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ABSTRACT 

Acute heart failure (AHF) is a leading cause of hospitalizations in patients over the 

age of 65 worldwide, and is associated with high mortality. Cardiogenic shock (CS), 

the most severe form of AHF, is characterized by hypotension and end-organ 

hypoperfusion. Acute coronary syndrome (ACS) precipitates a third of all cases of 

AHF, and up to 80% of CS. Objective and timely risk assessment in AHF is 

challenging due to the heterogeneity in its pathophysiology and clinical picture. Risk 

assessment has traditionally relied on clinical parameters, which may remain 

subjective or become evident too late, after end-organ dysfunction has become 

irreversible. Considering the costs and possible adverse effects, application of the 

most aggressive therapies should be limited to those that most likely procure benefit. 

The aim of this thesis is to evaluate the prognostic value of 

electrocardiographic changes and biomarkers in AHF and CS. The patient data come 

from three cohorts of AHF and two cohorts of CS. All cohorts are independent, 

prospective, observational, investigator-initiated European cohorts. 

Study I compared the prognostic value of ventricular conduction blocks (VCB) 

in patients with new-onset (de novo) AHF and in patients with acutely decompensated 

chronic heart failure (ADCHF). RBBB was similarly common in de novo AHF and 

ADCHF, but RBBB was a prognosticator of poor outcome only in those with de novo 

AHF. LBBB and IVCD were more common in those with ADCHF, and IVCD was a 

predictor of poor outcome only in ADCHF. LBBB had no predictive value in either 

group.  

Study II investigated the role of VCBs in ACS-related CS. Half the patients 

had a VCB in their baseline ECG, and the presence of any VCB predicted mortality 

independently of baseline clinical variables or angiographic findings. Interestingly, in 

those patients surviving until day 3, a third of the baseline VCBs had disappeared. 

However, those patients had the highest mortality, and a transient VCB was a strong 

independent predictor of poor outcome.  

After myocardial infarction, activation of inflammatory responses and of 

neurohumoral cascades contributes to the induction, maintenance, and severity of the 
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shock state, providing the rationale for a biomarker approach in risk assessment of 

CS. Soluble ST2 (sST2) is a novel cardiovascular biomarker associated with 

inflammation and cardiac fibrosis, whereas N-terminal natriuretic peptide (NT-

proBNP) as a natriuretic peptide is a conventional marker of myocardial dysfunction 

and congestion. Bioactive adrenomedullin (Bio-ADM) is a novel marker of vascular 

dysfunction; it is a vasoactive peptide excreted from vascular cells in response to 

hypoxia or sheer stress.  

Study III showed that sST2 and NT-proBNP provide strong and 

complementary prognostic value in ACS-related CS, and can help in stratification of 

patients into low, intermediate and high-risk groups as early as 12 hours after 

detection of shock. Study IV evaluated in CS patients the prognostic value and 

association with haemodynamic parameters of bio-ADM compared to lactate. 

Whereas lactate had good prognostic value in the early phase, its levels normalized 

during the first 24 hours in the majority of patients, with a decreasing prognostic value 

thereafter. In contrast, levels of bio-ADM stayed elevated in non-survivors during the 

first 4 days of intensive care, and bio-ADM had good prognostic value when 

measured on days 2 to 4. High levels of bio-ADM were associated with low cardiac 

index and mean arterial pressure, and with high central venous and pulmonary artery 

pressures.  

In conclusion, in patients with AHF or CS, electrocardiographic alterations 

may prove useful in early risk assessment on top of clinical parameters. In addition, 

biomarkers provide a novel approach in CS risk assessment. 

 



 

5 

TIIVISTELMÄ 

Akuutti sydämen vajaatoiminta on yksi yleisimmistä sairaalahoitoon johtavista 

sairauksista, ja siihen liittyy merkittävä kuolleisuus. Sydänperäinen sokki on akuutin 

vajaatoiminnan vaikein muoto; sille on tunnusomaista matala verenpaine ja yleinen 

elimistön verenkierron vajaus. Sepelvaltimotautikohtaus on akuutin vajaatoiminnan 

taustalla noin kolmasosassa tapauksista, mutta jopa 80 %:ssa tapauksista 

sydänperäisessä sokissa. Johtuen akuutin vajaatoiminnan kliinisen kuvan ja taustalla 

vaikuttavien patofysiologisten mekanismien moninaisuudesta objektiivinen ja oikea-

aikainen riskinarvio on haastavaa. Varhainen riskinarvio on kuitenkin tärkeää 

hoitomuotojen valintaa ja ajoitusta ajatellen erityisesti sokkipotilailla. Perinteisesti 

riskinarvio on perustunut kliinisiin löydöksiin, joiden tulkinnassa voi kuitenkin olla 

subjektiivisuutta ja ne voivat ilmetä sairauden liian myöhäisessä vaiheessa, kun 

peruuttamattomia elinvaurioita on jo ehtinyt kehittyä. Huomioiden raskaimpien 

hoitomuotojen, kuten sydämen apupumppujen, korkea komplikaatioriski ja hinta, 

niiden käyttö tulisi rajata potilaille jotka todennäköisimmin niistä hyötyvät.  

Tämän väitöskirjatyön tavoitteena on määrittää sydänsähkökäyrä (EKG) –

muutosten sekä uusien biomerkkiaineiden ennustearvo akuutissa sydämen 

vajaatoiminnassa ja sydänperäisessä sokissa. Väitöskirjatyön potilasmateriaali on 

peräisin kolmesta akuutin sydämen vajaatoiminnan sekä kahdesta sydänperäisen sokin 

potilaskohortista. Kaikki aineistot ovat eteneviä, havainnoivia, tutkijalähtöisiä 

eurooppalaisia potilasaineistoja. 

Osatyössä I tutkittiin EKG:ssa nähtävien kammiojohtumishäiriöiden yhteyttä 

kuolleisuuteen potilailla joilla akuutti vajaatoiminta ilmeni ensimmäistä kertaa (de 

novo) verrattuna potilaisiin joilla oli kroonisen sydämen vajaatoiminnan 

pahenemisvaihe. Oikea haarakatkos oli yhtä yleinen molemmissa ryhmissä, mutta se 

ennusti itsenäisesti kuolleisuutta vain de novo akuutissa vajaatoiminnassa. Vasen 

haarakatkos ja määrittämätön kammiojohtumishäiriö (IVCD) olivat yleisempiä 

potilailla, joilla oli kroonisen vajaatoiminnan pahenemisvaihe kuin de novo -potilailla, 

ja IVCD ennusti itsenäisesti kuolleisuutta vain kroonisen vajaatoiminnan 

pahenemisvaiheessa. Vasen haarakatkos ei ennustanut kuolleisuutta kummassakaan 

ryhmässä.  
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Osatyössä II tutkittiin kammiojohtumishäiriöitä äkillisestä 

sepelvaltimokohtauksesta johtuvassa sydänperäisessä sokissa. Puolella potilaista 

alkuvaiheen EKG:ssa oli jokin kammiojohtumishäiriö, ja kammiojohtumishäiriöt 

ennustivat suurempaa kuolleisuutta kliinisistä piirteistä ja sepelvaltimotaudin 

vaikeusasteesta riippumatta. Jopa kolmasosa alkuvaiheessa nähdyistä 

kammiojohtumishäiriöistä väistyi kolmen päivän seurannassa, näillä potilailla oli 

kuitenkin korkein kuolleisuus. 

Neurohumoraalisten vasteiden ja tulehduskaskadien aktivoituminen ovat 

tärkeässä roolissa sydäninfarktin jälkeisen sokin patogeneesissä. Biomerkkiaineet 

kuvastavat aktivoituneita vasteita, mikä puoltaa niiden hyödyntämistä riskinarviossa. 

sST2 on uusi kardiovaskulaarisairauksien biomerkkiaine, joka liittyy sydänlihaksen 

inflammaatioprosessiin ja fibrotisoitumiseen, ja natriureettinen peptidi NT-proBNP on 

perinteinen sydämen vajaatoiminnan merkkiaine. Bio-ADM on vasoaktiivinen 

peptidi, jota erittyy pääasiassa verisuonten seinämistä hapenpuuteessa ja mekaanisessa 

ärsytyksessä, ja se on uusi hemodynaamiikan ja verisuonten toimintahäiriön 

biomerkkiaine.  

Osatyö III osoitti, että sST2:lla ja NT-proBNP:llä on vahva itsenäinen ja 

toisiaan tukeva ennustearvo sydänperäisessä sokissa, ja niiden yhteismäärityksellä 

potilaat voidaan jakaa matalan, keskisuuren ja suuren riskin ryhmiin jo 12 tuntia sokin 

toteamisesta. Osatyö IV määritti bio-ADM:n ennustearvoa sekä yhteyttä 

hemodynaamisiin muuttujiin verrattuna laktaattiin sydänperäisessä sokissa. Laktaatilla 

oli hyvä ennustearvo ensimmäisten 24 tunnin aikana sokin toteamisesta, mutta sen 

pitoisuus normaalistui valtaosalla potilaista 24 tunnissa ja sen ennustearvo väheni sen 

jälkeen. Korkea bio-ADM pitoisuus heijasti matalaa verenpainetta ja sydämen 

minuuttivoluumia sekä korkeaa keskuslaskimo- ja keuhkovaltimopainetta, ja bio-

ADM:n ennustearvo oli parhaimmillaan kun se mitattiin 2.-4. päivänä sokin 

toteamisesta.  

Yhteenvetona voidaan todeta, että EKG-muutoksia voidaan hyödyntää 

kliinisten muutosten rinnalla varhaisessa riskinarviossa akuuttia sydämen 

vajaatoimintaa tai sydänperäistä sokkia sairastavilla potilailla. Lisäksi uudet 

biomerkkiaineet mahdollistavat täysin uuden lähestymistavan sydänperäisen sokin 

riskinarviossa.  
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1 INTRODUCTION 

Acute heart failure (AHF) is a leading cause of hospitalization in patients over age 65 

and associates with high morbidity and mortality, leading in all Western countries to 

significant health care expenditure. Although chronic heart failure has been under 

extensive study, and modern treatment has considerably improved patient outcomes 

during recent decades, AHF has received less attention.  

AHF can result from acute decompensation of chronic heart failure (acutely 

decompensated chronic heart failure, ADCHF), or it can be a new-onset disease, “de 

novo AHF”, in individuals without previous history of heart failure. Cardiogenic 

shock (CS) is the most severe form of AHF, and accounts for less than 5% of AHF 

cases (1, 2). CS is characterized by low blood pressure and organ hypoperfusion 

resulting from cardiac dysfunction. Acute coronary syndromes (ACS) account for 

about one-third of all cases in AHF but up to 80% of cases in CS (1, 3-6).  

Conversely, CS complicates 5 to 8% of ST-elevation myocardial infarctions (STEMI) 

(7) and is largely responsible for the short-term mortality associated with myocardial 

infarction.  

Despite early revascularization and modern intensive cardiac care survival in 

CS remains poor (7, 8). Haemodynamics may be restored pharmacologically with 

vasopressors and inotropes or with mechanical circulatory support (9), but all those 

treatment options have potentially detrimental side effects, and cost containment 

needs consideration in modern healthcare systems. Objective risk stratification tools 

are thus necessary to accurately select patients for advanced therapies. Currently, in 

the absence of established early predictors of poor outcome, risk stratification for 

AHF and CS are based on clinical judgment (10), and as such may remain subjective 

and become evident too late in the course of the disease, after end-organ dysfunction 

has become irreversible. 

Electrocardiography (ECG) is a routine, fast and low-cost diagnostic tool 

available to all emergency care providers. In addition to traditional ischaemic 

alterations, an ECG may reveal conduction abnormalities, which have been related to 

poor survival in patients with chronic heart failure and acute myocardial infarction 
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(AMI). In patients with AHF and CS, however, there is less evidence regarding the 

clinical associations and prognostic value of conduction abnormalities.  

After myocardial infarction, activation of inflammatory responses and of 

neurohumoral cascades contribute to CS induction and maintenance (11). Several 

biomarkers reflecting these pathways have been identified (12, 13), giving a rationale 

in risk assessment for a biomarker approach. Soluble suppression of tumourigenicity 

2  (soluble ST2, sST2) is a marker of inflammation, cardiac stress, and adverse 

remodelling, and has recently shown strong prognostic value in several cardiovascular 

diseases, which is additive to the traditional risk markers (14-17). Adrenomedullin, an 

endogenous peptide with vasodilator and inotropic properties, at high levels has 

predicted poor survival both in cardiovascular diseases (12) and in critically ill 

patients (18).  

This thesis aims to assess the prognostic value of 1) ventricular conduction 

blocks (VCBs) in AHF and CS, and 2) novel biomarkers in CS to achieve objective 

and easily reproducible tools for severity assessment of AHF and CS. These may 

support clinical decision-making in treatment of such patients. 
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2 REVIEW OF THE LITERATURE 

2.1 HEART FAILURE 

Heart failure is a clinical syndrome characterized by typical symptoms  

(breathlessness, ankle swelling, fatigue) that may be accompanied by clinical signs 

(elevated jugular venous pressure, pulmonary crackles, peripheral oedema), and 

results from a structural or functional cardiac abnormality, which result in a reduced 

cardiac output and/or elevated intracardiac pressures at rest or during stress (19). 

Heart failure is never a solitary disease but rather the common end-stage of structural 

heart diseases. Due to inadequate cardiac function and impaired circulatory capacity 

to provide oxygen and nutrients to other organs and muscles, heart failure is 

characterized by poor exercise tolerance, repeated hospitalizations, and poor 

prognosis. The overall prevalence of symptomatic heart failure is currently around 1 

to 2%, but it increases with age to over 10% at over 70. (20, 21). The combination of 

progressive ageing of the population and improved cardiovascular disease survival is 

expected to make heart failure a new epidemic within the next few decades in the 

Western world (22).   

Evidence of structural or functional abnormality of the heart is essential for a 

heart failure diagnosis. Although abnormalities in the valves, pericardium, 

endocardium, heart rhythm, and conduction can also cause heart failure, the main 

abnormality is in systolic or diastolic ventricular function, or both. The current 

European Society of Cardiology (ESC) guidelines divide heart failure into three 

categories according to left ventricular ejection fraction (LVEF), a measure of left 

ventricular systolic function. These categories are heart failure with preserved (LVEF 

≥ 50%), mid-range (LVEF 40-49%), and reduced (LVEF<40%) ejection fraction (19).  

Several pathological processes occur in heart failure, which may further 

perpetuate myocardial dysfunction after the initial insult. These include increased 

haemodynamic overload, ischaemia-related dysfunction, excessive neurohumoral 

stimulation, abnormal myocyte calcium cycling, excessive or inadequate proliferation 

of the extracellular matrix, leading to accelerated apoptosis, genetic alteration, and 

adverse ventricular remodelling (23). The neurohumonal system is activated primarily 
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as an adaptive mechanism to support the failing heart and restore perfusion status 

(24). However, when sustained, these compensatory mechanisms become maladaptive 

and lead to exacerbation of cardiac dysfunction. Indeed, current heart failure 

medications (ACE inhibitors, β-blockers, mineralocorticoid antagonists) are directed 

at counterbalancing those maladaptive neurohuomral mechanisms (25). With 

increasing understanding of the background phenomena, treatment of chronic heart 

failure has progressed considerably over recent decades with corresponding survival 

benefit.  

 

2.2 ACUTE HEART FAILURE 

AHF is defined as rapid-onset or worsening heart failure symptoms requiring 

immediate care, usually leading to an unplanned hospitalization (19). AHF is 

currently the most common cause of unplanned hospital admission in patients aged 

over 65, causing in all Western countries considerable health care expenditure (21, 

26). 

AHF may be either the first presentation of heart failure (de novo AHF) or a 

deterioration in previously diagnosed chronic heart failure (ADCHF). AHF onset and 

the worsening of symptoms may be abrupt such as in AMI, or may develop within 

days or even weeks. Each episode of AHF leads to deterioration in myocardial 

function, and AHF characterizes a patient group with a particularly poor outcome 

(27). Indeed, mortality risk in patients with chronic heart failure is directly associated 

with the number of decompensation episodes requiring medical intervention (28). 

After a hospitalization due to AHF, one-year mortality is up to 28 to 47%, and five-

year mortality is around 60% (1, 4, 27, 29), and the rehospitalisation rate within one 

year after a hospitalization for AHF is over 50% (30, 31).  

The clinical phenotype of AHF is heterogenous, ranging from hypertensive 

patients with hyperdynamic ventricular function to end-stage heart failure with very 

poor LVEF, and also involving simultaneous conditions such as valve disorders or 

infections, all of which produce a distinctive clinical profile (32).  About half of all 

AHF patients have preserved LVEF (33), and a subset of patients present with 

predominantly right ventricular dysfunction (34). Treatment of AHF aims at relieving 
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symptoms, protecting the myocardium from further damage, and resolving the 

haemodynamic and neurohumoral imbalance (35, 36). Contrary to the revolutionary 

steps seen during recent decades in the management of chronic heart failure, AHF has 

received little attention, and treatment options have largely remained unchanged 

during the last 40 years. Indeed, other than use of diuretics, treating the underlying 

pathophysiology (AMI, arrhythmia, infection) and initiation/up-titration of chronic 

heart failure management, little evidence exists on the survival benefit of therapies 

directed toward AHF (19). Moreover, trials on novel pharmacological agents have 

been consistently negative (37-41).  

2.2.1 CLINICAL PROFILES AND CLASSIFICATION OF AHF 

AHF may be classified in several ways, according to its clinical presentation: 

pulmonary oedema, hypertensive heart failure, predominantly right-sided heart 

failure, decompensated AHF, CS (42), or based on haemodynamic status, underlying 

cardiac or non-cardiac pathology, or by the precipitating factor of AHF. 

Regarding selection of appropriate therapy, the patient’s haemodynamic status 

is probably the most useful (43). Most AHF patients have normal (90-140 mmHg) or 

elevated (>140 mmHg) systolic blood pressure (SBP) on admission.  A minority of 

patients present with low blood pressure (SBP < 90 mmHg), which is associated with 

poor prognosis. The Forrester classification (44) was introduced 40 years ago to 

describe the hemodynamic status of patients after myocardial infarction, and is still 

useful in the assessment of patients with AHF (with or without myocardial infarction). 

Based on bedside clinical examination, AHF patients are classified as having signs or 

symptoms of congestion (“wet” or “dry”) and for signs or symptoms of hypoperfusion 

(“cold” or “warm”). The combination of these options identify four groups: warm and 

wet (well perfused and congested), cold and wet (hypoperfused and congested); cold 

and dry (hypoperfused without congestion); and warm and dry (compensated, well 

perfused without congestion). (19) Patients with signs of hypoperfusion are usually, 

but not always, also hypotensive.  
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2.2.2 ACS AS A PRECIPITATING FACTOR IN AHF 

Identification of precipitating factors of AHF is important, as their precise pathology 

determines the specific treatment necessary. The precipitating factors that require 

urgent management include ACS, hypertensive emergencies, rapid arrhythmias or 

severe bradycardia, valvular causes, and acute mechanical causes (ventricular wall 

rupture, acute valve regurgitation, aortic dissection, pulmonary embolism) (19).  

Infections and lack of adherence to medications, lifestyle recommendations, or dietary 

restrictions are also common precipitating factors, especially in those with ADCHF.    

ACS causes about one-third of all cases of AHF, most of which are de novo 

AHF, and up to 80% of cases of CS (1, 3-6). ACS refers to a spectrum of clinical 

conditions ranging from unstable angina to non-ST elevation myocardial infarction 

(NSTEMI) and STEMI. Diagnosis of ACS is based on symptoms, 

electrocardiographic changes, troponin elevations, and imaging. Coronary artery 

disease is the main underlying pathology, in which atherosclerotic plaques obstruct or 

occlude coronary arteries limiting oxygen-rich blood delivery to the myocardium, 

resulting in ischaemic injury, and in the case of myocardial infarction, in myocardial 

necrosis. In most cases, an acute atherosclerotic-plaque rupture or erosion leads to 

thrombus formation and thus abruptly obstructs or occludes a coronary artery, leading 

to ischaemia (type I myocardial infarction), which may lead to regional myocardial 

dysfunction. However, myocardial ischaemia may also result from a mismatch of 

oxygen delivery and demand resulting from changing intra-cardiac pressure 

conditions and neurohumoral imbalance in AHF (type II myocardial infarction and/or 

injury), especially in those with underlying chronic coronary artery disease (45, 46). 

Ischaemia may lead to both systolic and diastolic ventricular dysfunction. In addition, 

myocardial stunning and hibernation are common in patients with heart failure and 

coronary artery disease, and stunning may play a major role in the pathophysiology of 

CS (see section on CS) (47). Of note, mild troponin elevations caused by increased 

cardiac wall stress and toxic effects of circulating neurohormones such as 

norepinephrine are common in AHF also in the absence of concomitant ACS. This 

may make the diagnosis of concomitant ACS challenging, especially with the use of  

highly sensitive troponin assays. (45) 

In coronary angiography, coronary stenoses of ≥ 50% in the left main artery or 

in coronary branches with a diameter of ≥1.5 mm are regarded as clinically relevant. 
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Traditionally, performance of coronary angiography in ACS-AHF cohorts has been 

rather low, with only a minority of patients being revascularized (1, 2, 48). More 

recently, the coexistence of ACS and AHF has been recognized as identifying a 

particularly high-risk population, and the latest ESC guidelines for AMI and AHF 

(19, 49, 50) thus recommend urgent coronary angiography with intent to perform 

revascularization in patients with AHF caused by ACS, irrespective of 

electrocardiographic or biomarker findings.  

 

2.2.3 PATHOPHYSIOLOGY OF AHF 

The pathophysiology of AHF is complex, and specific mechanisms leading to 

decompensation remain largely unclear. Furthermore, phenotypes of AHF and the 

causes of the acute decompensations, as well as comorbidities may have important 

roles in the pathogenesis.  All in all, the key disturbance in AHF is left or right-sided 

ventricular dysfunction, or both, accompanied by dysfunction in the systemic and 

pulmonary vasculature resulting in decreased cardiac output, high filling pressures, 

and augmented afterload (51). In left-sided heart failure, impaired left-ventricular 

contractility and relaxation results in elevated left-ventricular filling pressures, which 

in turn lead to increased pulmonary pressure and may cause pulmonary oedema. By 

increasing the right-sided afterload, the initially left-sided dysfunction can also lead to 

biventricular failure. In addition to decreased cardiac output and hypoperfusion, 

congestion is currently believed to play a major role in the pathogenesis of AHF and 

its related end-organ dysfunction (36, 52). Congestion results from increased volume 

load in the venous compartment or tissues. In manifest right-ventricular failure, 

volume overload leads to elevated venous pressure and tissue (liver, intestines, 

kidney, leg) congestion. (53) 

Several background phenomena occur in acute cardiac dysfunction, such as the 

activation of neurohumoral cascades including activation of the sympathetic nervous 

system and the renin-angiotensin-aldosterone system (RAAS), inflammatory 

reactions, endothelial dysfunction, and oxidative stress. Activation of the RAAS leads 

to angiotensin II production, of which the main haemodynamic effects include 

vasoconstriction, aldosterone secretion, vasopressin release, and adverse cardiac 

remodelling. (54) Recent studies indicate that the myocardium itself is a major 
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contributor to regulation of the endocrine response in heart failure via natriuretic- and 

other vasoactive-peptide pathways (55).  

As in the case of chronic heart failure, the activated cascades are primarily 

adaptive, but when sustained become maladaptive, inducing and maintaining a 

vicious circle of continuing myocardial damage and cell lost. As an example, 

activation of the sympathetic nervous system and RAAS lead to vasoconstriction, 

sodium and water retention and redistribution of blood volume. Substances from the 

activated neurohumoral cascades and oxidative reactions are associated with 

cardiomyocyte hypertrophy and apoptosis, depressed myocardial contractility, 

increased fibrosis, and adverse remodelling. (51) These, together, lead to a further 

increase in left ventricular afterload and impairment of diastolic filling, which 

eventually leads to further decreased cardiac output. The influence of these 

phenomena exceeds far beyond the episode of AHF, and contributes to a steady 

progression of chronic heart failure with marked cardiomyocyte loss and dynamic 

changes in the architecture of the myocardial extracellular matrix (remodelling) and to 

electrical imbalance (56).  

 

2.3 CARDIOGENIC SHOCK 

CS is the most severe form of AHF and represents less than 5% of cases (1, 6, 57). It 

is characterized by both hypotension and end-organ hypoperfusion (cold-wet or less 

commonly cold-dry in the Forrester classification) (58, 59). Contemporary clinical 

criteria for CS are SBP < 90 mmHg for 30 minutes or need for vasoactive medication 

to maintain it (after correction of preload conditions), with signs of peripheral or 

organ hypoperfusion (cold periphery, lactataemia, confusion, oliguria) caused by 

cardiac dysfunction. The haemodynamic criteria of CS include reduced cardiac index 

(< 2.2 l/min/m2) and elevated pulmonary artery wedge pressure (>15 mmHg) or right 

ventricular end-diastolic pressure (>10-15 mmHg). As the use of invasive 

hemodynamic monitoring with pulmonary artery catheterization has decreased 

significantly over the last decade (60), recent expert recommendations have relied on 

clinical criteria of CS (61, 62), and this approach has been used in the more recent CS 

studies. 
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CS is most commonly (about 80%) caused by an ACS and type I myocardial 

infarction, most commonly by a STEMI (3). Conversely, 5% to 8% of AMIs are 

complicated by CS, depending on the definition of CS and the characteristics of the 

populations studied (7, 8, 63). The shock may be caused by acute myocardial 

dysfunction due to AMI or more rarely by a mechanical complication (chordal rupture 

and severe mitral regurgitation, ventricular septal- or free-wall rupture), typically 

developing within a few days after the AMI. Other aetiologies of CS include 

myocarditis, takotsubo cardiomyopathy, valvular causes, and end-stage chronic heart 

failure (59).  Since the majority of CS results from ACS, most published data on CS is 

derived from cohorts of ACS-CS patients (7, 8, 63-65), and contemporary data 

including CS patients of various aetiologies is scarce. 

In most patients, CS occurs during the first 24 hours of hospitalization. 

Despite routine use of primary percutaneous coronary intervention (PCI) in AMI, the 

overall rate of ACS-related CS has decreased only slightly during the last 20 years. (8, 

66, 67) While the incidence of pre-hospital CS (2-3% of patients with AMI) has 

remained rather stable, incidence of in-hospital CS has declined over time, especially 

for late-onset shock (developing after 24 hours of hospital admission) (8, 67). Clinical 

risk factors for CS development in ACS include older age, history of previous 

myocardial infarction, coronary artery bypass graft surgery (CABG), history of heart 

failure or diabetes, anterior location of the AMI, and signs of heart failure on hospital 

admission (68). The presence of a bundle branch block in the admission ECG is also 

associated with increased incidence of CS (69, 70).  

Urgent revascularization has been the gold standard of treatment in ACS-

related CS since the publication of Should We Emergently Revascularize Occluded 

Coronaries for Cardiogenic Shock (SHOCK) trial, showing benefit for 6-month 

mortality with early revascularization compared to initial medical stabilization (64). 

The recent randomized Culprit Lesion Only PCI versus Multivessel PCI in 

Cardiogenic Shock (CULPRIT-SHOCK) study showed that the culprit-lesion-only   

approach was associated with a survival benefit for 30-day mortality over an 

immediate multivessel approach (71). The haemodynamic stabilization in CS, in 

addition to reperfusion therapy, can be achieved by vasoactive medication or 

mechanical circulatory support or both. Norepinephrine is currently the first-line 

vasopressor to restore blood pressure, whereas dobutamine is advised as the first-line 

inotropic agent in addition to vasopressor therapy if necessary (19, 59, 72). Other 
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vasoactive medications used in patients with CS include dopamine, adrenaline, 

levosimendan, and milrinone. No randomized controlled trials directly compare these 

agents specifically in CS, and the choice between different vasoactive agents is 

largely based on expert opinion and on individual preferences. However, a small, 

randomized trial recently showed that refractory shock develops more often after 

adrenaline than after noradrenaline use in patients with AMI-related CS (73). 

Adrenaline use was also associated with substantially higher short-term mortality than 

were other vasoactive medications in a recent meta-analysis of CS (74).  

When medical stabilization fails in CS, the increasingly used approach is 

mechanical circulatory support. The intra-aortic balloon pump was standard for 

decades in CS, but did not improve outcome in the Intra-aortic Balloon Pump in 

Cardiogenic Shock II (IABP SHOCK II) trial (65), and its use largely declined 

thereafter. The mechanical assist devices currently used include Impella (2.5 - 5.0 

L/min), Tandem Heart, and iVAC 2L, as well as extracorporeal membrane 

oxygenation (ECMO) (75). Short-term mechanical circulatory support is used as a 

bridge to recovery, or as a bridge to urgent heart transplantation or implantation of a 

long-term circulatory support device, or as a bridge to further decision-making. The 

long-term mechanical assist devices, in turn, may serve as a bridge to heart 

transplantation or as a destination therapy (76). No proven survival benefit from the 

use of short-term mechanical circulatory support has emerged, however, at least in 

unselected patients with CS (77, 78).  

2.3.1 PATHOPHYSIOLOGY OF CS 

In CS, the same regulatory cascades are activated as in AHF, such as RAAS, 

natriuretic peptides, vasopressin, adrenomedullin, galectin-3, and endothelial 

dysfunction (47, 79). However, since CS most commonly is a de novo disease with 

abrupt onset, the long-term adaptive mechanisms are lacking, and activation of the 

cascades may be delayed. In addition, hypoperfusion affects end-organ systems, 

resulting in the activation of various inflammatory pathways, oxidative stress, acid-

base disturbances, and the release of substances from the failing organs that become 

involved in maintenance of the shock state following the initial insult (11, 80).  

As Figure 1 illustrates, in ACS-related CS, a decrease in cardiac output 

resulting from myocardial infarction causes hypotension, which leads to decreased 
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coronary perfusion, which in turn perpetuates cardiac dysfunction, further reducing 

cardiac output and perfusion of other vital organs (59). In addition, hypotension leads 

to release of cathecholamines (noradrenaline, adrenaline), which temporarily enhance 

ventricular contractility and peripheral blood flow; but rather than interrupting the 

vicious circle, cathecholamines cause increased myocardial oxygen demand and 

afterload, and exert proarrhytmogenic and cardiotoxic effects.  In addition, 

cathecholamines, both endogenous and as medications, promote oxidative stress, 

modulate inflammatory responses, and interfere with cellular energy metabolism (81).   

As the majority of CS patients have multivessel coronary artery disease (3, 

71), coronary blood flow may be additionally compromised due to low perfusion 

pressure in one or more non-culprit arteries, perpetuating myocardial dysfunction. 

The severity of left ventricular dysfunction is related to the extent of coronary artery 

disease, and to the location of the culprit lesion and its revascularization success (82). 

Compromised blood supply may lead to impaired contractility of viable myocardium 

even after successful revascularization; in such cases, the myocardial dysfunction is 

often reversible, and is called myocardial stunning. Hibernation is another form of 

reversible dysfunction of viable myocardium; it usually results from a longer period 

of compromised blood supply, such as in patients with severe chronic multivessel 

coronary artery disease. In the CS state, the detrimental effects of circulating 

cathecholamines and of agents from the activated neurohumoral and inflammatory 

cascades may further impair systolic function and maintain myocardial stunning. In 

addition, ischaemia-induced diastolic derangements may lead to increased filling 

pressures with a resultant volume and/or pressure load to the myocardium.   

Degree of ventricular dysfunction seems not to be the pivotal factor in the 

pathogenesis of shock, however. In fact, the concept of the pathogenesis of CS has 

undergone a paradigm change in the era of urgent reperfusion therapies: in many 

cases, severe impairment of contractility has not led to shock, and conversely, in CS, 

LVEF may be only moderately depressed (3, 11). Indeed, although ineffective stroke 

volume is the inciting event, a major role is played by inadequate circulatory 

compensation (59). The vasoplegic state in CS is caused and maintained by various 

pathways, including inflammation, nitric oxide, potassium- and calcium channels, 

adrenomedullin, and free radicals (54); this corresponds to the systemic inflammatory 

response syndrome seen, for example, in sepsis.  
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Inflammatory reactions in CS include activation of the innate immune 

response, increased expression of proinflammatory mediators (such us tumour 

necrosis factor-α and interleukins), activation of the complement system, 

autoantibody production, and overexpression of major histocompatibility complex 

molecules, as well as of adhesion molecules (51). The inflammatory mediators may 

also have myocardial depressant action causing stunning, or they may induce 

endothelial dysfunction, leading to further diminished coronary blood flow and end-

organ suffering (11). Vasoplegia results from excessively activated nitric oxide 

pathways which have negative inotropic effects, interfere with cathecholamine action, 

and carry cardiotoxic substances. (47, 54, 59) Finally, hypoperfusion and 

inappropriate vasodilatation of the gastrointestinal tract enables transmigration of 

bacteria to the blood and may lead to bactereamia and clinical sepsis. Although 

vasoplegia and inflammatory responses play a major role in the pathogenesis of CS, 

attempts to restrict the inflammatory responses with pharmacologic agents have not 

proven successful (83, 84). 

 

 

https://www.ahajournals.org/doi/10.1161/CIR.0000000000000525 
Figure 1.  The current concept of the pathophysiology of cardiogenic shock. 

Reproduced with permission from Contemporary Management of Cardiogenic Shock: 

A Scientific Statement From the American Heart Association (59). SIRS = systemic 

inflammatory response syndrome, e/iNOS = endothelial/inducible nitric oxide 

synthase, LVEDP, left ventricular end-diastolic pressure; NO, nitric oxide; SIRS, 
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systemic inflammatory response syndrome; SVR, systemic vascular resistance; and 

TNF-α, tumour necrosis factor-α.  

 

2.4 ELECTROCARDIOGRAPHIC ALTERATIONS 

The ECG examines cardiac activity through electrical potentials measured from the 

body surface. Electrical potentials within the myocardium are altered in many 

pathologic circumstances, forming the basis for use of body surface ECG in the 

evaluation of cardiac diseases. When the heart undergoes depolarization and 

repolarization, under normal conditions, the action potential generated by the 

sinoatrial node spreads through the atria to the atrioventricular node, and to the 

ventricles through the bundle of His and bundle branches, up to the site of smaller 

fascicles and Purkinje fibres (Figure 2) at very high velocity (about 2 m/sec), 

producing rapid and synchronous depolarization and contraction of ventricular 

cardiomyocytes. Ischaemia, scar tissue due to chronic ischaemia, inflammation, 

fibrosis, infiltrative lesions, calcification (85, 86), or overstreching of the conduction 

fibres due to ventricular wall stress (87, 88) may damage the conduction network 

within the ventricles, resulting in slow impulse conduction through cardiomyocytes, 

which is seen as intraventricular conduction disturbances in the ECG.  

 

2.4.1 ISCHAEMIC CHANGES IN ELECTROCARDIOGRAPHY 

Acute ischaemia, due to compromised blood supply to the myocardium, alters the 

electrical properties of the myocardium, thus leading to repolarization abnormalities. 

The first ischaemic sign is peaking of T waves, after which, acute ischaemia resulting 

from complete coronary artery occlusion typically creates ST-segment elevations in 

the leads whose positive pole is located over the ischaemic region, and reciprocal ST 

segment depressions in the leads whose positive poles are oriented in the opposite 

direction. (89) The ischaemic ST-segment deviations are a hallmark in the diagnosis 

of myocardial infarction in clinical practice. When the ST-segment is elevated over a 

predetermined threshold value in 2 or more anatomically contiguous ECG leads, the 
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term used is ‘STEMI’. The term ‘NSTEMI’ (non-STEMI) is used for myocardial 

infarctions with all other ECG findings, such as those with lesser degree of ST-

segment elevation or elevation in only one contiguous lead, with ST-segment 

depression, T-wave inversion, or no abnormalities at all. The magnitude and extent of 

ECG alterations depend on the size and location of the ischaemic/infarcted region and 

the relationship of this region to the spatial orientation of the particular ECG lead. By 

the location, extent, and degree of the ischaemic changes clinicians can estimate the 

affected area of the myocardium, its extent, and the coronary artery involved. The size 

of the region affected depends, in turn, on the site of occlusion within the coronary 

artery, and the presence or absence of collateral circulation. (89) 

 

2.4.1.1 Changes in QRS duration and pattern in ischaemia 

As the electrical properties of the myocardium during ischaemia change, regional 

ventricular conduction is slowed, resulting in changes in QRS duration and amplitude. 

The changes in QRS usually include enlargement of the R wave amplitude in the 

leads with ST segment elevation, resulting in a shift of the electrical axis. (90) The 

changes in the QRS axis due to ischaemia-induced slowing of conduction may present 

as hemiblock configuration without true injury of the conduction fibres (91, 92). 

Since transmural conduction time progressively increases due to transmural 

ischaemia, the QRS-complex alterations in addition to conventional ST-segment 

deviations usually indicate more severe ischaemia and faster progression of 

irreversible myocardial necrosis than do lone ST deviations (93, 94). Indeed, 

alterations in the ST segment and T wave are generally regarded as ECG signs of 

myocardial ischaemia, but alterations in the QRS pattern as myocardial necrosis (95). 

Once myocardial necrosis is present, Q waves are formed in those leads whose 

positive pole is located over the infarcted region as a result of absence of electrical 

activity. 

 

2.4.1.2 Bundle branch blocks and hemiblocks 

The appearance of left or right bundle branch block (LBBB or RBBB) results from an 

injury to the left or to the right bundle branch due to ischaemia or overstreching of the 
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conduction fibres (90, 96). In AMI, the appearance of a new bundle branch block is 

associated with poor outcome (69). Since the conduction system is more resistant to 

ischaemia than is the myocardium, the occurrence of a bundle branch block may 

relate to the amount of myocardium jeopardized after coronary artery occlusion, and 

may relate to extensive and on-going myocardial infarction despite revascularization 

(69, 97-99). As the course of the right bundle branch goes through the anterior 

septum, the appearance of a new RBBB may be explained by septal ischaemia from 

occlusion in a more proximal section of the left anterior descending artery (before the 

large septal branches), leading to larger infarctions and a poorer outcome than in 

anterior infarctions without RBBB. More extensive ischaemia and necrosis is required 

to produce LBBB since the left bundle branch has a varied distribution from a 

network of fibres (97), and this branch receives its blood supply from two or even all 

three of the main coronary arteries. More extensive ischaemia and necrosis is required 

to produce LBBB since the left bundle branch has a varied distribution from a 

network of fibres (100), and this branch receives its blood supply from two or even all 

three of the main coronary arteries. (Figure 2).  

Left anterior hemiblock (LAHB) results from injury to the left anterior 

fascicle, which is a long, thin fascicle and thus relatively susceptible to injury. The 

left anterior fascicle is mainly supplied by septal branches of the left anterior 

descending artery, with the most proximal segment supplied by the artery to the 

atrioventricular node. Left posterior hemiblock (LPHB) results from a blockage of the 

left posterior fascicle, which is short and thick, and thus more resistant to injury. The 

left posterior fascicle also generally has a double blood supply from both the left 

anterior descending coronary artery and the posterior descending branch, which is a 

distal branch of the right coronary artery in most individuals (right dominant 

circulation) (101, 102). 

The presence of LBBB makes the diagnosis of STEMI difficult, since the ST 

segment is altered by LBBB itself. There exist, however, specific criteria to diagnose 

a STEMI in the presence of LBBB (103). RBBB or a hemiblock does not impede the 

diagnosis of STEMI (89). In the newly updated ESC guidelines for STEMI, both 

RBBB and LBBB are indications for emergent revascularization in AMI, comparable 

to STEMI (50). 
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Figure 2. Conduction system and its arterial supply. AV = atrioventricular, RCA = 

right coronary artery, LCX = left circumflex artery, LAD = left anterior descending 

artery. Illustration by author. 

 

2.4.2 DEFINITIONS OF VENTRICULAR CONDUCTION ABNORMALITIES 

The term intraventricular conduction disturbance refers to abnormalities in the 

intraventricular conduction of supraventricular impulses that result in changes in the 

shape or duration, or both, of the QRS complex. These disturbances can be either 

fixed or intermittent, or they can be heart-rate dependent. They may also be 

functional, due to the arrival of a supraventricular impulse during the relative 

refractory period in a conduction system, which is called aberrant ventricular 

conduction. (90) In this thesis, ventricular conduction abnormalities refer to 

abnormalities in the QRS complex in the supraventricular complexes of the 

predominant rhythm in a patients’ resting ECG. The definitions for each abnormality 

are in Table 1. Based on conventional criteria for LBBB, one-third of patients are 

suggested not to have true complete LBBB, but rather a combination of left 

ventricular hypertrophy and left anterior fascicular block (104, 105), possibly 

explaining the lack of benefit from cardiac resynchronizing therapy seen in some 
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patients with LBBB. Strauss criteria have been proposed as stricter criteria to 

diagnose "complete LBBB"; these criteria require a QRS duration ≥ 140 ms for men 

and ≥ 130 ms for women, along with mid-QRS notching or slurring in 2 or more 

lateral leads, in addition to the conventional criteria (106). 

 

 

 

Block type Definition 
LBBB QRS duration ≥ 120 ms  
 Tall R, broad or notched R waves in the lateral leads (I, V5-6)  
 Deep S waves in the right precordial leads (V1-3) 
 Absence of septal Q waves in the lateral leads (I, V5-6) 
RBBB  QRS duration ≥ 120 ms  
 Wide or notched R wave in leads V1 or V2.  
 Slurred S wave of greater duration than R wave in leads I and V6 
LAHB Left axis deviation (-30° to -90°) 
 qR pattern (small q, tall R) in the lateral limb leads I and aVL 
 rS pattern (small r, deep S) in the inferior leads II, III, and aVF 
 QRS width <120 ms (in the absence of RBBB) 
LPHB Right axis deviation (90°-180°) 
 rS pattern in leads I and aVL 
 qR pattern in leads III and aVF 
 QRS width <120ms (in the absence of RBBB) 
IVCD Definition varies depending on the source, usually QRS >110-120 ms 

without bundle branch blocks/hemiblocks 
 In Study I: QRS ≥ 110 ms without bundle branch blocks 

 In Study II: QRS ≥ 110 ms without bundle branch blocks and 
hemiblocks 

 
Table 1. Definitions of ventricular conduction blocks used in this thesis. Adapted 

from AHA/ACCF/HRS recommendations for the standardization and interpretation of 

the electrocardiogram: part III: intraventricular conduction disturbances (90). 
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2.5 BIOMARKERS 

Biomarkers are biological markers usually sampled from blood or urine and serve for 

diagnostics or for prognostic purposes. In both cases, they always serve as adjuncts to 

clinical judgement. For a novel biomarker to be useful in clinical practice, its testing 

needs to be easily reproducible and interpretable, it needs to have significant additive 

value to clinical variables and to other routine tests, and needs to be cost-effective. 

(107, 108) Any biomarker-guided assessment should also promise some outcome 

benefit. The discovery of novel biomarkers provides insights into biological processes 

and cascades in AHF; they may serve as therapeutic targets for novel pharmacologic 

agents, or help in more accurate and objective patient profiling in the decision on 

individual therapies or design of clinical trials for novel therapies (25). In such cases, 

biomarkers may serve among inclusion criteria to enrich the study population with 

higher-risk subjects, to be a measure of drug toxicity, to act as an outcome measure, 

or be one means to explain efficacy of a therapeutic agent. (13, 109) 

In heart failure, elevated biomarker concentrations represent various pathways 

of myocardial injury and the activated neurohumoral and inflammatory cascades 

involved in the pathogenesis (23, 110). In addition to the neurohumoral responses 

occurring in chronic heart failure, end-organ dysfunction resulting from congestion 

and hypoperfusion in AHF and CS activate further cascades with organ-specific 

biomarkers. In general terms, the higher the biomarker concentration, the greater the 

cascade activation and the poorer the prognosis. The currently recognized biomarker 

pathways in AHF include RAAS, natriuretic peptides, sST2, vasopressin and 

copeptin, adrenomedullin, galectin-3, and pathways of endothelial dysfunction, 

inflammation, and oxidative stress (Figure 3). (109, 111) Activated pathways that the 

biomarkers represent can be either maladaptive, thus exacerbating organ dysfunction 

(such as products of oxidative stress), or adaptive, aimed at counteracting the 

deranged physiology of heart failure (such as natriuretic peptides). Since the various 

biomarkers each represent a different pathway of cardiac stress, the prognostic value 

they provide may be additive, thus rendering a multimarker strategy in risk 

stratification particularly beneficial (17). In CS, in which the abrupt activation of 

neurohumoral and inflammatory cascades seems pivotal for the development, 
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severity, and outcome of shock, a biomarker-based approach in severity assessment 

seems particularly attractive. 

 
 

 
Figure 3. Pathophysiology and biomarker pathways of acute heart failure. Bio-ADM 

= bioactive adrenomedullin, Crea = Creatinine, NGAL = Neutrophil gelatinase-

associated lipocalin, ALT = alanine aminotransferase, ALP = Alkaline Phosphatase, 

MMP = Matrix metallopeptidase, TIMP = tissue inhibitor of metalloproteinases, IL-1 

= interleukin 1, TNFα = tumor necrosis factor α, GDF-15 = growth/differentiation 

factor 15. Illustration by author. 

 

2.5.1 NATRIURETIC PEPTIDES  

Natriuretic peptides are peptide proteins sampled from plasma. They are primarily 

produced from cardiomyocytes in the atria (atrial natriuretic peptide and mid-regional 

proatrial natriuretic peptide) and the ventricles (brain natriuretic peptide, BNP) in 

response to myocyte stretch from volume or pressure overload (112). Upon 

stimulation, proBNP is synthetized de novo, mostly from ventricular cardiomyocytes, 

and after several processing steps, the biologically inactive peptide N-terminal pro-B-
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type natriuretic peptide (NT-proBNP) is cleaved from proBNP, resulting in mature 

bioactive BNP; then both parts are released to plasma.  

BNP and the inactive fragment NT-proBNP are the most widely used 

natriuretic peptides. The biological effects of natriuretic peptides include 

vasodilatation, natriuresis, diuresis, reduction in the effects of activated RAAS, and 

reduction in myocardial stiffness and improvement of myocardial relaxation. All these 

effects are favourable biological responses to the derangement of physiology involved 

in heart failure. (112) Besides heart failure, many other cardiovascular disorders 

(ACS, myocarditis, pulmonary embolism, atrial fibrillation, valvular disease) and 

non-cardiac disorders (renal failure, anemia) raise the levels of BNP and NT-proBNP. 

In contrast, levels of BNP and NT-proBNP are significantly lower in obese patients 

(113).  The effects of BNP are ultimately terminated by passive removal, by receptor 

clearance, by inactivation in the circulation by post-translational modifications or by 

degradation with catalytic enzymes such as neprilysin (114). 

 

2.5.2 SOLUBLE ST2 

sST2 is one of the most promising novel biomarkers in cardiovascular medicine and 

in heart failure studies. ST2 is a member of the IL-1 family proteins; the ST2 pathway 

consists of a transmembrane ST2 receptor (ST2L) isoform and its soluble isoform 

sST2 that can be detected in plasma or serum. IL-33, which is secreted by fibroblasts 

and myocytes under biomechanical stress, is a member of the IL-1 family of 

cytokines, and acts as a ligand for the ST2 receptor. IL-33/ST2L signalling regulates 

inflammatory responses, particularly those involving T helper type 2 (Th2) responses 

and production of Th2-associated cytokines (115). The soluble isoform sST2 is also 

released upon mechanical stimulation of cardiomyocytes and acts as a decoy receptor, 

thus neutralizing IL-33 and blocking the IL-33/ST2L signalling pathway (115, 116) 

(Figure 4). Although biomechanical stress triggers elevation in both the levels of sST2 

and IL-33, in the setting of AMI, the rise in sST2 seems disproportionate compared to 

that of IL-33. Moreover, the response in IL-33/sST2 concentrations may be different 

in some patient groups, such as those with diabetes or smokers, suggesting variation 

in individual immunological responses to AMI. (117) 
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 The interaction between IL-33 and transmembrane ST2L is thought to 

represent intramyocardial fibroblast–cardiomyocyte communication and seems to 

have an important favourable role in regulating myocardial response to biomechanical 

overload in stretched cardiac fibroblasts and cardiomyocytes (118). The IL-33 - ST2L 

signalling is also assumed to be protective against atherosclerosis, myocardial 

infarction, and myocardial fibrosis and hypertrophy (119, 120). As such, sST2 seems 

to serve as a marker of cardiac and vascular stress, inflammation, adverse 

remodelling, and fibrosis (121).  

 The ST2/IL-33 pathway is also involved in inflammatory processes in 

extracardiac tissues, particularly in those with predominant Th2 lymphocytic 

responses such as asthma, pulmonary fibrosis, rheumatoid arthritis, sepsis, trauma, 

and some malignancies (122). Due to its lack of specificity, the diagnostic value of 

sST2 for heart failure is low (123). By contrast, sST2 shows very strong prognostic 

value in AHF, as discussed further in Section 2.6.4.1. 

 

 

Figure 4. Schematic figure of ST2 signalling. sST2 = soluble ST2, IL-33 = interleukin 

33, ST2L = ST2 ligand. In biomechanical stress, both interleukin 33 (IL-33) and 

soluble ST2 (sST2) concentrations are increased in circulation. sST2 blocks the 

cardioprotective effects of the IL-33- ST2 ligand (ST2L) interaction. Illustration by 

author.   
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2.5.3 ADRENOMEDULLIN 

Adrenomedullin is a potent, long-lasting, vasodilatory peptide originally discovered in 

human pheochromocytoma tissue. It is secreted from various tissues, including of the 

heart, lungs, central nervous system, and kidneys, as well as from endothelial cells, 

vascular smooth muscle cells, fibroblasts and adipocytes. Adrenomedullin targets are 

also widely distributed across cardiovascular, pulmonary, renal, gastrointestinal, 

cerebral, and endocrine tissues. (124) Clinical use of adrenomedullin has been limited 

for some years because of its instability in vitro; to overcome such difficulties, mid-

regional pro-Adrenomedullin (MR-proADM), a non-bioactive precursor of 

adrenomedullin, has been the choice. The most recent studies have used a novel 

immunoassay that allows ultrasensitive measurement of bioactive adrenomedullin 

(bio-ADM) peptide from a small sample volume (50 uL of plasma) (18). All of the 

proteins: MR-proADM, adrenomedullin, and bio-ADM reflect the same 

adrenomedullin pathway.   

 In heart failure, adrenomedullin production is upregulated in cardiac myocytes 

in response to pressure/volume overload and ventricular wall stretching. In addition to 

vasodilatation, adrenomedullin has inotropic and natriuretic properties. The primary 

effects of adrenomedullin are proposed to be protective, lowering both preload and 

afterload as well as reducing hypertrophy, adverse remodelling, and fibrosis. (125) In 

CS, the excess adrenomedullin is believed to originate from both cardiomyocytes and 

from vascular endothelial and smooth muscle cells. Catecholamines, angiotensin II, 

and aldosterone, all of which are elevated in heart failure and CS, are potent 

stimulators of adrenomedullin production (126). In addition, inflammatory cytokines 

such as interleukins and tumour necrosis factor-α have also been suggested to 

stimulate adrenomedullin secretion (127). In patients with septic shock, 

adrenomedullin is depicted as a double-edged sword for its primarily protective 

mechanisms, but upon release in abundant quantities, adrenomedullin is associated 

with inappropriate vasoplegia and organ dysfunction (54). Adrenomedullin mediates 

its vasodilatory and natriuretic properties through cyclic adenosine 3',5'-

monophosphate, nitric oxide, and the renal the prostaglandin system. (128) As with 

natriuretic peptides, concentrations of adrenomedullin are affected by age, renal 

function, and body mass. Women also appear to have higher concentrations than men. 

(124) Due to its lack of specificity to the heart, the diagnostic value of the 
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adrenomedullin cascade for heart failure is low (123). 

 

2.5.4 OTHER BIOMARKERS 

The other biomarkers recognized as risk markers in AHF listed below are not 

discussed in further detail here. Copeptin is a novel biomarker that represents the 

activated arginine vasopressin / antidiuretic hormone pathway in AHF, which is up-

regulated in response to decreased plasma volume and results in fluid retention (111, 

129). Galectin-3 is produced in abundance by macrophages in AHF, resulting in the 

proliferation of cardiac fibroblasts and in collagen deposition. Galectin-3 is thus also a 

marker of adverse remodelling and cardiac fibrosis, but its predictive value in heart 

failure is lower than that of sST2 (130). Matrix metalloproteinases (MMPs) and tissue 

inhibitors of metalloproteinases (TIMPs) are matrix‐degrading enzymes up‐regulated 

in the failing heart and also influencing left ventricular remodelling (131). Elevated 

troponin levels in the absence of concomitant ACS in AHF are associated with the 

myocardial injury caused by elevated wall pressure and direct cardiotoxic effects of 

circulation cathecholamines, thus associating with poor outcome (45). 

Growth/differentiation factor 15 (GDF-15) is a strong prognostic marker in AHF, but 

it is not cardiac specific. Its production is strongly induced in response to acute 

stressors including inflammation, oxidative stress, hypoxia, and tissue injury (132). 

Procalcitonin is produced from neuroendocrine cells of the lungs, intestines, and 

peripheral mononuclear cells in response to bacterial endotoxins, and is useful in 

detecting an underlying bacterial pulmonary infection in AHF patients. Cystatin C 

and neutrophil gelatinase-associated lipocalin (NGAL) are biomarkers of renal failure 

and cardiorenal syndrome. (111) 

 

2.6 RISK ASSESSMENT 

Accurate patient profiling and risk stratification are needed to guide the therapeutic 

decisions of patients with AHF and CS, in efforts to improve outcomes such as 

repeated hospitalizations and mortality, and save health care resources. Due to high 

early mortality, accurate and early risk assessment is particularly important in CS, 
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where timely application of advanced therapies may halt the progression of 

irreversible end-organ dysfunction. Indeed, many of the pathophysiological 

derangements in CS may be reversible, and those surviving the acute phase may 

expect good long-term survival with good quality of life (11). Risk assessment in 

AHF and CS is traditionally based on clinical parameters and routine laboratory 

measurements (133).  

 

2.6.1 CLINICAL RISK MARKERS IN AHF 

Several clinical parameters have been recognized as predictors of poor outcome in 

AHF. These include: advanced age, history of diabetes mellitus, arrhythmia, previous 

myocardial infarction or stroke, lower SBP on admission, elevated heart rate, and 

poorer left ventricular function (133, 134). Of the conventional biochemical measures, 

low haemoglobin, high serum creatinine and blood urea nitrogen (reflecting kidney 

injury), elevated liver enzymes (reflecting liver injury), and hyponatremia are 

associated with poor outcome (133-135). Red-cell distribution width is a marker 

available in a routine blood count that was recently shown to be an accurate risk 

marker (136), as is iron deficiency, defined by plasma levels of hepcidin and 

transferritin receptor (137). Several scores for risk stratification in AHF include 

clinical markers that associate with poor survival, most of them being well validated 

in large international cohorts (133, 138-143). 

 

2.6.2 CLINICAL RISK MARKERS IN CS 

As in AHF, older age and previously diseased myocardium (previous myocardial 

infarction or revascularization), as well as previous stroke, are associated with poor 

CS outcome (10, 144). Baseline clinical characteristics that reflect severe shock, ones 

such as low blood pressure, high arterial lactate, poor left ventricular function, and 

ischaemic brain injury are also predictive of poor outcome (145, 146). High plasma 

glucose, especially in those without diabetes (146), and poor renal function are also 

associated with increased mortality (147). As urgent revascularization is crucial in CS 

management, unsuccessful revascularization is strongly associated with increased 

mortality (64, 144, 145), as is also the extent of coronary artery disease (82). 
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There are several scores for risk stratification in CS that include the clinical 

characteristics associated with poor survival, the newer ones also including 

revascularization success (10, 144, 148). These scores are designed to be easily 

applicable, usually with parameters available at baseline such as patient history, 

baseline clinical profile, or routine laboratory findings. The most recent score, the 

IABP score (144), was developed from the IABP-SHOCK II trial in patients with 

ACS-related CS, and includes dichotomous parameters such as age over 73 years, 

history of stroke, increased glucose and creatinine, and arterial lactate > 5 mmol/L, 

and the final Thrombolysis In Myocardial Infarction (TIMI) flow grade < 3 after 

revascularisation as the strongest variables. The applicability of this score has been 

validated both internally and externally. Clinical scores used for sepsis, or in general 

with intensive care patients, which reflect the severity of shock state or end-organ 

damage, such as Acute Physiology, Age, Chronic Health Evaluation (APACHE) II 

and III scores (149, 150), the Sepsis-related Organ Failure Assessment (SOFA) score 

(151), and the Simplified Acute Physiology Score (SAPS II) (152), also accurately 

predict survival in patients with CS (153). 

 

2.6.3 VENTRICULAR CONDUCTION BLOCKS AS RISK MARKERS  

The role of ventricular conduction abnormalities in chronic heart failure is well 

established (143, 144), and QRS duration and morphology play an important role in 

determining candidates for cardiac resychronizing therapy (19). However, few studies 

concern ventricular conduction abnormalities in AHF and CS. Delayed activation of 

the myocardium shortens the duration of the diastolic ventricular filling period of 

either left or right ventricle, which in turn reduces stroke volume and cardiac output. 

Systolic and diastolic ventricular dyssynchrony also worsen already depressed cardiac 

output and favour further ventricular volume remodelling in heart failure. (154, 155) 

As these findings originate from the setting of chronic heart failure, the exact role of 

ventricular conduction abnormalities in the pathogenesis and mechanism of AHF is 

less clear.  
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2.6.3.1 Bundle branch blocks 

In the few clinical studies of AHF, the prevalence of LBBB is around 14 to 16%, and 

the prevalence of RBBB around 7 to 10%, depending on characteristics of the patient 

cohorts (156-158). In a study of 403 patients with severe AHF, those with LBBB 

more frequently had dilated cardiomyopathy, more cardiac comorbidities, and lower 

LVEF, and more often AHF resulting from an unidentified precipitating factor than 

did those without LBBB (156). In that study, LBBB was an independent predictor of 

increased 1-year mortality. In another study, involving 9082 patients hospitalized for 

AHF (157), both LBBB (present in 16%) and RBBB (present in 7%) were associated 

with older age, cardiomegaly, and poorer renal function. LBBB was associated with 

ischaemic heart failure aetiology, whereas patients with RBBB were often men and 

diabetes sufferers. That study found both bundle branch blocks to associate with 

significantly higher short- and long-term mortality, but only LBBB was independently 

predictive of mortality. Another study involving 1888 patients hospitalized for heart 

failure with reduced or mid-range ejection fraction (LVEF<50%) (158), 14% of 

patients had LBBB; they were older and had lower LVEF and more often chronic 

heart medication than did those without LBBB. Patients with RBBB (10%) were less 

often women and tended to have higher pulmonary artery pressures than those 

without RBBB. In that analysis, only RBBB predicted mortality, which appeared to 

be pronounced in those with more advanced left ventricular dysfunction 

(LVEF<30%).  

 In CS, in a subanalysis of the SHOCK trial (159), LBBB was present in 6% 

and RBBB in 20%, but their independent association with increased mortality was not 

reported. In a more recent study of 358 patients with CS complicating AMI, 11% had 

LBBB and 13% had RBBB (with or without hemiblock) at baseline. Patients with 

RBBB more often had the left main artery as the infarct-related artery than did those 

with STEMI without bundle branch block. In that study, RBBB, but not LBBB, was 

an independent predictor of mortality (70). Finally, in a small study of 25 patients 

with CS caused by myocardial infarction due to left main coronary artery disease, 

48% of patients had RBBB, and RBBB was associated with significantly increased 

short-term mortality (160). Further, in patients with AMI, the presence of a bundle 

branch block is associated with higher incidence of both AHF (161) and CS (70). 
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2.6.3.2 Hemiblocks and IVCD 

Hemiblocks are a relatively common finding in patients with heart disease, 

particularly in those with prior myocardial infarction (101), but their exact role in 

AHF and CS has not been defined. The definition of IVCD varies in the heart failure 

literature, including QRS durations of ≥110 ms to ≥120 ms and including or 

excluding bundle branch blocks or hemiblocks, or both. The prevalence of IVCD in 

AHF ranges from 27% to 44% based on the characteristics of the studied populations 

and on the definition, with most studies including bundle branch blocks in the IVCD 

group (162, 163). Prolonged QRS has been independently associated with increased 

mortality in chronic heart failure (164, 165) – also when LVEF is preserved (166), 

and in AHF (162, 163).  In the SHOCK trial, 11% of the patients had QRS duration 

>115 ms without a bundle branch block. Increasing QRS duration, independently of 

age and the presence of a bundle branch block, was a predictor of mortality (159). 

 

2.6.3.3 Temporal evolution of blocks 

Changes in QRS morphology during acute ischaemia may be transient (96, 167). 

Other than patients with AMI, the data on block evolution during episodes of AHF is 

scarce. In studies of myocardial infarction, definitions used for temporal evolution of 

the ventricular conduction abnormalities have been heterogeneous. In most studies, 

patients who died during follow-up period (usually the index hospitalization) were 

regarded as having a persistent block, although a repetitive ECG was not necessarily 

documented (70, 161, 168). In the Global Utilization of Streptokinase and Tissue 

Plasminogen Activator for Occluded Coronary Arteries (GUSTO-1) trial, of the 

26,003 AMI patients during the thrombolytic era, incidence of complete block 

resolution was 12% and for partial block resolution 12% (69). Later, in 5570 AMI 

patients (161) with an overall LBBB incidence of 13%, 27% of these were confirmed 

to be of new onset, and 60% of the new-onset LBBBs were transient. The overall 

incidence of RBBB was 11%, of which 36% were confirmed to be of new onset, and 

65% of the new-onset RBBBs were transient.  

In AMI, persistent blocks have been associated with higher mortality than are 

transient blocks (69, 161, 168, 169). However, the increase in mortality risk 
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associated with persistent blocks appeared mainly to apply to very early in-hospital 

death; after discharge, the long-term mortality was even lower in those with persistent 

compared to transient block (161). In a study of 358 patients with AMI-related CS 

(70), 62% to 66% of bundle branch blocks were persistent, while 13% to 15% were 

transient. One third of bundle branch blocks were new-onset blocks, while 21% of 

LBBB and 46% of RBBBs were confirmed as old findings. The relationship between 

block evolution and survival was not reported.  

 

2.6.4 BIOMARKERS IN RISK STRATIFICATION 

Biomarkers associated with myocyte stress (troponin, natriuretic peptides, sST2, 

matrix metalloproteinases), activated neurohumoral cascades (natriuretic peptides, 

sST2, copeptin, adrenomedullin), reflecting organ dysfunction (creatinine, cystatin C, 

NGAL, liver transaminases) have been associated with poor outcomes in AHF and 

CS, and can be useful in risk stratification (Figure 3) (135, 147, 170-172). In addition, 

markers reflecting inflammatory state or iron deficiency (137) are prognosticators of 

poor outcome.  Finally, a multimarker approach, as reflecting different cascades of the 

derangements associated with AHF, may provide additional prognostic information to 

single-biomarker measurements (17). 

 

2.6.4.1 Natriuretic peptides and ST2 

The roles of BNP and NT-proBNP are well established both for diagnostic and 

prognostic purposes in both chronic heart failure and AHF (19, 173-175). Use of 

natriuretic peptides in assessment of patients with suspected AHF has proven both 

cost-effective and beneficial to outcomes (176, 177). In addition to a single 

measurement, variation in BNP or NT-proBNP levels during hospitalization is 

strongly associated with outcome; failure to reduce their levels following treatment of 

AHF is associated with both increased rehospitalizations and mortality (178). In CS, 

high levels of NT-proBNP predicted short-term death in a composite patient 

population of cardiogenic and septic shock (174) and in a small population of patients 

with CS (179), and higher levels of BNP in ACS-related CS (180). 
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sST2 also has shown very strong prognostic value in AHF (181, 182). In 

comparison to other biomarkers including natriuretic peptides, sST2 has provided the 

best reclassification for one-year mortality in AHF, beyond clinical variables (17). 

Higher levels of sST2 in AHF are associated with more severe left ventricular 

remodelling, lower LVEF, worse diastolic compliance, and higher pulmonary artery 

pressures (183). Similar to natriuretic peptides, dynamic changes in sST2 levels 

during hospitalization and in response to therapies add prognostic value to a single 

measurement (181, 184). Moreover, sST2 levels may predict specific benefit from 

disease-modifying heart failure therapies (185, 186).  In CS, levels of sST2 have been 

significantly higher than in those with STEMI and no CS, but that study failed to 

show any prognostic value of sST2 in CS, possibly due to a small number of patients 

(187).  

 Since information provided by sST2 is fundamentally different from that 

provided by natriuretic peptides, the two biomarkers together provide additive 

prognostic information (12).  The Pro-Brain Natriuretic Peptide Investigation of 

Dyspnea in the Emergency Department (PRIDE) study showed in 593 patients with 

suspected AHF that the combination of results of sST2 and of NT-proBNP provided 

multiplicative prognostic value as compared to either of the two biomarkers alone 

(188). Similar results emerged from 1239 STEMI patients: when both sST2 and NT-

proBNP were added to a model containing traditional clinical predictors, risk 

stratification for both heart failure and mortality were significantly improved (189).  

2.6.4.2 Adrenomedullin 

The prognostic value of adrenomedullin in AHF or suspected AHF has been strong in 

several studies (190-192), especially for short-term mortality. In the setting of AMI, 

high adrenomedullin levels are associated with impaired left ventricular function and 

death (193, 194). The adrenomedullin pathway has shown prognostic value in CS as 

well. In a study of 42 patients with ACS-related CS, higher concentrations of MR-

proADM, a precursor protein of adrenomedullin, at 24 hours after onset of CS were 

associated with higher 1-year mortality. In another small study of 41 patients with 

refractory CS with ECMO support, the levels of proadrenomedullin were steadily 

elevated but did not differ in respect to weaning success (79). In addition to its 
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prognostic value for mortality, high levels of adrenomedllin have reflected 

hemodynamic derangements and instability. In patients with AMI, levels of 

adrenomedullin have correlated positively with capillary wedge pressure (195), and in 

patients with septic shock higher plasma adrenomedullin levels have been associated 

with lower arterial pressure and increased need of vasopressor therapy (18). 
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3 AIMS 

The main aims of this thesis were to assess the prognostic value of QRS abnormalities 

on the electrocardiogram in patients with AHF and CS, and in CS to explore novel 

biomarkers for risk stratification. More precisely, the objectives were as follows: 

 

1) To evaluate in patients with AHF the prevalence, associated clinical 

parameters, and impact on mortality of VCBs  

 

2) To evaluate in patients with ACS-related CS the prevalence, temporal 

evolution, associated clinical parameters, and impact on mortality of VCBs  

 

3) To evaluate in patients with ACS-related CS the kinetics and prognostic value 

of sST2 and NT-proBNP  

 

4) To evaluate in patients with CS the kinetics, prognostic value, and association 

with haemodynamic measures of bio-ADM and lactate  
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4 METHODS 

4.1 STUDY COHORTS 

4.1.1 ACUTE HEART FAILURE STUDY (STUDY I) 

The analyses of Study I were performed in a cohort of 982 AHF patients (derivation 

cohort), with the main findings validated in an independent validation cohort of 1511 

AHF patients. The derivation cohort was combined from two independent 

prospectively collected populations of AHF patients. The Finnish Acute Heart Failure 

Study (FINN-AKVA) was a prospective, national multicentre study, enrolling 620 

consecutive patients with AHF in 2004 in Finland (196). Admission ECG was 

available for 595 (96%) patients. The B-type Natriuretic Peptide for Acute Shortness 

of Breath EvaLuation V (BASEL V) study recruited patients presenting to Swiss 

emergency departments with a chief complaint of shortness of breath in 2006-2007 

(197). For the present analysis, only the 387 patients with an adjudicated diagnosis of 

AHF were included, in all of whom the admission ECG was available. The final AHF 

diagnosis in both cohorts was confirmed by local investigators based on all clinical, 

laboratory, and imaging information. Data on echocardiography were available for 

622 (63%) patients. The mean follow-up was 3.9 years (95% CI 3.7–4.0 years); 

median follow-up was 5 years.  

 Data for the validation cohort originated from University Hospital Brno, a 

centre participating in the Czech Acute Heart Failure Database (AHEAD) registry 

(198) with available data of baseline ECG on 1511 patients. Patient data were 

prospectively collected between 2006 and 2009. AHF diagnosis was based on ESC 

guidelines of heart failure from 2005 (199). Data on echocardiography were available 

for 1421 (94%) patients. The mean follow-up was 5.9 years (95% CI 5.8–6.1 years, 

range 0.0–8.0 years).  

The primary end-point in both cohorts was all-cause mortality. The study 

protocols were approved by local Ethics Committees in each study centre, and 

conducted in accordance with the Declaration of Helsinki. Written consent was 

obtained from the patients or next of kin.  
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4.1.2 CARDSHOCK STUDY (STUDIES II, III, IV) 

The CardShock study was a prospective European multicentre cohort study of CS 

coordinated from Helsinki University Hospital. A total of 219 patients with CS were 

recruited from nine centres in eight countries between October 2010 and December 

2012. The study centres were in Helsinki, Barcelona, Copenhagen, Brno, Athens, 

Warsaw, Porto, Rome, and Brescia. Diagnosis of CS was based on contemporary 

clinical criteria: SBP <90 mmHg for 30 minutes despite fluid administration or need 

for vasoactive therapy to maintain SBP, and one or more signs of organ 

hypoperfusion (cool extremities, confusion or altered mental status, oliguria <0.5 

ml/kg/h for the previous 6 hours, or blood lactate >2 mmol/l), and cardiac origin of 

the state of hypoperfusion. Exclusion criteria were age below 18, CS caused by 

persistent arrhythmia, and CS after cardiac or non-cardiac surgery.  

Enrolment in the study was required to be within the first 6 hours of the 

detection of shock. The aetiology of CS was determined by local investigators. ACS 

aetiology was defined as shock caused by myocardial infarction. Electrocardiography 

and echocardiography were performed per protocol at study entry and on day three.  

Routine laboratory samples were taken and analysed locally in the participating 

centre. Serial plasma sampling was performed at eight time-points, and aliquots 

frozen at -80°C stored for centralized laboratory analyses. The study plasma samples 

were available for 178 patients from the eight centres participating in serial sampling. 

Patients were treated according to local practise, with treatment and procedures 

registered. Primary endpoints were all-cause in-hospital, 90-day, and one-year 

mortalities. Vital status during follow-up was determined through direct contact with 

the patient or next of kin, or through population- and hospital registers. The cause of 

death was determined by the local investigators based on clinical findings with or 

without autopsy findings. The study was approved by local ethics committees and 

conducted in accordance with the Declaration of Helsinki.  

 

4.1.3 ELECTROCARDIOGRAPHY IN CS (STUDY II) 

For the ECG analyses in CS, the patients with ACS aetiology of CS from the 

CardShock study with baseline ECG available were included. Additional ECG and 

clinical data came from 45 patients with CS caused by ACS from the University 
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Hospital of Brno, Czech Republic. Patients with only paced QRS complexes or those 

with idioventricular rhythm were excluded from both cohorts. Patients from the 

University hospital of Brno were recruited between 2005 and 2012. Criteria of CS 

were the same as for the CardShock cohort, but the Czech cohort included only 

patients with ACS as the aetiology of shock (200). Echocardiography was performed 

at baseline in all patients. Serial NT-proBNP samples were locally analysed. Written 

informed consent forms were obtained from the patients either before their 

participation in the study, or after regaining consciousness. For patients who failed to 

regain consciousness, anonymous data were utilized with the consent of a relative. 

The study protocol was approved by the local ethics committee of the University 

Hospital of Brno, and it was conducted in accordance with the Declaration of 

Helsinki.  

 

4.2 ELECTROCARDIOGRAPHIC ANALYSES 

4.2.1 ECG ANALYSES IN STUDY I 

Baseline ECG was analysed in all participating patients. The ECGs in each of the 

AHF study cohorts were analysed by one to three researchers (medical doctors) 

specially trained for and assigned to the task. Rhythm and bundle branch blocks were 

manually analysed. QRS duration was analysed with the aid of an automatized 

computer program; in cases with a discrepancy in data, the priority was in manual 

assessment. RBBB and LBBB were identified by standard international criteria, (90). 

Intraventricular conduction delay (IVCD) was defined as QRS duration ≥110 ms 

without fulfilling the criteria of either bundle branch block (201). 

 

4.2.2 ECG ANALYSES IN STUDY II 

ECGs at baseline and on day 3 underwent analysis for the study on ventricular 

conduction abnormalities in CS. In cases with multiple ECG recordings at baseline, 

the closest ECG to the detection of shock with intrinsic (not paced) ventricular 

complexes was the preference. Complete LBBB and RBBB were identified by 
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standard criteria (90). LAHB was defined as QRS axis between -45 and -90 degrees; 

qR/R in leads I and aVL, rS in lead II, III and aVF, and QRS <120 ms if without 

concomitant RBBB. LPHB was defined as QRS axis >90 degrees, qR in lead III and 

rS complex in lead I; and as QRS duration <120 ms, if without concomitant RBBB. 

IVCD was defined as QRS duration  ≥110  ms not fulfilling the criteria of either 

complete bundle branch block or hemiblock. Group comparisons were performed and 

pairwise comparisons were assessed using as a reference group those with no VCB. 

Temporal evolution of conduction pattern (appearance, resolution, or change of 

block) from baseline to day 3 was assessed and group comparisons performed, with 

those who had no block at baseline and on day 3 (=never block) considered as the 

reference group. Patients who died before day 3 or in whom the day-3 ECG was 

unavailable were excluded from analyses of the temporal evolution of blocks. A 

retrospective search of the patients' previous ECG was performed to investigate the 

pre-existence of the block. The search was restricted to patients with a VCB in 

baseline the ECG from the three largest study centres (Helsinki, Brno, Barcelona). A 

previous ECG was available in 42% (30 of 72) of these patients. 

 

4.3 BIOMARKER SAMPLING (STUDIES III, IV) 

Study plasma samples (EDTA and heparin plasma) in the CardShock study were 

taken at eight time-points: at baseline (0 hours), at 12 hours, 24 hours, 36 hours, 48 

hours, 72 hours, 96 hours, and on the last day of cardiac / intensive care unit stay 

between days 5 to 10 (labelled 5-10 days). Aliquots of plasma were immediately 

frozen and stored at −80∘C. Blood lactate was locally analysed from arterial blood 

samples. NT-proBNP, high-sensitivity troponin T (hs-TnT), creatinine, C-reactive 

protein, and liver enzymes were centrally analysed from the frozen plasma samples in 

ISLAB, Kuopio, Finland. NT-proBNP and hs-TnT analyses were performed on a 

Cobas 6000 analyser with Elecsys Roche Diagnostics electrochemiluminescent 

sandwich immunoassays. Estimated glomerular filtration rate (eGFR) was calculated 

from creatinine values by use of the CKD-EPI (Chronic Kidney Disease 

Epidemiology Collaboration) equation. sST2 was measured from EDTA plasma at 

INSERM UMR-S 942 (Paris, France) utilizing a quantitative sandwich monoclonal 
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enzyme-linked immunosorbent assay (Presage sST2 Assay; Critical Diagnostics, San 

Diego, CA, USA). The Bio-ADM measurement was performed with a one-step 

sandwich-coated tube chemiluminescence immunoassay in the laboratories of 

Sphingotec GmbH, Hennigsdorf, Germany; this is a novel immunoassay capable of 

reliable ultrasensitive measurement of bio-ADM peptide from small sample volume 

(50 uL of plasma) (202). 

 

4.4 STATISTICAL ANALYSES 

Characteristics of the study populations were assessed, and patients were categorized 

as considered appropriate for each study. Well-established statistical methods were 

used in all analyses, (Studies I-IV). Results are in numbers and percentages (%), as 

means with standard deviation (SD), or as medians with interquartile range (IQR) for 

variables not normally distributed. Dichotomous variables were compared with chi-

square analysis, and continuous variables with Student’s t-test or the Mann-Whitney 

U, or Wilcoxon rank-sum test, as appropriate. Multigroup comparisons were 

performed with one-way ANOVA or Kruskal-Wallis tests by Dunnett’s method or 

with Bonferroni corrections. Correlations were assessed with Spearman’s correlation 

coefficients.  

 

4.4.1 BIOMARKER ANALYSES 

For biomarker analyses in Studies III-IV, receiver operating characteristic (ROC) 

curves were generated with area under the ROC curve (AUC) testing to assess 

prognostic performance of the biomarkers for mortality, as well as to define optimal 

cut-off values in terms of sensitivity and specificity for categorizations of biomarkers. 

The cut-off values for sST2 and NT-proBNP in Study III were rounded to the closest 

figures. Sensitivity and specificity of the chosen cut-off values were reported.  

For analyses of the associations of biomarker levels and haemodynamic 

variables in Study IV, the median value of each biomarker or each haemodynamic 

parameter during the study period (i.e. 0-96 hours or 48-96 hours) for each patient 

was used. Dichotomization of lactate levels was based on 1.63 mmol/L: the median 
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value of each patient’s median lactate level during the first 96 h. Dichotomization of 

bio-ADM levels was based on 55.7 mg/ml, the optimal cut-off with highest sensitivity 

and specificity for 90-day mortality when measured at 48 h, and similar to the median 

values of bio-ADM during the first 96 hours (range of medians at 0–96 hours, 54.5–

59.9 pg/ml). 

 

4.4.2 MORTALITY ANALYSES 

Mortality analyses were performed with Kaplan-Meier curves with Log-Rank testing 

and with Cox Proportional Hazard Ratios (HRs) with 95% confidence intervals (95% 

CI). Biomarkers were entered either as continuous values or as categorical variables 

after categorization by their median value or by a predefined cut-off value according 

to ROC curve analyses. Logarithmic transformation of biomarker levels was 

performed if necessary. Logistic regression with predicted probabilities of death were 

calculated and entered into AUC analyses to assess the prognostic value of 

combinations of continuous variables (i.e. biomarkers) in Studies III and IV. 

Incremental discrimination improvement allowed assessment of addition of 

prognostic value of sST2 and NT-proBNP to clinical variables in Study III. The time-

dependent Cox model served to assess the independence of clinical variables of the 

predictive value of serial measurement of lactate and bio-ADM, and Wald statistics 

assessed the prognostic value of each biomarker and their combination at each time-

point in Study IV. In Study I, the patients were censored at the time of last contact to 

the study centre in the time-dependent mortality analyses. Three patients in the 

CardShock study cohort were lost to follow-up; in the mortality analyses their cases 

were censored at the time of hospital discharge. 

The multivariable models were built with variables a priori of clinical interest or 

that were associated with increased mortality in each sub-study. In Study I, the 

multivariable model in the derivation group included age, gender, history of 

hypertension,	
   coronary artery disease, previous myocardial infarction, or chronic 

obstructive pulmonary disease, as well as smoking and renal function at baseline. A 

separate analysis including NT-proBNP results (available for 64% of patients) was 

performed. Multivariable analysis of the validation cohort was built with the same 

variables but replacing NT-proBNP (available only in few patients) with LVEF. In 
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Study II, two separate multivariable models served to evaluate the independent 

association of ventricular conduction abnormalities with mortality. Model 1 included 

baseline variables: age, gender, history of hyperlipidaemia, chronic obstructive 

pulmonary disease, previous PCI or CABG, SBP, LVEF, and renal function. Model 2 

included findings in coronary angiography: three-vessel disease, infarct-related artery 

(left main/ left anterior descending or its main branches/ left circumflex or its main 

branches/ right coronary artery or its main branches). Both models were constructed 

applying a Cox Regression backward selection approach. In the biomarker analyses 

(Studies III-IV) the previously published CardShock risk score (203) was used as a 

continuous variable in the multivariable models. The score consists of seven baseline 

variables (Table 2) that were associated with increased in-hospital death in the 

CardShock cohort. In patients with ACS-related CS, peak value of hs-TnT was an 

independent predictor of mortality, and it was used in the multivariable model 

together with CardShock risk score in Study III. The tests were two-sided with a 

statistical significance level of 0.05. Statistical analyses were performed with SPSS, 

Stata, and R-program. 

 
Table 2. CardShock risk score. ACS = acute coronary syndrome, CABG = coronary 

artery bypass grafting, MI = myocardial infarction, eGFR = estimated glomerular 

filtration rate by the Chronic Kidney Disease Epidemiology Collaboration formula, 

LVEF = left ventricular ejection fraction. Reproduced with permission from Clinical 

picture and risk prediction of short-term mortality in cardiogenic shock (203). 
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5 RESULTS 

5.1 PATIENT CHARACTERISTICS 

5.1.1 DERIVATION AND VALIDATION COHORTS IN STUDY I 

For baseline characteristics of the derivation (n=982) and validation (n=1511) cohorts 

in Study I see Table 3. These patients were divided into two groups according to 

whether hospitalization for AHF was for new-onset heart failure (de novo AHF) or 

whether for a decompensation of previously diagnosed chronic heart failure 

(ADCHF). In the derivation cohort, 52% of the patients had de novo AHF; these 

patients were younger (75±11 years vs. 77±10 years, P<0.001) and less often had a 

history of coronary artery disease or atrial fibrillation, and had higher LVEF (47 

±15% vs. 43±17%, P<0.001) than those with ADCHF. In the validation cohort, 65% 

had de novo AHF, and 35% had ADCHF; validation cohort patients were younger, 

were more often men, and had more cardiovascular comorbidities than those in the 

derivation cohort. AHF resulted from ACS more often (49% vs. 24%; P<0.001), and 

CS was more common (14% vs. 2%, P<0.001) in the validation cohort than in the 

derivation cohort.  
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AHF 

Derivation 

 

AHF 

Validation 

 

CardShock 

biomarkers all 

(Bio-ADM) 

CardShock  

biomarkers 

ACS (sST2) 

CardShock + 

Brno, 

ACS (ECG) 

 (n= 982) (n=1511) (n=178) (n= 145) (n=199) 

Age, years 76 ±11 70 ±12 66 ±12 68 ±12 67 ±11 

Women 474 (48) 636 (42) 41 (23) 30 (21) 49 (25) 

Hypertension 613 (62) 1046 (71) 110 (62) 93 (64) 119 (60) 

Diabetes 304 (31) 741 (49) 53 (30) 48 (33) 66 (33) 

Hyperlipidemia NA NA 85 (48) 75 (52) 106 (53) 

Smoker 140 (14) 306 (45) 71 (40) 64 (44) 86 (43) 

Previous CAD 494 (50) 986 (65) 59 (33) 46 (32) 62 (31) 

Previous MI 254 (26) 439 (30) 45 (25) 35 (24) 45 (23) 

Previous HF 476 (48) 533 (35) 29 (16) 12 (8) 14 (7) 

COPD 177 (18) 207 (14) 14 (8) 11 (8) 12 (6) 

ACS 235 (24) 741 (49) 142 (80) 145 (100) 199 (100) 

Cardiogenic shock 21 (2) 214 (14) 178 (100) 145 (100) 199 (100) 

Cardiac arrest NA NA 47 (26) 43 (30) 62 (31) 

Acute AF 234 (24) 72 (5) 26 (15) 19 (13) 25 (13) 

LVEF, % 45 ±16 41 ±15 33 ±14 34 ±14 35 ±14 

LVEF <40% 241 (39) 667 (47) 112 (63) 87 (60) 110 (55) 

eGFR, mL/min/1.73 m² 60 ±29 60 ±24 62 ±30 63 ±28 62 ±28 

RBBB 74 (8) 130 (9) 18 (10) 17 (12) 28 (14) 

LBBB 126 (13) 167 (11) 9 (5) 5 (3) 8 (4) 

IVCD (incl. hemibl.) 165 (18) 161 (11) 47 (26) 38 (26) 47 (24) 

 
 
Table 3. Characteristics of patient cohorts in Study I (AHF derivation and validation 

cohorts) and in Studies II-IV (cardiogenic shock). Mean ± standard deviation (SD), or 

n (%). AHF = acute heart failure, CAD = coronary artery disease, MI = myocardial 

infarction, HF = heart failure, COPD = chronic obstructive pulmonary disease, AF = 

atrial fibrillation, LVEF = left ventricular ejection fraction, eGFR = estimated 

glomerular filtration rate, RBBB = right bundle branch block, LBBB = left bundle 

branch block, IVCD = intraventricular conduction delay (includes also hemiblocks for 

Study II), NA = not available. 
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5.1.2 CARDSHOCK COHORT (STUDIES II, III, IV) 

The total CardShock cohort comprised 219 patients with CS. ACS was the most 

common aetiology of CS (N=177, 81%); other aetiologies included chronic heart 

failure, valvular causes, Takotsubo cardiomyopathy, and myocarditis. The majority 

(n=148) of ACS patients presented with STEMI, and 19 had a mechanical 

complication of AMI. The mean age of the patients in the whole CardShock cohort 

was 67 years; 74% were men. Hypertension was present in 60% of the patients, but 

only a minority of patients had previous manifestations of coronary heart disease or 

heart failure. Table 3 shows the baseline characteristics of the three subcohorts of 

CardShock used in the analyses of this thesis.  

 In the CardShock cohort, patients were hypotensive (mean arterial pressure, 

MAP, 57±11 mmHg) with a mean heart rate of 90 (±28) BPM at baseline.  Signs of 

hypoperfusion were prevalent: 95% had cold periphery, 68% had altered mental 

status, 55% had oliguria, and 71% high blood arterial lactate. Mean LVEF was 

33±14%. Vasopressors and/or inotropes were administered to 94%; noradrenaline was 

the most common vasopressor (75%), and dobutamine the most common inotropic 

agent (in 49%). Urgent PCI was performed in 82% of all patients and in 89% of those 

with ACS-related CS. Urgent CABG was performed in 5% of patients. Half the 

patients (56%) were treated with an intra aortic balloon pump and 6% with another 

mechanical assist device or ECMO. Most patients (63%) were mechanically 

ventilated. One third (n=82, 37%) had pulmonary artery catheter, and additional 19% 

had central venous pressure monitoring. 

 Shock was already present at hospital admission in 24%, developed within 

their first 24 hours of hospitalization in 62% of patients, and developed after 24 hours 

of hospitalisation for 15%. The proportions were similar in those with ACS-related 

CS. The 30-day mortality was 37% (80 deaths) in the whole CardShock study cohort 

and 40% (70 deaths) for those with ACS-related CS. The 90-day mortality was 41% 

(43% for ACS-related CS), and one-year mortality was 43% (46% in ACS-related 

CS). Patients dying early (within the first 48 hours of shock) numbered 35 (16%), and 

60 (27%) died later (between days 3 and 365). According to the local investigators, 

the earlier deaths tended to occur more often due to myocardial infarction (68% vs. 

50%, P=0.10) than did the later deaths. Conversely, the later-occurring deaths were 

more often described as being due to worsening heart failure (41% vs. 20%, P=0.041) 
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or being related to infection (23% vs 0%, P=0.003), renal failure (15% vs. 0%, 

P=0.017), or stroke (6% vs. 0%, P=NS). 

 

5.2 VENTRICULAR CONDUCTION BLOCKS IN AHF 

(STUDY I) 

The prevalences of ventricular conduction abnormalities in AHF (derivation + 

validation cohort) and CS are shown in Figure 5. RBBB prevalence was similar in de 

novo AHF and ADCHF (8% vs. 8%, P=0.34), and in those with AHF caused by ACS 

or non-ACS aetiology (8% vs. 9%, P=0.37). LBBB was more prevalent in those with 

ADCHF than with de novo AHF (16% vs. 9%, P<0.001) and in those with non-ACS 

than ACS aetiology (14% vs. 8%, P<0.001), and IVCD was more common in the 

ADCHF than in de novo AHF (18% vs. 10%, P<0.001).  

 In the derivation cohort in Study I, the patients with RBBB (79±9 years) and 

LBBB (78±9 years) were older than those either with IVCD or without conduction 

abnormality (75±11 years in both groups, P=0.013). Each of the three conduction 

abnormalities was more common in men than in women (RBBB 10% vs. 5%; 

P=0.001, LBBB 15% vs. 10%; P=0.01, and IVCD 22% vs. 14%; P=0.003). Patients 

with LBBB and IVCD more often had a history of coronary artery disease and lower 

LVEF than did those with RBBB or without a block (LVEF 37±16% in LBBB, 

41±16% in IVCD, 48±16% in RBBB, 47±16% in those without a block, P<0.001).  

 Overall mortality during the 5 years of follow-up in the derivation cohort was 

62% (497 deaths); it was significantly higher in patients with ADCHF than in those 

with de novo AHF (76% vs. 47%, P<0.001). Patients with any VCB had higher 

mortality than those without a VCB (72% vs. 55%, P<0.001), and any VCB was an 

independent predictor of mortality (adjusted HR 1.4, 95% CI 1.1–1.8, P=0.004). Of 

the different types of VCBs, RBBB and IVCD were independent predictors of 

mortality in the whole patient cohort. The predictive value of RBBB applied for those 

with de novo AHF, while the predictive value of IVCD applied for those with 

ADCHF. These findings were confirmed in the validation cohort (Figure 6). The 

effects on mortality of RBBB in de novo AHF and of IVCD in ADCHF were 

pronounced in patients with impaired systolic function (LVEF<40%) in both the 
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derivation and validation cohorts. 

 In an exploratory analysis in joined cohorts (derivation + validation cohort, 

2493 patients in total), the impact of RBBB on mortality mainly applied to those with 

ACS aetiology of AHF, ACS aetiology being more common in the de novo AHF 

group compared to ADCHF group (204). A trend appeared towards higher incidence 

of CS in patients with RBBB (14%) and ICVD (11%) than in those with LBBB (8%) 

or no VCB (9%, P=0.06). 

                   

           
Figure 5. Proportion of ventricular conduction blocks in patients with AHF (Study I, 

two upper rows) and CS (Study II, lowest row). Hemiblocks were not registered in 

patients with AHF (Study I); they are included in IVCD group, if QRS width was 

≥110 ms. 
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Figure 6. Hazard ratios (♦) with 95% confidential intervals (lines) for increased long-

term mortality of ventricular conduction blocks in de novo AHF and in ADCHF in the 

derivation and validation cohorts of Study I. 

 

5.3 VENTRICULAR CONDUCTION BLOCKS IN ACS-

RELATED CS (STUDY II) 

5.3.1 VENTRICULAR CONDUCTION BLOCKS IN BASELINE ECG  

In the 199 patients with ACS-related CS, half (100 patients) had a VCB in their 

baseline ECG (Figure 5). Patients with a VCB were older (69±11 vs. 65±11 years, 

P=0.007), had lower LVEF (33±14% vs. 38±14%, P=0.021), and had more often the 

left main artery as the infarct-related artery (20% vs. 4%, P=0.001) than did patients 

without a VCB. Patients with a VCB in their baseline ECG had over two-fold higher 

1-year mortality than did those without VCB (68% vs. 32%, P<0.001). Having any 

VCB in baseline ECG was a predictor of mortality independent of baseline variables 
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(adjusted HR 2.01, 95% CI 1.25–3.23, P=0.004) and of coronary angiography 

findings (adjusted HR 1.97, 95% CI 1.21–3.21, P=0.006). Each type of VCB in 

baseline ECG was associated with increased one-year mortality in univariate analyses, 

with borderline significance (P<0.10) in the two multivariable models, except for 

IVCD when adjusted for coronary angiogram findings (Figure 7). 

 
 
 

 
Figure 7. In patients with ACS-related CS (Study II), hazard ratios (♦) with 95% 

confidential intervals (lines) for increased 1-year mortality association with each type 

of ventricular conduction block in the baseline electrocardiogram (ECG) (top 5 rows) 

and of the block evolution from baseline to day 3 ECG (stable and unstable block). 

Modified with permission from Study II (205). 
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5.3.2 TEMPORAL EVOLUTION OF VENTRICULAR CONDUCTION 

BLOCKS 

Deaths within the first 3 days of CS numbered 32 (16%). Of the 132 patients alive on 

the third day, 60 (45%) had no VCB either at baseline or in day-3 ECG (=never 

block); in 33 (25%) the same type of VCB was present in the baseline ECG and in 

day-3 ECG (=persistent block), while in 26 (19%), the block present at baseline had 

disappeared at day 3, and in 10 patients (8%) the block present in baseline ECG had 

changed to another type of block. In other words, of all the 100 patients having a 

VCB in their baseline ECG, only one third had the same block in the day-3 ECG, and 

in another third of patients the VCB seen in the baseline ECG had either disappeared 

or changed (Figure 8). The remaining 20% of patients died before day 3, or had no 

day-3 ECG available. 

Compared to patients who had no block (at baseline nor at day 3 ECG), the 

patients with a persistent block were older (70±11 vs. 64±10 years, P=0.037) and had 

higher peak NT-proBNP levels, whereas patients with a transient block had less 

frequent comorbidities, higher prevalence of left main as the infarct-related artery, 

and particularly high peak hs-TnT and sST2 levels. Interestingly, one-year mortality 

was higher in those with a transient block (69%) and in those the block changed 

(60%), compared with those with persistent (42%) or no block (20%, P<0.001). An 

“unstable block” (block that disappeared or changed) was a strong independent 

predictor of one-year mortality (Figure 7).  According to the investigator-reported 

cause of death three sudden cardiac deaths occurred during one year of follow-up.  All 

of the three patients had a VCB in their baseline ECG. One patient died before day 3, 

the other two had the same block in the day-3 ECG as in baseline ECG.   

The baseline block was present in the retrospectively searched previous ECG 

(available in 42% of searched patients) in 40% (4/10) of those with persistent block, 

in 20% (1/5) in those in which the block changed, and in none (0/10) of those with a 

transient block. 
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Figure 8. Evolution of ventricular conduction blocks from baseline to day-3 

electrocardiogram (ECG) in cardiogenic shock caused by acute coronary syndrome 

(Study II).  

 

5.4 BIOMARKERS IN CS (STUDIES III, IV) 

5.4.1 SOLUBLE ST2 AND NT-PROBNP 

Plasma levels of sST2 and NT-proBNP were higher in non-survivors than in survivors 

during the whole study period (Figure 9). Peak levels of sST2 were observable at 12 

hours, and peak levels of NT-proBNP at 36 hours. Decreasing levels of both 

biomarkers after 12 hours were associated with better survival. sST2 levels were 

moderately correlated with NT-proBNP levels (ρ=–0.34; P<0.001). Both sST2 and 

NT-proBNP levels measured at 12 hours showed an at least moderate correlation 

(ρ>0.3) with higher lactate levels and with worse renal function at 12 hours. In 

addition, higher sST2 correlated (ρ>0.3) with higher hs-TnT, higher C-reactive 

protein, higher liver enzymes levels, higher central venous pressure, and lower 



 

60 

cardiac index, whereas NT-proBNP correlated with older age and higher pulmonary 

artery pressures, and weakly (0.2<ρ<0.3) with lower LVEF and with lower albumin 

concentrations. 

 

 
Figure 9. Kinetics of sST2, NT-proBNP, lactate, and Bio-ADM in survivors (white 

boxes) and non-survivors (grey boxes) during the study period. Reproduced with 

permission from Studies III and IV(206, 207). In the top two boxes, a dotted line 

depicts the chosen cut-off value for high- and low-risk groups for sST2 (500 ng/mL) 

and NT-proBNP (4500 ng/L), in the lower boxes, the dashed line depicts the upper 

normal limit of lactate (2 mmol/L) and bio-ADM (43 pg/mL). 
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5.4.2 PROGNOSTIC VALUE OF SOLUBLE ST2 AND NT-PROBNP  

The prognostic value of sST2 in the time-course of the study period differed from that 

of NT-proBNP (Figure 10). Whereas the strongest association of NT-proBNP with 

30-day mortality occurred at 24 hours, the prognostic value of sST2 increased in a 

stepwise manner over the study period. The combination of sST2 and NT-proBNP 

had the strongest prognostic value relative to any of the biomarkers alone. The 

prognostic value of hs-TnT was not superior to that of sST2 or NT-proBNP at any 

time point (10).  

 The patients were categorized into three risk categories according to optimal 

cut-off values for sST2 and NT-proBNP defined by ROC-curve analysis (500 ng/mL 

for sST2 with a sensitivity of 0.80 and specificity of 0.55; 4,500 ng/L for NT-proBNP 

with a sensitivity of 0.67 and specificity of 0.70). Risk categories were: both 

biomarkers high (above cut-off level, high-risk group), either biomarker high (one of 

the biomarkers above cut-off level, intermediate-risk group), or both biomarkers low 

(below cut-off level, low-risk group). Based on biomarker levels measured at 12 

hours, 25% of patients were in the low-risk group, 46% in the intermediate risk group, 

and 29% in the high-risk group. This categorization, with its fixed cut-off values of 

500 ng/mL for sST2 and 4,500 ng/L for NT-proBNP, showed good discrimination for 

30-day mortality when the biomarkers were measured at 12 hours, or at any time-

point thereafter (Figure 11).  

 The prognostic value provided by this categorization was independent of the 

CardShock risk score and of peak value of hs-TnT (adjusted HR 2.0; 95% CI, 1.2–

3.5; P=0.01) when biomarkers were measured at 12 hours, and at almost all time-

points thereafter. When added to the CardShock risk score, the patient categorization 

based on levels of sST2 and NT-proBNP at 12 hours significantly improved the risk-

classification of patients (integrated discrimination improvement of 11%). 
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Figure 10. Time-course of the prognostic value of each of the biomarkers or their 

combination for increased short-term mortality in cardiogenic shock. Reproduced 

with permission from (206) and (207) (Studies III and IV). AUC = area under receiver 

operating characteristics curve, for predicting short-term mortality. 
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Figure 11. Thirty-day mortality based on levels of sST2 and NT-proBNP when 

measured 0-96 hours from the detection of cardiogenic shock. Reproduced with 

permission from Study III (206). 

 

5.4.3 BIO-ADRENOMEDULLIN AND LACTATE 

Levels both of plasma bio-ADM and of arterial blood lactate were higher in non-

survivors than in survivors during the whole study period (Figure 9). The highest 

lactate levels occurred at baseline both in survivors and non-survivors (2.2 and 5.0 

mmol/L, P<0.0001). Median levels of lactate returned to normal values within 12 

hours in survivors and within 24 hours in non-survivors, so that at 24 hours the 

majority of all patients had normal lactate levels. In contrast, bio-ADM levels 

continued to be highly elevated during the whole study period in non-survivors, but 

remained close to the upper normal limit (43 pg/mL) in survivors. Normalization of 

the levels of both lactate and bio-ADM was associated with a decrease in mortality 

risk, while a continuing high concentration or increasing concentrations were 

associated with high mortality risk. Both serial bio-ADM and serial lactate measures 

were associated with increased 90-day mortality independently of the CardShock risk 

score in time-dependent Cox Proportional Hazard analysis (P<0.001 for both). 
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 Reflecting the kinetics, the prognostic value of lactate and bio-ADM were 

divergent in their time-course. Lactate was of high prognostic value (AUC 0.78 to 

0.75 for mortality) during the first 24 hours, but its prognostic value rapidly decreased 

thereafter, whereas the prognostic value of Bio-ADM began increasing at 48 hours. 

When measured at 48 hours, patients with high levels of bio-ADM (>55.7 pg/mL) had 

significantly higher 90-day mortality than did those with low levels (49% vs. 21%, 

P=0.001) 

 High levels of bio-ADM (>55.7 pg/mL) during the study period were 

associated with impaired systemic and intracardiac pressures (lower mean arterial 

pressure, lower cardiac index, higher central venous pressure, and higher systolic 

pulmonary artery pressure, whereas high lactate levels were significantly associated 

only with lower mean arterial pressure and lower cardiac index  (Figure 12). In 

addition, high bio-ADM levels at 48-96 hours, were associated with persistently 

impaired systemic haemodynamics (lower cardiac index, higher CVP) as well as liver 

and kidney dysfunction. Patients with high levels of lactate during the study period 

had more frequently use of adrenaline than did those with low levels of lactate (30% 

vs. 8%, P<0.001). Patients with high levels of bio-ADM during the study period also 

more likely had use of adrenaline (29% vs. 5%, P<0.001) as well as use of three or 

more vasopressors (34% vs. 13%, P=0.001) than did those with low levels of Bio-

ADM. 
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Figure 12. Haemodynamic parameters of patients with low or high lactate and bio-

ADM levels during the study period (0-96 hours). MAP = mean arterial pressure, 

CVP = central venous pressure, sPAP = systolic pulmonary artery pressure, PCWP = 

pulmonary capillary wedge pressure. 
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5.5 MULTIMARKER TESTING IN CS 

By reflecting differing pathological processes, the prognostic markers evaluated here 

conferred additive prognostic information. In an exploratory analysis of the whole 

CardShock study cohort, categorizing patients according to the number of prognostic 

markers presented here (a VCB at baseline, baseline lactate >2.8 mmol/L, sST2 level 

>500 ng/mL at 12 hours, NT-proBNP >4500 ng/L at 12 hours, and median bio-ADM 

level >55.7 pg/mL during the study period), one-year mortality increased in a step-

wise manner with increasing number of prognostic markers (Figure 13). Distribution 

of patients with differing combinations of risk markers was well balanced, the largest 

groups being those including a VCB and elevated sST2 or lactate (5-6% of all patients 

in each group; data not shown).  

 Table 4 shows baseline characteristics and the therapeutic approach in patients 

identified as high-risk by each single marker. Mean age, CardShock risk score, and 

left ventricular function in patients of each high-risk group were similar. Patients with 

high baseline lactate levels or high levels of bio-ADM were aggressively treated 

(vasoactives, mechanical support, and mechanical ventilation commonly used). 

Patients with high levels of NT-proBNP relatively often had comorbidities. 
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A VCB 
 

High 
Lactate 

High 
sST2 

High NT-
proBNP 

High bio-
ADM 

  (n=81) (n=72) (n=90) (n=74) (n=79) 
Mean age, years 68 (11) 69 (11) 68 (11) 70 (11) 69 (11) 
Men, % 78 76 76 70 72 
Hypertension, % 67 69 67 68 66 
Diabetes, % 33 38 30 38 34 
Previous MI, % 26 28 24 34 27 
Previous HF, % 21 20 17 26 20 
ACS, % 75 81 78 72 76 
STEMI, % 62 71 66 58 65 
CardShock risk score, 
mean (SD) 5 (2) 5 (2) 5 (2) 5 (2) 5 (2) 

LVEF at baseline, mean 
(SD) 31 (13) 31 (12) 31 (13) 31 (14) 31 (12) 

LVEF on day, mean 
(SD) 34 (13) 33 (11) 34 (13) 33 (13) 33 (11) 

3-vessel disease, % 29 36 26 40 35 
Culprit LM or LAD, % 59 53 53 67 56 
Final TIMI <3, % 41 35 34 33 44 
Epinephrine use, % 18 22 18 13 24 
Vasoactives ≥3, % 26 28 26 24 32 
IABP, % 56 58 61 58 54 
LVAD or ECMO, % 5 4 4 3 5 
Invasive ventilation, % 70 72 72 60 68 

 

Table 4. Characteristics of patients from the CardShock cohort with each high-risk 

marker. Mean (standard deviation, SD) or percentage of patients for dichotomous 

variables. MI = myocardial infarction, HF = heart failure, LM = left main, IABP = 

intra aortic balloon pump, LVAD = left ventricular assist device, ECMO = 

extracorporeal membrane oxygenation. 
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Figure 13. One-year mortality of patients from the CardShock cohort with 0 to 5 of 

the prognostic markers. Markers: Lactate >2.8 mml/L (median) at baseline, any 

conduction block at baseline, sST2>500 ng/mL at 12 hours, NT-proBNP>4500 ng/L 

at 12 hours, median Bio-ADM>55.7 pg/mL during the study period. 
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6 DISCUSSION 

The results presented here highlight several novel prognostic markers in AHF and 

particularly in CS, the most severe form of AHF. Studies I and II showed that 

ventricular conduction abnormalities are predictors of poor outcome both in AHF and 

ACS-related CS. Studies III and IV presented two novel biomarkers, sST2 and bio-

ADM that show prognostic value beyond clinical risk markers in patients with CS, 

and they may aid in risk stratification and patient profiling. 

 Accurate patient profiling and risk stratification are essential to guide 

therapeutic decisions of patients with AHF and CS, in efforts to improve outcomes 

(repeated hospitalizations, mortality) and save health care resources. Recognition of 

markers that associate with specific clinical scenarios, or portend poor outcome may 

support timely choice of specific therapies to halt maladaptive and self-nourishing 

cascades leading to further cardiomyocyte loss and end-organ dysfunction. Although 

few therapies in AHF have proven to bring survival benefit, high-risk patients may 

benefit from more intensive surveillance (cardiac or intensive care unit setting), and 

follow-up after hospitalization. Correct risk stratification of AHF patients may also 

improve allocation of resources, avoiding overtreatment of low-risk subjects and 

early/inappropriate discharge of high-risk patients.  

 Early risk stratification is particularly important in CS. Although CS is 

associated with very high early mortality, many of its pathophysiological 

derangements may be reversible, with those surviving the acute phase often having 

long-term survival with good quality of life (11). It seems that to increase survival, 

advanced therapies, such as circulatory support devices should be started early, prior 

to irreversible end-organ dysfunction (75, 208). Thus, objective and easily 

reproducible tools are vital to guide and support clinical decisions concerning 

advanced therapies in early-phase CS. Moreover, recognition of markers that identify 

advanced stages of shock, stages when restoring cardiac function may not reverse 

end-organ failure, can help more objectively to guide clinicians in the difficult process 

of limiting therapeutic effort.  
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6.1 ELECTROCARDIOGRAPHIC PREDICTORS OF 

MORTALITY IN AHF 

Although VCBs are common in heart failure, there have been surprisingly few studies 

of VCBs in AHF, and their role with regard to outcome has been inconsistent (156-

158). This heterogeneity probably stems, at least in part, from the differences in the 

characteristics of the studied patient population and in duration of follow-up. 

Specifically, our analysis showed in a large multinational cohort of AHF that the 

impact of VCB on mortality differed considerably between patients with de novo 

AHF and those with ADCHF. We showed that RBBB in the baseline ECG was 

associated with an almost two-fold increase in long-term mortality in patients with de 

novo AHF but had neutral impact in ADCHF; whereas IVCD was associated with an 

almost 30% mortality increase in patients with ADCHF but had a neutral effect in 

those with de novo AHF. 

Characteristics of patients with de novo AHF differ from those with ADCHF 

(209) with, for instance, impairment of left ventricular function raising mortality rates 

only in ADCHF and not in de novo AHF (210). Nevertheless, in our study, the impact 

on mortality of RBBB in de novo AHF was pronounced in those with poor left 

ventricular function (LVEF < 40%). Furthermore, the effect of RBBB mainly applied 

to those with ACS aetiology. In chronic heart failure, RBBB has been associated with 

increased pulmonary artery pressure (211) and right ventricle dysfunction (155). 

Right ventricular failure is recognized as an independent prognostic marker in both 

chronic heart failure (212) and in AHF (213). RBBB in manifest left ventricular 

failure may, therefore, serve as a marker of more severely impaired left ventricular 

function, or biventricular failure through a left-right ventricular coupling mechanism, 

with constantly high pulmonary pressures that negatively impact long-term prognosis. 

Following our publication, an association of RBBB with increased mortality in AHF 

patients was also reported in an Asian cohort (214). Study I also showed that LBBB 

and IVCD were significantly more prevalent in patients with ADCHF than in those 

with de novo AHF. Our findings of IVCD as an independent predictor of mortality in 

ADCHF – predominantly in those with severely impaired left ventricular function – 

are in line with the well-established fact that QRS prolongation associates with 

increased mortality in chronic heart failure with reduced LVEF (164). 
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6.2 ELECTROCARDIOGRAPHIC PREDICTORS OF 

MORTALITY IN CS 

In Study II, as many as half the patients with ACS-related CS presented with a VCB, 

in line with the CS literature (70, 159), but was considerably higher than in AHF or in 

populations with AMI (215). Our prevalence of hemiblocks and IVCDs was 

particularly high, which is a novel finding in CS. Most of the RBBBs coexisted with a 

hemiblock; an isolated RBBB or LBBB was rather uncommon. The relation of bundle 

branch blocks, particularly of RBBB, to increased mortality in CS has been 

recognized (159, 160). Study II confirmed that finding and extended it to apply to all 

types of VCBs. Study II showed that patients presenting with any type of VCB had an 

over two-fold one-year mortality compared to the mortality of those without a VCB. 

Patients with a VCB were older, more frequently had left main disease, and had 

poorer left ventricular function than did those without a VCB. However, the 

predictive value of a VCB was independent of baseline variables, of angiographic 

findings, and of revascularization success.  

In patients surviving until day 3, one-third of the VCBs seen at baseline had 

converted to normal conduction, and an additional 15% had evolved into another 

morphology. In addition to direct ischaemic injury, ventricular wall stress may cause 

intraventricular conduction defects by overstretching the conduction fibres or by 

ischaemia at microvascular level (87, 88). Both these conditions occur in CS, which 

may explain the high prevalence of the transient VCBs. Interestingly, mortality was 

highest in patients with an “unstable” block. Data are scarce on block evolution and 

its effect on survival in CS, but in revascularized AMI patients, persistent conduction 

blocks have been associated with higher mortality than transient blocks have (69, 161, 

169). However, the excess mortality associated with persistent blocks seemed to 

influence only the very early in-hospital mortality. In our study, block evolution was 

only recorded after 3 days from baseline, thus allowing more time for block reversal, 

and those that died before day 3 were excluded from the analyses; this may explain, at 

least in part, the discrepancy with studies in patients with AMI (69, 161, 169). 

Furthermore, the independent association of VCBs with disease severity and poor 

outcome in AMI mainly applied to new-onset blocks (98, 215). Since blocks of recent 

onset are more likely to revert to normal conduction than do pre-existing blocks (168, 



 

72 

216), the transient VCBs in our cohort probably were of new onset, thus reflecting the 

severity of acute-phase myocardial damage. This assumption is supported by 

particularly high peak troponin and sST2 levels in those patients with a transient 

block who were also relative young with rather few comorbidities. Furthermore, none 

of the transient blocks were present in the few previous ECGs that were available. 

Since concomitant QRS complex alterations indicate more severe ischaemia 

and faster progression of irreversible myocardial necrosis than do lone ST deviations 

(93, 94), the negative effect on survival of VCBs, even if transient, may be explained 

by more severe and extensive ischaemia. In addition to infarct localization, poor 

collateral circulation and lack of preconditioning probably affect the degree of 

damage to the myocardium and to the conduction system, despite active and timely 

revascularization of the infarct-related artery. The ischaemic scars create regions of 

slowed ventricular conduction and provide a substrate for re-entrant post-infarction 

arrhythmias (85, 92, 217). Patients with heart failure in general are at high risk for 

sudden death due to ventricular arrhythmias; after myocardial infarction, remodelling 

of the left ventricle is related to cardiac electrical instability, which predicts sudden 

death (56, 218, 219). In Study II, patients with a VCB, and particularly those with an 

unstable VCB, had high levels of sST2, which is also associated with adverse 

remodelling and scar-tissue formation (220, 221). The findings of Study II in ACS-

related CS thus suggest that VCBs, stable or unstable, may prove to be markers of 

extensive myocardial injury and adverse remodelling that both lead to scar tissue 

formation and poor prognosis. 

 

6.3 BIOMARKER-BASED RISK ASSESSMENT IN CS 

We showed that high levels of sST2, NT-proBNP, bio-ADM, and lactate are all 

associated with increased mortality in CS. Each of these biomarkers was associated 

with different clinical manifestations, reflecting differing pathological processes and 

differing risk profiles. High levels of sST2 correlated with large infarctions and 

inflammatory markers, NT-proBNP was associated with congestion, lactate reflected 

hypoperfusion, and high bio-ADM levels were associated with persisting 

haemodynamic instability and high filling pressures. All of these factors: 
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hypoperfusion, congestion, and inflammation, are major contributors to the 

perpetuation of cardiac and end-organ dysfunction in CS (36), providing a rationale 

for their synergistic association with poor outcome. 

 

6.3.1 BIOCHEMICAL PATHWAYS OF CARDIAC STRESS - SOLUBLE 

ST2 AND NT-PROBNP 

Study III showed that high levels of both sST2 and NT-proBNP were predictive of 

mortality, and the predictive value of each was additive to that of the other. The 

kinetics of sST2 was similar to that of troponin, rising sharply after the onset of shock 

with a peak value at 12 hours and then decreasing, whereas the peak value of NT-

proBNP occurred later, at 36 hours. Starting at 12 hours, the combined measurement 

of sST2 and NT-proBNP had very strong prognostic value for short-term mortality. 

Based on the levels of these two biomarkers, patients could be stratified into three risk 

categories with markedly distinct outcomes. Furthermore, a lack of a decrease in 

concentration of both sST2 and NT-proBNP during the study period was associated 

with poor prognosis, in line with findings in AHF and chronic heart failure (182, 188). 

The predictive value of sST2 has complemented the predictive value provided by 

natriuretic peptides in studies with AHF (188) and AMI (189). After myocardial 

infarction, even after successful revascularization, the degree of cardiac structural 

remodelling is a major determinant of later outcome (222, 223).  Myocardial 

infarction triggers an inflammatory response in the infarcted area, leading to collagen 

formation and deposition that result in scarring of the ischaemic zone (222). sST2 

levels seem to reflect the degree of structural remodelling mediated by active 

processes of inflammation, fibrosis, and cardiomyocyte cell death occurring over the 

weeks and months after myocardial infarction (220, 221). Natriuretic peptides are 

another marker of remodelling after myocardial infarction and a surrogate of 

ventricular wall stress; they are powerful predictors of later left ventricular dilation 

(224). In Study III on ACS-related CS, high sST2 levels were associated with 

inflammatory markers, high troponin, and markers of end-organ dysfunction 

(impaired renal function and high liver enzymes), whereas high NT-proBNP levels 

were associated with markers of congestion and volume overload (higher pulmonary 

pressure and lower serum albumin concentration), as well as with lower LVEF. These 
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findings together support the concept that, in patients with ACS-related CS, sST2 and 

NT-proBNP reflect distinct pathways of cardiac stress and of end-organ dysfunction, 

explaining the strong and additive prognostic value of these biomarkers. 

 

6.3.2 HAEMODYNAMIC ALTERATIONS AND BIOMARKES 

The prognostic value provided by lactate in CS (225), when measured during the first 

24 hours, was confirmed in Study IV. At 24 hours, however, most patients had a 

normal lactate level irrespective of later outcome, and the prognostic value of lactate 

decreased significantly thereafter. In contrast, levels of bio-ADM remained elevated 

in non-survivors during the whole study period, and bio-ADM was of increasing 

prognostic value starting at 48 hours after onset of shock. Patients with high levels of 

bio-ADM at 48 hours had over two-fold higher mortality compared to those with 

lower levels; higher levels also reflected haemodynamic instability, high filling 

pressures, and need for aggressive vasoactive medication in line with experimental 

studies (128) and findings in patients with septic shock (18, 226). Adrenomedullin is 

secreted mainly by vascular cells in response to cytokines and activated neurohumoral 

cascades. Although adrenomedullin production is primarily an adaptive mechanism in 

heart failure, when excessively produced in refractory cardiogenic or septic shock, 

with its vasodilatatory and negative inotropic effects, adrenomedullin may contribute 

to maintenance of the vasoplegic state (54). Indeed, its depiction as a double edged 

sword in septic shock may reflect its role in CS as well. In a conclusion, results of 

Study IV suggest that bio-ADM serves as both a prognostic and a haemodynamic 

marker in CS, with a temporal and hemodynamic profile differing from that of lactate.  
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6.4 CLINICAL IMPLICATIONS 

The prognostic markers presented in this thesis have several clinical implications. 

Firstly, ventricular conduction disturbances, in general, have already received 

increasing attention in AHF and ACS since the publication of Study I, as bundle 

branch blocks (both LBBB and RBBB) were upgraded as an indication for urgent 

revascularization in patients presenting with ACS, equivalent to STEMI, in the latest 

ESC guidelines for myocardial infarction in 2017 (50). Since all patients with CS are 

treated with emergency revascularization, the information provided by baseline 

blocks in CS may have few implications for revascularisation decisions. However, the 

fact that block reversal was prevalent and was associated with the highest risk of 

death may call for specific attention to conduction disturbances on the ECG. 

Evaluation of repeated ECG recordings and comparison to findings on ECG at 

admission is necessary, in particular when the patient's previous ECG is not available 

for the attending clinician, as is often the case in tertiary care centres where CS 

patients are treated. Patients with reversible ventricular conduction disturbances 

should be candidates for closer monitoring; we advocate evaluating those patients in 

greater detail before discharge.  

Secondly, the novel biomarkers presented here may provide objective tools 

useful in addition to clinical assessment in risk stratification of patients with CS; and 

moreover, in tailoring a patient-specific therapeutic approach. To restore 

haemodynamics impaired due to both cardiac dysfunction and a vasodepressive state 

in CS, fluid resuscitation, vasoactive medication and mechanical circulatory support 

are used. Current vasoactive medications (vasopressors and inotropes) have, however, 

detrimental side-effects in particular with prolonged use (74, 81), and little guidance 

is available for the choice or timing of therapies. Current CS guidelines and consensus 

papers advise use of vasopressors and inotropes in their lowest therapeutic dose for 

the shortest possible time (19, 43, 59). In cases refractory to medical stabilization, 

short-term mechanical circulatory support is increasingly the choice, although their 

definitive benefit has not been confirmed (76). Such advanced therapies should be 

considered when initial treatment fails to stabilize haemodynamics, before irreversible 

end-organ dysfunction occurs (59). Due to lack of objective measures of disease 

severity, the decision to escalate therapy, in clinical practice, remains challenging. In 

the early stages of shock, recognition of VCBs or high levels of sST2 and NT-
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proBNP may help to identify patients at a particularly high mortality risk who may 

benefit from an early aggressive therapeutic approach, such as mechanical circulatory 

support. Further, evaluation of bio-ADM levels during intensive care may help to 

identify patients developing systemic inflammatory responses leading to a vasoplegic 

state that may require multiple vasopressor therapy or may be refractory to medical 

stabilization (54). Thus, measurement of bio-ADM levels may aid in guiding the 

therapeutic approach in patients with sustained CS after the early phase of 

management, either for escalation of therapy to prevent development of irreversible 

end-organ injury, or for supporting the difficult process of limiting therapeutic effort 

and the transition to palliative care.  

 

6.5 FUTURE DIRECTIONS 

Further research is essential for validation in other cohorts of AHF and CS of the 

prognostic markers presented here, and to further test whether these markers in risk 

stratification is associated with improved therapy allocation and survival. 

In addition to the prognostic yield of the biomarkers presented here, the 

recognized biomarker pathways in the pathogenesis of AHF and CS may come to 

serve as therapeutic targets in future. Interestingly, patients with transient blocks had 

the highest levels of sST2, a marker of fibrosis, which in turn is known to be 

associated with higher mortality, particularly from arrhythmic causes in AMI patients. 

More research should focus on patients with dynamic conduction abnormalities, 

discovering whether those patients are at higher risk of experiencing sudden 

arrhythmic death, even if left ventricular function improves in follow-up. These 

observations may, in future, have an impact on the evaluation of candidates for 

antiarrhythmic therapies such as implantable or wearable ICDs, of which criteria are 

currently under review; new tools are needed for more accurate prediction of 

arrhythmic events to attain the potential benefit of those devices (227, 228).  

As sST2 appears as a marker of adverse remodelling and a predictor of 

myocardial fibrosis, elevated levels of sST2, particularly if sustained, may reveal a 

therapeutic window for treatment directed against myocardial fibrosis. As a marker of 

the vasodilatative state, the levels of bio-ADM may help in guiding therapy with 
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vasoactive agents. Currently, human studies on patients with septic shock involve 

infusion of new humanized antiadrenomedullin antibody Adrecizumab, which may 

counteract the negative effects on haemodynamic instability of the disproportionately 

up-regulated adrenomedullin axis (Clinical Trials NCT03085758). Whether this 

proves safe and beneficial, it is plausible that patients with refractory CS could benefit 

from a similar approach. 

Finally, more objective risk stratification may also improve patient profiling 

for design of trials of advanced therapies, both novel medications and mechanical 

circulatory support devices, with regards to improving response rate and achieving 

novel therapies that show evidence of survival benefit. 
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7 CONCLUSIONS 

This thesis identified markers associated with poor outcome in AHF and CS. These 

markers may aid in guiding patient management in clinical practice. Assessment of 

ventricular conduction abnormalities on the ECG is routinely available in patients 

presenting with AHF or CS. RBBB and IVCD were associated with increased 

mortality in patients with AHF; RBBB particularly in those with de-novo AHF, and 

IVCD in those with ADCHF. In patients with ACS-related CS, ventricular conduction 

abnormalities were surprisingly common, and each was associated with poor 

outcome. CS patients with a transient block had the highest mortality; those patients 

also had the highest levels of troponin and of sST2, a marker of remodelling and 

fibrosis.   

Our biomarker studies evaluated novel biomarkers in the setting of CS. 

Earlier observations on the additive prognostic value of sST2 to NT-proBNP in 

AHF and AMI were now, to our knowledge, demonstrated for the first time, in 

ACS-related CS. These two biomarkers could stratify patients into three risk 

categories with markedly different 30-day outcomes when measured at 12 hours 

after shock onset, or later. Furthermore, the prognostic value of sST2 and NT-

proBNP was additive to that provided by troponin and by clinical variables. Bio-

ADM had independent prognostic value in CS, with a time profile differing from 

that of lactate. Although in routine use in clinical practice, the prognostic value of 

lactate decreased significantly after the first 24 hours, and the association of bio-

ADM with impaired haemodymics outperformed that of lactate. These findings 

suggest that measurement of these novel biomarkers, sST2 and bio-ADM, could be 

added to CS evaluation in clinical practice to support clinical decision-making 

regarding the therapeutic approach. Whether risk estimation based on ventricular 

conduction abnormalities, sST2, NT-proBNP, and bio-ADM levels helps to 

optimize therapies and improve outcomes requires further investigation. 
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