraries used include, numpy, scipy, pandas, geopandas, shapely, rasterio, gdal, fiona, matplotlib 

etc. Aside the study area map, all other maps were created and visualized using Python also. The 

survey data was analyzed and visualized in SPSS and Microsoft Excel. Git and github were used 

for the version control. Figure 12 shows the entire work flow in creating my model 

 

Figure 12. Conceptual framework of the whole process. 
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5.2 Roof/Building Extraction 

The average point density was 11.41 points/m2. The average footprint was 22.5 cm. The 

second LiDAR data was obtained in June 2015, also, with first, last and intermediate pulses. 

However, the average point density was 3.27 points/m2, which was much lower than that of 2013. 

The raw output point cloud was already georeferenced. The quality of the data was checked with 

lastools, by using the lasinfo command. I received the data as multiple tiles which I aggregated in 

Python 3.7 to check the quality and see the distributions (Figure 13 and Figure 14). Other quality 

checks were done with other commands such as lasoverage to see overlapping flight lines. Table 

4 and Table 5 show the point density and spacing of all returns and last returns of 2013 and 2015 

dataset, respectively. The point density of all returns point cloud range from about 6 points/sqm to 

about 12 points/sqm average of 11 points/sqm and most grids having about 10 points/sqm. 

 

Table 4. Pulse density and point spacing of 2013 LiDAR data. 
 

mean STD min 25% 50% 75% max 

All returns  Density 11.41 3.87 6.08 9.14 10.27 12.23 36.01 

Spacing 0.30 0.04 0.17 0.29 0.31 0.33 0.41 

Last returns  Density 9.66 2.96 5.42 7.83 8.80 10.61 27.28 

Spacing 0.33 0.04 0.19 0.31 0.34 0.36 0.43 

 

 

Figure 13. Point density of 2013 LiDAR data. 
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On the other hand, the point density of the LiDAR data of the 2015 campaign ranges from 

about 1 to 5 points/sqm with average and most tiles having about 3points/sqm. The point spacing, 

however ranges from about 0.5 m to 0.5 m and average of about 0.6 m (Table 5). 

 

Table 5. Pulse density and point spacing of 2015 LiDAR. 

 

 
Figure 14. Point density of 2015 LiDAR data. 

 

 

 
mean STD min 25% 50% 75% max 

All returns  Density 3.27 0.86 1.41 2.58 3.41 3.86 4.93 

Spacing 0.57 0.08 0.45 0.51 0.54 0.62 0.84 

last returns Density 2.93 0.72 1.30 2.32 2.96 3.56 4.47 
 

Spacing 0.60 0.08 0.47 0.53 0.58 0.66 0.88 
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Figure 15 illustrates the workflow for the automatic extraction of buildings’ footprints from 

point cloud of LiDAR data generated in 2013 and 2015. The qualities of the data were compared 

afterwards.  

 

 

Figure 15. Work flow of generating the buildings from LiDAR data. 

I started by checking the quality of the data (Figure 16). The point density and point spacing 

are two important factors that affect the quality of LiDAR data. 
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Figure 16. Overlapping LiDAR flight lines in Taita Hills. 

After all quality checks, I removed the coverage points that got covered by more than one 

flight line. This was done with the lasoverage command. With the LiDAR data in flight lines, I 

used the lastile command to create square tiles of size 300 by 300 meters. This was done to lower 

the number of points per file and for memory efficiency and to speed up the computation. A buffer 

of 30 meters was added to every tile to prevent edge artifacts in further processes. 30 meters was 

chosen as it was expected to be larger than all the buildings in Taita Hills and bigger than the step 

size used later in the classification of the points. Thereafter, I classified the noise points into class 

code 7 which is the default code. This was done to remove isolated points which have five or less 

points in their surrounding of 4 by 4 by 2 meters grid of cells. Thereafter, the data was visualized 

based on the various returns (Figure 17). 

  

Figure 17. A triangulated tile showing points based on returns. 
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Next step was the extraction of bare-earth by classifying the denoised tiles into ground- 

class 2 and non-ground points - class 1. I ignored the class 7 - noise points. The coarseness was set 

as fine (Figure 18). 

 

Figure 18. Triangulation of the ground point of 2015 LiDAR data. 
 

Next, I computed the height of each of the LiDAR point above the ground which was 

generated earlier. Height above 40m and below 2 meters were dropped because of the expected    

height of buildings in the Taita Hills.  Afterwards, I used lasclassify command to further classify 

the non-ground points - class 2- from the above into building- class 6, and high vegetation - class 

5. The classification of each tile was checked, and some misclassifications were manually 

corrected. The green patches show the vegetation and the two little patches of orange are the 

buildings. The black points are the unclassified points (Figure 19). 

 

Figure 19. Classification of vegetation and buildings in Taita Hills. 
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The buffers created earlier which have been used for computations thus far, were then 

removed to prevent artifacts along tile boundaries. This was done with the lastile command.  DEM 

and DSM are popular derivatives of LiDAR data (Figure 20). This was also generated for 

visualization purpose by interpolating the ground points with a triangulation. Thereafter, the tool 

sampled the TIN at the center of every cell. I computed the DEM and DSM from the ground and 

first returns respectively, using the las2dem command. The “use_tile_bb” parameter was used to 

limit the generation of the raster to the 300m2 tiles, so that it does not rasterize the 30 m buffer too. 

The file was then imported into ArcGIS to create a hill shade with a striking visualization.  

 

Figure 20. On the left is a DEM, and on the right is a DSM over Wundanyi town, Taita Hills. 

 

Lastly, I generated the building footprints by merging the classified tiles on the fly and 

keeping class 6. Lastools is scalable and capable of handling this and prevents duplicate points 

from the buffer with less accurate classifications. The lasboundry command was used for this. 

Disjoint and concavity of 1.5 were chosen to prevent close buildings from joining together. After 

generating the building footprints, there were simplified in QGIS with tolerance of 1.5. The area 

based “Visvalingam” algorithm was used for this. 

5.3 Polygon Simplification: Visvalingam–Whyatt algorithm 

 

The buildings were assumed to be rectangular and orthogonal. Although, this hypothesis 

may be too simplistic or restrictive for urban areas, similar approach is utilized in this research for 

the sake of simplicity and also bearing in mind that the study area is rural. A rectangle is reasonable 
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geometric shape descriptor which can also be combined to derive complex structures. Studies have 

used Douglas-Peucker’s technique (Douglas, 1973) for approximation of the contour of polygons’ 

edge. In this study, I used the Visvalingam’s technique in QGIS for the regularization of buildings’ 

edges. It has been shown that Visvalingam–Whyatt algorithm has better performance for 

elimination of entire shapes, a term called caricatural generalization (Weibel, 1997) (Figure 21). 

 

Figure 21: The Visvalingam and Whyatt (Shi & Cheung, 2006). 

Visvalingam and Whyatt’s (1993) algorithm is a global routine for the generalization of 

area-based line. The effective area for each original point between the start and end nodes of the 

original line is the triangle’s area formed by itself and its immediate neighbors (Figure 21). Besides 

the starting and last endpoints, all original points’ effective areas are first computed and eliminates 

the original point with the minimum effective area. The original point with minimum effective 

area and effective areas for two adjoining points to the point removed are recomputed at each 

iteration. It repeats this process until the predefined value (e.g. 2) is equal to number of points 

retained (Shi & Cheung, 2006). Figure 22 shows some simplified footprints of buildings in the 

area. After the extraction, I checked the outliers manually and with a boxplot. Based on this, I 

filtered out polygons smaller than 10m2 and those larger than 2,000m2.  
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Figure 22. Regularized roof polygons in in Wundanyi town, Taita Hills. 

5.4 Runoff Coefficient 

Runoff coefficient accounts for the surface type of the roof which determines the amount 

of rainfall that would be collected. The surface retains some of the water while others get 

evaporated. The rooftop coefficient for various types of rooftops shown in Error! Reference 

source not found.Table 6. 

 

Table 6. Coefficient of various rooftop types (Dadhich, G., & Mathur, P., 2016). 

S.no Type of Rooftop Rooftop 

coefficient 

1 Galvanized sheets          0.90 

2 Asbestos 0.80 

3 Tiled 0.75 

4 Concrete 0.70 
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A universal value was chosen for the roof coefficient because it was seen in the fieldwork that 

very few and negligible buildings have other kinds of roofs, aside galvanized iron sheets. Majority 

use this material because it is affordable and effective for rainwater harvesting. A value of 70 % 

was chosen because most roofs have a coefficient of about 70-80 % (Zhe Li & Fergal Boyle, 2010).  

As water harvesting is a crucial topic, it is important to reduce overestimation of the potential. 

5.5 Rainfall Model 

I had to decide between creating my own model by using the existing weather stations’ 

data from the area or using CHELSA, which is a third-party already existing model. After cleaning 

and aggregating all the data from various stations, I decided not to use the weather station data 

because of low density and incompleteness of the data from two of the stations. Thereafter, the 

data was used for the validation of the CHELSA rainfall model. I utilized the monthly and annual 

precipitation data from CHELSA which is averaged over the period covers the period from 1979 

to 2013. The first step was to clip the raster rainfall data to the area of interest. This was done using 

the osgeo’s gdal tool in Python. Thereafter, the data were converted into vector format using 

rasterio library in Python. 

5.6 Rooftop Rainwater Harvesting Potential 

I calculated the areas of the footprints of the buildings and also derived the centroid of the 

buildings.  I created a grid of cell size of 926.1 m2 across the study area and clipped it to the study 

area. To get the data for every grid cell, an intersectional spatial join was carried out between the 

grid and the buildings’ centroids.  Centroid refers to the center of gravity of a polygon (Figure 

23Figure 1). For a closed and non-self-intersecting polygon, the centroid is defined by n vertices 

(x0, y0), (x1, y1), ..., (xn−1, yn−1) is the point (Cx, Cy) (Bourke, Paul, 1997) where: 

 

Equation 1. 
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Equation 2. 

  

and where polygon's signed area (A), (Bourke, Paul, 1997) is: 

 

Equation 3. 

 

 

 

Figure 23.  Centroid of a polygon (M2) and other kinds of centers of polygon's - mean center (M1), 

and center of Minimum Bounding Rectangle (M3) (De Smith, Goodchild & Longley, 2018). 

 

The areas of all buildings in each grid were also summed. Furthermore, all the monthly and 

annual rainfall data were aggregated and joined to the grid spatially by intersection. Based on this, 

the total RRWHP was estimated using the below formula (Pecey, Amold and Cullis, Adrian , 

1989): 

 

Equation 4. 

RRWHP (litres) = Area of Catchments(m2) * Runoff Coefficient * Rainfall (m) 
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5.7 Rooftop Rainwater Harvesting Potential Satisfaction 

 In order to understand to what extent the RRWHP could satisfy the people’s need, I 

estimated the water use per grid. This was based on the information derived from the field survey. 

This estimation was done by finding the product of number of buildings in each grid and the 

average daily water use in the area. This was then aggregated into monthly and annual value. 

Thereafter, the values were compared to the RRWHP of each grid by subtracting the values. This 

yielded the net satisfaction of the water use by the RRWHP. Furthermore, the values were 

classified as binary – positive and negative for the monthly and annual values. 

 

Equation 5. 

RRWHPSat = RRWHP – (average water-use per household * number of households * time) 

Where: 

RRWHPSat is Rooftop Rainwater Harvesting Potential Satisfaction,  

* is the multiplication sign 

 

5.8 Accuracy Assessment and Validation 

5.8.1 Validation for Buildings Footprint 

Errors of omission and commission were derived to assess the accuracy of the extracted 

footprints of the buildings. An area was subset to compare the accuracy of the 2013 and 2015 

LiDAR data with different point density and spacing. To achieve this, I manually digitized all the 

buildings in the area and ran an overlay analysis between the digitized and the automatically 

extracted buildings for 2013 and 2015. By comparing the total number of digitized buildings with 

the automatically extracted counterparts, I was able to get the number of omitted buildings in the 

process of extraction. The false negatives (i.e. omitted buildings) were derived as polygons that 

exist in the digitized buildings but not in the automatically extracted polygons. In other words, 

these were the digitized polygons that were not overlaid. The false positives were those that existed 

in the automatically extracted but not in the digitized. 

 

True positive = overlaid 
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False Negative (error of omission) = total digitized polygons – overlaid digitized polygons 

False Positive (error of commission) = total auto extracted polygons – overlaid auto polygons 

producer’s accuracy (%) = 100 – omission 

Thus: producer’s accuracy (%) = 100 – commission 

 

5.8.2 Validation of Rainfall Model Data 

 

Due to the short duration and incompleteness of the weather station data, I decided to 

aggregate all the data and then compare it with the rainfall model. This was done by carrying out 

an overlay analysis between all the station points and the rainfall grids. The monthly average 

rainfall was calculated for every station and then placed together in the same column and compared 

with the modelled monthly rainfall data from CHELSA. Based on this, the correlation and 

thereafter, the coefficient of determination was calculated between the modelled data and reference 

weather station data. The RMSE was also derived. 
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6 RESULTS 

6.1 Building detection 

For the entire study area, 94,632 polygons were generated after the extraction from LiDAR 

data.  Subsequently, 38,323 polygons were left after filtering out buildings less than 10 m2 and 

bigger than 2000 m2. The number was reduced to 33,084 buildings after clipping to the study area. 

The areas of the roofs’ polygons aggregated into the grid shows that most of the buildings are 

concentrated around the western part of the area. While some have less than 22 m2 in total, some 

grids have well over 11,000 m2 to 92,000 m2. (Figure 24). These areas would be suitable for 

rainwater harvesting. 

 

Figure 24. Spatial distribution of rooftop areas. 

 

Determining the relationships of the overlaid digitized buildings and automatically 

extracted polygons can also give some insight into the accuracy of the extraction. In the best 

scenario, a one-to-one relationship is desired. This means that there is no erroneous merging of 

separate buildings’ polygons. After clipping 2013 and 2015 data to a subset of the study area, 2,345 
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and 3,560 buildings were in the found for 2013 and 2015 data, respectively. The filtering criteria 

was then applied, which left 2,159 and 2,365 buildings for 2013 and 2015 data, respectively. In 

the validation of the building, there are many one-to-one relationships. These are polygons of 

digitized roofs, each of which matches exactly one polygon of the automatically extracted polygon. 

There were 1,112 polygons of such case in 2013 and 1,010 in 2015 (Figure 25Figure 24). In some 

situations, however, the automatically extracted polygons intercept with more than one polygon of 

the digitized.  

 

 

Figure 25. Validation of 2013 and 2015 datasets. 

 

For 2013 versus 2015, there were about 256 versus 255 cases of one-to-two, 13 versus 17 

of one-to-three and 2 versus 4 one-to-four relationships (Figure 25).  
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Figure 26. Accuracy of automatically extracted data from 2013 and 2015 data. 

From the above, the 2013 data was more accurate in the detection of buildings. Figure 26 

shows the monthly spatial distribution of rainfall in the area. There is more rainfall in November 

and December while June, July and August had the lowest rainfall amounts. 

 

6.2 Rainfall Distribution in Taita 

The rainfall model from CHELSA shows the pattern of distribution of rainfall in Taita with 

January and June to September being the dry months. Generally, the highland areas have more 

rainfall than the lowland. It shows that the mean monthly rainfall amount from June to July is less 

than 20 millimeters. April and November appear to be the wettest months, with some areas 

receiving up to 180 millimeters of rainfall in those months (Figure 27). 
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Figure 27. Monthly distribution of rainfall in Taita Hills. 
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Generally, the center to the western area receives the most rainfall in the highland while 

the lowland areas receive the least (Figure 28). 

 

 

Figure 28. Mean annual rainfall distribution in Taita Hills. 

Eight of the ground weather stations fall within the study area and mostly in areas with 

high rainfall (Figure 29). 

 

Figure 29. Locations of weather stations managed by Taita Research Station. 
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Stations with issues with the data were discarded, while the data from some stations were 

used.  Figure 30 shows that Mwatate and Mwanda station had short-lived operations.  

 

 

Figure 30. Measured rainfall data from the weather stations managed by Taita Research Station. 
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The rainfall model shows a good prediction when compared with the monthly average 

rainfall from the ground weather stations (Figure 31).  

 

Figure 31. Comparison of measured and modelled rainfall data. 
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With further exploration, the modelled data shows quite good fit with the reference data from the 

ground weather station and with accuracy of about 72 % and RMSE of 38.74 millimeters (Figure 

32). 

 

Figure 32. Validating modelled rainfall with measured rainfall. 
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6.3 Spatiotemporal Rooftop Rainwater Harvesting Potential in Taita 

As the roof areas and rainfall are the critical factors that affect RRWHP, the high land 

area has more potential. The highland has more rainfall and more inhabitants. However, the  

RRWHP potential is very low across the area during dry period in June, July and August with 

only very few having rooftop water harvesting potential up to 500,000 liters (Figure 33). 

 

 

Figure 33. Spatiotemporal distribution of roof rainwater harvesting potential.  
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Figure 34 shows the high disparity of the annual RRWHP, with many areas of about 1sqkm 

having less than 9,000 liters while some have up to 6 million liters to 56 million liters RRWHP. 

 

 

Figure 34 Distribution of annual roof rainwater harvesting potential. 

 

Generally, there are two peaks which are in April and November, with about 400 million 

liters for the entire area. Conversely, the potentials are lowest in June, July, August to about 50 

million liters or less (Figure 35). 
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Figure 35. Monthly roof rainwater harvesting potential. 

 

6.4 Potential water use satisfaction by RRWH 

When the average water use per grid is estimated and compared with the RRWHP, it shows 

that the system alone cannot satisfy the water use of almost all the areas in the highland and 

lowland from June to September, except it is supplemented or stored from rainy months. Most of 

the areas have net positive values in April and November (Figure 36). 
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Figure 36. Potential satisfaction of water use by RRWH. 
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When investigated on the annual basis, it shows that some areas in the highland have huge deficit 

and (Figure 37 and  Figure 38). 

 

 

Figure 37. Annual potential satisfaction of water-use by RRWH. 

 

 

Figure 38. Net satisfaction of water-use by RRWH.  
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Figure 39 shows that in the dry season from July to August, almost all areas cannot be supported 

by RRWH, while almost all can be supported during the very rainy period. By and large, about 60 

% of the households can be supported by the RRWH system on average (Figure 40). 

 

 

Figure 39. Percentage of households with positive monthly net satisfaction of water use by RRWH. 

 

Figure 40. Percentage of households with positive annual net satisfaction of water use by RRWH. 

60

40

Percentage of Buildings in Taita that RRWH 
Potential Surpasses their Annual Water Use

Percentage of Buildings' Water Use That RRWH can meet in a year

Percentage of Buildings' Water Use That RRWH cannot meet in a year
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6.5 Household survey 

Figure 41 shows that farming, trading and construction work are the most common amongst the Taita people. Also, the average 

household size is four people (Figure 41). 

  

 
 

 

Figure 41. Occupation of respondents on the left and size of the households on the right. 
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Figure 42 shows that the average daily water consumption in the area is about 136 liters, with little difference of a about four liters 

between the highland and the lowland. Most of the households use below 400 liters of water per day. 

 

 

 
Figure 42 Daily water consumption in the Taita Hills. 
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On average, people travel for about 43 minutes to get water. Over than an hour is spent traveling to get water in the lowland. It takes 

about 16 minutes in the highland. Some can also be seen to travel more than 400 minutes to get water (Figure 43). 

 

 

  
Figure 43. Travel time to get water. 

Generally, the average waiting time when getting water in the area is about 18 minutes. People spend about 30 minutes on average in 

the lowland, waiting or queueing when getting water. In contrast, the waiting time is 8 minutes in the highland (Figure 44). 

 

Highland 

Mean=16.41 

N=58 

 

Lowland 

Mean=77.53 

N=45 
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Figure 44. Waiting and queueing time to get water. 

 

Highland 

Mean=8.33 

N=58 

 

Lowland 

Mean=30.22 

N=45 
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More than 50% of the people face water shortage in one form or the other. However, the shortage is experience more in the lowland 

(Figure 45, Figure 46 and Figure 47). 

 

 

 
Figure 45. Percentage of households that face water shortage in Taita Hills. 
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Figure 46. Frequency of water shortage. 

 

 
Figure 47. Duration of water shortage. 

Figure 48 shows that there are more households with rainwater harvesting system than those without. Most households that do not have 

the system mostly mentioned that they cannot afford it (Figure 48).  
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Figure 48. Distribution of households that already use RRWH system on the left,  reasons people do not install the RRWH system on the 

right. 

 

The average tank size used in Taita Hills is about 4,400 liters and most people have less than 20,000 liters tank (Figure 49). On average, 

the people in lowland spend three times more on water monthly with about 1,500 shillings (15 USD). 

Do you collect rainwater ? 
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Figure 49. Various tank sizes in different households on the left and amount spent on water monthly on the right. 
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Generally, people spend on average, about 17,000 shillings (166 USD) to install RRWH system. Also, similar to above, people 

in the lowland spend on average about 6,000 shillings (147 USD) more than people in the highland (Figure 50). 

 

 
Figure 50. Average cost of installation of rainwater harvesting system in Taita Hills. 

 

Lastly, if provided by the government or organization, the lowland people prefer to have more than twice as big tank size than the 

highland people (Figure 51). 
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Figure 51. Preferred tank capacity in highland and lowland area.
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7 DISCUSSION 

Water scarcity is a global problem and needs to be understood holistically both in local and 

regional. This way, the appropriate potential solutions can be recognized as there is no panacea. 

For instance, the same action that solves the water problem in the highland area of Taita Taveta 

County may not solve that on the lowlands. The focus of this thesis was mapping the potentiality 

of rooftop rainwater harvesting system and to assess their acceptability by the community. From 

the foregoing, we have seen that the potential varies across the area and monthly. Utilization of 

LiDAR data facilitate the coverage of a large area to assess the potentiality in cost-effective way 

compared to field assessment of roof area. The next I will discuss further about my findings.  

7.1 Automatic Building Detection and Lidar 

LiDAR data has been used in wide range of studies, as stated earlier. Commonly, many 

studies utilize already existing footprint for carrying out their modelling (A. Brunn & U. Weidner, 

1997; N. Haala, et al, 1998). The problem, however, is that these already extracted buildings are 

not always available. Such is the case of Taita area.  Other studies have also attempted to generate 

the footprint by deriving edges of image from multispectral reflectance (C. Brenner, 2010). 

Furthermore, wide range of other methods have been utilized (C. Baillard 1991, S. You 2003; Z. 

Kim 2004; F. Rottensteiner et al, 2004). In this study, the polygons of the roofs are necessary for 

the modelling of RRWHP and therefore, had to be generated from the existing LiDAR datasets. 

 

Another interest was to test the impact of data characteristics on house detection. Previous 

studies have focused more on the algorithms, and very seldom to assess how the point spacing and 

pulse density of a LiDAR data affects the extraction of building footprints (Goodwin et al., 2009; 

Shridhar D Jawak, Panditrao, & Alvarinho, 2013; Wang et al., 2007).  By comparison of the 

datasets from different flight campaigns acquired by different sensors and specifications over the 

same areas, we can find out how point spacing, and pulse density affect the accuracy of building 

extraction considerably. 

 

The point densities and spacing’s are represented in Figure 52 for the Leica data from 2015 with 

about 3 m pulse density and high point spacing and for Optech data from 2013 with about 10 m 
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point density. A higher point spacing and lower pulse density means that the data has lower quality 

and is likely to yield more errors in house detection. 

 

Figure 52. Comparison of the point spacing and pulse density of 2013, 2015 LiDAR data 

One of the methods of reducing false positives is the proper definition of removal criteria 

for polygons’ area beyond a threshold. In urban area, 30m2 and 35000m3 have been used as the 

lower and upper boundaries for defining the accepted area of buildings (Shridhar D Jawak et al., 

2013). Another study in an urban area filtered out areas of buildings less than 10m2 (El-Deen Taha 

& Ibrahim, 2016). However, 10m2 and 2500m2 were adopted in this thesis based on the 

investigation of the data and because the houses are rather small in rural area. As a minimum height 

for the buildings 1.7 m was used compared to 1.5 m used by Shridhar D Jawak et al. (2013) and 3 

m by El-Deen Taha & Ibrahim (2016). This was to avoid the inclusion of cars, and other lower 

objects with smooth surface like car roofs. In the course of the extraction of buildings’ footprints, 

it was shown how much the data quality can also affect the accuracy of feature extraction. For 
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example, one limitation of LiDAR data is its massive data volume which requires huge 

computational loads (Hu & Ye, 2013). 

7.1.1 Accuracy Assessment and Validation 

The pulse density and point spacing were the key factors affecting the accuracy of the 

extraction. Many studies have focused on the algorithm used (Hu & Ye, 2013; Wang et al., 2007). 

In this study, however, it was shown how point spacing and pulse density affects the accuracy of 

the building extraction. Some studies mention the buildings removal criteria, but not the accuracy 

of the building detection (Shridhar D Jawak et al., 2013). In other studies, different accuracies have 

been obtained with different data quality (REF).  

 

El-Deen Taha & Ibrahim (2016) used LiDAR data of 10 cm point spacing and pulse density 

of 65 points/m2 and extracted buildings with the producer’s accuracy of 86% and user’s accuracy 

of 89 %. Goodwin et al. (2009) used 0.7 m point spacing and were able to achieve detection 

accuracy of 83 % and commission error of 38 %. This study evaluated the accuracy of the 

polygons’ area using aerial photography and field observations, which resulted to an accuracy of 

73 % with outliers and 96 % without the two outliers. The highest accuracy utilizing LiDAR data 

was obtained by Hu & Ye (2007), who detected 200 buildings with 100 % user’s accuracy and 

94.5 % and 92.1 % producer’s accuracies in two test areas, respectively. In similar vein, 80% 

accuracy was achieved in a study with 380 buildings (Wang et al., 2007), but the study did not 

make mention the point spacing or pulse density of the data.  

 

The previous studies assess either the accuracy of a dataset in an area or from two different 

areas. Having analyzed data from same area using two different datasets, I found the Optech data 

from 2013 to generally reach higher detection rate with user’s accuracy of 89 % compared to Leica 

data of 2015 with 83 % accuracy (Figure 53). The difference is 6 %, but it is still considerable, 

even though the densities of both data are not so high compared to other studies (El-Deen Taha & 

Ibrahim, 2016).  
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Figure 53. Comparison of accuracies of 2013 and 2015 LiDAR datasets. 

 

Similarly, the user’s accuracy of the 2013 Optech data was about 10 % more than that of 

2015 Leica data with 67 % accuracy. For 2013 versus 2015, there were about 256 versus 255 cases 

of one-to-two, 13 versus 17 of one-to-three and 2 versus 4 one-to-four relationships. This is one 

of the typical errors that occur during automatic extraction, whereby especially buildings in 

proximity are merged as one polygon. This has also been identified in study by  Zeng et al. (2013). 

The 2015 Leica data has lower pulse density and higher spacing compared to data from 2013. The 

combined effects are: lesser quality, and as a consequence more errors are bound to occur 

frequently (Figure 54). 

 

Figure 54. Illustration of common issues with automatically extracted polygons (Zeng et al., 2013). 

% 
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 Evidently with lower point spacing and higher pulse density, a better result could have 

been achieved in this study. The accuracy assessment was done for building detection and not for 

estimation of the roof area due limited resources in the field work.  To conclude, the 2013 LiDAR 

data is of better quality and is more suitable for building extraction, but covers only 10 by 10 km, 

while 2015 data covers more than 1000 km2.   

7.2 Spatiotemporal Assessment of Rooftop Rainwater Harvesting Potential 

Besides the building footprints, rainfall data is another important data when evaluating 

RRWHP. The use of rainfall data from various weather stations managed by the Taita Research 

Station was assessed after aggregating and inspecting to be insufficient for modelling rainfall for 

each month for the whole study area. CHELSA rainfall model was used and validated with the 

data from the weather stations managed by Taita Research Station. The model shows that the 

rainfall pattern in Taita is governed by topography and elevation. It rains more in the highlands, 

while lowlands are drier. June, July and August also appear to be the driest months. The influence 

of the ITCZ can also be seen in the monthly rainfall creating a bimodal pattern, with April and 

November having the highest rainfall. The CHELSA rainfall model shows quite good accuracy of 

72 % and RMSE of 38.74 mm when assessed with data from Taita Research Station weather 

stations.  

 

The coefficient factor was estimated to be 70 % even though the galvanized iron sheets 

largely used in the area are considered to have a coefficient of 85 % to 90 %. I decided not to 

overestimate the rainwater harvesting potentiality as it is a sensitive issue that affects the lives of 

many people. In addition, many roofs are not in a good condition and are likely to have lower 

coefficient as pointed out by Zhe Li & Fergal Boyle (2010). In similar vein, an image classification 

could have been done for the roof classes, but it may have introduced more errors than into the 

analysis. In addition, the field survey showed that only a few houses had other roof types besides 

galvanized iron sheet. In fact, all the households visited had all the galvanized iron sheets, which 

is a popular choice because it is affordable, accessible, and is good for water harvesting. The first 

flush is considered to reduce RRWHP, but as this water is useful for other domestic purposes such 

as irrigation of gardens or flushing of toilet, the first flush was also included to RRWHP. 
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One of the key point is that it is not enough to focus on the spatial aspects of rooftop 

rainwater harvesting because it only yields rough results that might not be compelling for 

stakeholders to take strategic actions. The general pattern of rainwater harvesting potentiality 

based on the input multi-criteria can be seen in the result maps, but they do not tell what the real 

socio-economic situation in the area is. Some households do not face water shortage while some 

others face a long-term shortage. In the other words, one may wonder why people utilizing 

rainwater harvesting system in the highlands still suffer water scarcity. An annual precipitation 

map does not show that all the areas in Taita Hills do not have considerable water potential during 

the dry seasons and especially in June, July and August. Furthermore, by integrating the water 

consumption data derived from the field, it was seen that even though an area has a high-water 

potential, it may not cater fully for the needs of households in the area taking into account the daily 

water consumption and the inadequacy of proper water storage tanks. Generally, water should be 

stored for the dry months, as the RRWHP is lower than the consumption for almost the entire area 

in the dry season. 

7.3 Socioeconomic Context and Potential Impact of Rooftop Rainwater Harvesting System 

on the Taita people  

The average number of people in households in Taita is four, while some households have as 

much as ten people. The most common occupations are farming, trading and construction work. 

Generally, the average water consumption per day is about the same in the highland and in the 

lowland with 138 liters and 134 liters, respectively. However, the people in the lowlands are faced 

with more challenges in retrieving water. Even though the water consumption is about the same, 

people in the lowland spend about 1,600 shillings (16 USD) monthly on water. This is three times 

more than people in the highland spendOn the other hand, in the highlands the majority do not face 

water shortage. In the same vein, the lowland people face shortage more frequently over six months 

compared to people in highlands who face water shortage for less than three months. 

 

The overall average time it takes to get water is 43 minutes. This does not give a detailed 

picture of the situation, as the people in the highland spend on average 16 minutes to get water 

while people in lowland spend 78 minutes. It is even worse in some cases. For example, two of 
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the respondents spent about 6 to 8 hours daily to get water. These are women who could have used 

this time to do something productive and even educate themselves to improve their living standard. 

To get a deeper perspective, people in the lowland spend about four times longer waiting or 

queueing for water compared to their highland counterpart. On average, people wait for about 8 

minutes at the water point when getting water.   

 

It was found out that most people already collect rainwater. The average tank size is about 

4,400 liters. Also, the average cost of installing the rainwater system is about 17,000 shillings. 

However, people in the lowland spend about 21,000 shillings, which is about 6,000 shillings more 

than in highlands. The survey also revealed that the lowland people feel more need to store water. 

When asking what tank capacity, they would prefer, the people in the lowland want to have on 

average 20,000 liters tank, while in the highland 8,500 liters tank was sufficient. 

 

The most common water storages are plastic or concrete tanks, which are more durable 

than metal tanks. Many concrete tanks have been designed and constructed by the Danish 

International Development Agency (DANIDA) in late 1990s. Major challenges are caused by air 

quality and roof cleanliness in Taita Hills. Especially in the lowlands, it is very dusty causing poor 

air quality and contaminated water harvested from the roofs. Nevertheless, a few households have 

devised means to purify the water with chemicals or even solar energy (Figure 55). Therefore, 

even the first flush water quality in Taita can be improved.  
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Figure 55. Chemicals or solar energy used for purifying harvested water. 

 

Many roofs were built for enabling water harvesting, for example they were built steeper 

for water harvesting than needed. The material used is mostly galvanized steel, with the semi-

circular gutter being the most effective for transporting rainwater to tanks. The enclosed circular 

storage tanks are the most common in the area placed on the ground or below the ground. Most 

typical are the above-ground tanks located close to the homes.  All in all, many advantages of the 

aboveground tanks outweigh the underground tanks, for example above-ground tank is cheaper to 

install and easier to maintain. 

7.4 Sustainability Issues 

Sustainability is a paramount consideration to bear in mind when embarking on a project such 

as the domestic rooftop rainwater harvesting. It is the design and building of a structure or project 

that is properly maintained financially, technically and environmentally (Joshua, 2008). This is a 

herculean task that requires the efforts of both the people and the government of Taita Taveta 

County.  Problem of maintenance is a major issue plaguing many projects (Lindqvist, 2005). 

Despite the rise in the use of RWH system in Kenya, many of those have been short lived 

(Critchley, 1991a). It is utmost critical to ensure that when embarking a mass provision of RRWH 

system, measures are put in place to sustain them and make sure that they actually solve the 

people’s water problem. The interest in and knowledge of rainwater harvesting has been increasing 

during recent decades within private sectors, non-governmental, governmental and international 

organizations due to the success in mitigating water scarcity, especially in rural areas. Many 

Kenyans face water shortage during the dry seasons and are very willing and open to utilizing 

RRWH system to help them store the water for the dry months, as is the case of the people in the 

lowlands of Taita Taveta County. 

7.4.1 Project Feasibility  

A feasibility study is crucial to understand the past projects and the status quo, from an 

economic, technical, social and environmental perspective. With this, proper plans can be made in 

building more sustainable rooftop rainwater harvesting projects. There should be a synergy 
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between all the stakeholders including individual households, the community at large, local 

institutions and the government (Joshua Black et al., 2012).  

 

It is necessary to have a cost and benefit analysis for proper evaluation of the feasibility of 

the RRWH project. The goals of the project need to be set beforehand and usually, the benefits are 

considered from economic perspective i.e. profit making. However, special considerations must 

be put in place for projects targeting the poorest of the populace. The benefits have to be considered 

as not primarily for profit making but for improving livelihoods and wellbeing of the people 

(Joshua Black et al., 2012).  

 

A realistic loan scheme could be set up for the project in order to ameliorate water scarcity 

in many households. The income derived from the loan should also be reinvested into maintaining 

the project. The water use can be maximized by directing the overflow from tank into gardens for 

irrigation. Another recommendation would be to excavate ponds for, say, every 10 houses, where 

excess rainwater can be diverted into and can be utilized during dry spell. It is salient to note that 

the water needs in cooler highland areas such as Taita Hills, are often neglected by the government, 

because of the misconception that their water needs are met (Joshua Black et al., 2012). However, 

as evidenced in this study, these communities also have months without rainfall, hence, the water 

shortage. There is a need for proper evaluation of the situation obtainable in various locations. 

Addressing the water issue in every location, and not just in the driest areas, can improve 

livelihoods and help every household to move towards self-sufficiency. 

 

Furthermore, certain questions have to be answered when starting a RRWH project. It is 

important to understand who will be implementing the projects? The government or NGOs or 

individual households? What is the demographic situation in the region? What kind of households 

are we targeting? What is the existing situation with water resources and roof water harvesting? 

Can RRWH, at least, considerably ameliorate water scarcity and poverty? How would the 

beneficiaries be decided? Pinpointing such issues can help to prevent nepotism, favoritism and 

corruption (Joshua Black et al., 2012). It is also crucial to make realistic goals and promises, as 

this requires the trust of the community on the project. Similarly, the political situation of the 

community must be considered when allocating rainwater harvesting system. This can help to 
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understand the likelihood of corruption that might exist. Nevertheless, it is recommended to 

incorporate local community elders and organizations in the process (Brown, 2008). 

 

Another point of consideration is the lifecycle of the project. Many projects begin to 

degenerate soon after the funding stops. Therefore, the project has to be executed strategically, to 

have a long lasting RRWH system (Mati et al. 2008, Nijhof & Shrestha 2010). As with many other 

regions of sub-Saharan Africa, women are known to bear the brunt of the water scarcity (Ngigi, 

2009). Many spend substantial amount of time during the day just to get water. This is time that 

could have otherwise been put into other productive activities such as education.  An example is 

two of my female respondents in their early 20s whom travel 6 hours daily to get water. Hence, it 

is important to involve women when deciding on the allocation and management of the system 

(Worm & Hattum, 2006). The improvement of the domestic rainwater system will positively affect 

women and improve gender equality and fairness, since women can be more productive if not 

using their time for water. RRWH system cannot solve all the problems, but it will go a long way 

to empower the people, as they become more self-sufficient. This will yield better productivity, as 

people can channel the energy and time spent on getting water to do other productive things. 

Consequently, the quality of lives of the people will increase considerably. 
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8 CONCLUSIONS 

It is important to have LiDAR data with high pulse density and low point spacing for 

automatic building detection and extraction. Also, future studies should include the validation of 

roof areas on a substantial scale. Water harvesting potential varies spatially and temporally, hence 

the temporal aspect should not be neglected in following studies. Also, focus should not be on the 

temporal pattern alone, as that may be too broad generalization. It can be best understood 

spatiotemporally, which can provide better framework for decision making when allocating 

RRWH system in an area.  

 

While the lowland areas of Taita Taveta County have lower RRWHP than highland areas, 

they both face water problems and also require water intervention projects. Excess water should 

be stored strategically towards the time when RRWHP is low. RRWH system would be a viable 

solution but has to be supplemented with more allocations to the lowland. The potential impacts 

of RRWH on the Taita people would be significant and would include increased access to necessity 

of life – water, reduced water problems, better quality of life, health benefits, improved gender 

equality, increased productivity, more time for education, improved hygiene, and less dependence 

on the government. 
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APPENDICES 
 
Lastools in Command Line Windows: 
set PATH=%PATH%;C:\LAStools\bin 

 
lasoverage -i E:\Blayz_lidar\2015\LiDAR\Data\*.las ^ 
  -step 2  -remove_overage ^ 
  -odir E:\LIDAR_FINAL\2015\overage_removed -o taita.las 

 
lastile -i E:\LIDAR_FINAL\2015\overage_removed\taita*.las ^ 
        -tile_size 1000 -buffer 30 -flag_as_withheld ^ 
    -files_are_flightlines ^ 
        -odir E:\LIDAR_FINAL\2015\lastiles_with_buffer -olas 

 
lasnoise -i E:\LIDAR_FINAL\2013\lastiles_with_buffer\taita*.las^ 

       -step_xy 4 -step_z 2 -isolated 5 ^ 
         -odir E:\LIDAR_FINAL\2013\tiles_denoised -olas ^ 
         -cores 4 

 
lasground -i E:\LIDAR_FINAL\2013\tiles_denoised\taita*.las ^ 
          -ignore_class 7 ^ 
          -town -fine ^ 
      -compute_height ^ 
          -odir E:\LIDAR_FINAL\2015\ground -olas ^ 
          -cores 4 

 
lasheight -i E:\LIDAR_FINAL\2015\ground\taita*.las ^ 
          -drop_above 50 ^ 
      -drop_below 2 ^ 
          -odir E:\LIDAR_FINAL\2015\height -olas ^ 
          -cores 4 

 
lasclassify -i E:\LIDAR_FINAL\2015\ground\taita*.las ^ 
            -ignore_class 7 ^ 
            -odir E:\LIDAR_FINAL\2015\class -olas ^ 
            -cores 4 

 
lastile -i E:\LIDAR_FINAL\2015\class\taita*.las ^ 
        -remove_buffer ^ 
        -odir E:\LIDAR_FINAL\2015\lastiles_no_buffer -olas ^ 
        -cores 4 

 
lasboundary -i E:\LIDAR_FINAL\2015\lastiles_no_buffer\taita*.las -merged ^ 
            -keep_class 6 ^ 
            -disjoint -concavity 1.4 ^ 
            -o E:\LIDAR_FINAL\2015\buildings\buildings_2015.shp 

 

 

 

 

UTILITY FUNCTIONS 

 

1. import rasterio   

2. from rasterio.plot import show   

3. from rasterio.plot import show_hist   

4. from rasterio.mask import mask   

5. from shapely.geometry import box   

6. import geopandas as gpd   

7. from fiona.crs import from_epsg   
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8. from osgeo import gdal   

9. import utm   

10. from gdalconst import GA_ReadOnly   

11. import os   

12. from shapely.geometry import Polygon   

13. import numpy as np   

14. from rasterio.features import shapes   

15. import glob   

16. import pandas as pd   

17. import re   

18.    

19.    

20. '''''  

21. Author: Oyelowo Oyedayo  

22. Purpose: For my thesis   

23. Contact: www.github.com(Oyelowo)  

24. '''   

25.    

26. def get_density_spacing_info(input_dir):   

27.     filepaths = os.path.join(input_dir, '*.txt')   

28.     list_of_files = glob.glob(filepaths)    

29.     lidar_info = pd.DataFrame(columns=['tilesNumber'])   

30.     for i, file in enumerate(list_of_files, 1):   

31.         with open(file, 'r') as f:   

32.             text_lines = f.readlines()   

33.    

34.     # get the point density and point spacing which are on line 39 and 40 respectively 

  

35.         for line in text_lines:   

36.           line=line.strip()   

37.     # extract all and last return densities. Do same for spacing. There are two values 

for each   

38.           if line.startswith('point density'):   

39.             all_returns_density, last_returns_density = re.findall("\d+\.\d+", line)   

40.           elif line.startswith('spacing'):   

41.             all_returns_spacing, last_returns_spacing = re.findall("\d+\.\d+", line)   

42.     # Insert the values into the dataframe   

43.         lidar_info= lidar_info.append({   

44.             'tilesNumber':int(i),    

45.             'last_returns_density':float(last_returns_density),   

46.             'all_returns_density': float(all_returns_density),    

47.             'all_returns_spacing': float(all_returns_spacing),    

48.             'last_returns_spacing': float(last_returns_spacing)    

49.           },    

50.           ignore_index=True)   

51.     return lidar_info   

52.      

53.    

54. def create_dir(dirName):   

55. # Create target directory & all intermediate directories if don't exists   

56.   if not os.path.exists(dirName):   

57.     os.makedirs(dirName)   

58.     print("Directory " , dirName ,  " Created ")   
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59.   else:       

60.     print("Directory " , dirName ,  " already exists")    

61.   return dirName   

62.    

63.    

64. def bbox_to_utm(bbox, zone_number):   

65.     lonlow, lathigh, lonhigh, latlow = bbox   

66.     minx, maxy,*others = utm.from_latlon(lathigh, lonlow, zone_number)   

67.     maxx, miny, *others = utm.from_latlon(latlow, lonhigh, zone_number)   

68.     return [minx, maxy , maxx, miny]   

69.          

70.        

71. def get_raster_extent(raster_file_path):   

72.     data = gdal.Open(raster_file_path, GA_ReadOnly)   

73.     geoTransform = data.GetGeoTransform()   

74.     minx = geoTransform[0]   

75.     maxy = geoTransform[3]   

76.     maxx = minx + geoTransform[1] * data.RasterXSize   

77.     miny = maxy + geoTransform[5] * data.RasterYSize   

78.     print('[minx, maxy , maxx, miny] is',  [minx, maxy , maxx, miny] )   

79.     data = None   

80.     return [minx, maxy , maxx, miny]   

81.    

82.    

83. def get_vector_extent(shapefile='', geometry_field='geometry', utm_zone=37, northern=Fa

lse):   

84.     '''''  

85.     extent: An array of the extent of the window in this order: [minx, maxy , maxx, min

y]  

86.     '''   

87.     minx, miny, maxx, maxy = shapefile[geometry_field].total_bounds   

88.     latlow, lonlow = utm.to_latlon(minx, miny, utm_zone, northern=northern)   

89.     lathigh, lonhigh = utm.to_latlon(maxx, maxy, utm_zone, northern=northern)   

90.     return [lonlow, lathigh, lonhigh, latlow]    

91.    

92.    

93. def clip_and_export_raster(raster_path, output_tif, extent):   

94.     '''''  

95.     extent: An array of the extent of the window in this order: [minx, maxy , maxx, min

y]  

96.     '''   

97.     raster_data = gdal.Open(raster_path)   

98.     raster_data = gdal.Translate(output_tif, raster_data, projWin=extent)   

99.     raster_data = None   

100.     clipped = rasterio.open(output_tif)   

101.     #show((clipped, 1), cmap='Blues')   

102.     return clipped   

103.        

104.       

105.    

106. def getFeatures(gdf):   

107.     """Function to parse features from GeoDataFrame in such a manner that raster

io wants them"""   
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108.     import json   

109.     return [json.loads(gdf.to_json())['features'][0]['geometry']]   

110.    

111.    

112.    

113.    

114. def get_clipped_raster(raster_data, output_path, extent, bbox_epsg_code=4326):   

115.     '''''  

116.     extent: An array of the extent of the window in this order: [minx, maxy , ma

xx, miny]  

117.     '''   

118.     minx, maxy , maxx, miny = extent   

119.     bbox = box(minx, maxy , maxx, miny)   

120.    

121.     geo = gpd.GeoDataFrame({'geometry': bbox}, index=[0], crs=from_epsg(bbox_eps

g_code))   

122.        

123.     try:   

124.         geo = geo.to_crs(crs=raster_data.crs.data)   

125.     except ValueError:    

126.         print('The raster crs is not defined')   

127.     coords = getFeatures(geo)   

128.        

129.     clipped_img, clipped_img_transform = mask(raster=raster_data, shapes=coords,

 crop=True)   

130.     clipped_img_meta = raster_data.meta.copy()   

131.     clipped_img_meta.update({"driver": "GTiff",   

132.               "height": clipped_img.shape[1],   

133.                 "width": clipped_img.shape[2],   

134.                  "transform": clipped_img_transform,   

135.                 "crs": raster_data.crs.data})   

136.        

137.     with rasterio.open(output_path, "w", **clipped_img_meta) as output:   

138.         output.write(clipped_img)   

139.                

140.     clipped = rasterio.open(output_path)   

141.     show((clipped, 1), cmap='terrain')   

142.     return clipped   

143.    

144.    

145.    

146. def create_grid(gridHeight, gridWidth,bbox=None, is_utm=False, zone_number=None,

shapefile=None,convex_hull=False, geometry_field='geometry'):   

147.     '''''  

148.     NOTE: you have to specify if your grid is in UTM or WGS84 longitude latitude

  

149.     bbox: should be provided  

150.     '''   

151.     if bbox is None and shapefile is None:   

152.         raise ValueError('Provide either the bounding box or the shapefile you w

ant to use for the extent of the grid')   

153.    

154.     if bbox:   
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155.         if not is_utm:   

156.             bbox=bbox_to_utm(bbox, zone_number)   

157.         minx, maxy , maxx, miny = bbox   

158.     else:   

159.         minx,miny,maxx,maxy =  shapefile[geometry_field].total_bounds   

160.         print(shapefile[geometry_field].total_bounds)   

161.    

162.              

163.     rows = int(np.ceil((maxy-miny) /  gridHeight))   

164.     cols = int(np.ceil((maxx-minx) / gridWidth))   

165.     XleftOrigin = minx   

166.     XrightOrigin = minx + gridWidth   

167.     YtopOrigin = maxy   

168.     YbottomOrigin = maxy- gridHeight   

169.    

170.     polygons = []   

171.     for i in range(cols):   

172.         Ytop = YtopOrigin   

173.         Ybottom =YbottomOrigin   

174.         for j in range(rows):   

175.             polygons.append(Polygon([(XleftOrigin, Ytop), (XrightOrigin, Ytop), 

(XrightOrigin, Ybottom), (XleftOrigin, Ybottom)]))    

176.             Ytop = Ytop - gridHeight   

177.             Ybottom = Ybottom - gridHeight   

178.         XleftOrigin = XleftOrigin + gridWidth   

179.         XrightOrigin = XrightOrigin + gridWidth   

180.    

181.     grid = gpd.GeoDataFrame({'geometry':polygons})   

182.     if convex_hull:   

183.       grid['geometry'] = grid.convex_hull   

184.     return grid   

185.    

186.    

187.    

188. def polygonize(raster_filepath, old_epsg_code=4326, new_epsg_code=32737):   

189.     mask = None   

190.     with rasterio.drivers():   

191.         with rasterio.open(raster_filepath) as original_raster:   

192.             image = original_raster.read(1) # first band   

193.             results = (   

194.             {'properties': {'grid_value': value}, 'geometry': geometry}   

195.             for index, (geometry, value) in enumerate(shapes(image, mask=mask, t

ransform=original_raster.affine)))   

196.    

197.     geoms = list(results)   

198.     gpd_polygonized_raster  = gpd.GeoDataFrame.from_features(geoms)   

199.     gpd_polygonized_raster.crs = {'init' :'epsg:'+ str(old_epsg_code)}   

200.     gpd_polygonized_raster = gpd_polygonized_raster.to_crs(epsg=new_epsg_code)   

201.     return gpd_polygonized_raster   
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1. # =============================================================================   
2. import geopandas as gpd   
3. import matplotlib.pyplot as plt   
4. from shapely.geometry import Polygon   
5. import rasterio   
6. from rasterio.plot import show   
7. from rasterio.plot import show_hist   
8. import seaborn as sns   
9. import glob   
10. import os   
11. import calendar   
12. import re   
13. from mpl_toolkits.axes_grid1 import make_axes_locatable   
14. import pysal as ps   
15. from shapely import speedups   
16. from pathlib import Path   
17. speedups.available   
18. speedups.enable()   

# Access the utility functions I created earlier 

19. import oyelowo_ras as ras   
20.    
21. #my_path = os.path.abspath(os.path.dirname('__file__'))   
22. my_dir = r'E:\LIDAR_FINAL\data'   
23.    
24.    
25. ras.create_dir(my_dir)   
26.    
27. def create_path(sub_dir='', my_dir=my_dir):   
28.   return ras.create_dir(Path(my_dir + sub_dir))   
29.    
30.    
31. aoi_dir = os.path.join(my_dir, 'AOI')    
32. aoi_filepath =os.path.join(aoi_dir, 'fishnet_926_1sqm.shp')   
33. bbox_raster_filepath = os.path.join(aoi_dir, 'clipped_mean_annual_rain.tif')   
34. aoi_poly_filepath = os.path.join(aoi_dir, 'AOI_polygon.shp')   
35. aoi_vertices_filepath= os.path.join(aoi_dir, 'aoi_vertices.shp')   
36. buildings_filepath = os.path.join(my_dir,  'buildings', '2015', 'roof_polygons', 'build

ings_2015_simplified.shp')   
37.    
38. #rain_rasters_dir = ras.create_dir(os.path.join(my_dir,'precipitation'))   
39. #output_clipped_raster_dir = ras.create_dir(os.path.join(my_dir, 'precipitation', 'clip

ped'))   
40. #monthly_rain_shp_dir= ras.create_dir(os.path.join(my_dir, 'precipitation', 'clipped', 

'to_vector'))   
41. #centroid_filepath = ras.create_dir(os.path.join(my_dir,  'buildings', '2015', 'buildin

gs_centroid', 'buildings_centroid.shp'))   
42. #grid_filepath = ras.create_dir(os.path.join(my_dir,  'grid', 'grid.shp'))   
43. #aoi_grid_clipped_shp_filepath = ras.create_dir(os.path.join(my_dir,  'grid', 'aoi_grid

_clipped.shp'))   
44.    
45.    
46. rain_rasters_dir = create_path('/precipitation')   
47. output_clipped_raster_dir = create_path('/precipitation/clipped')   
48. monthly_rain_shp_dir= create_path('/precipitation/clipped/to_vector')   
49. centroid_filepath = create_path('/buildings/2015/buildings_centroid/buildings_centroid.

shp')   
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50. grid_filepath = create_path('/grid/grid.shp')   
51. aoi_grid_clipped_shp_filepath = create_path('/grid/aoi_grid_clipped.shp')   
52.    
53.    
54.    
55.    
56.    
57. # =============================================================================   
58. #    
59. # =============================================================================   
60. aoi_crs_epsg = {'init' :'epsg:32737'}   
61. aoi_crs_epsg_code = 32737   
62. rain_raster_data_epsg_code = 4326   
63.    
64. #readthe shapefile for the area of interest   
65. aoi_shapefile = gpd.read_file(aoi_filepath)   
66.    
67.    
68. #bbox_aoi2 = ras.get_vector_extent(aoi_shapefile)'   
69. #bbox_aoi = ras.get_vector_extent(aoi_shapefile)   
70. #bbox_aoi = ras.get_raster_extent(bbox_raster_filepath)   
71. bbox_aoi = [38.19986023835, -3.2418059025499986, 38.52486023705, -3.516805901449999]   
72. aoi_polygon =  gpd.read_file(aoi_poly_filepath)   
73. aoi_polygon.crs = aoi_crs_epsg   
74. #bbox_aoi = ras.get_vector_extent(aoi_polygon)   
75.    
76.    
77.    
78. # =============================================================================   
79. # # CLIP ALL THE MONTHLY DATA AND ALSO SUM THEM   
80. # =============================================================================   
81. sum_rain = 0   
82. rain_raster = glob.glob(os.path.join(rain_rasters_dir, '*.tif'))   
83. for i, month_file_path in enumerate(rain_raster, 1):   
84.     print(i)   
85.     filename = os.path.basename(month_file_path)   
86. #    Match the file name, excluding the extension name   
87.     if filename[:-4] == 'annual_rainfall':   
88.         month_name = 'ann'   
89.     else:   
90.         month_number = re.search(r'\d+', filename).group()   
91.         month_name = calendar.month_name[int(month_number)]   
92.     month_abbreviation = month_name[:3]+'_rain'   
93.     output_tif = os.path.join(output_clipped_raster_dir, month_abbreviation + '.tif')   
94.     print(output_tif)   
95.     ras.clip_and_export_raster(month_file_path, output_tif, bbox_aoi)   
96.        
97.     month_raster = rasterio.open(output_tif).read().astype(float)   
98.     sum_rain += month_raster   
99.    
100.    
101. cc = sum_rain/12   
102. # ============================================================================= 

  
103. # ['nearest' | 'bilinear' | 'bicubic' | 'spline16' |   
104. #            'spline36' | 'hanning' | 'hamming' | 'hermite' | 'kaiser' |   
105. #            'quadric' | 'catrom' | 'gaussian' | 'bessel' | 'mitchell' |   
106. #            'sinc' | 'lanczos' | 'none' ]   
107. # ============================================================================= 

  
108. show(sum_rain,cmap='RdBu',interpolation="sinc", title="Mean Annual Rainfall")   
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109. #show(month_raster,ax =ax, cmap='RdBu',interpolation="bessel", title="Mean Annua
l Rainfall")   

110. # ============================================================================= 
  

111. # CONVERT THE RASTER FILES INTO VECTOR   
112. # ============================================================================= 

  
113. monthly_rain_clipped=glob.glob(os.path.join(output_clipped_raster_dir, '*.tif'))

   
114. for i, month_file in enumerate(monthly_rain_clipped, 1):   
115.     month_field_name = os.path.basename(month_file)[:3] + '_rain'   
116.     output_shp = os.path.join(monthly_rain_shp_dir, month_field_name + '.shp')   
117.     print(month_field_name)   
118. #    month_raster = rasterio.open(month_file)   
119.     polygonized_raster = ras.polygonize(month_file, rain_raster_data_epsg_code, 

aoi_crs_epsg_code)   
120.     polygonized_raster=polygonized_raster.rename(columns={'grid_value': month_fi

eld_name})   
121.     polygonized_raster.to_file(output_shp)   
122.        
123. #    FOR TEST PURPOSE   
124.     month_rain_data_test = gpd.read_file(output_shp)   
125.     month_rain_data_test.plot(column=month_field_name, cmap="Blues", scheme="equ

al_interval", k=9, alpha=0.9)   
126.    
127.    
128.    
129. # ============================================================================= 

  
130. # AOI POLYGON   
131. # ============================================================================= 

  
132. # ============================================================================= 

  
133. vertices = gpd.read_file(aoi_vertices_filepath)   
134. vertices.plot()   
135. aoi_vertices_list = [p.xy for p in vertices.geometry]   
136. aoi_polygon = Polygon([[points.x, points.y] for points in vertices.geometry])   
137. aoi_polygon_df = gpd.GeoDataFrame(data=[aoi_polygon],  columns=['geometry'])   
138. aoi_polygon_df.crs= aoi_crs_epsg   
139. aoi_polygon_df.plot()   
140. print(aoi_polygon)   
141. # ============================================================================= 

  
142.    
143.    
144.    
145.    
146. # ============================================================================= 

  
147. # WORKING WITH THE BUILDING SHAPEFILE   
148. # ============================================================================= 

  
149. buildings_shp_unfiltered = gpd.read_file(buildings_filepath)   
150.    
151. # calculate area and centroid of the buildings   
152. buildings_shp_unfiltered['area'] = buildings_shp_unfiltered['geometry'].area   
153. print(len(buildings_shp_unfiltered))   
154. # filter roof areas lower than 10sqm or higher than 2000sqm   
155. buildings_shp = buildings_shp_unfiltered.loc[(buildings_shp_unfiltered['area']>1

0) & (buildings_shp_unfiltered['area']<2000)]   
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156. print(len(buildings_shp))   
157. # get the centroid of every building   
158. buildings_shp['centroid']= buildings_shp['geometry'].centroid   
159.    
160.    
161. buildings_centroid = buildings_shp.copy()   
162. buildings_centroid['geometry'] = buildings_shp['centroid']   
163. buildings_centroid = buildings_centroid.reset_index(drop=True)   
164.    
165. #set ID for the filtered buildings. Start from one   
166. buildings_centroid['ID'] =  buildings_centroid.index + 1   
167. del buildings_centroid['centroid']   
168.    
169.    
170.    
171. buildings_centroid.to_file(centroid_filepath)   
172. #buildings_centroid.plot()   
173.    
174. # ============================================================================= 

  
175. #    
176. # ============================================================================= 

  
177.    
178.    
179.    
180.    
181.    
182.    
183. # ============================================================================= 

  
184. #    
185. # # CREATE A FISHNET/GRID OF 926.1m PIXEL   
186. # ============================================================================= 

  
187. #generating grid by directly providing the bounding box   
188. grid = ras.create_grid(926.1, 926.1, shapefile=buildings_centroid)   
189. #generating grid based on shapefile extent   
190. #grid2 = ras.create_grid(926.1, 926.1, shapefile=aoi_shapefile)   
191.    
192. #grid = ras.create_grid(gridHeight=926.1, gridWidth=926.1,shapefile=aoi_shapefil

e)   
193. #grid.plot()   
194.    
195.    
196. grid.to_file(grid_filepath)   
197.    
198. # ============================================================================= 

  
199. # CLIP THE GRID INTO THE AOI   
200. grid.crs = aoi_crs_epsg   
201. aoi_grid_clipped = gpd.overlay(grid, aoi_polygon_df, how='intersection')   
202.    
203. #reset the index of the joined data and use the index values + 1, as the ID of e

ach grid   
204. aoi_grid_clipped['grid_ID'] = aoi_grid_clipped.reset_index(drop=True).index + 1 

  
205. aoi_grid_clipped.plot()   
206. aoi_grid_clipped.to_file(aoi_grid_clipped_shp_filepath)   
207.    
208. #grid = gpd.read_file(r'E:\LIDAR_FINAL\data\grid\grid_clipped.shp'   
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209. # ============================================================================= 
  

210. #    
211. # ============================================================================= 

  
212.    
213.    
214.    
215.    
216.    
217. # ============================================================================= 

  
218. # SPATIAL JOIN   
219. # ============================================================================= 

  
220. grid.crs = buildings_centroid.crs = aoi_crs_epsg   
221. #join the grid with the buildings, to get the areas per grid   
222. buildings_grid = gpd.sjoin(aoi_grid_clipped,buildings_centroid, how="left", op='

intersects')    
223.    
224. #some grids might be without buildings and will be nan values. Replace those wit

h 0   
225. buildings_grid = buildings_grid.fillna(0)   
226.    
227. #delete the index_right column to avoid issues later   
228. del buildings_grid['index_right']   
229.    
230. months_shp_filepaths = glob.glob(os.path.join(monthly_rain_shp_dir,'*.shp'))   
231.    
232.    
233.    
234. # ============================================================================= 

  
235. # AGGREGATE ROOF AREAS BASED ON GRID ID   
236. # ============================================================================= 

  
237.    
238.    
239.    
240. buildings_grouped = buildings_grid.groupby('grid_ID')   
241. buildings_aggr = gpd.GeoDataFrame()   
242. #buildings_aggr['geometry']=None   
243. grid_ID, geom ,area, buildings_count = [], [], [], []   
244. for key, (i, group ) in enumerate(buildings_grouped,1):   
245.     group_geometry = group.iloc[0]['geometry']   
246.     grid_ID.append(key)   
247.     geom.append(group_geometry)   
248.     area.append(group['area'].sum())   
249.     buildings_count.append(len(group))   
250.     print('Aggregating grid', key,  'Total Area=', group['area'].sum(),'with', l

en(group) ,' buildings')   
251. buildings_aggr['grid_ID'] = grid_ID   
252. buildings_aggr['geometry'] = geom   
253. buildings_aggr['area_sum'] = area   
254. buildings_aggr['buildings_count'] = buildings_count   
255.    
256.    
257.    
258. # ============================================================================= 

  
259. # AGGREGATE RAINFALL DATA   
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260. # ============================================================================= 
  

261. #3CREATE FUNCTION TO HELP WITH AGGREGATING THE DATA   
262. #test['geometry'] = test.centroid   
263.    
264. def aggregate_grid_rain(new_dataframe, old_dataframe, month_field_name):   
265.     grouped_data = old_dataframe.groupby('grid_ID')   
266.     #buildings_aggr['geometry']=None   
267.     grid_ID_list, geometry_list, total_grid_rain_list , roof_area_list, building

s_count_list =[], [], [], [], []   
268.     for key, (i, group ) in enumerate(grouped_data,1):   
269.         group_geometry = group.iloc[0]['geometry']   
270.         grid_ID_list.append(key)   
271.         geometry_list.append(group_geometry)   
272.         total_grid_rain_list.append(round(group[month_field_name].mean(), 2))   
273.         roof_area_list.append(group['area_sum'].sum())   
274.         buildings_count_list.append(group.buildings_count.mean())   
275.         print('Aggregating', key, month_field_name, group[month_field_name].mean

())   
276.    
277.     new_dataframe['area_sum'] = roof_area_list   
278.     new_dataframe['geometry'] = geometry_list   
279.     new_dataframe['grid_ID'] =grid_ID_list   
280.     new_dataframe[month_field_name] = total_grid_rain_list   
281.     new_dataframe['buildings_count'] = buildings_count_list   
282.     return new_dataframe   
283.    
284.    
285. # ============================================================================= 

  
286. # SPATIAL JOIN OF RAINFALL AND ROOF AREAS TO GRID DATA   
287. # ============================================================================= 

  
288. import time   
289. start_time = time.time()   
290.    
291.    
292.    
293. months_shp_filepaths = glob.glob(os.path.join(monthly_rain_shp_dir, '*.shp'))   
294.    
295.    
296. buildings_rain_aggr = gpd.GeoDataFrame()   
297. #del buildings_rain['area']   
298. for i, month_filepath in enumerate(months_shp_filepaths, 1):     
299.     print(i)   
300.     month_rain_data = gpd.read_file(month_filepath)   
301.        
302.     buildings_aggr.crs = month_rain_data.crs=  aoi_crs_epsg   
303.        
304.     joined_data = gpd.sjoin(buildings_aggr, month_rain_data, how='left', op='int

ersects')   
305.        
306. #    Get field name from file name and exclude the file format   
307.     month_field_name = os.path.basename(month_filepath)[:-4]   
308.     print(month_field_name)   
309.        
310.     buildings_rain_aggr = aggregate_grid_rain(buildings_rain_aggr, joined_data, 

month_field_name)   
311.        
312. buildings_rain_aggr.plot(column='buildings_count' , legend=True)   
313. print("--- %s seconds ---" % (time.time() - start_time))   
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314. # ============================================================================= 
  

315. # PLOT THE ROOF AREA AND RAINFALL DATA   
316. # ============================================================================= 

  
317.    
318. for column in buildings_rain_aggr.columns[3:]:   
319.     buildings_rain_aggr.plot(column=column, cmap="Blues", scheme="quantiles", k=

9, alpha=0.9)   
320.     print(column)   
321.        
322.    
323. # ============================================================================= 

  
324. # #From the fieldwork, the average water consumption per day is 136litres.   
325. # #The lowland and highland has very little difference, 134 to 138      
326. # ============================================================================= 

  
327. daily_Water_use_per_home = 136   
328. monthly_wateruse_per_home = daily_Water_use_per_home * 30   
329. buildings_rain_aggr['monthly_water_use'] = monthly_wateruse_per_home * buildings

_rain_aggr['buildings_count']   
330. buildings_rain_aggr['yearly_water_use'] = daily_Water_use_per_home * 365 * build

ings_rain_aggr['buildings_count']   
331.    
332. buildings_rain_aggr.plot('area_sum', linewidth=0.03, cmap="YlOrBr", scheme="quan

tiles", k=19, alpha=0.9)   
333. buildings_rain_aggr.plot('buildings_count', linewidth=0.03, cmap="YlOrBr", schem

e="quantiles", k=19, alpha=0.9)   
334.    
335.        
336. # ============================================================================= 

  
337. #   CALCULATE MONTHLY RAINWATER HARVESTING POTENTIALS AND POTENTIAL MINUS    
338. #   WATER USE PER GRID TO SEE IF IT IS ENOUGH   
339. # ============================================================================= 

  
340. #buildings_rain_aggr = buildings_rain_aggr.fillna(0)   
341. roof_coefficient = 0.7   
342. for column in buildings_rain_aggr.columns:   
343.     if column in ['ann_rain','Apr_rain','Aug_rain','Dec_rain','Feb_rain','Jan_ra

in','Jul_rain','Jun_rain','Mar_rain','May_rain','Nov_rain','Oct_rain','Sep_rain']:   
344.       print(column)   
345.       roof_area = buildings_rain_aggr['area_sum']   
346.       rainfall = buildings_rain_aggr[column]   
347.       roof_harvesting_potential = (roof_area * rainfall * roof_coefficient)   
348.       rain_pot = round(roof_harvesting_potential, 2)   
349.       buildings_rain_aggr[column + 'POT'] = rain_pot   
350.       if column == 'ann_rain':   
351.         buildings_rain_aggr['ann_pot_vs_use'] = rain_pot - buildings_rain_aggr.y

early_water_use   
352.         buildings_rain_aggr['ann_pot_vs_use_class'] = buildings_rain_aggr.ann_po

t_vs_use.apply(lambda x: 'positive' if x>=0 else 'negative')   
353.         continue   
354.   #    1 m2 * 1 mm = 1litre. roof area is m2 and rain is in mm.   
355.       buildings_rain_aggr[column[:3] + '_pot_vs_use'] = rain_pot - buildings_rai

n_aggr.monthly_water_use   
356.       buildings_rain_aggr[column[:3] + '_pot_vs_use_class'] = buildings_rain_agg

r[column[:3] + '_pot_vs_use'].apply(lambda x: 'positive' if x>=0 else 'negative')   
357.       
358.         
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359.    
360. # ============================================================================= 

  
361. # PLOT ROOF HARVESTING POTENTIAL FOR ALL MONTHS   
362. # ============================================================================= 

  
363. for column in buildings_rain_aggr.columns:   
364.     if column.endswith('rainPOT'):   
365.         ax=grid.plot()   
366.         buildings_rain_aggr.plot(ax=ax,column=column, cmap="RdBu", scheme="quant

iles", k=10, alpha=0.9, edgecolor='1')   
367.      
368.         print(column)   
369. #edgecolor='0.8   
370. buildings_rain_aggr.describe()   
371.    
372.    
373. # ============================================================================= 

  
374. # PLOTTING MAPS   
375. # ============================================================================= 

  
376.    
377.    
378. def organise_colorbar(cbar, vmin, vmax, number_of_ticks=6, cbar_texts_padding=2.

5, labelpad=17):   
379.   #    organise the labels of the colorbar   
380.     tick_padding=1.4   
381.     interval = int((vmax-vmin)/(number_of_ticks-1))   
382.     scale_divider = ((vmax-vmin)/interval)    
383.     labels=[]   
384.     for i in range(vmin, vmax+1, interval):   
385.       labels.append(str(i))   
386. #    add greater than sign to the upper end of the scale   
387.     labels[-1] = '>' + labels[-1]   
388.     cbar.ax.set_yticklabels(labels)   
389.     ticks = ['-'] * len(labels)   
390.     for i, (tick, lab) in enumerate(zip(ticks , labels),0):   
391.       cbar.ax.text(tick_padding, (i) / scale_divider, tick, ha='center', va='cen

ter', weight='bold')   
392.       if i == len(labels) -1:   
393.         cbar_texts_padding += 0.75   
394.       cbar.ax.text(cbar_texts_padding, (i) / scale_divider, lab, ha='center', va

='center')   
395. #    cbar.ax.get_yaxis().labelpad = labelpad   
396.    
397.    
398. def colorbar(ax, vmin, vmax, truncate_cbar_texts=True, cbar_title=None, number_o

f_ticks=6, cbar_label_pad=2, labelpad = 17):   
399.   # add colorbar   
400.     fig = ax.get_figure()   
401.     sm = plt.cm.ScalarMappable(cmap=rain_potential_cmap, norm=plt.Normalize(vmin

=vmin, vmax=vmax))   
402.     divider = make_axes_locatable(ax)   
403.     cax = divider.append_axes("right", size="4%", pad=0.05)   
404.     # fake up the array of the scalar mappable....   
405.     sm._A = []   
406.     cbar=fig.colorbar(sm, cax = cax, fraction=0.046)   
407.     cbar.set_label(cbar_title, rotation=270)   
408.     cbar.ax.get_yaxis().labelpad = labelpad   
409.     if truncate_cbar_texts:   



 

 96 

410.       cbar.ax.get_yaxis().set_ticks([])   
411.       organise_colorbar(cbar, vmin, vmax)   
412.        
413.    
414.    
415.        
416. def find_month(column_name):   
417.   month_list = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 

  
418.               'August', 'September', 'October', 'November', 'December']   
419.   month_abbreviation= column_name[:3]   
420.   print(month_abbreviation)   
421. #  month = filter(lambda x: x.startswith(month_abbreviation), month_list)   
422.   month = [month for month in month_list if month.startswith(month_abbreviation)

]   
423.   return ' '.join(month)   
424.    
425.    
426.    
427. def userDefinedClassifer(class_lower_limit, class_upper_limit, class_step):   
428.   breaks = [x for x in range(class_lower_limit, class_upper_limit, class_step)] 

  
429.   classifier = ps.User_Defined.make(bins=breaks)   
430.   return classifier   
431.    
432.    
433. def plot_map(dataFrame, column_list, scale_cmaps, vmin, vmax,truncate_cbar_texts

, l_limit, h_limit, step, output_fp, main_title, cbar_title, labelpad):   
434.   fig, axes = plt.subplots(4, 3, figsize=(12,12), sharex=True, sharey=True)   
435. #  plt.suptitle('RAINWATER HARVESTING POTENTIAL IN TAITA')   
436. #  vmin, vmax = dataFrame[column_list].min().min(), dataFrame[column_list].max()

.max()   
437.   classified_df = dataFrame.copy()   
438.   classified_df[column_list] = classified_df[column_list].apply(userDefinedClass

ifer(l_limit, h_limit, step))   
439.   plt.suptitle(main_title, fontsize=18)   
440. #  plt.tight_layout()   
441.   for i, (ax, column) in enumerate(zip(axes.flatten(), column_list), 1):   
442.     #Join the classes back to the main data.   
443.     month = find_month(column)   
444. #    print(month)   
445.     if not scale_cmaps:   
446.       vmin, vmax = dataFrame[column].min(), dataFrame[column].max()   
447.       map_plot=dataFrame.plot(ax=ax, column=column,linewidth=0.02,scheme="equal_

interval", k=9, cmap=rain_potential_cmap,  alpha=0.9)   
448.     map_plot=classified_df.plot(ax=ax, column=column,linewidth=0.02, cmap=rain_p

otential_cmap,  alpha=0.9)   
449.     print(column)   
450.     ax.grid(b=True, which='minor', color='#D3D3D3', linestyle='-')   
451.     ax.set_aspect('equal')   
452.        
453.     # Rotate the x-axis labels so they don't overlap   
454.     plt.setp(ax.xaxis.get_majorticklabels(), rotation=20)     
455.     map_plot.set_facecolor("#eeeeee")   
456.     minx,miny,maxx,maxy =  dataFrame.total_bounds   
457.        
458.     # these are matplotlib.patch.Patch properties   
459.     props = dict(boxstyle='round', facecolor='#eaeaea', alpha=0)   
460.     map_plot.text(x=minx+1000,y=maxy-

5000, s=u'N \n\u25B2 ', ha='center', fontsize=17, weight='bold', family='Courier new', 
rotation = 0)   
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461.     map_plot.text(x=426000,y=maxy+2000, s=month,  ha='center', fontsize=20, weig
ht='bold', family='Courier new', bbox=props)   

462.     plt.setp(ax.xaxis.get_majorticklabels(), rotation=20)   
463.     colorbar(map_plot, vmin, vmax, truncate_cbar_texts, cbar_title, labelpad=lab

elpad)   
464.     plt.subplots_adjust(top=0.92)   
465.     plt.savefig(output_fp, bbox_inches='tight',dpi=300, pad_inches=0.1)   
466.    
467.    
468.    
469.    
470.    
471.    
472. month_list = ['January', 'February', 'March', 'April', 'May', 'June', 'July',   
473.               'August', 'September', 'October', 'November', 'December']   
474. rain_pot_list = list(map(lambda x: x[:3] + '_rainPOT', month_list))   
475. rain_pot_vs_use_list = list(map(lambda x: x[:3] + '_pot_vs_use', month_list))   
476. rain_pot_vs_use_class_list = list(map(lambda x: x[:3] + '_pot_vs_use_class', mon

th_list))   
477. rain_list =list(map(lambda x: x[:3] + '_rain', month_list))   
478.    
479. #Plot for monthly rainfall distribution   
480. rain_potential_cmap = 'Blues'   
481. monthly_main_title = "Monthly Distribution of Rainfall in Taita Region"   
482. monthly_rain_cbar_title = "mm"   
483. monthly_rain_output_fp = r'E:\LIDAR_FINAL\data\plots\jan_dec_rain_distribution_f

inal4.jpg'   
484.    
485. class_upper_limit = int(buildings_rain_aggr[rain_list].max().max())   
486. class_lower_limit = int(buildings_rain_aggr[rain_list].min().min())   
487.    
488. plot_map(buildings_rain_aggr, rain_list, False, None , None, False, 0, 200, 1,   
489.          monthly_rain_output_fp, main_title= monthly_main_title,  cbar_title= mo

nthly_rain_cbar_title, labelpad=15)   
490.    
491.    
492.    
493. #Plot for monthly rainfall potential distribution   
494. monthly_main_title = "Spatio-

temporal Distribution of Roof RainWater Harvesting Potential in Taita"   
495. monthly_rain_cbar_title = "100, 000 litres"   
496. monthly_rain_output_fp = r'E:\LIDAR_FINAL\data\plots\jan_dec_rain_Potential_dist

ribution_final_1.jpg'   
497.    
498.    
499. rain_potential_cmap = 'RdYlBu'   
500. plot_map(buildings_rain_aggr, rain_pot_list, True, 0 , 5, True, 0, 500000, 1000,

   
501.          monthly_rain_output_fp, main_title= monthly_main_title,  cbar_title= mo

nthly_rain_cbar_title, labelpad=30)   
502. buildings_rain_aggr[rain_pot_list].max()   
503.    
504.    
505.    
506.    
507.    
508.    
509. buildings_rain_aggr.Nov_rain   
510. rain_potential_cmap = 'RdBu'   
511. plot_map(buildings_rain_aggr, rain_list[:6],0 , 193,True, 6, 193, 1, r'E:\LIDAR_

FINAL\data\plots\jan_jun_rain.jpg')   
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512. #plot_map(buildings_rain_aggr, rain_list[6:],0 , 193,False, 6, 193, 1,r'E:\LIDAR
_FINAL\data\plots\jan_jun_rain.jpg')   

513. #plot_map(buildings_rain_aggr, rain_pot_list,0 , 5, True, 0, 500000, 1000, r'E:\
LIDAR_FINAL\data\plots\jan_jun_RdYlBu__free_labelpadbet.jpg')   

514. #plot_map(buildings_rain_aggr, rain_pot_list[6:], 0, 5,True, 0, 500000, 1000, r'
E:\LIDAR_FINAL\data\plots\jul_dec_RdYlBu__free_labelpadbeta.jpg')   

515. # ============================================================================= 
  

516. #    
517. # ============================================================================= 

  
518. plot_map(buildings_rain_aggr, 'ann_rain',0 , 5, True, 0, 500000, 1000, r'E:\LIDA

R_FINAL\data\plots\annual_tight_potential.jpg')   
519. buildings_rain_aggr.plot(column='ann_rainPOT', cmap='RdBu', scheme="quantiles", 

k=10, alpha=0.9,edgecolor='0.6')   
520. plt.hist(buildings_rain_aggr['Sep_rainPOT'])   
521.    
522.    
523. # ============================================================================= 

  
524. # Total Annual potential   
525. # ============================================================================= 

  
526. def plot_annual(dataframe, column, map_title, legend_title,cmap, output_fp, cate

gorical):   
527.   minx, miny, maxx, maxy =  buildings_rain_aggr.total_bounds   
528.   fig, ax = plt.subplots(figsize  = (9, 9))   
529.   if categorical:   
530.     map_plot = dataframe.plot(ax =ax,figsize=fig, column=column, categorical=Tru

e,linewidth=0.02, cmap=cmap, alpha=0.9,legend = True)   
531.   else:   
532.     map_plot = dataframe.plot(ax =ax,figsize=fig, column=column,scheme='quantile

s', k=9,linewidth=0.02, cmap=cmap, alpha=0.9,legend = True)   
533.   ax.grid(b=True, which='minor', color='#D3D3D3', linestyle='-')   
534.   ax.set_aspect('equal')   
535.   map_plot.set_facecolor("#eaeaea")   
536.   map_plot.text(x=minx,y=maxy-

6000, s=u'N \n\u25B2 ', ha='center', fontsize=37, weight='bold', family='Courier new', 
rotation = 0)   

537.   ax.get_legend().set_bbox_to_anchor((1, 0.61))   
538.   #ax.get_legend().set_bbox_to_anchor((1.43, 0.8))   
539.   ax.get_legend().set_title(legend_title)   
540.   ax.get_figure()   
541.   ax.set_aspect('equal')   
542.   plt.xlim(minx-5000, maxx+20000)   
543.   ax.set_title(map_title, fontsize=15)   
544.   #plt.axis('equal')   
545.   #plt.show()   
546.   plt.savefig(output_fp,dpi=300,  bbox_inches='tight', pad_inches=0.1)   
547.    
548.    
549.    
550.    
551. cmap='Blues'   
552. map_title='Distribution of Total Annual Rainfall in Taita Region'   
553. legend_title='Rainfall(mm)'   
554. output_fp = r'E:\LIDAR_FINAL\data\plots\total_annual_rain_final_final_4'   
555. plot_annual(buildings_rain_aggr, 'ann_rain', map_title, legend_title,cmap, outpu

t_fp)   
556.    
557.    
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558. buildings_rain_aggr_ = buildings_rain_aggr.copy()   
559. buildings_rain_aggr_['ann_rainPOT'] = round((buildings_rain_aggr['ann_rainPOT']/

1000),0).astype(int)   
560.    
561. cmap='RdYlBu'   
562. map_title='Distribution of Annual Roof Rainwater Harvesting in Taita Region'   
563. legend_title='RRWHP (thousand litres)'   
564. output_fp = r'E:\LIDAR_FINAL\data\plots\total_annual_rain_potential_final_final_

9'   
565. plot_annual(buildings_rain_aggr_, 'ann_rainPOT', map_title, legend_title,cmap, o

utput_fp, False)   
566.    
567.    
568.    
569.    
570. cmap='Oranges'   
571. map_title='Distribution of Areas of Roofs in Taita Region'   
572. legend_title='Area (sqm)'   
573. output_fp = r'E:\LIDAR_FINAL\data\plots\total_roof_areas_final_final_7.jpeg'   
574. plot_annual(buildings_rain_aggr_, 'area_sum', map_title, legend_title,cmap, outp

ut_fp, False)   
575.    
576.    
577.    
578. cmap='RdYlBu'   
579. map_title='Comparison of RRWH Potential and Water Use'   
580. legend_title='RRWHP minus Water Use(litres)'   
581. output_fp = r'E:\LIDAR_FINAL\data\plots\annual_pot_vs_use_final_final.jpeg'   
582. plot_annual(buildings_rain_aggr_, 'ann_pot_vs_use', map_title, legend_title,cmap

, output_fp, False)   
583.    
584.    
585. cmap='RdYlBu'   
586. map_title='Comparison of RRWH Potential and Water Use'   
587. legend_title='RRWHP minus Water Use'   
588. output_fp = r'E:\LIDAR_FINAL\data\plots\annual_pot_vs_use_final_final_class.jpeg

'   
589. plot_annual(buildings_rain_aggr_, 'ann_pot_vs_use_class', map_title, legend_titl

e,cmap, output_fp, True)   
590.    
591. # ============================================================================= 

  
592. # RRWHP VS WATER USE   
593. # ============================================================================= 

  
594. #Plot to see if potential meets needs, monthly   
595. monthly_rain_output_fp = r'E:\LIDAR_FINAL\data\plots\monthly_pot_vs_use_distribu

tion_final.jpg'   
596. fig, axes = plt.subplots(4, 3, figsize=(10,12), sharex=True, sharey=True)   
597. plt.suptitle('Comparison of RRWH Potential and Water Use in Taita', fontsize=18)

   
598. #  vmin, vmax = dataFrame[column_list].min().min(), dataFrame[column_list].max()

.max()   
599. #  plt.tight_layout()   
600. for i, (ax, column) in enumerate(zip(axes.flatten(), rain_pot_vs_use_class_list)

, 1):   
601.   #Join the classes back to the main data.   
602.   month = find_month(column)   
603. #    print(month)   
604.   legend=False   
605.   if i == 3:   
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606.     legend=True   
607.   map_plot=buildings_rain_aggr.plot(ax=ax, column=column,linewidth=0.02,legend=l

egend, cmap='RdYlBu',  alpha=0.9)   
608.   print(column)   
609.   ax.grid(b=True, which='minor', color='#D3D3D3', linestyle='-')   
610.   ax.set_aspect('equal')   
611.      
612.   # Rotate the x-axis labels so they don't overlap   
613.   plt.setp(ax.xaxis.get_majorticklabels(), rotation=20)     
614.   map_plot.set_facecolor("#eeeeee")   
615.   minx,miny,maxx,maxy =  buildings_rain_aggr.total_bounds   
616.   maxx += 2500   
617.   if i==3:   
618.     map_plot.get_legend().set_bbox_to_anchor((1.8, 0.97))   
619.     #ax.get_legend().set_bbox_to_anchor((1.43, 0.8))   
620.     map_plot.get_legend().set_title('RRWHP vs Water Use')   
621.   # these are matplotlib.patch.Patch properties   
622.   props = dict(boxstyle='round', facecolor='#eaeaea', alpha=0)   
623.   map_plot.text(x=minx+1000,y=maxy-

5000, s=u'N \n\u25B2 ', ha='center', fontsize=17, weight='bold', family='Courier new', 
rotation = 0)   

624.   map_plot.text(x=426000,y=maxy+2000, s=month,  ha='center', fontsize=20, weight
='bold', family='Courier new', bbox=props)   

625.   plt.setp(ax.xaxis.get_majorticklabels(), rotation=20)   
626. #  plt.tight_layout()   
627.   plt.subplots_adjust(top=0.92)   
628.   plt.savefig(monthly_rain_output_fp, bbox_inches='tight',dpi=300, pad_inches=0.

1)   
629. # ============================================================================= 

  
630. #    
631. # ============================================================================= 

  
632.    
633.    
634.    
635. # ============================================================================= 

  
636. # TOTAL ANNUAL POTENTIAL   
637. # ============================================================================= 

  
638.    
639. from matplotlib.pyplot import figure   
640. figure(num=None, figsize=(8, 5), dpi=80, facecolor='#eaeaea', edgecolor='k')   
641. first_letter = [first[:3] for first in rain_pot_list]   
642. plt.bar(first_letter, buildings_rain_aggr[ rain_pot_list].sum(), color='lightblu

e')   
643. plt.plot(first_letter, buildings_rain_aggr[ rain_pot_list].sum(), 'p-')   
644. plt.ylim(0, buildings_rain_aggr[ rain_pot_list].sum().max() + 100000000)   
645. buildings_rain_aggr[rain_list].mean()   
646. plt.title('Total Monthly Roof Rainwater Harveting Potential, Taita')   
647. plt.xlabel('Months')   
648. plt.ylabel('RRHP\n(100 million litres)')   
649. plt.rcParams['axes.facecolor'] = '#ffffff'   
650. plt.savefig(r'E:\LIDAR_FINAL\data\plots\bar_line_RRWP_months_series2.jpeg', dpi=

300, bbox_inches='tight', pad_inches=0.1)   
651.    
652.    
653.    
654. # ============================================================================= 
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655. # PERCENTAGE OF BUILDINGS THAT RRWH CAN FULFILL THEIR NEEDS   
656. # ============================================================================= 

  
657. #buildings_rain_aggr.to_file(r'E:\LIDAR_FINAL\data\aggregated\buildings_rain_agg

r.shp')   
658.    
659. percent_buildings_with_positive_RRWHP_list = []   
660. buildings_total_count = buildings_rain_aggr['buildings_count'].sum()   
661. for month_use_class in rain_pot_vs_use_class_list:   
662.   gr = buildings_rain_aggr.groupby(month_use_class)   
663.   buildings_with_net_positive_pot = (gr['buildings_count'].sum()['positive'] * 1

00) / buildings_total_count   
664.   buildings_with_net_negative_pot = gr['buildings_count'].sum()['negative']   
665.   percent_buildings_with_positive_RRWHP_list.append(buildings_with_net_positive_

pot)   
666.   print(percent_buildings_with_positive_RRWHP_list[-1])   
667.    
668.    
669.      
670.    
671. from matplotlib.pyplot import figure   
672. figure(num=None, figsize=(8, 5), dpi=80, facecolor='#eaeaea', edgecolor='k')   
673. first_letter = [first[:3] for first in rain_pot_list]   
674. plt.bar(first_letter, percent_buildings_with_positive_RRWHP_list, color='lightbl

ue')   
675. plt.plot(first_letter,percent_buildings_with_positive_RRWHP_list , 'p-')   
676. #plt.ylim(0, buildings_rain_aggr[ rain_pot_list].sum().max() + 100000000)   
677. buildings_rain_aggr[rain_list].mean()   
678. plt.title('Percentage of Buildings in Taita that RRWH alone can Meet their Water

 Use')   
679. plt.xlabel('Months')   
680. plt.ylabel('Percentage of Buildings (%)')   
681. plt.rcParams['axes.facecolor'] = '#ffffff'   
682. plt.savefig(r'E:\LIDAR_FINAL\data\plots\bar_line_pot_vs_use_months1', dpi=300, b

box_inches='tight', pad_inches=0.1)   
683.    
684.    
685.    
686.    
687. buildings_rain_aggr.columns   
688. annual_use_class = 'ann_pot_vs_use_class'   
689. annual_group = buildings_rain_aggr.groupby('ann_pot_vs_use_class')   
690. annual_buildings_with_net_positive_pot = (annual_group['buildings_count'].sum()[

'positive'] * 100) / buildings_total_count   

 

 

 

 

 

 

 

 

EXTRACT INFO FROM LIDAR 

 

1. import pandas as pd   

2. import matplotlib.pyplot as plt   

3. import glob   

4. import os   
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5. import re   

6.    

7.    

8.  

9. def get_density_spacing_info(input_dir):   

10.     filepaths = os.path.join(input_dir, '*.txt')   

11.     list_of_files = glob.glob(filepaths)    

12.     lidar_info = pd.DataFrame(columns=['tilesNumber'])   

13.     for i, file in enumerate(list_of_files, 1):   

14.         with open(file, 'r') as f:   

15.             text_lines = f.readlines()   

16.    

17.     # get the point density and point spacing which are on line 39 and 40 respectively 

  

18.         for line in text_lines:   

19.           line=line.strip()   

20.     # extract all and last return densities. Do same for spacing. There are two values 

for each   

21.           if line.startswith('point density'):   

22.             all_returns_density, last_returns_density = re.findall("\d+\.\d+", line)   

23.           elif line.startswith('spacing'):   

24.             all_returns_spacing, last_returns_spacing = re.findall("\d+\.\d+", line)   

25.     # Insert the values into the dataframe   

26.         lidar_info= lidar_info.append({   

27.             'tilesNumber':int(i),    

28.             'last_returns_density':float(last_returns_density),   

29.             'all_returns_density': float(all_returns_density),    

30.             'all_returns_spacing': float(all_returns_spacing),    

31.             'last_returns_spacing': float(last_returns_spacing)    

32.           },    

33.           ignore_index=True)   

34.     return lidar_info   

35.      

36.      

37.    

38. import clip_raster as ras   

39. outputdir_2015 = r'E:\LIDAR_FINAL\data\lidar_tiles_info_output\lidar_info_2015.txt'   

40. inputdir_2015 = r'E:\LIDAR_FINAL\data\lidar_tiles_info\2015'   

41.    

42. outputdir_2013 = r'E:\LIDAR_FINAL\data\lidar_tiles_info_output\lidar_info_2013.txt'   

43. inputdir_2013 = r'E:\LIDAR_FINAL\data\lidar_tiles_info\2013'   

44.    

45. lidar2015_info = ras.get_density_spacing_info(inputdir_2015)   

46. lidar2015_info.to_csv(outputdir_2015)   

47.    

48. lidar2013_info = ras.get_density_spacing_info(inputdir_2013)   

49. lidar2013_info.to_csv(outputdir_2013)   

VISUALISE PULSE DENSITY AND SPACING 

 

1. # Import library and dataset   

2. import seaborn as sns   

3. import matplotlib.pyplot as plt   

4. import clip_raster as ras   
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5. from itertools import cycle   

6.    

7.    

8. outputdir_2015 = r'E:\LIDAR_FINAL\data\lidar_tiles_info_output\lidar_info_2015.txt'   

9. inputdir_2015 = r'E:\LIDAR_FINAL\data\lidar_tiles_info\2015'   

10.    

11. outputdir_2013 = r'E:\LIDAR_FINAL\data\lidar_tiles_info_output\lidar_info_2013.txt'   

12. inputdir_2013 = r'E:\LIDAR_FINAL\data\lidar_tiles_info\2013'   

13.    

14. lidar2015_info = ras.get_density_spacing_info(inputdir_2015)   

15. lidar2015_info.to_csv(outputdir_2015)   

16.    

17. lidar2013_info = ras.get_density_spacing_info(inputdir_2013)   

18. lidar2013_info.to_csv(outputdir_2013)   

19.    

20. sns.boxplot(lidar2013_info['all_returns_density'])   

21. sns.boxplot(lidar2015_info['all_returns_density'])   

22. sns.boxplot(lidar2013_info['all_returns_spacing'])   

23. sns.boxplot(lidar2015_info['all_returns_spacing'])   

24.    

25.    

26.    

27. lidar2015_info.describe().to_csv(r'E:\LIDAR_FINAL\data\plots\2015_lidar_info_stat.txt')

   

28. lidar2013_info.describe().to_csv(r'E:\LIDAR_FINAL\data\plots\2013_lidar_info_stat.txt')

   

29.    

30. def plot_density_spacing(data, year, outut_fp):   

31.   bg_color="#efefef"   

32.   sns.set(rc={'axes.facecolor':bg_color, 'figure.facecolor':bg_color})   

33.   fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12,8))   

34.      

35.   ax11=axes[0, 0]   

36.   ax12=axes[0, 1]   

37.   ax21=axes[1, 0]   

38.   ax22=axes[1, 1]   

39.      

40.   plt.suptitle('Distribution of point density and spacing of the {year} LIDAR Data'.for

mat(year=year))   

41.   # # Make default histogram of sepal length   

42.   sns.distplot( data['all_returns_density'] , ax=ax11,  bins=20 ,rug=True)   

43.   sns.distplot( data['last_returns_density'] , ax=ax12, bins=20, rug=True)    

44.   sns.distplot( data['all_returns_spacing'] , ax=ax21, bins=20, rug=True)   

45.   sns.distplot( data['last_returns_spacing'] , ax=ax22, bins=20, rug=True)  

46.  

47.   ax11.set(xlabel='all returns point density(points/sqm)', ylabel='Fequency of point de

nsity')   

48.   ax12.set(xlabel='last returns point density(points/sqm)', ylabel='')   

49.   ax21.set(xlabel='all returns point spacing(m)', ylabel='Frequency of point spacing') 

  

50.   ax22.set(xlabel='last returns point spacing(m),', ylabel='')   

51.   plt.tight_layout()   

52.   plt.subplots_adjust(top=0.95)   
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53.   plt.savefig(outut_fp, dpi=300,  bbox_inches='tight', pad_inches=0.1)   

54.      

55.    

56. plot_density_spacing(lidar2013_info, '2013', 'E:/LIDAR_FINAL/data/plots/hist_lidar_dens

ity_spacing_2013')   

57. plot_density_spacing(lidar2015_info, '2015', 'E:/LIDAR_FINAL/data/plots/hist_lidar_dens

ity_spacing_2015')   

58.       

59.    

60.    

61. def plot_density_spacing_2(dataset, year, outut_fp):   

62.   bg_color="#efefef"   

63.   sns.set(rc={'axes.facecolor':bg_color, 'figure.facecolor':bg_color})   

64.   fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12,8))   

65.      

66.   ax11=axes[0, 0]   

67.   ax12=axes[0, 1]   

68.   ax21=axes[1, 0]   

69.   ax22=axes[1, 1]   

70.      

71.   plt.suptitle('Comparison of the Distribution of the Point Density and Spacing of the 

{year} LIDAR Data'.format(year=year), fontsize=13)   

72.   # # Make default histogram of sepal length   

73.   for data, year in zip(dataset, cycle(['2013', '2015'])):   

74.     sns.kdeplot( data['all_returns_density'] , ax=ax11, label='All Returns, ' + year, s

hade=True)   

75.     sns.kdeplot( data['last_returns_density'] , ax=ax12, label='Last Returns, ' + year,

 shade=True)    

76.     sns.kdeplot( data['all_returns_spacing'] , ax=ax21, label='All Returns, ' + year, s

hade=True)   

77.     sns.kdeplot( data['last_returns_spacing'] , ax=ax22, label='Last Returns, ' + year,

 shade=True)   

78.        

79.   ax11.set(xlabel='all returns point density(points/sqm)', ylabel='Fequency of point de

nsity')   

80.   ax12.set(xlabel='last returns point density(points/sqm)', ylabel='')   

81.   ax21.set(xlabel='all returns point spacing(m)', ylabel='Frequency of point spacing') 

  

82.   ax22.set(xlabel='last returns point spacing(m),', ylabel='')   

83.   plt.tight_layout()   

84.   plt.subplots_adjust(top=0.95)   

85.   plt.savefig(outut_fp, dpi=300, bbox_inches='tight', pad_inches=0.1)   

86.      

87. plot_density_spacing_2([lidar2013_info, lidar2015_info],'2013 and 2015', 'E:/LIDAR_FINA

L/data/plots/hist_lidar_density_spacing_combined')   

88.      

89.      

 

 

AUTO EXTRACTED BUILDING FOOTPRINT POLYGONS VALIDATION 

 

1. # =============================================================================   

2. # VALIDATE ROOF AREAS   
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3. # =============================================================================   

4.    

5. import geopandas as gpd   

6. import matplotlib.pyplot as plt   

7. from shapely.geometry import Polygon,Point   

8.    

9. # =============================================================================   

10. # IMPORT DATA   

11. # =============================================================================   

12. digitized_roof = gpd.read_file(r'E:\LIDAR_FINAL\data\building_digitised\digitizedb_bbox

.shp')   

13. roof_2013_all = gpd.read_file(r'E:\LIDAR_FINAL\data\buildings\2013\roof_polygons\buildi

ngs_2013_projected_regularized.shp')   

14. roof_2015_all = gpd.read_file(r'E:\LIDAR_FINAL\data\buildings\2015\roof_polygons\buildi

ngs_2015_simplified.shp')   

15. aoi = gpd.read_file(r'E:\LIDAR_FINAL\diigised_Samples_roofs\aoi_roof_samples.shp')   

16.    

17.    

18.    

19. # =============================================================================   

20. # GET THE BOUDING BOX OF THE DIGITISED ROOFS AND MAKE THE AOI OUT OF IT   

21. # =============================================================================   

22. xmin, ymin, xmax, ymax = digitized_roof.total_bounds   

23. coords = [[xmin, ymin], [xmin, ymax],[xmax, ymax],[xmax, ymin]]   

24. pp = Polygon([[point[0], point[1]] for point in coords])   

25. aoi = gpd.GeoDataFrame(gpd.GeoSeries(pp), columns=['geometry'])   

26. aoi.plot()   

27.    

28.    

29. # =============================================================================   

30. # SELECT ONLY ROOFS WITHIN THE AOI   

31. # =============================================================================   

32. aoi_boundary = aoi.loc[0].geometry   

33. type(aoi_boundary)   

34. roof_2013_all = roof_2013_all[roof_2013_all.geometry.within(aoi_boundary)]   

35. roof_2013_all.plot()   

36. roof_2015_all = roof_2015_all[roof_2015_all.geometry.within(aoi_boundary)]   

37. roof_2015_all.plot()   

38. len(roof_2013_all)   

39. len(roof_2015_all)   

40. len(digitized_roof)   

41.    

42.    

43. # =============================================================================   

44. # GET AREA AND CREATE ID FOR EACH POLYGON OF THE DIGITISED ROOFS   

45. # =============================================================================   

46. try:   

47.   del digitized_roof['buildings']   

48.   del digitized_roof['id']   

49.   del digitized_roof['fid']   

50. except:   

51.   pass   

52. digitized_roof['area'] = digitized_roof['geometry'].area   
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53. digitized_roof['digi_ID'] = digitized_roof.index + 1   

54.    

55.    

56. # =============================================================================   

57. # FILTER TOO SMALL OR TOO BIG POLYGONS   

58. # =============================================================================   

59. lower_limit, upper_limit = 10, 2000   

60. roof_2013_all['area'] = roof_2013_all.geometry.area   

61. roof_2013 = roof_2013_all.loc[(roof_2013_all['area']>lower_limit) & (roof_2013_all['are

a']<upper_limit)].reset_index(drop=True)   

62.    

63. roof_2015_all['area'] = roof_2015_all.geometry.area   

64. roof_2015 = roof_2015_all.loc[(roof_2015_all['area']>lower_limit) & (roof_2015_all['are

a']<upper_limit)].reset_index(drop=True)   

65.    

66.    

67. # =============================================================================   

68. # Check the data   

69. # =============================================================================   

70. roof_2013.plot(column='area', cmap="RdBu", scheme="quantiles", alpha=0.9)   

71. roof_2013.isna().sum()   

72. digitized_roof.isna().sum()   

73.    

74. digitized_roof['geometry'][1]   

75. roof_2013['geometry'][3]   

76.    

77. roof_2013r = roof_2013.loc[6:12,:]   

78. print(roof_2013.loc[12,'geometry'])   

79.    

80.    

81.    

82.    

83. # =============================================================================   

84. # INTERSECTING THE DIGITISED AND THE BUILDINGS EXTRACTED FROM LIDAR   

85. # =============================================================================  

86.    

87. digi_inter_roof13_df = gpd.sjoin(digitized_roof, roof_2013,how='inner',lsuffix='digi', 

rsuffix='lidar')   

88. digi_inter_roof15_df = gpd.sjoin(digitized_roof, roof_2015,how='inner', lsuffix='digi',

 rsuffix='lidar')   

89.    

90.    

91. # =============================================================================   

92. # ACCURACY ANALYSIS: ERROR OF OMISSION   

93. # =============================================================================   

94. digi_roofs_count = len(digitized_roof)   

95.    

96. #2013   

97. digi_inter_roof13_df_grouped = digi_inter_roof13_df.groupby('digi_ID')   

98. correct_roof2013_count = len(digi_inter_roof13_df_grouped)   

99. omission_roof_2013 = ((digi_roofs_count - correct_roof2013_count) *100)/ digi_roofs_cou

nt   

100.    
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101.    

102. #2015   

103. digi_inter_roof15_df_grouped = digi_inter_roof15_df.groupby('digi_ID')   

104. correct_roof2015_count = len(digi_inter_roof15_df_grouped)   

105. omission_roof_2015 = ((digi_roofs_count - correct_roof2015_count) *100)/ digi_ro

ofs_count   

106.    

107. accuracy_statements = [   

108.     'In 2013, {0} roofs were correctly extracted out of {1} roofs. \n'.format(co

rrect_roof2013_count, digi_roofs_count),      

109.     'In 2013, {0} roofs were omitted out of {1} roofs. \n'.format(digi_roofs_cou

nt -correct_roof2013_count, digi_roofs_count),   

110.      'Percentage of omitted buildings in 2013 is {:.2f}%. \n'.format(omission_ro

of_2013),   

111.      'Percentage accurately extracted in 2013 is {:.2f}%. \n\n'.format(100-

omission_roof_2013),   

112.          

113.          

114.       'In 2015, {0} roofs were rightly extracted out of {1} roofs'.format(correc

t_roof2015_count, digi_roofs_count),   

115.        'In 2015, {} roofs were omitted out of {} roofs. \n'.format(digi_roofs_co

unt -correct_roof2015_count, digi_roofs_count),   

116.       'Percentage of omitted buildings in 2015 is {:.2f}%. \n'.format(round(omis

sion_roof_2015,2)),   

117.       'Percentage accurately extracted in 2015 is {:.2f}%. \n\n'.format(100-

omission_roof_2015)   

118.       ]   

119.          

120.    

121. print(*accuracy_statements)   

122. # ============================================================================= 

  

123. # ERROR OF COMMISSION   

124. # ============================================================================= 

  

125. #2013   

126. #digi_inter_roof13_df_grouped = digi_inter_roof13_df.groupby('digi_ID')   

127. correct_roof2013_count = len(digi_inter_roof13_df)   

128. all_roofs_2013_count = len(roof_2013)   

129. falsely_extracted_2013 = (all_roofs_2013_count - correct_roof2013_count)   

130. commission_roof_2013 = (falsely_extracted_2013 *100)/ all_roofs_2013_count  

           #2015 

131. correct_roof2015_count = len(digi_inter_roof15_df)   

132. all_roofs_2015_count = len(roof_2015)   

133. falsely_extracted_2015 = (all_roofs_2015_count - correct_roof2015_count)   

134. commission_roof_2015 = (falsely_extracted_2015 *100)/ all_roofs_2015_count   

135.    

136.    

137.      

138. accuracy_statements2 = ['In 2013, {0} roofs were falsely extracted(false positiv

e) out of {1} roofs extracted. \n'.format(falsely_extracted_2013 , all_roofs_2013_count

),   
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139.       'The percentage of falsely extracted is {:.2f}%. \n\n'.format(commission_r

oof_2013),   

140.          

141.          

142.       'In 2015, {0} roofs were falsely extracted(false positive) out of {1} roof

s extracted. \n'.format(falsely_extracted_2015 , all_roofs_2015_count),   

143.       'The percentage of falsely extracted is {:.2f}%. \n'.format(commission_roo

f_2015)   

144.       ]   

145.    

146.    

147. statement = '\n'   

148. for sentence in accuracy_statements:   

149.   statement += sentence   

150.    

151. for sentence in accuracy_statements2:   

152.   statement += sentence   

153.      

154. type(statement)   

155. print(statement)   

156. print(*accuracy_statements, *accuracy_statements2)   

157.    

158. #accuracy_metrics = str(*accuracy_statements, *accuracy_statements2)   

159. with open(r"E:\LIDAR_FINAL\data\plots\Output.txt", "w") as text_file:   

160.     text_file.write(statement)   

161.    

162.    

163.    

164.    

165. # ============================================================================= 

  

166. # ACCURACY: AREA, RMSE, MAE, AND SCATTERPLOT   

167. # ============================================================================= 

  

168. roof_15_agg=gpd.GeoDataFrame()   

169. roof_15_agg['geometry'] = None   

170. for key, group in digi_inter_roof15_df_grouped:   

171.   roof_15_agg.loc[key,'ID'] = key   

172.   roof_15_agg.loc[key,'digi_area'] = group['area_digi'].unique()   

173.   roof_15_agg.loc[key,'lidar_area'] =  group['area_lidar'].sum()   

174.   roof_15_agg.loc[key,'one_to_N_rel'] = len(group['area_lidar'])   

175.   print('Aggregating: ', key)   

176.    

177.    

178. from pandas.plotting import scatter_matrix   

179. import scipy   

180. import numpy as np   

181. roof_15_agg[23:25].plot()   

182.    

183. roof_15_agg.iloc[:,2:4].corr()   

184. scatter_matrix(roof_15_agg.iloc[:,2:4].corr())   

185. roof_15_agg_ = roof_15_agg.loc[(roof_15_agg['one_to_N_rel']==1) & (roof_15_agg.l

idar_area<500)]   
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186. x, y = roof_15_agg_.digi_area, roof_15_agg_.lidar_area   

187. slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(x, y)   

188. r_value **2 * 100   

189.    

190. plt.scatter(x,y)   

191. plt.plot(np.unique(x), np.poly1d(np.polyfit(x, y, 1))(np.unique(x)))   

192.    

193.    

194.    

195. import seaborn as sns   

196. from scipy import stats   

197. def r2(x, y):   

198.     return stats.pearsonr(x, y)[0] ** 2   

199.    

200. ax = sns.jointplot(x, y, kind="reg", stat_func=r2, logx=True, truncate=True, spa

ce=0.1)   

201. plt.subplots_adjust(top=0.9)   

202. ax.fig.suptitle('ARoof Areas of Extracted vs Digitised', fontsize=20) # can also

 get the figure from plt.gcf()   

203. output_fp = r'E:\LIDAR_FINAL\data\plots\digi_vs_lidar2'   

204. plt.savefig(output_fp,  bbox_inches='tight',dpi=300, pad_inches=0.1)   

205.    

206.    

207.    

208. list(roof_15_agg.one_to_N_rel.astype(int)).count(1)   

209.    

210. from collections import Counter   

211. one_to_N_rel_frequency = Counter(list(roof_15_agg.one_to_N_rel.astype(int)))   

212. one_to_N_counts = one_to_N_rel_frequency.items()   

213.    

214. plt.hist(roof_15_agg.one_to_N_rel)   

215. plt.ylabel('Number of Buildings')   

216. plt.xlabel('One to N relationships')   

217. plt.title('One-to-One/One-to-

Many Relationships Between Extracted Roofs \nand Digitized  Roofs')   

218. plt.ylim(0, 1500)   

219. for item in one_to_N_counts:   

220.   plt.text(item[0]-0.05, item[1]+14, s=item[1])   

221. plt.savefig( r'E:\LIDAR_FINAL\data\plots\one_to_N_relationship1_2015_', bbox_inc

hes='tight',dpi=300, pad_inches=0.1)   

222.    

223.    

224. ((x-y)/x) *100   

225.    

226. roof_15_agg_.mean()   

227. digi_inter_roof15_df_grouped['area_lidar'].agg(lambda x: print(x.mean()))   

228.    

229.    

230. import numpy as np   

231.    

232. def rmse(predictions, targets):   

233.     return np.sqrt(((predictions - targets) ** 2).mean())   

234.    
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235. rmse_val = rmse(x, y)   

236. print("rms error is: " + str(rmse_val))   

237.    

238.    

239. def smape(A, F):   

240.     return 100/len(A) * np.sum(2 * np.abs(F - A) / (np.abs(A) + np.abs(F)))   

241.      

242. print(smape(x,y))   

 

 

 

RAIN MODEL VALIDATION 

1. # =============================================================================   

2. # Validate rainfall data from CHELSA   

3. # =============================================================================   

4.            

5. import glob   

6. import pandas as pd   

7. import matplotlib.pyplot as plt   

8. import os   

9. import geopandas as gpd   

10. from datetime import datetime   

11. from shapely.geometry import Point   

12. from scipy.stats import linregress   

13. import seaborn as sns   

14. from scipy import stats   

15. from pathlib import Path   

16. import clip_raster as ras   

17.    

18. my_dir = r'E:\LIDAR_FINAL\data'   

19.    

20.    

21. ras.create_dir(my_dir)   

22.    

23. def create_path(sub_dir='', my_dir=my_dir):   

24.   return ras.create_dir(Path(my_dir + sub_dir))   

25.    

26. rain_dir = r"E:\LIDAR_FINAL\data\rainfall_data_field\rain"   

27. rain_dir_all = r"E:\LIDAR_FINAL\data\rainfall_data_field\rain\Precipitation\*.XLSX"   

28. buildings_rain_aggr = gpd.read_file(r'E:\LIDAR_FINAL\data\aggregated\buildings_rain_agg

r.shp')   

29. stations_filepath = r'E:\LIDAR_FINAL\data\rainfall_data_field\stations_locations\statio

ns.csv'   

30.    

31. rain_fp_list = glob.glob(rain_dir_all)   

32.    

33. def aggregateDataByMonth(data):   

34.   data.index = pd.to_datetime(data['Date'])   

35.   data = data.groupby(pd.Grouper(freq="M"))   

36.   df =pd.DataFrame()   

37.   df['Date'] =None   

38.   for key, group in data:   

39.     df.loc[key, 'Date'] = key   
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40.     df.loc[key, 'rain_mm'] = group['Rain_(mm)'].sum()   

41. #    print(key,'\n \n', group)   

42.   return df.reset_index(drop=True)   

43.    

44. all_data = pd.DataFrame(columns=['Date', 'rain_mm', 'station'])   

45. for i, rain_data in enumerate(rain_fp_list[2:]):   

46.   data = pd.read_excel(rain_data)   

47.   header_index = data.loc[data['ID']=='Date'].index.values[0]   

48.   data = pd.read_excel(rain_data, skiprows=header_index+1, parse_dates=["Date"])   

49.   data = data[['Date', 'Rain_(mm)']]   

50.   agg_data = aggregateDataByMonth(data)   

51.   station_name = rain_data.split('\\')[-1].split('.')[0]   

52.   agg_data['station'] = station_name.split('_Ar')[0]   

53.   all_data = all_data.append(agg_data)   

54.   print(agg_data.head(5))   

55.   print(i)   

56.    

57.    

58. # =============================================================================   

59. # REMOVE THE ERRONEOUS DATA FROM KITUNKUYI   

60. # =============================================================================   

61. #The station errorneously recorded 0 from 7th August, 2014   

62. kitunkyi_nodata_mask = pd.to_datetime(all_data['Date'].dt.date) <'2014-08-07'   

63. all_data= all_data.loc[(all_data.station != 'Kitukunyi') | (kitunkyi_nodata_mask & (all

_data.station == 'Kitukunyi'))]   

64.    

65. # =============================================================================   

66.       

67.    

68.    

69. stations_names_list = all_data['station'].unique().tolist()   

70.    

71. def rename_stations(station):   

72.   if station == 'Taita_RS':    

73.     station = "Taita Research Station"    

74.   else:   

75.     station += ' Weather Station'   

76.   return station   

77. #stations_list.remove('Mwatate_Ar112509')   

78.      

79. def design_multi_plots(ax, station, ylim_min, ylim_max):   

80.   ax.set_title(station, fontsize=18, weight='normal')   

81.   ax.grid(color='grey', linestyle='--', linewidth=1, alpha=0.3)   

82.   ax.set_ylim(ylim_min, ylim_max)   

83. #  ax.set_facecolor('white')   

84.   ax.tick_params(axis='both', which='major', labelsize=15)   

85.   # Axis labels   

86.   if i in [1, 3, 5]:   

87.     ax.set_ylabel('Rainfall (mm)', fontsize=18, weight='normal')   

88.   if i in [5, 6]:   

89.     ax.set_xlabel('Date', fontsize=18, weight='normal')   

90.        

91. plt.rcParams.update({'font.size': 20})   
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92. min_temp, max_temp = all_data.rain_mm.min()-20, all_data.rain_mm.max() + 20   

93. fig, axes = plt.subplots(3, 2, figsize=(14,14), sharex=True)   

94. for i, (ax, station) in enumerate(zip(axes.flatten(), stations_names_list), 1):   

95.   sub_data = all_data.loc[all_data['station']==station]   

96.   ax.plot(sub_data.Date, sub_data.rain_mm, lw = 1.5, c='blue')   

97.   # Figure title   

98.   fig.suptitle('Measured Rainfall in Taita Region')   

99.   station = rename_stations(station)   

100.   design_multi_plots(ax, station, min_temp, max_temp)   

101. plt.tight_layout()   

102. plt.subplots_adjust(top=0.92)   

103. plt.savefig(r'E:\LIDAR_FINAL\data\plots\stations_rain_timeseries.jpeg',  bbox_in

ches='tight', pad_inches=0.1)   

104.    

105.    

106.    

107.          

108. monthly_agg_data = pd.DataFrame(columns=["station", "month", "rain_mm"])   

109. i=0   

110. for station in stations_names_list:   

111.   sub_data = all_data.loc[all_data['station']==station]   

112.   sub_data["month"] = sub_data.Date.astype(str).str.slice(5,7)   

113.   grouped = sub_data.groupby('month')   

114.   for key, group in grouped:   

115.     i+=1   

116.     monthly_agg_data.loc[i, "station"] =station   

117.     monthly_agg_data.loc[i, "month"] = key   

118.     monthly_agg_data.loc[i, "rain_mm"] = group.rain_mm.mean()   

119.     print(monthly_agg_data.station)   

120.    

121.             

122. import calendar   

123. monthly_agg_data['month_name'] = monthly_agg_data['month'].astype(int).apply(lam

bda x: calendar.month_abbr[x])   

124.                

125.    

126. stations = pd.read_csv(stations_filepath)   

127. stations = gpd.GeoDataFrame(stations)   

128. stations = stations.iloc[:,:5]   

129. stations_list = [Point(x, y) for x,y in zip(stations.x, stations.y)]   

130. stations_list[0]   

131. stations['geometry'] = stations_list   

132. stations.plot()   

133. print(stations.crs)   

134. stations.crs = {'init' :'epsg:32737'}   

135.    

136.  

137.    

138. def plot_station(dataframe, column, map_title, legend_title,cmap, output_fp):   

139.   minx, miny, maxx, maxy =  buildings_rain_aggr.total_bounds   

140.   fig, ax = plt.subplots(figsize  = (7, 7))   

141.   stations_proj = stations.to_crs(epsg=3857)   
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142.   map_plot = stations_proj.plot(ax =ax,figsize=fig, column=column, s=100, alpha=

1, legend = True)   

143.   ax.grid(b=True, which='minor', color='#D3D3D3', linestyle='-')   

144.   ax.set_aspect('equal')   

145.   map_plot.text(x=minx+3000,y=maxy-

4000, s=u'N \n\u25B2 ', ha='center', fontsize=37, weight='bold', family='Courier new', 

rotation = 0)   

146.   ax.get_legend().set_bbox_to_anchor((1, 0.44))   

147.   ax.get_legend().set_title(legend_title)   

148.   ax.get_figure()   

149.   ax.set_aspect('equal')   

150.   plt.xlim(minx-1000, maxx+1000)   

151.   ax.set_title(map_title, fontsize=15)  

152.   plt.savefig(output_fp, dpi=300, bbox_inches='tight', pad_inches=0.1)    

153.    

154. cmap='Blues'   

155. map_title=' in Taita Region'   

156. legend_title='Weather Stations'   

157. output_fp = r'E:\LIDAR_FINAL\data\plots\weather_stations_5'   

158. plot_station(stations, 'Location', map_title, legend_title,cmap, output_fp)   

159.      

160. fig, ax = plt.subplots(figsize  = (9, 5))   

161. buildings_rain_aggr.plot(ax=ax)   

162. stations.plot(ax=ax, c='red', column='Location', legend=True)   

163. plt.xlim(400000, 480000)   

164. plt.ylim(9610000, 9645000)   

165.    

166. buildings_rain_aggr.crs = stations.crs   

167. len(stations)   

168. ground_stations_rain_model = gpd.sjoin(stations, buildings_rain_aggr, how='inner

', op='intersects')   

169. ground_stations_rain_model.Location   

170.    

171. stations_abbr = [station.split(',')[0].split(' ')[0] for station in ground_stati

ons_rain_model.Location]   

172. wundayi_index = stations_abbr.index('Wundanyi')   

173. stations_abbr[wundayi_index] = 'Taita_RS'   

174.    

175. ground_stations_rain_model['station'] = stations_abbr   

176.    

177. def get_column_names_lists(ending, except_this):   

178.   return [month for month in ground_stations_rain_model.columns if month.endswit

h(ending) and not month.startswith(except_this)]   

179. months_rain = get_column_names_lists('rain', 'ann')   

180. months_rain_pot = get_column_names_lists('PO', "ann")   

181.    

182. stations_rain_model_df = pd.DataFrame(columns=[ 'station', 'month', 'model_rain_

mm','rain_pot'])   

183. for i, row in ground_stations_rain_model.iterrows():   

184.   monthly_rain = row[months_rain]   

185.   months_list = [month[0:3] for month in monthly_rain.index]   

186.   monthly_rain_pot = row[months_rain_pot].tolist()   

187.   month, rain, rain_pot = monthly_rain.index, monthly_rain, monthly_rain_pot   
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188.   data = {'station': row.station, 'month': months_list, 'model_rain_mm': monthly

_rain, 'rain_pot':rain_pot, 'x':row.x,'y':row.y,'z':row.z}   

189.   each_station = pd.DataFrame(data)   

190.   stations_rain_model_df = pd.concat([each_station, stations_rain_model_df], sor

t=False)   

191.    

192.    

193. stations_rain_model_df.columns   

194. monthly_agg_data.columns   

195. joined = pd.merge(stations_rain_model_df, monthly_agg_data, left_on=['station','

month'], right_on=['station', 'month_name'])   

196. joined.columns   

197. joined['rain_err'] = joined['rain_mm']- joined['model_rain_mm']   

198. import numpy as np   

199.    

200. def rmse(predictions, targets):   

201.     return np.sqrt(((predictions - targets) ** 2).mean())   

202.    

203. rmse_val = rmse(joined.model_rain_mm, joined.rain_mm)   

204. print("rms error is: " + str(rmse_val))   

205.    

206.    

207.    

208. rain_stat = linregress(joined.model_rain_mm.tolist(), joined.rain_mm.tolist())   

209. r2 = rain_stat.rvalue**2   

210. measured_rain, modelled_rain = joined.rain_mm.tolist() , joined.model_rain_mm.to

list()   

211.    

212.    

213.    

214.    

215. def r2(x, y):   

216.     return stats.pearsonr(x, y)[0] ** 2   

217. print(r2(measured_rain, modelled_rain))   

218. x=np.array(measured_rain)    

219. y=np.array(modelled_rain)   

220.    

221. x = pd.Series(measured_rain, name="measured rain (mm)")   

222. y = pd.Series(modelled_rain, name="modelled rain (mm)")   

223. ax = sns.jointplot(x, y, kind="reg", stat_func=r2, logx=True, truncate=True, spa

ce=0.1)   

224. plt.subplots_adjust(top=0.9)   

225. ax.fig.suptitle('Modelled Rainfall vs Measured Rainfall', fontsize=20)  

226. # can also get the figure from plt.gcf()   

227. output_fp = r'E:\LIDAR_FINAL\data\plots\validation_modelled_measured3'   

228. plt.savefig(output_fp,  bbox_inches='tight',dpi=300, pad_inches=0.1)   

229.    

230.    

231.    

232. sns.set(color_codes=True)   

233. discontinued_station = 'Mwatate'   

234. if discontinued_station in stations_names_list:   

235.   stations_names_list.remove(discontinued_station)   
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236.      

237. #plt.rcParams.update({'font.size': 17})   

238. min_rain, max_rain = joined.rain_mm.min()-20, joined.rain_mm.max() + 30   

239. fig, axes = plt.subplots(3, 2, figsize=(10,12), sharex=True, sharey=True)   

240. for i, (ax, station) in enumerate(zip(axes.flatten(), stations_names_list), 1): 

  

241.   sub_data = joined.loc[joined['station']==station].sort_values(by='month_y')   

242.   ax.plot(sub_data.month_name, sub_data.rain_mm, lw = 2, color = 'blue', label= 

'Measured')   

243.   ax.plot(sub_data.month_name, sub_data.model_rain_mm, lw = 2, color='red', labe

l= 'Modelled')   

244.   ax.legend()   

245.   # Figure title   

246.   fig.suptitle('Comparison of Measured and Modelled Mean Monthly\nRainfall in Ta

ita Region', fontsize=23)   

247.   station = rename_stations(station)   

248.   design_multi_plots(ax, station, min_temp, max_temp)   

249.   plt.setp(ax.xaxis.get_majorticklabels(), rotation=90)   

250.   plt.tight_layout()   

251. plt.subplots_adjust(top=0.89)   

252. output_fp = r'E:\LIDAR_FINAL\data\plots\monthly_validation_modelled_measured6'   

253. plt.savefig(output_fp,  bbox_inches='tight',dpi=300, pad_inches=0.1)   

254.      

255.    
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Survey Form 

QUESTIONNAIRE FOR RAINWATER HARVESTING SYSTEM 

Sample Number/House Number_______________________________________ 

 

 Age: ____ Gender:  Occupation:_____  Location:________ 

 

BACKGROUND INFORMATION 

1. Number of people in household:  ________________ 

2. Income level a)Low  b) Medium    c) High 

3. Education level:  a) Primary b) Secondary(O’level) c)Diploma 

 d)Vocational e)University) f)No formal education 
 

COLLECTING RAINWATER 

1. Current source(s) of water: (a) Well (b.) Borehole (c.)Roof Water Harvested rain 

(d)  dam (e) river (f) tap water from Taita County by Govt (g)Tap water from 

Community Project (i)others__________________________________________ 

 

2. Details of water demand: 

  i ) Average daily water consumption (20 Litres gallon) : 

_______________________ 

ii) Cost per Month:________ 

 

3. Rainwater Harvesting:  

1. Do you have a RWH system? a)Yes  (b) No 

2. How much did it cost you?  

Tank’s size : _________________________________________ 

→ yes 

1. Do you harvest all the water? a) Yes b) No 

2. Uses? 

3. How much water you get from collecting? 
 

→ NO : If not, why don’t you have one?  

a) Too expensive  b) Lack of technical expertise  c) We don’t find it useful  

d) We don’t need it e) House Design. (f)House not Mine g) Health Reason 

(i) others 

 

WATER CONSUMPTION 

1. Do you ever face water shortage?  a) Yes b) No.     
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1a) How often?  b) Duration 

2. How long do you travel to get water? 

3. How long do you queue/Wait?  

 

AFFORDABILITY 

6. Do you think it will be nice to have a system to help you save rainwater which 

can be used at home for domestic use?  a) Yes b) No 

7.  Would you like to install the rainwater harvesting system?  a) Yes  b) No 

 

8. a) If Yes, Why would you? 

__________________________________________________________________

__________________________________________________________________ 

b) Preferred tank capacity? _________________________ 

9. If No, Why would you not? 

__________________________________________________________________

__________________________________________________________________ 

 

ROOF 

1. Roof type/material 

a) Galvanised Iron Sheet   b) Asbestos  c) concrete roof  d)Grass thatched 

 e) 

Others________________________________________________________ 

2. Why this material? 
 

Thank you for responding! 

 
 

 

FIELD OBSERVATION FOR THE RAINWATER HARVESTING SYSTEM 

Sample Number/House Number_______________________________________ 

House Location(long/lat):____________________________________________ 

 
 

Building Type 

 a) Single family home        

 b) Residential apartment/ block    

c)  Commercial building  

 d) Hotel            

  e)  School        

f) Other____ 
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Roof’s Condition a) Good  b)Fair  c) Poor 
 

Rainwater Harvesting 

Roof Area (sqm)    ____  

Tank Storage Size  _____ 

 
 

Tank Storage Location: 

a)  Indoor  b) Underground  c)Above ground  d) Outdoor 

e)Others___________________________________________________________

__ 

 

 


