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A B S T R A C T

How does the human brain recall and connect relevant memories with unfolding events? To study this, we
presented 25 healthy subjects, during functional magnetic resonance imaging, the movie ‘Memento’ (director C.
Nolan). In this movie, scenes are presented in chronologically reverse order with certain scenes briefly over-
lapping previously presented scenes. Such overlapping “key-frames” serve as effective memory cues for the
viewers, prompting recall of relevant memories of the previously seen scene and connecting them with the
concurrent scene. We hypothesized that these repeating key-frames serve as immediate recall cues and would
facilitate reconstruction of the story piece-by-piece. The chronological version of Memento, shown in a separate
experiment for another group of subjects, served as a control condition. Using multivariate event-related pattern
analysis method and representational similarity analysis, focal fingerprint patterns of hemodynamic activity were
found to emerge during presentation of key-frame scenes. This effect was present in higher-order cortical network
with regions including precuneus, angular gyrus, cingulate gyrus, as well as lateral, superior, and middle frontal
gyri within frontal poles. This network was right hemispheric dominant. These distributed patterns of brain ac-
tivity appear to underlie ability to recall relevant memories and connect them with ongoing events, i.e., “what
goes with what” in a complex story. Given the real-life likeness of cinematic experience, these results provide new
insight into how the human brain recalls, given proper cues, relevant memories to facilitate understanding and
prediction of everyday life events.
Introduction

In everyday life, an event one encounters may provide a memory cue
prompting interpretation of unfolding events anew from a different
perspective. As if pieces of puzzle suddenly clicked together, one may
foresee how the events that one is witnessing will most likely unfold. Our
brains have a remarkable ability – upon a proper cue – to rapidly recall
and integrate related relevant information to make sense of events, and
predict what happens next. Situations like these are also common when
following a movie plot. In a sense, movies are simulations of real-life
events in compact form (Tikka, 2008). Memory for a complex life-like
event is never a straightforward representation of the incoming infor-
mation and to comprehend the sequence of unfolding real-life actions it is
necessary to interpret them with reference to our prior knowledge of
similar situations (Bird et al., 2015). Similarly, to follow a movie plot, the
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viewer must constantly recall past events in order to understand and
anticipate upcoming ones (Kauttonen et al., 2014; Lerner et al., 2011).

Here, by showing our subjects the movie ‘Memento’ (director Chris-
topher Nolan, 2000) during functional magnetic resonance imaging, we
expected to get a step closer in revealing how human memory works in
real-life situations. Specifically, Memento is a very suitably directed
movie for this purpose as it contains backwards narrative structure, i.e.,
the story is told in reverse order starting from the causally or chronolog-
ically last event. The movie is organized so that at certain time points of
overlap the viewer is cued with information that allows her/him to recall
and reconstruct causal structure of previously witnessed events anew.
Particularly important from our point of view is that these specific time
points are audio-visually identical repeats of previously presented events.
In other words, during certain exactly defined moments the ending of a
subsequently presented scene is overlapping - for a few seconds - the
oo, Finland.
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beginning of a previously presented scene. These audio-visually and
story-wise overlapping key-events serve as temporal “bridging points” for
the reconstruction of the story based on new information. In Memento,
key-events work as audio-visual cues for the story. As a previously seen
key-event (cue-frame; first presentation) appears the second time (key-
frame; second presentation) the viewer immediately recognizes it as a
repeat (“I have seen this part before”) and mentally bridges, or re-
organizes, the two temporally distant events as one continuous scene
(“These two scenes must belong together”) [See illustration in Fig. 1.].
Total 15 of such cue and key-frame event pairs, which from now on are
called key-events, exist in the film. Functioning as temporal intersection
points, these events encourage the viewers to update their current un-
derstanding of the plot. We expected that these temporally defined key-
events in the movie allow pinpointing the neurocognitive processes that
support cue-based recall (Ezzyat and Davachi, 2011; Hayama et al., 2012;
Hupbach et al., 2007; Summerfield et al., 2006) and reconstruction of
events into schemas representing longer pieces of narrative.

Methodological developments have enabled use of naturalistic stim-
uli, such as movies, during functional magnetic resonance imaging
(fMRI) of human brain blood-oxygen-level dependent (BOLD) activity
(Bartels and Zeki, 2004; Chen et al., 2017; Cohen et al., 2015; Hasson
et al., 2004; J€a€askel€ainen et al., 2008; Lahnakoski et al., 2014, 2012; Naci
et al., 2014). In particular, developments in multivariate methods have
allowed extraction of fine-grained information in activity patterns
(Haxby, 2001; Norman et al., 2006). Multivariate approach has been
applied to naturalistic stimuli, e.g., to classify movies (Emerson et al.,
2015), compare perception and memory scene similarities (Bird et al.,
2015; Chen et al., 2017), analyze shared response models (P.-H. Chen
et al., 2015b), perform mapping between movies and annotations
(Vodrahalli et al., 2017) and spatial alignment between individual brains
(Guntupalli et al., 2016). Naturalistic stimuli seem to create particularly
robust BOLD responses (Hasson et al., 2010), and one can use this, for
example, to evoke and classify emotional states based on distributed
brain activity patterns (Saarim€aki et al., 2016).

Here, by using Memento as stimulus, we set forth to investigate the
memory functions particularly related to cued recalling of previous
events in order to make sense of the plot. For this purpose, we took
advantage of the key-frames and their special role to cue the viewer's
memory and reconstruction of the story, and studied if the key-frames
could be associated with specific BOLD activation patterns (fingerprint
patterns) at the moments they were presented. We applied event-specific
pattern analysis and hypothesized that our analyses implicate brain
structures that have been previously associated with long-duration
memory storing and narrative comprehension. Such regions are medial
temporal lobe, frontal and prefrontal cortices, hippocampus, precuneus,
angular gyrus, cingulate, middle temporal pole and frontal gyri (Bird
et al., 2015; Chen et al., 2017; Dehghani et al., 2017; Kauttonen et al.,
2015; Nadel and Hardt, 2011; Oedekoven et al., 2017; Summerfield
et al., 2006; Wheeler et al., 1995; Yaffe et al., 2014). In addition, we
assumed that the right hemisphere would dominate the cognitive pro-
cesses related to long-duration narrative comprehension, based on pre-
vious findings (AbdulSabur et al., 2014; J€a€askel€ainen et al., 2008; Marini
et al., 2005; Tyl�en et al., 2015; Xu et al., 2005).

For a control study, we re-edited the original puzzle film version of
Memento into a chronological version, and showed it to another group of
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subjects during fMRI. The chronological version contained the same
audio-visual material as the original version, but all the scenes were
rearranged according to their chronological order, and thus also without
repetitive key-events. Fig. 2 depicts the timelines of both versions of
Memento. Comparing the acquired fMRI control data with the original
puzzle film fMRI data allowed us to separate the effect of narrative
structure from those related directly to audio-visual properties of the
events under scrutiny, further facilitating the interpretation of results.

We aimed to study such situations that involve three neural processes:
Cued recall, schema updating and shared neural codes. Using Memento
and event-related pattern analysis, we wanted to capture the very mo-
ments of these three factors co-occurring during movie viewing. It has
been recently demonstrated using fMRI that during recall, originally
encoded patterns (in first presentation) are reinstated in fronto-parietal
regions (Bird et al., 2015; Chen et al., 2017; Oedekoven et al., 2017).
These reinstatements retain information in transformed form and can be
later recovered by cues (Xiao et al., 2017). Individual memories can form
schemas that are high-level, dynamically evolving knowledge structures
build on individual memories (Gilboa and Marlatte, 2017). They serve as
general-form reference templates against which new information can be
compared. Prefrontal cortex has an essential role in providing ‘top-down’
control to resolve the conflicts between existing memories and new
events (Preston and Eichenbaum, 2013). In particular, medial prefrontal
cortex is associated with conceptual knowledge integration, conceptual
comprehension and assimilation of new information into a schema
(Kumaran et al., 2009; Maguire et al., 1999; Mar, 2004; Schlichting and
Preston, 2015; van Kesteren et al., 2014, 2013, 2010). Finally, shared
neural codes correspond to neural activity patterns that remain similar
across (apparently) different stimuli, thus indicating existence of con-
ceptual similarities. Recent studies have shown existence of such shared
neural codes or substrates for emotions (Saarim€aki et al., 2016; Skerry
and Saxe, 2014), rewards (social vs monetary; Wake and Izuma, 2017)
and cognitive memory tasks (categorization vs. long-termmemory; Davis
et al., 2014). We are not aware of any prior studies that have considered
co-occurrence of all these above factors in naturalistic setting, which is
the main motivation of this work.

Materials and methods

Subjects, stimulus, annotations and data acquisition

Subjects: fMRI data from 17 right-handed healthy adults was
collected, from which 13 (5 males) datasets were chosen for the final
analysis. Excluded datasets included subjects that had low alertness
(sleepy), missing data and/or too much motion artefacts Interestingly we
also found high-pattern. The ages of the subjects were between 21 and 31
years (arithmetic mean 26 with standard deviation 3). For the chrono-
logical Memento (i.e., the control experiment), data from 14 right-
handed healthy adults was collected, from which, based on the same
exclusion criteria, fMRI data from 12 subjects (6 males) was used. The
age range for this group was 20–40 years (arithmetic mean 27 with
standard deviation 7).

All subjects were naive in regards to the stimuli, i.e., they reported
that they had not seen the film ‘Memento’ previously. None of the sub-
jects watched both versions of the movie, that is, the two subject groups
Fig. 1. (1-column, color online) Illustration of the narrative
structure of Memento. The original (non-linear) version of
Memento contains color and black-and-white (BW) parts with
backwards structure and repeating segments. Short segments
of the movie (cue-frames; CUE) are repeated later (key-frames;
KEY), which creates strong links (arrows) between these
events. Presumably this triggers cued memory recall and
updating of the subject's concurrent understanding (schema)
of the plot. The movie contains 15 cue/key-frame pairs.
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Fig. 2. (1.5-column, color online) Timelines of original (orig) and chronological (chrono) versions of ‘Memento’. The movie contains 22 color (red bars with
numbers 1–22) and 22 black-and-white (unlabelled grey bars) segments with 15 short clips (blue and green lines; cue and key-frames) that are pairwise audio-
visually identical. Data were measured in three fMRI sessions (white bars) separated by short (<1min) pauses between. Note that the chronological version is
shorter than the original due to lack of redundant scene repeats and title credits (magenta bar).
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were separate. The study had a prior approval by the Aalto University
Ethics Committee, voluntary consent was obtained from each subject
prior to participation, and we followed the principles of the Helsinki
declaration throughout the study.

Stimulus: Subjects watched a 105-min long film Memento in a MRI
scanner (6350s without ending credits) in three parts. The storyline
contains 22 color (COL) segments that are presented in the reversed
temporal order and 22 black-and-white (BW) segments in the linear,
chronological order. Color and BW segments are interleaved and their
storylines merge at the end of the 22nd BW segment, followed by the last
color segment. In particular, movie contains 15 short clips that are each
presented twice during the movie. When appearing for the first time in
the film we call them cue-frames, and when they appear the second time,
key-frames, cued by audio-visual content repetition. From now on, we call
the corresponding 15 events, each of which has different narrative con-
tent, as key-events. Key-events had the central importance in the data-
analysis and are discussed later in greater detail. Fig. 2 depicts the
timeline of the Memento, including BW and COL segments with cue and
key-frames. For the control experiment, we re-arranged all 22 color and
black-and-white scenes of the puzzle (non-linear) version to create a
chronological (linear) version of the movie which included all 15 key-
events as a natural part of the story, however, without redundant repe-
tition. For both versions, English subtitles beneath the movie were shown
to ensure each viewer's accurate comprehension of the English language
dialogue regardless of the background noise of the MRI scanner.

Data acquisition: The fMRI images were acquired with custom 30-
channel headcoil at MAGNETOM Skyra 3T (Siemens Healthcare, Erlan-
gen, Germany). Functional images were obtained using a gradient echo-
planar-imaging sequence with the following parameters: TR 1560ms, TE
30ms, FA 60�, 29 oblique axial slices, slice thickness 4mm–4.5mm with
voxel sizes 3.4� 3.4� 4.0mm to 3.4� 3.4� 4.5mm, matrix 64� 64
and field of view (FOV) 22 cm. After removal of first 8 (dummy) volumes,
on average 4107 and 3883 vol per subject were collected over three
sessions for the original and chronological Memento (i.e., latter one was
shorted due to lack of repetitions and credits). T1-weighted anatomical
images at 1� 1� 1mm3 voxel resolution were acquired at the beginning
of the first session. In addition to fMRI data, we also measured gaze di-
rection data using EyeLink 1000 (SR Research) system with primary
purpose to evaluate alertness level of subjects during scanning. The
alertness was evaluated subjectively by a researcher observing the video
feedback of the infrared camera. Complete eye-tracking data was ob-
tained from 7 subjects watching the original Memento.

Key-frame annotation: Annotation of original puzzle version of
Memento consisted of total 30 timestamps containing the start and end
point of the cue and key-frames (15 þ 15, event IDs 1 to 15; see Fig. 2).
For chronological version of Memento, the same 15 key-events (without
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repeats) were annotated. 12 out of these were also identical before the
key-events appeared (i.e., parts of long identical segments; see Fig. 1),
while remaining three (IDs 3, 4 and 13) had visual differences, and 10
had visually discontinuous transition at the beginning of the key-event
(see Supplementary Information Appendix J for details). Timepoints
were determined manually and fine-tuned up to single-frame accuracy
with automated frame analysis in Matlab. Together these 15 cue-frame
and key-frame pairs form the basis of key-frame model that was applied
in the representational similarity analysis (RSA) of original Memento
data as discussed in Section 2.3. Five of the key-frames (IDs 2, 12, 13, 14
and 15) were discontinuous in the sense that the repeating scene was
discontinuous, i.e., divided in two parts with a few second gap between.
In these cases, we chose the segment with the longer continuous part as
the key-frame (latter part for 3 out of 5). Durations of the 15 key-event
segments varied between 1.9s and 13.0s (arithmetic mean 6.4, SD 3.1).
See Supplementary Information Appendix C for durations of key-events
and their pairwise temporal distances.

Behavioural questionnaire: Immediately after watching Memento
in the MRI scanner, all subjects filled out the post-stimulus questionnaire
where we tested whether subjects were able to recall repeated scenes in
Memento. Questionnaire was computerized and contained 30 color still-
frames from the film. Half of these still-frames (i.e., 15) were from key-
events while remaining 15 were randomly picked from non-repeating
scenes (all from color parts of the movie). The subjects had to choose if
they remembered individual frames being repeated or not, and answers
were collected into a binary table. We also included those three subjects
(2 for original and 1 for chronological Memento) whose fMRI data was
not included in the analysis due to excessive motion. Statistical analysis
was conducted using symmetrical binomial test (i.e., chance level 0.50)
to each row (subjects) and column (still-frames). Questionnaire also
contained open questions about the plot and characters in order to verify
alertness and general understanding of the plot. Subjects were requested
to answer all questions in the form. For the chronological version of
Memento in the control experiment the same questionnaire was used. As
there were no repeats in this version, none of the 30 still-frames were
repeated and questionnaire served only as a control. Even if the subject
failed the behavioural test (i.e., did not perform above statistical signif-
icance), their fMRI data was still included in the data-analysis assuming it
was otherwise valid (see Supplementary Information Appendix B).
fMRI data preprocessing

fMRI data was preprocessed using SPM12 (http://www.fil.ion.ucl.ac.
uk/spm/software/spm12), FMRIB Software Library (FSL; http://fsl.
fmrib.ox.ac.uk/fsl) 5.0 and in-house developed Matlab codes (http://
version.aalto.fi/gitlab/BML/bramila and http://github.com/kauttoj/
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fDPA_toolbox). The following preprocessing steps were applied: Slice-
time correction (temporal middle-point), realignment (i.e., motion
correction), anatomical and functional coregistration and normalization
into MNI152 space with SPM12 segmentation. After initial preprocess-
ing, voxel-wise time-series were detrended (2nd degree polynomial) and
cleaned by regressing out the following 14 nuisance timeseries: 6 motion
regressors (3 axial and 3 rotational parameters), their first derivatives
(total 6) and signals from the deep white matter (5500 voxels for all
subjects) and cerebrospinal fluid (up to 155 voxels depending on the
subject) regions. For the latter two nuisance signals, we used first prin-
cipal component for each tissue type (CompCor method, see Behzadi
et al., 2007). After this, time-series were temporally high-pass filtered
with 0.01Hz cosine filter (SPM's spm_filter). Finally, voxel-wise time-s-
eries were z-scored independently for all three sessions to remove the
effect of spatial intensity variation. In order to preserve details of pat-
terns, spatial smoothing was not applied unless stated otherwise.

Out of total 30 collected datasets (17 þ 13 subjects), 25 were used in
the final analysis. Omitted datasets had following issues: Drowsiness
(eyes closed continuously for more than 10s; 2 subjects), technical
problems (incomplete data; 2 subjects) and/or motion artefacts (>5%
bad frames reported by ArtRepair toolbox (http://cibsr.stanford.edu/
tools/human-brain-project/artrepair-software.html) with visual inspec-
tion of DVARS and framewise displacement timeseries; 1 subject).

fMRI data-analysis

We assumed that the neural functions of interest, mainly related to
the cue recall, lasted up to 5s starting from key-frame onset timepoints. In
order to select proper fMRI temporal slides to extract patterns, hemo-
dynamic lag of BOLD signal was modelled with double-gamma hemo-
dynamic response function (HRF; SPM's spm_hrfwith default parameters)
with 5s onset-to-peak delay. Using this HRF, we estimated BOLD
response timeseries independently for each cue and key-frame event and
normalized their maxima to 1. Then we took mean over volumes with the
estimated response over 0.5 (i.e., 50%) per event. This resulted in four
volumes that were averaged to produce one volume for each cue and key-
frame. Averaging of volumes was considered necessary for three reasons:
(1) it reduces the effect of timing confounds caused by inter-subject and
inter-regional HRF variation as well as key-event related jitter (i.e., slice
acquisition times naturally varied in respect to key-event onset times),
(2) neural processes related to higher-level cognitive functions (e.g., cued
recall and reasoning) likely vary between subjects and key-frames and
their precise neural timing is not known, (3) averaging improves the
signal-to-noise ratio of BOLD patterns (Mour~ao-Miranda et al., 2006). All
analyses were carried out using group masks that included only voxels
with valid EPI signal from all subjects in the group (either original or both
original and chronological version) and were part of the
loosely-thresholded grey matter tissue defined by the tissue probability
template (SPM's grey.nii with threshold >0.2; see Supplementary Infor-
mation Appendix D).

Searchlight analysis: We used volumetric searchlight with the
radius of 6mm containing 93 normalized voxels, which was considered
suitable trade-off between pattern size and spatial specificity. In noting,
using other radiuses between 4mm and 8mm did not change our main
findings.

Representational similarity analysis: Our main method of choice
for the fMRI data-analysis was representational similarity analysis (RSA). In
short, RSA allows testing of hypotheses about the representational ge-
ometry of events that can be characterized by the representational dis-
similarities (Walther et al., 2016). RSA models take the form of
dissimilarity matrices (RDMs). We concentrated on the BOLD patterns
related to the 15 key-events (including 15 occurrences of both cue- and
key-frames, see Fig. 2). The hypothesized relationship between 15
cue-frame and 15 key-frame events were expressed as binary 30� 30
matrices, where distance between pattern i and j was 1-ri;j where ri;j is
Pearson correlation.
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We defined twomodel RDMs. First was the low-level modelwhere high
BOLD pattern similarity was assumed pairwise for the audio-visually
identical cue- and key-frames (i.e., ri;j ¼ 1 for matched (i,j) pairs). This
model was hypothesized to be relevant for the brain regions that process
low-level visual and auditory information (i.e., primary visual and
auditory cortices). The second model was the high-level modelwhere high
pattern similarity (a common key-frame fingerprint patterns) was
assumed for all key-frames regardless of the fact that they have different
low-level features (i.e., ri;j ¼ 1 for all key-frames). This model was based
on our hypothesis that underlying memory (cued recall) and narrative-
related (schema reconstruction) processing, which both can be charac-
terized as high-level cognitive functions, do not depend on the low-level
properties of the stimuli. This model specifically tests the hypothesis that
key-frames are associated with a specific shared activation pattern
(common code) that emerges during key-frames. In other words, the
high-level model should pinpoint regions for which all key-frames (a)
have similar patterns and (b) all initial cue-frames have patterns that are
different from each other and different from all key-frames. The latter
condition ensures that the common code – if present – is directly asso-
ciated with the key-frames. Illustrations of both models are found in
Supplementary Information Appendix E. RSA was performed inside
searchlights where 3D spherical BOLD patterns were analyzed from all
normalized voxels of the brain (Kriegeskorte et al., 2006).

We applied RSA to local BOLD patterns using overlapping search-
lights covering the group mask with 174k normalized voxels. Since the
group mask caused clipping of some searchlights at the mask borders, we
required that each searchlight contained at least 50% of voxels (i.e., 47
normalized voxels for 6mm radius) of the full searchlight (93 voxels).
Pattern RDMs were computed from the BOLD data using Pearson corre-
lation, resulting in empirical RDMs which were then compared against
model RDMs (discussed in next paragraph) with Spearman's rank cor-
relation (Nili et al., 2014; Schapiro et al., 2013). This resulted in
subject-wise spatial correlation maps (i.e., 1st levels statistics), which
were Fisher transformed and entered into group statistical test (i.e., 2nd
level statistics). Computations were done using a modified version of the
Matlab RSA toolbox (Nili et al., 2014). Modifications included optimi-
zations and adding an option for permutation statistics (Mantel test for
RDM's). In order to test whether cue and key-frames were also associated
with increase/decrease of BOLD signal levels, we also performed
voxel-wise linear correlation analysis for the same timepoints that were
used in the RSA pattern analysis (for details, see Supplementary Infor-
mation Appendix F).

Sliding window analysis of patterns: For each subject (s) and all
voxels in the group mask, we computed the average correlation

rsðdÞ ¼ 2
NðN � 1Þ

XN

j>i

rðsÞði;jÞðdÞ;

where N is the number of key-events and rðsÞi;j ðdÞ is Pearson correlation
between searchlight patterns of events i and j for subject s with time-
delay d seconds (i.e., window position) before. ri;j:s were assumed pair-
wise independent and all N(N-1)/2 values were used (see Supplemen-
tary Information Appendix B for details). After computing rd:s for both
movie versions (denoted here as rðorigÞs and rðchronoÞs ), we computed the
mean correlation differences between two movie version data using
formula

rðdÞ ¼ 1
N

XN

s¼1

rðorigÞs ðdÞ � 1
M

XM

s¼1

rðchronoÞs ðdÞ;

where N¼ 12 and M¼ 13 were the number of subjects. As a result,
chronological version effectively sets the baseline for the correlations and
allowed us to better isolate the higher-order key-frame related neural
effects (e.g., narrative comprehension and memory) by taking into ac-
count the low-level effects (e.g., camera angle and scene changes). For
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delays d we used 2s stepping and for each step we averaged three
consecutive volumes (i.e., data obtained during 3.12s window) to create
patterns for analysis. Therefore delay d¼ 0s corresponds to patterns that
were obtained from key-events (i.e., approximately between timepoints
0s–3s in the movie). As before, volumes were chosen at the highest HRF
response locations.

Temporal delays (d's) from �30s to 20s (i.e., 26 steps) were analyzed
with main interest on interval �20s to 6s shown in Fig. 6. Positive delays
>6s were considered irrelevant for two reasons. Firstly, the events under
scrutiny in the twoMemento versions were audio-visually similar only up
to the key-frames (i.e., on average up to 6s), not after them. In the
original puzzle version of Memento all key-frames were followed by
transition to black-and-white segments which is a large audiovisual and
narrative change point (see Supplementary Information Appendix C and
Fig. S1). Such a strong audiovisual effect was found to create strong
pattern correlations unrelated to narrative content of the movie (results
not shown). For these change points we could not separate the audiovi-
sual (“low level”) and narrative effects (“high level”) as they were tightly
coupled. Secondly, the last key-frame (i.e., ID 15) was located at the end
of the movie stimulus for the original version, i.e., no movie-related fMRI
data existed after this key-frame event and related BOLD patterns could
not be readily compared against other (movie-related) patterns.

After computing rsðdÞ:s and rðdÞ:s for all voxels, data was analyzed in
two ways. Firstly correlation maps were entered into two-sample per-
mutation test (see below) to locate voxels with significant mean corre-
lation difference between two movie versions. Secondly similar analysis
was performed for regions of interest obtained from Harvard-Oxford MNI
atlas with cerebellum parcellation (Jenkinson et al., 2012). For each
subject, we averaged and Fisher transformed voxel-wise correlations over
ROIs. Mean ROI-wise correlations for the original Memento were then
compared against zero (one-sample t-test) and against those for the
chronological version (two-sample t-test with unequal variance
assumption). This analysis allowed easier inspection of region-wise
temporal dynamics of correlations. Finally, as an alternative analysis,
we used Power et al. (2012) spherical regions of interest (total 244) and
hierarchical clustering method to study temporal organization of
region-specific correlations (see Supplementary Information Appendix G
for further details).

Statistical tests and analysis codes: The 2nd level group statistics
for voxels was done via sign flipping (one-sample t-test) and group-label
flipping permutations (two-sample t-test) implemented in FSL's Ran-
domise tool (Winkler et al., 2014). Null hypotheses were that the mean
correlation (one-sample case) and difference between means (two--
sample case) for correlations between RSA model and data were not
different from zero. Randomise was ran for 5.000 iterations with
threshold-free cluster enhancement (TFCE) method to correct for multi-
ple comparisons (Winkler et al., 2014). For region of interest based an-
alyses, we used standard (parametric) one and two-sample t-tests.
Analysis codes are available at http://github.com/kauttoj/memento_
draft.

Inter-subject correlation and gaze analyses: fMRI data between
two Memento groups were also compared via voxel-wise intersubject
correlation (ISC) analysis. We followed work by Lahnakoski et al. (2014)
and applied RSA and classification methods to voxel-wise ISC values to
find voxels with distinctive time courses between twoMemento versions.
Also, in order test if results from pattern analysis could be explained
simply by gaze direction, we analyzed eye-tracking data collected from 7
subjects that watched the original Memento in MRI scanner. Details for
both of these analyses can be found in Supplementary Information
Appendices H and I.

Results

Behavioural questionnaire

14 out of all 15 subjects (12 out of 13 included in fMRI data-analysis)
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were able to identify repeated (key-frames) and unrepeated random still-
frames from each other (uncorrected p< 0.01, binomial test). For indi-
vidual frames, 22 still-frames (with 8 key-frames) were correctly iden-
tified as being repeated or not repeated (uncorrected p< 0.05). For the
chronological version ofMemento - where no repeats actually existed - 10
out of 13 subjects (9 out of 12 included in fMRI data-analysis) were able
to identify that no repeating frames were present (uncorrected p< 0.05).
For individual still-frames 21 were correctly identified as not being
repeated (uncorrected p< 0.05). In conclusion, subjects were generally
able to distinguish repeated and non-repeated still-frames although seven
key-frames were not reliably identified by the group.

Key-frame model

Both the low and high-level RDMs resulted in statistically significant
correlations in multiple cortical locations. Results are depicted in Fig. 4
(low-level model) and 5 (high-level model), with corresponding regions
listed in Tables S1 and S2 in Supplementary Information Appendix A.
Statistical threshold was set to p< 0.01 with one-sample one-sided using
threshold-free cluster enhancement (TFCE) multiple comparison correc-
tion algorithm (Winkler et al., 2014) which was found to closely
resemblance alternative label-mixing (over rows and columns) permu-
tation statistics at p< 0.05 (false discovery rate (FDR; Benjamini and
Hochberg, 1995) adjusted; result not shown). Label-mixing tests served
as an additional control for our models. As another control for the
high-level model, we replaced the cue-frames with randomly chosen
events from the movie (not keys or cues, same averaging scheme), which
resulted in similar results, but lacked the low-level control. Finally, we
also tested an “inverse high-level model” where the identities of cue and
key-frames were switched, i.e., high similarity was assumed between
cue-frames, but this model revealed no significant clusters. 3D statistical
maps for Figs. 3–5 are available at http://neurovault.org/collections/
2292.

As expected, the low-level model correlated mostly with the occipital
(e.g., primary visual) and parietal cortices with minor clusters in frontal
and precentral gyri. Clusters were symmetrically distributed without
notable lateralization. Low-level model was also associated with corre-
lated eye-movements (see Supplementary Information Appendix H). For
the high-level model the results were different as no significant corre-
lations were in generally found in lower-level sensory regions. Highest
correlations were found in superior, anterior and subcortical regions with
a distinctive right hemisphere lateralization (ratio 8:3). Especially the
precuneus, angular gyrus and various parts of the right frontal gyrus were
highlighted. For representative examples of empirical RDMs, see Sup-
plementary Information Appendix E. Voxel-wise signal level analysis
revealed statistically significant increase in BOLD signal in parietal and
frontal regions during key-frames (see Supplementary Information Ap-
pendix F).

Furthermore, in inter-subject correlation analysis, that was not
limited to key-events only, differences between two movie versions were
found in various frontal and parietal regions, including precuneus and
angular gyrus, however, without notable lateralization (see Supplemen-
tary Information Appendix I).

Sliding window pattern analysis

In order to further test our hypothesis about the key-frame generated
distinctive fingerprint pattern, we performed sliding window analysis by
computingmean pattern correlation over key-frames (i.e. only the second
repetition of key-events) in the original and correlating key-events in the
chronological movie version. Results are depicted in Figs. 5 and 6
comparing the original version of Memento against the chronological
version. Significant correlations (rd) were found for several delays be-
tween �10s and 10s. Fig. 6 depicts results for MNI region-wise averaged
correlations between delays �30s to 6s. Only those regions are shown
that had at least one significant correlation for the original version (one-

http://github.com/kauttoj/memento_draft
http://github.com/kauttoj/memento_draft
http://neurovault.org/collections/2292
http://neurovault.org/collections/2292


Fig. 3. (2-column, color online) Result of the pattern correlation analysis with the low-level RSA model. In this model high pair-wise similarity was assumed
between BOLD patterns that emerged during cue and key-frame presentation (see Supplementary Information Fig. S4a). Each colored voxel depicts a searchlight
pattern centroid with significant RSA model correlation (one-sample one-sided permutation test with TFCE correction at p< 0.01 with 13 subjects). For the listing
of corresponding cortical regions, see Table S1.
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Fig. 4. (2-column, color online) Result of
the pattern correlation analysis with the
high-level RSA model. In this model, high
mutual correlation was assumed for BOLD
patterns that occurred during key-frame
presentation (see Supplementary Informa-
tion Fig. S4b). Each colored voxel depicts a
searchlight pattern centroid with significant
RSA model correlation (one-sample one-
sided permutation test with TFCE correc-
tion at p< 0.01 with 13 subjects). For the
listing of corresponding cortical regions, see
Table S2.
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sample t-test) and between two versions (two-sample t-test; both two-
tailed at p < 0.01, FDR adjusted) between delays -6s to þ4s (marked
with black vertical lines). Outside this short temporal window, correla-
tions were generally small and non-significant and were considered
mostly as noise.

As expected, for temporal delays 0–4s (corresponding roughly 1s–6s
in the movie) correlation maps of Fig. 5 were similar to those obtained
previously when using fixed window and cue-frames. These fronto-
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parietal correlations were not found for chronological Memento. There
were also secondary, yet weaker correlations, before the key-frame onset
time. These pre-key-frame correlations occurred for delays -8s to -2s
(corresponding roughly -7s to -1s in the movie) and were mainly limited
to occipital (e.g., cuneus, lingual gyrus and supracalcarine cortex) and
temporal (middle and superior) cortices. Unlike key-frame related cor-
relations, these secondary correlations emerged for both versions of the
movie, being marginally larger for the original. Generality and spatial



Fig. 5. (2-column, color online) Temporal dynamics of BOLD pattern correlations at the vicinity of the key-frames. Each timepoint depicts local BOLD pattern
correlation between 15 time-shifted searchlight patterns (6 mm searchlight with 3.12s window) during Memento viewing. At 0s, all key-frames were temporally
aligned with each other. All voxels (i.e., searchlight centroids) marked with red had significantly larger mean pattern correlation for the group viewing the original
Memento compared to the control group viewing chronological Memento (control group with only cue-frames and no repetition). All eight maps were thresholded
individually at p< 0.01 (two-sample one-sided permutation t-test for 13 þ 12 subjects, TFCE corrected).
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distribution of these correlations suggest that they were likely related to
low-level cinematic properties of the stimulus, such as scene transition
and camera framing changes. This was indeed found to be general phe-
nomena and similar occipital cortex -centralized correlations were also
found for other timepoints with similar low-level cinematic changes
(data not shown). In another, ROI-based analysis, temporal clustering
analysis revealed separation between occipital-temporal and fronto-
parietal regions with corresponding correlation peaks around -4s and
2s (see Supplementary Information Appendix G).
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Discussion

In this work we used fMRI to study the neural basis of real-time
reconstruction of one's understanding of a continuously unfolding story
when presented with key memory cues during free-viewing of full-length
movie Memento that has a unique temporally nonlinear narrative. We
specifically analyzed high-level neural functions that could be associated
with specific key-event repetitions (cue- and key-frames) in the movie.
We hypothesized that recognition of a repeated key-event (key-frame)
would prompt recall of relevant memories of the narrative events



Fig. 6. (1.5-column, color online) Temporal dynamics of BOLD averaged pattern correlations at the vicinity of the key-frames for cortical regions-of-interest
(ROIs). Averaging was performed using Harvard-Oxford atlas. Each colored element depicts a mean pattern correlation between 15 (time-shifted) key-frame
events, all normalized voxels (count shown in parenthesis) inside the region and over subjects. Regions are arranged according to peak correlation time. All
40 (12 in the left hemisphere) shown regions had at least one significant peak when compared against zero (one-sample t-test for 13 subjects) and against the
control group (chronological Memento viewers; two-sample t-test for 13 þ 12 subjects; both tests two-sided at p< 0.01 FDR adjusted) between onset delays -6s
and 4s (black vertical lines). Mean correlation values were scaled ROI-wise (rows) with their maximum absolute values for easier visual comparison. Results for
ungrouped voxels are shown in Fig. 5 for delays -8s to þ6s.
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enabling connecting of the earlier scene with the on-going scene, thus
facilitating understanding of the story piece-by-piece. We hypothesized
that this would engage co-occurrence of cued-recall and schema-
updating neural activity patterns in the brain. To our knowledge, this
is the first time these processes are studied together using long-duration
naturalistic stimulus. We used event-related pattern analysis to disclose
extended “neural fingerprint pattern” network containing various higher-
level anterior and posterior cortical regions with notable right-
hemisphere lateralization. Our results shed light on what happens in
the brain during fast-paced cued recall and schema updating in real-life
like situations. In the following, we will discuss our findings in detail.
Low and high-level models

The low-levelmodel served as a starting point for the pattern analyses.
This model was designed to pinpoint brain regions with similar
320
activation patterns between paired cue- and key-frames. We expected to
see activity in the primary sensory regions that process the low-level
properties of the movie. This was indeed found to be the case as the
model resulted in high correlations mainly in the occipital and parietal
cortices (see Fig. 3). Further, the eye-gaze fixation patterns were highly
correlated during the presentation of the same clips (see Supplementary
Information Appendix H). We also expected higher correlations in the
primary auditory cortices, but this was not the case probably due to fact
that the key-events were short (from 2s to 13s) and contained rather
minimal auditory stimulation. This was also the case with the high-level
model.

Next, we tested our main hypothesis with the high-level model, where
we assumed that key-frames would activate neural processes associated
with cued recall and reconstruction/updating of schema of the story. If
this was the case, there should be common neural fingerprint patterns in
the BOLD signal similarly for all key-frame moments. Indeed, the high-
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level model revealed network of voxels with high correlations in various
higher-order (non-sensory) cortical and subcortical regions. These
included precuneus, angular gyrus (ANG), lateral occipital cortex (LOC),
cingulate gyrus (CG), as well as lateral, superior gyrus (LSG), and middle
frontal gyrus (MFG) within frontal poles (see Fig. 4). These regions have
large overlap with the well-known default mode network (DMN; Gusnard
and Raichle, 2001) and also fronto-parietal control (Vincent et al., 2008)
and core recollection (Thakral et al., 2015) networks. DMN includes
mainly median temporal lobe (MTL), medial prefrontal cortex (mPFC),
posterior CG and precuneus. Core recollection network includes regions
that are consistently co-activated in association with successful recol-
lection (King-Casas et al., 2005; Rugg and Vilberg, 2013): ANG, mPFC,
precuneus, hippocampus, parahippocampal cortex (PHC) and MTG.
Fronto-parietal control network includes mPFC, intra-parietal sulcus
(IPS), anterior insula and dorsal precuneus.

Key-frame effect and neural fingerprint patterns

Our result for the high-level model indicates that a common neural
process, or a set of simultaneous processes, is executed during key-
frames. This was confirmed with alternative sliding window analysis
where we compared pattern correlations against those obtained for
chronological version of the movie (see Figs. 5 and 6). Importantly, the
key-frame effect did not depend on low-level audio-visual properties of
the stimulus, since these properties were highly dissimilar across the key-
frames. Further, as the key-events are not audio-visually related, the key-
frame effect cannot be simply reactivation (i.e., reinstatement) of neural
patterns of cue-frames (encoding phase). Note that these fingerprint
patterns need not to be limited to key-frames only and can occur at other
(subject-specific) timepoints during movie as new information is
revealed. However, we were only able to study key-frames as they were
time-locked between all subjects. We argue that key-frame effect and
related neural fingerprint patterns represent a common neural code similar
to those found for emotions (Saarim€aki et al., 2016; Skerry and Saxe,
2014), rewards (Wake and Izuma, 2017) and cognitive memory tasks
(Davis et al., 2014). Recently Richter et al. (2016) studied fMRI activity
patterns and found evidence that memory integration processing state is
qualitatively distinct from encoding and retrieval. They further showed
that this memory integration state was reflected in broadly distributed
neural activity patterns containing both frontal and parietal regions. We
argue that our key-frame effect is related to this integration and origi-
nates from a novel combination of cued recall and story-related schema
reconstruction. Next, we discuss these two factors in more detail.

Key-frame effect and cued recall

Memory traces are stored in overlapping and widely distributed
networks and all cortical regions have property of storing information
with varying temporal lengths (Fuster, 1997; Hasson et al., 2015). Pre-
vious studies associated to cued recall highlight medial frontal gyrus,
posterior CG and MTG (Polyn et al., 2005) and, more generally, struc-
tures of the DMN (Rugg and Vilberg, 2013). ANG, precuneus, posterior
CG and mPFC have been in associated in the encoding and retrieval of
episodic memories and in a variety of high-level cognitive processes, e.g.,
decision making (Kim, 2010; King-Casas et al., 2005; Rugg and Vilberg,
2013; Tomlin et al., 2006). Precuneus and medial prefrontal regions
appear to store context dependent information (Ames et al., 2015).
Precuneus, frontal gyrus (medial, inferior and superior parts) and angular
gyrus have been linked to recollection of previously seen film clips
(St-Laurent et al., 2015).

PFC tends to be more activated especially for recognition memory
tasks. For example, in picture-based memory tasks middle-dorsolateral
PFC has been found to monitor familiarity without need for repeated
items to be identical (Schon et al., 2013). In a meta-analysis by Kim
(2013) it was found that cognitive-control network regions (incl.
dorsolateral and dorsomedial PFC and bilateral intraparietal sulcus)
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showed greater activation in conditions associated with greater demand
for controlled memory retrieval processing. It has been proposed that
posterior parietal cortex, particularly ANG, is responsive for retrieved of
information, perhaps by accumulating or temporarily maintaining the
information (Hayama et al., 2012; Vilberg and Rugg, 2008). The medial
temporal lobe has not only been found to be involved in the encoding and
retrieval of past events, but also in the deliberate imagination of future
events (Addis et al., 2007; Hassabis and Maguire, 2007). Thakral et al.
(2017) localized recollection to ANG, MTG, posterior parietal cortex
(PCC) and dorso-lateral PFC and also reported that there was no differ-
ence between strong and weak memories, indicating that recall – at least
in these areas – is largely an automated process. In a study by Kuhl and
Chun (2014) it was found that in MFG, mPFC, supramarginal gyrus and
ANG reactivation reflected similarity between a cue word and associated
picture that had no perceptual overlap.

For the current study, the strongest evidence comes from other neu-
rocinematic studies. Recently Chen et al. (2017) showed 50-minmovie in
fMRI and found that free recall reactivated patterns in DMN, including
posterior medial cortex (PMC), mPFC, PHC and PPC. There reactivation
patterns were shared between subjects, suggesting systematic and
generic representation transformation of memories (i.e., schema con-
struction). In a related study, cued recall memory reinstatement was
similarly found in precuneus, inferior lateral parietal lobe, ANG, MTG
and middle occipital gyrus (Oedekoven et al., 2017).

Key-frame effect and schemas

In order to follow a plot in a movie, it is not enough to remember
individual events, but one also needs to relate them to each other. Here,
we call such higher-level structured memory representations schema
models (McKenzie and Eichenbaum, 2011; Preston and Eichenbaum,
2013). According to this model, new memories are assimilated into
neocortical memory networks (schemas) through elaboration and
modification of the network structure. Consolidation of incoming mem-
ories occurs by integrating them into active, pre-existing memories via
reorganization (schema modification) of common elements within the
cortex and hippocampus (McKenzie and Eichenbaum, 2011; Schlichting
and Preston, 2015). In this context, PFC has an essential role in providing
‘top-down’ control to resolve the conflicts between existing memories
and new events (Preston and Eichenbaum, 2013). Successful encoding of
incoming schema-related information is associated with enhanced mPFC
activity (van Kesteren et al., 2014).

It has been proposed that mPFC is the hub of a network that is
implicated in assimilating recently acquired information, initially
dependent on hippocampus, to pre-existing schemas, which can then be
used to recover those memories independently of the hippocampus
(Sharon et al., 2011). Consistent with this notion, van Kesteren et al.
(2013) showed that medial prefrontal activity is predictive of enhanced
memory for congruent information, which presumably is integrated into
a pre-existing schema. mPFC then helps to integrate distinct elements of
memories, which can be abstracted across events and experiences, a
necessary condition for schema-based encoding (Schlichting et al.,
2015). mPFC has been associated with various goal-oriented behavioural
functions, may influence memory integration by biasing reactivation
toward those memories that are most relevant for the on-going plot.
These concepts suit well in the free-viewing situation in our study.

Key-frame effect and DMN

A common factor for fMRI studies applying long-duration naturalistic
stimulus appear to be involvement of DMN, particularly precuneus and
ANG (Chen et al., 2017; J. Chen et al., 2015a; Dehghani et al., 2017;
Hasson et al., 2004; J€a€askel€ainen et al., 2008; Kauppi et al., 2010; Lerner
et al., 2011). Precuneus is known as a functional core of the DMN
(Utevsky et al., 2014). Together with cingulate cortex it can be consid-
ered as part of a neural system linked to narrative comprehension
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(Whitney et al., 2009). It has been suggested that ANG serves as a
“convergence zone” for formation of complex, multi-domain represen-
tations assembled out of lower-level representations that are distributed
across multiple modality- and domain-specific cortical region (Rugg and
King, 2017). Furthermore, DMN regions (including posterior medial
cortex, mPFC, MTG, and ANG) have been identified as having particu-
larly long processing timescales (J. Chen et al., 2015a; Hasson et al.,
2015; Lerner et al., 2011; Tyl�en et al., 2015) and they are involved in
large number of tasks including episodic memory recollection, decision
making, prospective thinking and schema knowledge (Binder et al.,
2009; Maguire et al., 1999; Mar, 2004; Price, 2012; Rugg and Vilberg,
2013; van Kesteren et al., 2010). These findings suggest that DMN carries
information about high-level structure in the world that provides a
schematic context over individual events (J. Chen et al., 2015a). There-
fore, it's not surprising that DMN was also strongly present in our
fingerprint patterns.
Lateralization of fingerprint patterns

Our results for the key-frame effect indicated notable right laterali-
zation of the fingerprint patterns, particularly on the frontal regions. This
indicates the need for semantic integration of the story, which was one of
our key hypotheses behind the high-level model. This is supported by the
previous findings for narrative comprehension (AbdulSabur et al., 2014).
Right hemisphere appears to dominate in discourse processing (Marini
et al., 2005; St George et al., 1999), or broader inference for natural
language (Jung-Beeman, 2005; Xu et al., 2005). Updating one's under-
standing of the plot (schema) requires more cognitive effort than simple
recall (Tyl�en et al., 2015). On the other hand, majority of humanmemory
studies that use non-naturalistic stimuli have reported dominance of the
left hemisphere (Johnson et al., 2013; Kim, 2011; Scalici et al., 2017),
while for studies using longer-duration, naturalistic stimuli results are
bilateral or right dominant (Chen et al., 2017; J. Chen et al., 2015a;
Dehghani et al., 2017; Hasson et al., 2004; J€a€askel€ainen et al., 2008;
Kauppi et al., 2010; Lerner et al., 2011). Based on the hemispheric
encoding/retrieval asymmetry model and supported by various neuro-
imaging studies, right PFC is typically engaged more than left in memory
retrieval processes (Habib et al., 2003; Tulving et al., 1994). Our result
supports the view that fingerprint patterns do not reflect simple cued
recall effect, but instead a simultaneous cued recall and integration
during the rapid-pace narrative processing.
Synchronization differences and temporal dynamics of pattern correlations

Differences in brain activity between two versions of Memento were
not limited to those related to key-events. In our supporting inter-subject
correlation analysis, we found that two versions of the Memento resulted
in distinctive temporal BOLD activations between groups in widely
distributed cortical regions overlapping DMN (see Supplementary In-
formation Appendix I). These results show that temporal order has a
fundamental effect on how these movies are processed in the brain and
differences are present both very short (few seconds for key-frames) and
long (minutes for complete segments) temporal scales. This is hardly
surprising given differences in cognitive effort when viewing the original
vs. the chronological version of the movie, as there was no need to
connect the different scenes via key-frames during the latter.

Purpose of the sliding window analysis was two-fold. Firstly, it did not
rely on RSA analysis and allowed comparison against chronological
Memento data obtained from independent group of subjects. Secondly, it
allowed scrutinizing temporal dynamics of pattern correlations, which
pinpointed the key-frame effect also temporally. Interestingly we also
found high-pattern correlations already some seconds before onset of
key-frames in occipital-visual regions (see Fig. 5). This effect was
observed for both movie versions. The most likely explanation for this
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effect is the camera framing and scene changes that were synchronized as
a side-product when synchronizing key-frames (see Supplementary In-
formation Appendix I). It has been found that scene transitions work as
effective modulators of BOLD signal (Lu et al., 2016). This view is sup-
ported by the fact that related regions are all in lower-level visual re-
gions. On the other hand, anticipation of upcoming key-events could be
also involved as the movie scenes follow each other in logical manner and
are not random. In a study by Polyn et al. (2005) such anticipation effect
was found in the free-recall of items task, when category-specific patterns
of activity emerged around 6 s prior to verbal recall from a given cate-
gory, indicating anticipation.
Possible confounds and limitations

There could be also other, simpler, factors that contribute to the key-
frame effect. If we neglect the fact that the key-frames belong to an on-
going movie and instead treat them simply as stimulus repeats, we may
assume that repetition suppression/adaptation takes place (Grill-Spector
et al., 2006; Segaert et al., 2013). Repeated and expected stimuli tend to
result in weaker BOLD responses compared to novel or unexpected ones
(Grotheer and Kov�acs, 2016; Segaert et al., 2013). Notably, in our uni-
variate analysis we found activity decrease only in occipital cortex (pri-
mary visual), which was not part of the key-frame fingerprint patterns. In
other words, we found no evidence for notable repetition suppression
effect in areas involved in the key-frame pattern. We, however, found
signal increase in various higher-level regions that partially overlapped
our fingerprint patterns (see Fig. S6). This phenomenon is known as
repetition-enhancement effect and has been found in, e.g., PFC, IPS, IPL
and MTG (see Fig. 1 in Segaert et al., 2013). The key-frames are not
simple stimulus repeats, but carry relevant information of the story
(intersection points) and can be considered conceptually novel. This can
effectively nullify the classical repetition-suppression effect (Reggev
et al., 2016). Furthermore, the repetition interval is an important factor:
Suppression is prominent only for relatively rapid repeats (less than a
minute) and can turn into enhancement with longer inter-repeat delays
of several minutes, like in our study. This type of enhancement has been
found in the precuneus, posterior cingulate and (right) dorsolateral PFC
(Bradley et al., 2015), which also turn up in our key-frame fingerprint
patterns. Various factors can lead to enhancement, such as novel network
formation, selective attention and additional cognitive processing
(Segaert et al., 2013). Given the overlap between areas previously found
to exhibit repetition-enhancement and the key-frame patterns in the
present study, repetition-enhancement could be one of the mechanisms
responsible for the key-frame effect.

At the same time, the main strengths and main limitations of this
work comes from our decision to use movie stimulus and uninterrupted
free-viewing design. Having the real-life like conditions can be seen as a
strength, yet as limitations, firstly, we were unable to look into specific
coupling mechanisms of cued recall and schema reconstruction, i.e., are
they equally responsive for the fingerprint pattern or does one dominate
over the other in the process and in what specific circumstances. Sec-
ondly, we were unable to collect behavioural data, such as details of key-
frame events, during measurement. Thirdly, the number of key-events
was relatively small (15) compared to the length of the stimulus (2h),
which was not particularly efficient and did not allow us to use more
sophisticated analysis (e.g., classification). Furthermore, as all cue and
key-frames were short-duration and treated separately in our analysis
(i.e., in single-trial fashion), we could take no advantage of multiple
repeat design and GLM to estimate responses of voxels. Instead we used
fMRI data directly with averaging approach. However, as the long and
complex narrative was an essential part of our study, no simple alterna-
tives existed; if more controlled (artificial) stimulus is used one may
deviate too far from real-life-like setting. This remains a challenge for the
future studies.
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Conclusions

Our results show that cognitive functions related to memory and
narrative processing are reliably activated across viewers and can be
temporally pinpointed to specific key-frame events in the narrative in
free-viewing conditions. This was made possible by taking advantage of
the nonlinear story structure with repeating story segments (key-frames)
in movie Memento and using event-related pattern analysis technique.
We were able to associate key-frames with a common “neural finger-
print” activity patterns. This network covered various frontal, higher-
order parietal and subcortical regions, mainly precuneus, angular
gyrus, cingulate gyrus and frontal pole with right hemispheric laterali-
zation bias. We argue that the main process driving these regions was
memory processing, especially cued recall, and followed by rapid
reconstruction of narrative schema. Novelty of our study comes from
combining a continuous movie stimulus with build-in repeats with event-
related pattern analysis. Our results give insight to neural processing
during moments of real-time reconstruction of one's understanding of a
continuously unfolding narrative at the moment of memory cues in life-
like setting. In future, it would be interesting to test if our key-frame
effect can be reproduced with tailored stimuli that would also allow
careful manipulation and measurement of relative weights between
recall and schema update effects.
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