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ABSTRACT

Background. Biliary atresia (BA) is a destructive, obliterative fibroinflammatory 
cholangiopathy of infancy, affecting around 1 in 20 000 newborns a year. Despite 
successful surgical restoration of bile flow by portoenterostomy (PE), liver fibrosis 
progresses into liver failure and the need for liver transplantation (LTx) before 
adulthood in most patients. Pathogenesis underlying progressive liver fibrosis after 
successful PE is unclear. 

Aims. The aim of this study was to investigate the molecular mechanisms 
underlying persistent liver fibrogenesis after successful PE and to address the 
predictors of outcomes.

Patients and methods. Three cross-sectional studies investigated gene and 
protein expression of liver biopsies and serum levels of profibrogenic growth factors, 
proinflammatory cytokines and extracellular matrix mediators from 25–28 BA 
patients treated in Helsinki University Hospital between 1991 and 2013, taken 
at PE and over three years of follow-up after successful operation. The change in 
survival rates before and after centralization and predictive values were analyzed 
in BA patients treated in Helsinki between 1987 and 2016 (n=61).

Results. During three years following successful PE, serum bilirubin levels 
remained low [median 10 (interquartile range 4–17) µmol/L]. Despite the 
resolution of histologic cholestasis and reduction in inflammation, liver fibrosis 
persisted. Ductular proliferation prevailed and periportal hepatocyte cytokeratin 
7 immunopositivity, indicating hepatocyte-to-cholangiocyte metaplasia, increased. 
If clearance of jaundice (COJ) was not achieved, both histologic cholestasis and 
inflammation persisted, and progression of liver fibrosis was faster.

Of the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) 
studied, MMP-7 was uniquely upregulated in BA when compared to both non-
fibrotic and fibrotic control biopsies at protein, gene and serum levels. MMP-7 
localized to the biliary epithelium and was related to liver fibrosis stage. Serum 
MMP-7 showed significant predictive value for portal fibrosis after successful PE. 

Protein expression of collagen 1, alfa-smooth muscle actin (α-SMA, indicator 
of activated myofibroblasts), transforming growth factor-beta (TGF-β)-1, TGF-β2, 
decorin and connective tissue growth factor (CTGF) were all increased at PE 
and at follow-up compared to non-fibrotic controls. After successful PE, protein 
expression of TGF-β1 and CTGF, but not that of decorin or TGF-β2, decreased. 
Both protein and gene expression of TGF-β1 and protein expression of TGF-β2 
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correlated with Metavir fibrosis stage. At PE, all patients had periductal α-SMA 
protein expression, but it persisted in 64% at follow-up and was associated with 
the progression of fibrosis and ductal reactions, and serum bilirubin and bile acid 
levels. Gene expression of platelet-derived growth factor (PDGF) was elevated 
compared to fibrotic and non-fibrotic controls, and it correlated with α-SMA and 
collagen expression. Gene expression of proinflammatory cytokines (interleukins, 
tumor necrosis alfa and interferon gamma) was decreased or comparable when 
compared to fibrotic and non-fibrotic controls.

Syndromic patients (43%) showed less progressive fibrosis and ductal 
proliferation and decreased expression of TGF-β1, α-SMA and MMP-7 when 
compared with isolated patients.

After the centralization of treatment in Helsinki (2005), the median caseload 
increased from 1 to 3–4 per year. There was an increase in COJ rate from 42% 
to 80%, a five-year native liver survival from 38% to 70%, and a five-year overall 
survival rate from 68% to 94%. In multivariate analysis, the only predictor of COJ 
was high-grade portal inflammation at PE, and the normalization of bilirubin 
within 3 months predicted native liver survival. Cytokeratin-7 immunopositivity of 
periportal hepatocytes was the only predictor of follow-up liver fibrosis in multiple 
regression analysis.

Conclusions. After successful PE, a molecular signature of active fibrogenesis 
prevails, while histologic portal inflammation and expression of proinflammatory 
cytokines decreases. An increased hepatic expression of MMP-7 is unique to BA 
and offers a potential follow-up and therapeutic target to extend native liver 
survival after COJ. TGF-β2 and PDGF might be essentially involved with BA liver 
fibrogenesis after cholestasis has resolved. 
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ABSTRAKTI

Tausta. Sappitieatresia on vastasyntyneiden inflammatorinen, sappiteitä tuhoava 
ja tukkiva sairaus, joka hoitamattomana johtaa kuolemaan varhaislapsuudessa. 
Sappitieatresian ilmaantuvuus on 1:20 000 vastasyntynyttä vuodessa, ja se on 
yleisin lasten maksan siirron syy. Huolimatta varhaisesta kirurgisesta leikkaushoi-
dosta, portoenterostomiasta, tauti etenee useimmilla maksakirroosiin ja maksan 
vajaatoimintaan viimeistään aikuisiässä. Maksafibroosin kehittymiseen vaikuttavat 
molekyylitason tekijät ovat huonosti tunnettuja. Patogeneesin ymmärtäminen on 
olennaista tehokkaampien hoitojen kehittämiseksi.

Tavoitteet. Tutkimuksen tavoitteena oli selvittää etenevän maksafibroosin mole-
kyylitason mekanismeja tutkimalla maksan proteiini -ja geeniekspressiota sappi-
tieatresiapotilailta onnistuneen portoenterostomian jälkeen, sekä arvioida hoidon 
tuloksiin vaikuttavia tekijöitä.

Potilaat ja metodit. Kolmessa poikkileikkaustutkimuksessa tarkasteltiin fib-
rogeneettisten ja proinflammatoristen solujen välittäjäainemolekyylien geeni -ja 
proteiiniekspressiota maksabiopsioissa sekä näiden seerumiarvoja Helsingin yli-
opistosairaalassa vuosien 1991 ja 2013 välillä hoidetuilla 25–28 sappitieatresia-
potilaalla. Analyysit tehtiin sekä portoenterostomian aikana, että yli kolme vuotta 
onnistuneen kirurgisen hoidon jälkeen otetuista näytteistä. Hoidon tuloksia ja 
niihin vaikuttavia tekijöitä arvioitiin vertailemalla Helsingin yliopistosairaalassa 
hoidettuja potilaita ennen ja jälkeen vuoden 2005 keskittämispäätöksen (n=61).

Tulokset. Huolimatta histologisen ja biokemiallisen kolestaasin häviämisestä 
onnistuneen portoenterostomian jälkeen, maksafibroosi pysyi ennallaan tai eteni. 
Vaikka sappitieproliferaation määrässä ei tapahtunut muutoksia, periportaalisten 
hepatosyyttien sytokeratiini 7 -immunopositiivisuus, joka viittaa hepatosyytti-ko-
langiosyytti-metaplasiaan, lisääntyi. 

Tutkituista matriksin metalloproteinaaseista (MMP) ja niiden kudosinhibiit-
toreista (TIMP) MMP-7:n määrä maksabiopsioissa geeni -ja proteiinitasolla sekä 
seerumissa oli sappitietatresiassa lisääntynyt voimakkaasti. Maksassa sen ekspres-
sio lokalisoitui kolangiosyytteihin ja oli verrannollinen maksafibroosin asteeseen. 
Seerumin MMP-7 oli tilastollisesti merkitsevä ennustetekijä arvioitaessa portaa-
lialueiden fibroosiastetta onnistuneen portoenterostomian jälkeen.

Kollageeni 1:n, alfa-sileälihasaktiinin (α-SMA, myofibroblastien aktivoitumis-
markkeri), TGF-β-1 ja -2 kasvutekijöiden, dekoriinin ja CTGF -kasvutekijän pro-
teiiniekspressio oli lisääntynyt sekä portoenterostomian että seurannassa. Onnis-
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tuneen portoenterostomian jälkeen TGF-β1:n ja CTGF:n, mutta ei dekoriinin tai 
TGF-β2:n, proteiiniekspressio väheni. TGF-β1:n ja TGF-β2:n ekspressio korreloi 
maksan histologiseen fibroosiin. Portoenterostomian aikana kaikki potilaat ilmen-
sivät α-SMA proteiinia periduktaalialueella, ja sen säilyminen seurannassa (64%) 
assosioitui fibroosin etenemiseen, sappitiproliferaatioon sekä seerumin bilirubiinin 
ja sappihappojen pitoisuuteen. PDGF -kasvutekijän geeniekspressio oli lisääntynyt 
sappitieatresiapotilailla, ja se korreloi α-SMA:n ja kollageenin ekspressioon. Tut-
kittujen proinflammatoristen sytokiinien geeniekspressio oli seurannassa matala.

Potilailla, joilla oli liitännäisanomalioita (43%), fibroosin ja sappitieproliferaa-
tion eteneminen oli lievempää, ja TGF-β1:n, α-SMA:n ja MMP-7:n ekspressio vä-
häisempää verrattuna isoloituihin sappitieatresiapotilaisiin.

Sen jälkeen kun sappitieatresiapotilaiden hoito keskitettiin Helsinkiin vuonna 
2005, vuosittainen potilasmäärä lisääntyi yhdestä 3–4:ään vuodessa. Portoente-
rostomia onnistui ennen keskittämistä 42%:lla ja keskittämisen jälkeen 80%:lla. 
Viiden vuoden kuluttua leikkauksesta omalla maksalla eläviä oli 70% (vs 38% ennen 
keskittämistä) ja kaiken kaikkiaan elossa oli 94% (vs 68%). Multivarianttianalyy-
sissä ainoa onnistunutta portoenterostomiaa ennustava tekijä oli korkea-asteinen 
portaalialueiden inflammaatio protenterostomian aikana, ja bilirubiiniarvon nor-
maalistuminen kolmen kuukauden kuluttua leikkauksesta ennusti omalla maksal-
la selviytymistä. Sytokeratiini-7:n immunopositiivisten hepatosyyttien määrä oli 
ainoa seurannan aikaista maksafibroosin astetta ennustava tekijä.  

Johtopäätökset. Onnistuneen portoenterostomian jälkeen fibrogeneettisten 
kasvutekijöiden lisääntynyt ilmentyminen hallitsee etenevää fibroosia samalla kun 
histologinen inflammaatio sekä proinflammatoristen sytokiinien ilmentyminen 
vähenee. MMP-7:n lisääntynyt ilmentyminen on ominaista sappitieatresialle ja 
tarjoaa mahdollisen seurantavälineen sekä anfibrogeneettisten hoitojen kohteen. 
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1 INTRODUCTION

Biliary atresia (BA) is a rare disease of infancy that affects both extra- and 
intrahepatic bile ducts. Obliteration leads to cholestasis and liver failure by the 
age of two years if left untreated [1, 2]. Bile flow can be restored in over 40% of 
patients with a surgical operation called portoenterostomy (PE), but despite that, PE 
is still considered a palliative treatment since most patients will develop progressive 
liver fibrosis and liver failure before adulthood [1, 3]. Despite affecting only 1 in 
20 000 children per year in Europe, BA is the leading indication for pediatric LTx 
worldwide [1]. In Europe, five-year native liver survival rates over 40% and overall 
survival rates over 85% are achieved [4-6]. The most important predictive factors 
for increased native liver survival are clearance of jaundice (COJ) after PE and 
younger age at the time of operation [1].

The molecular mechanisms underlying progressive fibrosis despite successful 
PE and resolution of cholestasis are unknown. At PE, liver histology is dominated 
by cholestasis and inflammation [7, 8]. Postoperative treatment with anti-
inflammatory corticosteroids may enhance COJ but does not affect the native 
liver or overall survival [9]. 

In liver fibrogenesis, the extracellular matrix (ECM), e.g., collagen, accumulates 
in excess due to the activation of alfa-smooth muscle actin (α-SMA) expressing 
hepatic stellate cells and portal myofibroblasts. Transforming growth factor-beta 
(TGF-β) superfamily molecules and platelet-derived growth factor (PDGF) are 
the main profibrogenic growth factors in liver fibrogenesis [10]. Previous studies 
have shown that TGF-β, connective tissue growth factor (CTGF) and PDGF are 
upregulated in BA at the time of PE [11-13]. Of the essential molecules in ECM 
turnover, matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), 
especially MMP-7 expression, have been shown to be increased in BA at the time 
of PE [14, 15]. 

The molecular mechanisms underlying active fibrogenesis after successful PE, 
when biochemical cholestasis is resolved, are still unknown. If these factors were 
unraveled, native liver survival could possibly be pharmacologically extended, and 
the need for LTx would be reduced or delayed. 
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2 REVIEW OF THE LITERATURE

2.1 Biliary atresia (BA) – the fundamentals

2.1.1 Definition, epidemiology and etiology

Biliary atresia is an obliterative fibroinflammatory cholangiopathy of infancy that 
affects both intra- and extrahepatic bile ducts. Their destruction prevents bile flow 
from the liver to the bowel and causes not only cholestasis but also chronic liver 
disease and cirrhosis, ending in liver failure and death if left untreated [1, 2, 16-21]. 
BA is classified into three types depending on the level of the most proximal biliary 
obstruction: in type 1 (around 5% of cases), atresia is in the common bile duct, in 
type 2 (2%) in the common hepatic duct, and in type 3 (the most common form 
at over 90%), the entire extrahepatic biliary duct system is occluded to the level 
of portae hepatis [1, 22] (anatomy shown in Figure 1). The incidence of cholestatic 
jaundice is around 1 in 2500 term infants, and 25–40% are caused by BA, making 
it the most common cause of cholestasis in the first months of life [23, 24]. BA is 
a rare disorder worldwide, but its incidence varies among countries, with lowest 
rates reported in Croatia (1 in 23 600) and the highest in French Polynesia (from 1 
in 3120). In European countries and Canada, the incidence is around 1 in 18 000–
20 000. Figure 2 shows the incidence in different countries, depicted in 10 000 
live births a year [5, 6, 25-36].  

The etiology of BA is largely unknown, and it is thought to be multifactorial. 
The generally accepted view is to see BA as a common phenotype of possibly 
multiple different insults, which can cause neonatal liver and bile ducts to respond 
in a stereotypical fibroinflammatory manner [1, 17, 18, 37-39]. This is called the 
“multiple hit” phenomenon [38]. The possible factors that trigger the pathologic 
response can be environmental, genetic, developmental and immunological [20, 
37]. Environmental factors comprise viruses like reo-, rota-, human papilloma and 
cytomegalovirus with the latter gaining most recent evidence of forming possibly 
even an own entity among BA patients [29]. Different viruses have been detected 
in BA patients’ liver tissue, and a rhesus rotavirus (RRV)–induced mice model has 
been created [2, 19, 20, 37-41]. Observations of hepatobiliary injury in newborn 
lambs after their dams had eaten toxic weed led to the discovery of the toxin, 
called biliatresone, and in following animal studies, that toxin caused selective 
extrahepatic biliary damage in larval zebrafish and mice [2, 16, 19]. However, no 
clear proof of an environmental toxin being the culprit of BA in human beings has 
been found, and firm proof of a causal relationship between a hepatobiliary injury 
and viral infection in BA is lacking [2, 16, 17, 20, 37]. Research on predisposing 
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genetic factors has proposed inactivation or overexpression of numerous genes (for 
example, laterality genes and human leukocyte antigen), but even if the evidence 
suggests that patients probably have a genetic susceptibility to the disease, no 

environmental insult might cause a disturbance in bile duct development, which 
ends up in the pathology of BA. That theory is supported by studies exploring BA 

are part of embryogenesis, but should not appear after bile ducts have matured [2, 
19, 20, 37, 41, 42]. Defects in prenatal hepatic circulation have also been noted but 
no clear causality observed [19, 20, 37]. Increased amounts of activated immune 
cells have been detected in BA livers during the time of diagnosis, and research 

and its causality in the pathogenesis of BA is still unclear [17, 19-21, 43]. It might 

not all, and that it has more impact at earlier stages of the disease [21, 44]. Basic 
research on etiopathogenesis in BA is based extensively on animal models (rodents 
with BA-mimicking disease caused by injection with rhesus rotavirus or bile duct 
ligation) and the BA patients’ liver histology and genetics at the time of PE [2, 19].

Gallbladder 

Duodenum 

Liver 

Stomach 

Common bile duct 

Cystic duct 

Portae hepatis:  

left and right branches of 
common hepatic duct, 
proper hepatic artery, 
and hepatic portal vein  a

Figure 1. Liver and bile duct anatomy. In biliary atresia type 3, the entire extrahepatic biliary duct 
system (common bile duct, cystic duct, gallbladder, common hepatic duct, and left and right hepatic 
ducts) are rudimentary and occluded.
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Figure 2. 

 

 

 

Figure 2. Epidemiology of BA. Incidence in different countries, depicted in 10 000 live births a year. 
Ref [5, 6, 25–36]. 

2.1.2 Isolated and syndromic BA

Epidemiologic studies show that 8–25% of BA patients have congenital anomalies 
[30, 45-51]. Some papers have reported even higher numbers, up to 36%, while 
the lowest comes from Taiwan (3%) [34, 52-54]. BA is classified as isolated (no 
anomalies) or syndromic (at least one other congenital anomaly). The nomenclature 
of embryonic or congenital has also been used as synonyms of syndromic form, 
and perinatal or acquired of isolated form, and they hint to the possibly different 
etiological origins of the two forms. This is based on the hypothesis that other 
non-hepatic congenital anomalies bespeak a defect in embryogenesis and thus a 
common origin, but studies are controversial. Despite the observation of possibly 
different gene expression profilings between those two groups, both syndromic 
and isolated BA have been found to be present antenatally [55-58]. In this study, 
the term syndromic is used for patients with any major anomaly/anomalies and 
isolated for patients without anomalies. 

Some BA patients have a combination of typical anomalies belonging to 
polysplenia syndrome. These include multiple spleens, cardiovascular anomalies, 
intestinal malrotation, situs inversus (i.e., organ transposition through the sagittal 
plane), preduodenal portal vein, interrupted or absent infrahepatic inferior vena 
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cava, atypical hepatic artery anatomy, and organ isomerism or heterotaxy (i.e., 
different arrangement) [57, 59-61]. These anomalies are also referred to as laterality 
sequence anomalies and refer to a common defect in embryogenesis during 
determination of organ laterality and the embryonic midline (around week 5). 
The extrahepatic biliary system arises from the ventral foregut by the same week 
[46, 49, 61, 62]. However, no mutations in typical laterality sequence genes have 
been found in BA patients’ livers [63]. 

The term biliary atresia splenic malformation (BASM) syndrome was 
first introduced in 1993 and referred to a specific group of BA patients with a 
macroscopic splenic abnormality (polysplenia, asplenia or double spleen); usually, 
but not necessarily, it also included another anomaly, typically from the laterality 
sequence group [62, 64]. Epidemiologic studies show that 4–17% of BA patients 
have BASM syndrome [4-6, 25, 30, 32, 45, 46, 50, 65-67]. However, the definition 
of BASM syndrome is not clear and varies among studies since there are BA patients 
with anomalies belonging to the laterality sequence group but without splenic 
anomaly. The term biliary atresia structural malformation has been proposed 
as a better possible representation of this patient group [46, 49, 60, 61]. In this 
study, the original definition is used, i.e., a BA patient has BASM syndrome if 
they have a macroscopic splenic abnormality with or without another congenital 
anomaly [62, 64]. 

Apart from isolated and syndromic BA, two other categories have been proposed 
as their own entities in BA: cystic BA (a cystic change in an otherwise occluded 
extrahepatic biliary tree) and cytomegalovirus-associated BA [22, 40, 68]. In some 
papers, cystic BA and BASM are combined to become developmental BA [31, 69].

2.1.3 Diagnosis
Clinical characteristics of BA are persistent jaundice, pale stools and dark urine in 
the first weeks of life. Patients are usually born at term with normal birth weight and 
an otherwise healthy appearance [1, 22]. Visible jaundice appears when the serum 
bilirubin level rises above 42–51 µmol/L [23]. If jaundice persists for two weeks 
after birth, further evaluation should be done [1, 17, 23]. Laboratory studies show 
elevated total and direct/conjugated bilirubin levels [23]. Preoperative diagnostic 
imaging methods include abdominal ultrasound, hepatobiliary scintigraphy, 
endoscopic retrograde cholangiopancreatography and magnetic resonance 
retrograde cholangiopancreatography, and they are used variably in different 
centers, but neither can reliably diagnose BA [1, 17, 22-24]. Percutaneous liver 
biopsy is the usual diagnostic method of choice in many countries, and it has the 
highest sensitivity (91%) in diagnosing BA, with a specificity of 93% and a diagnostic 
accuracy of up to 92% [70]. The complication rate in percutaneous ultrasound–
guided liver biopsy in children is 0.4–1.7% [70, 71]. If the diagnosis of BA cannot 
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be ruled out after these diagnostic tests, the next step is laparotomy. If possible, 
an intraoperative cholangiography, where the discontinuity of extrahepatic biliary 
tree is confirmed, should be done before performing a portoenterostomy (PE) [1, 
23, 37, 72].

2.1.4 Treatment
Before the 1950s, type 3 BA was called the “uncorrectable biliary atresia” because 
surgical attempts to relieve the biliary obstruction failed, and patients died of 
liver failure by the age of three years [1, 17, 37, 68]. In 1955, Japanese pediatric 
surgeon Morio Kasai developed a new surgical strategy where the remnants of 
the extrahepatic biliary tree are excised up to the level of porta hepatis, which is 
anastomosed to a jejunal Roux-en-Y loop (Figure 3). Portoenterostomy (PE) allows 
the drainage of bile via microscopic remaining ducts. Kasai published his results in 
1959, and the operation became globally accepted as the first line of treatment of 
BA by the 1970s [73, 74]. PE is considered successful when biochemical cholestasis 
resolves postoperatively and serum bilirubin concentration normalizes. This is 
referred to as clearance of jaundice (COJ) [1, 4].

However, despite restoring bile flow and clearing jaundice in 40–60% of cases, 
liver fibrosis advances into cirrhosis, so that 75–80% of patients require liver 
transplantation (LTx) before reaching adulthood [1, 75] (Table 1). In the 1980s, 
LTx was introduced as a second-line treatment option for BA, and it revolutionized 
the overall survival rates (reviewed in section 2.4) [68, 75]. Up to 75% of pediatric 
LTx procedures are performed for BA patients [1]. LTx is indicated if PE has 
not restored bile flow. It is also recommended for patients whose jaundice was 
cleared but whose chronic liver disease proceeds into end-stage liver disease 
with ensuing complications, including recurrent bacterial cholangitis, failure-to-
thrive, portal hypertension, ascites, difficult pruritus, hepatopulmonary syndrome, 
portopulmonary hypertension or hepatorenal syndrome resulting in kidney failure. 
Rare indication for LTx is hepatic malignancy (around 1% of patients) [24, 76, 77]. 
COJ rates significantly fall when PE is done after the age of three months, but 
even one-fourth of those late-operated BA patients can survive without LTx over 
five years, and over 10% reach adolescence with their native livers [76-79]. It has 
been estimated that PE might be a reasonable option for over 95% of BA patients, 
and it might have a protective effect on graft survival when LTx is later performed 
[68, 80]. However, survival after LTx decreases with deterioration in a patient’s 
nutritional status and cholestasis, so correct timing of LTx is crucial [76, 81]. 
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Figure 3. Operative technique of Kasai portoenterostomy. After laparotomy incision and confirmation of 
BA diagnosis, the liver is mobilized, the hepatoduodenal ligament is dissected, the hepatic artery and 
portal vein are identified and fibrous remnants of extrahepatic bile ducts and gall bladder excised (A-B). 
Portae hepatis is widely exposed and the Roux-en-Y-Loop mobilized by dividing jejunum approximately 
10 cm from the Treitz ligament and positioning this 50 cm loop retrocolically to reach the portae hepatis. 
Entero-enterostomy for the ileum is done to the remaining end (C-D). Anastomosis of the jejunal loop 
to the tissue at the porta hepatis is done with a posterior and then an anterior row of sutures (E-F). 
The mesocolic window is closed and then the laparotomy is closed. From Pediatric Surgery Digest, by 
Zacharias Zachariou (Editor), 2009. Reprinted with kind permission from Springer Nature.
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Following PE, adjuvant medical therapy includes ursodeoxycholic acid (UDCA), 
corticosteroids and antibiotics to prevent complications and improve prognosis 
[9]. Corticosteroids could theoretically reduce inflammation and therefore delay 
liver fibrogenesis, but even though data support the beneficial effects of high-dose 
steroid use on the improvement of bile drainage in the early postoperative period, 
no statistically significant difference is seen in native or overall survival [45, 82, 
83]. Taken orally, UDCA is a hydrophilic bile acid with proven efficacy in primary 
biliary cirrhosis and sclerosing cholangitis. Despite having beneficial short-term 
effects also in BA, data advocating its beneficial long-term effects on survival are 
lacking [9, 66, 84]. Antibiotics are given to prevent episodes of cholangitis, but the 
specific drug and duration of treatment vary among countries, and their usage is 
based more on theory and practical experience than on scientific evidence [9, 45, 
66, 85]. Growth failure after PE is associated with worse outcomes, and careful 
nutritional care is important postoperatively [86].

Despite achieving adequate bile drainage in as many as 60% of BA children, of 
which 80% are likely to survive over 10 years with good quality of life, PE is still 
considered a palliative treatment [2, 3]. One-fourth of BA patients will reach their 
20th birthdays with their native livers [6, 87-90]. Although over half of them have 
good quality of life and 11–71% may have normal liver biochemistry, nearly all of 
them have progressive liver fibrosis and develop significant complications related 
to chronic liver disease or liver failure by the age of 30 [3, 88-94]. 

If the progressive liver fibrogenesis could be halted or at least delayed by 
medication, the complication rate would slow down and the need for LTx would 
be reduced or delayed. The driving forces and the molecular mechanisms of ongoing 
liver fibrogenesis despite the restoration of biliary drainage are unknown, but it is 
one of the top priorities in the current BA research field [2, 18, 37, 95].
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Table 1. Outcome of biliary atresia. The national reports with the most recent and/or largest data available.

Table 1. Outcome of biliary atresia. The national reports with the most recent and/or 
largest data available.  

 

 

NA=data not available; a Data as median unless otherwise stated; b Native liver survival 
concerning all patients, and not only those who underwent PE (unless otherwise stated);    
c Only those who underwent PE were included; d After centralization 2005–2010 

Ref Country, 
period  

Number 
of 
patients 
(number 
of PE) 

Age at 
PE 
(days)a 

Clearance 
of 
jaundice 
(%) 

Primary 
LTx (%) 

Native liver 
survival 
(%), yearsb 

Overall 
survival 
(%), years 

[4] England & 
Wales 
1999–2009  

443 (424) 54 55% 3% 46%, 5 y 
40%, 10 y 

90%, 5 y 
89%, 10 y 

[6] France 
1986–2009 
 

1107 
(1044) 

59 38% 4% 40%, 5 y 
36%, 10 y 
32%, 15 y 
30%, 20 y 

81%, 5 y 
80%, 10 y 
79%, 15 y 
78%, 20 y 

[30] Switzerland 
1994–2004 

48 (43) 68 40% 10% 41%, 2 y 
33%, 5 y 

92%, 2 y 
92%, 5 y 

[45] Netherlands 
1987–2008 

231 (214) 59 36% 3% 46%, 4 yc 73%, 4 yc 

[5] Finland 
1987–2010  

72 (64) 
NA (20)d 

64 
(57)d 

42%  
(75%)d 

NA 
 

38%, 2 y 
(75%, 2 y)d 

68%, 2 y 
(92%, 2 y)d 

[36] Sweden  
1987–1997  

85 (NA) NA NA NA 41%, 2 y NA 

[33] Germany 
2001–2005  

183 (159) 57 
(mean) 

NA 11% 20%, 2 y 83%, 2 y 

[25] Croatia  
1992–2006  

29 (28) 66  39% 0% 52%, 5 yc 

39%, 10 yc 
76%, 5 yc 

76%, 10 yc 

[32] Canada  
1985–2002 

349 (312) 65 NA 8% 33%, 4 y 
24%, 10 y 

77%, 4 y 
75%, 10 y 

[50] USA     
2004–2011  

137 (137c) 59 
(mean) 

50% (at 3 
months) 

NAc 54%, 2 y 93%, 2 y 

[35] Japan     
1989–1999  

1381 
(1181) 

NA (23% 
46–60 
days) 

57% 0.2% 60%, 5 y 
53%, 10 y 

75%, 5 y 
67%, 10 y 

[53] Taiwan  
1976–2000  

185 (163) 64 60% 0% 35%, 5 yc 

31%, 10 yc 
42%, 5 yc 

40%, 10 yc 

[199] South Korea 
1995–2009 

72 (59) 70 NA 18% 39%, 10 y 95%, 10 y 

[208] Brazil     
1982–2008  

513 (392) 79  NA 14% 68%, ? y 
(last follow-
up not 
determined) 

37%, 4 y 

[66] Australia 
1999–2014 

29 (25) 68 29% 14% 46%, 5 yc NA 
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2.2 Liver injury in BA

2.2.1 Liver injury at the time of diagnosis
In cholestasis, bile pigment accumulates within bile canaliculi and hepatocytes. 
Accumulating bile acids are toxic to all liver cells, especially hepatocytes. A few 
weeks after bile flow obstruction, hepatocytes become swollen, and Kupffer cells, 
the hepatic macrophages, become congested with bile and assemble in cholestatic 
areas. A distinctive triad of portal changes develops: portal swelling and edema, 
accumulation of inflammatory cells (especially neutrophils), and an increased 
number of irregular bile ducts called ductular reactions. Apoptosis of hepatocytes 
and necrosis develop, which in turn activates hepatic stellate cells (HSCs) to acquire 
myofibroblastic phenotype and liver fibrogenesis—the abnormal accumulation 
of the extracellular matrix (ECM)—begins. Biliary epithelial cells (BECs) also 
contribute to this process by producing fibrogenic cytokines and growth factors. 
In cholestatic conditions, liver fibrosis accumulates first into portal areas. After 
fibrous expansion of portal areas, portal-to-portal bridging septae develop and 
widen, and eventually, strong septae surround and outline groups of hepatocytes 
called hepatic lobules. This last stage is called cirrhosis [7, 96].

Intrahepatic bile ductules are lined by cholangiocytes (i.e., BECs) [97]. Ductal 
(or ductular) reactions are reactive processes that arise at the interface of portal and 
parenchymal areas in acute and chronic liver disease [97, 98]. They are irregular 
ductules without a regular lumen [99]. Their epithelial cells can vary in origin from 
proliferating BECs to intermediate hepatobiliary cells, which have features of both 
BECs and hepatocytes. They can be identified by their expression of cytokeratin 
(CK): bipotent intermediate hepatobiliary cells express CK-19 and CK-7, whereas 
only BECs (and not mature hepatocytes) express CK-7 [100]. Their source may 
vary from local hepatic progenitor cells to hepatocyte-to-cholangiocyte metaplasia 
and bone marrow–derived circulating multipotent stem cells [42, 96-103]. In this 
study, the epithelial cells surrounding bile ducts and ductal reactions are called 
BECs, regardless of their possible origin. Ductal reactions are distinctive to biliary 
obstruction, and they are known to correlate with portal fibrosis; however, the cause-
effect relationship is not established [98, 101, 104]. Ductal plate malformations, 
which are a part of normal bile ductule formation in the developing fetus, are 
commonly observed in BA [8, 42, 105].

Hepatocyte-to-cholangiocyte metaplasia refers to the phenomenon of fully 
matured hepatocytes gaining properties and characteristics usually expressed by 
BECs and forming ductular reactions or even fully functioning bile ductules [42, 
100, 102, 103, 106]. Especially periportal hepatocytes have been shown to express 
CK-7 [42, 102, 103]. However, even though there is evidence of hepatocyte-to-
cholangiocyte metaplasia during normal embryogenesis, some studies question 
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the full metaplasia of mature hepatocytes and suggest instead that these lobular 
CK-7 positive cells should be called periportal progenitor cells [96, 100, 107, 108]. 

In liver biopsies at the time of PE, there is usually a significant inflammatory 
component. Portal tracts are infiltrated with lymphocytes (CD4+ and CD8+ 
T-cells and natural killer cells) and Kupffer cells [7, 43, 109]. Portal areas are 
edematous and ductular cholestasis and ductular reactions are present, while 
fibrosis is concentrated around the portal instead of lobular areas. The amount 
of fibrosis depends on the age of the patient, reflecting the duration of obstruction 
and damaging cholestasis [7, 48, 110-113]. The most accurate histologic findings 
in differential diagnosis are bile plugs in portal bile ducts, moderate to marked 
ductular reaction, portal stromal edema and the absence of lobular fibrosis [110, 
114]. Advanced fibrosis or cirrhosis have been found in 26–81% of hepatic biopsies 
during PE, and most of the rest have moderate fibrosis [48, 66, 115-119]. Ductular 
reactions are abundant and CK-7 positive periportal hepatocytes are present [8, 
117, 120]. 

When liver injury has progressed to end-stage liver failure and the need for 
LTx, histology is dominated by cirrhosis, moderate cholestasis and ductular 
proliferation. However, there is usually only a mild chronic inflammatory cell 
infiltrate in contrast to the time of PE [8, 121].

2.2.2 Liver injury after successful PE
Few studies have examined native liver biopsies after successful PE in patients with 
normal or near-normal bilirubin levels [8, 74, 89, 119, 122-125]. Two papers did 
not compare the control biopsies to the histology at PE: Hadžić et al. examined 
liver biopsies from 16 patients at a median age of 27 months and noticed fibrosis 
present in 95% of them; 54% had mild to moderate fibrosis and 41% cirrhosis. 
Cholangitis was seen only in 19% of the biopsies [89]. Laurent et al. found cirrhosis 
in 19 of 21 patients with normal bilirubin levels at a mean age of 6.5 years [122].   

Tomita et al. compared liver biopsies from 15 patients at PE and after successful 
PE at a mean age of 9.3 years and found fibrosis to be relieved in 7 patients (47%), 
persisting in 5 (33%) and progressive in 3 (20%), who also had signs of severe portal 
hypertension and probable requirement of LTx in the near future [119]. Altman 
et al. correlated the liver histology of 11 eight-month-old patients to the time of 
PE and discovered the absence of cholestasis, progressive fibrosis and distortion 
of bile ducts [124]. Mustard et al. discovered similar results with progression of 
fibrosis and reduction of cholestasis in the liver biopsies of four children taken 2–12 
months after surgery. There was also a reduction in bile duct proliferation [123]. 
Kasai et al. had quite opposite findings in 1968 when they examined postoperative 
biopsies from five children and noticed nearly complete recovery of fibrosis and 
cholestasis. However, the follow-up time when the biopsies were taken was not 
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revealed [74]. In 1975, Kasai et al. examined 14 BA patients at the median age of 
5.1 years postoperatively and noticed diminished fibrosis in 8 biopsy specimens 
(67%), unchanged in 3 (25%) and increased in 1 (8%). Cellular inflammation and 
bile ductular proliferation were diminished or resolved in 13 (93%) and 12 (86%) 
biopsies, respectively [125]. Lampela et al. examined liver biopsy specimens of 19 
patients during PE (median age 63 days) and at 4.2 years after successful surgery. 
Fibrosis increased in 10 patients (53%) and diminished in 4 (21%). All samples 
showed decreased or resolved cholestasis and portal inflammation. CK-7 positive 
periportal hepatocytes tended to increase, while ductular proliferation remained 
unchanged [8]. 

2.3 Liver fibrosis in BA

2.3.1 Molecular mechanisms of liver fibrogenesis

The extracellular matrix (ECM) is composed of strictly organized and controlled 
structural and signaling molecules. In normal circumstances, their synthesis and 
degradation are critically balanced. In liver fibrosis, this balance is impaired, 
and the deposition of ECM exceeds its degradation, and ECM molecules—
especially collagen I, III and IV and fibronectin—accumulate. ECM is produced 
by myofibroblasts of heterogenic origin [126, 127]. HSCs are quiescent hepatic cells 
located between hepatocytes and sinusoidal endothelial cells. Various fibrogenic 
cytokines and growth factors activate HSCs to create a fibrogenic and contractile 
phenotype [128]. Their expression of α-smooth muscle actin (α-SMA) is one of 
the most reliable markers of their activation, and the amount of hepatic α-SMA 
expression correlates with active fibrogenesis in acute and chronic liver diseases 
[128, 129]. In liver fibrogenesis, activated HSCs are considered the principle source 
of fibrotic tissue, but other sources for myofibroblasts exist [127, 130]. Especially 
in biliary fibrosis, these include portal fibroblasts [10, 130]. In BA at the time 
of PE and LTx, α-SMA has been found to be expressed, especially in periportal 
areas and proliferating bile ductules and ductular reactions, and it colocalizes with 
collagen in fibrous septae and around BECs [131-138]. Activated myofibroblasts 
accumulate around biliary structures in portal fibrosis, and cross-talk between BECs 
and myofibroblasts is a crucial part of ongoing fibrogenesis [96, 128, 132]. Other 
potential sources of myofibroblasts are bone marrow–derived cells, circulating 
fibrocytes and epithelial-to-mesenchymal transformation (EMT) [130, 139]. EMT 
refers to the phenomenon of epithelial cells acquiring mesenchymal properties 
under the appropriate regulatory microenvironment [99]. 

One of the most profibrogenic cytokines is transforming growth factor beta 
(TGF-β) [10, 140-142]. The TGF-β superfamily consists of over 30 proteins involved 
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in 
vitro, their in vivo

expression is peculiar to BECs and periportal regions, emphasizing its possible 

COL1A1 and 
COL1A2) of HSCs and promotes net deposition of ECM proteins also by altering 
HSC expression of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) 
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Figure 4. The relation of transforming growth factor-beta (TGF- ) with other growth factors in 
liver fibrogenesis. TGF-  is a potent activator of hepatic stellate cells (HSCs), which transform into 
activated myofibroblasts; it performs its actions through down-stream mediators like SMAD proteins 
and connective tissue growth factor (CTGF). TGF-  promotes decorin expression, which negatively 
affects TGF-  activation. Platelet-derived growth factor (PDGF) is the most potent mitogen of HSCs. 
MMP=matrix metalloproteinase; TIMP=tissue inhibitor of matrix metalloproteinase.

can also execute its actions through other growth factors, like connective tissue 

hepatocytes and BECs [142]. 
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Decorin is a proteoglycan present in low quantities in a normal liver, but 
during liver fibrogenesis, TGF-β can upregulate its expression. Studies support 
its antifibrotic effects by preventing the activation of TGF-β [128, 141, 151-153]. 

The most potent mitogen for HSC is platelet-derived growth factor (PDGF), 
which also promotes their activation into myofibroblasts [10, 126-128, 130, 139, 
147]. PDGF is upregulated and overexpressed during acute and chronic liver injury 
and correlates with the degree of fibrosis and inflammation [10, 139, 147]. In 
addition to platelets, during liver fibrosis, HSCs and BECs are able to produce 
PDGF, and it is also found to be a major activator of HSC proliferation in cholestatic 
liver diseases and biliary fibrosis [147].

Matrix metalloproteinases (MMPs) are a group of enzymes that are crucial for 
balanced ECM homeostasis together with their specific tissue inhibitors (TIMPs). 
They are involved in many normal biological processes, including embryonic 
development (and intrahepatic bile duct formation), organ morphogenesis, bone 
remodeling, angiogenesis and wound healing. However, they are also upregulated 
during pathological processes, e.g., arthritis, cardiovascular disease, gastric ulcer, 
and fibrosis of different tissues [154-158]. They can promote tumor progression by 
enhancing cancer cell invasion and proliferation and hindering apoptosis, and they 
modulate immune system responses in various inflammatory and repair responses 
by mediating immune cell migration, leukocyte activation, chemokine processing 
and antimicrobial defense [155, 157, 159, 160]. Despite acting mostly by degrading 
collagen and other ECM molecules, MMPs can also mobilize and activate growth 
factors through the cleavage of carrier proteins [155]. The main sources of MMPs 
and TIMPs during liver fibrogenesis are activated myofibroblasts, hepatocytes and 
inflammatory cells [139, 154].

An imbalance of MMPs and TIMPs leads to accumulation of ECM [154, 157, 
161]. TGF-β affects their expression, and activated HSCs are known to secrete 
MMPs and TIMPs [128, 140, 154, 161]. In addition to inhibiting MMPs to degrade 
ECM molecules, thus enhancing accumulation in liver fibrosis, TIMPs can also 
inhibit HSC apoptosis [128]. 

TIMPs are generally considered to be profibrogenic and MMPs antifibrogenic. 
However, the metalloproteinases can also activate other cytokines and even 
promote HSC activation and proliferation by altering cell-matrix interactions; thus, 
their exact role in fibrogenesis is probably multifactorial and not determined by 
simple matrix breakdown. More significant is the imbalance between MMP and 
TIMP expression, not the exact amount of different proteinases or their inhibitors 
[126, 157, 162]. In cholestatic liver injury, TIMP-1, MMP-13 and MMP-7 have been 
found to be upregulated and coupled with fibrosis [15, 163-168]. 

MMP-7, also called matrilysin, is normally expressed by exocrine and mucosal 
epithelial cells throughout the body [160, 169, 170]. MMP-7 is able to degrade 
fibronectin, gelatinases, elastin and collagen IV, and during inflammatory 
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processes, it can control neutrophil activation [139, 160, 171]. In normal adult 
livers, MMP-7 is expressed by BECs but not by fully matured hepatocytes, which 
can express MMP-7 during early embryonic stages [156, 170]. In ductal cells, 
MMP-7 is normally expressed in the luminal cell parts, probably to maintain the 
glandular lumen [170, 171]. MMP-7 may activate latent forms of other MMPs and 
be more resistant to inhibition by TIMPs than other MMPs [171]. Upregulation of 
MMP-7 correlates with worsened outcomes in cholangiocellular and hepatocellular 
carcinomas [172, 173]. Its overexpression is established in hepatic, pulmonary and 
renal fibrosis [139, 157, 174-177].

2.3.2 Liver fibrogenesis in BA
Georgiev et al. showed that in bile duct–ligated rats, hepatic TGF-β1 gene expression 
increased rapidly after injury and then decreased when the liver fibrosis stabilized 
[177]. Liver gene and protein expressions of TGF-β1 and TGF-β2 in human BA 
patients have been studied at PE and at LTx, when they have been increased 
compared to healthy controls or patients with neonatal hepatitis–related liver 
fibrosis or congenital biliary dilatation [11, 13, 178-182]. In BA, TGF-β1 is expressed 
by Kupffer cells, HSCs and BECs of ductular reactions and hepatocytes adjacent to 
fibrotic areas. The expression pattern by periportal hepatocytes and BECs is peculiar 
to BA, highlighting their crucial role in BA liver fibrogenesis [11, 12, 132, 133, 135, 
179, 181, 183]. In BA, there is a correlation between TGF-β1 expression and the 
degree of liver fibrosis and ductular reaction [11, 12, 179]. However, the relation 
with outcome is different: Lee et al. and de Oliveira et al. compared hepatic TGF-β1 
expression at PE and at LTx and found either no change or decreased expression 
during the course of the disease, and Kobayashi et al. found decreased TGF-β1 
expression in patients with persistent jaundice after PE compared to patients after 
successful PE [181-183]. Studies exploring plasma TGF-β1 expression have found 
decreased levels at the time of LTx compared to PE, and a relation of increased 
levels to better outcomes (COJ vs. persistent jaundice) [181, 183-185]. However, 
in healthy young children, the age is negatively correlated with plasma TGF-β1 
expression, and Rosensweig et al. did not find a correlation between plasma and 
hepatic protein expression, indicating that plasma levels might not be a reliable 
marker of hepatic TGF-β1 expression [11]. Furthermore, serum levels may be grossly 
contaminated not only by the activation of platelets as a source of TGF-β1 but also 
by the possible production by other organs and cells, making the interpretation of 
hepatic activity unreliable [141, 186].

Three papers have studied gene and protein expression of TGF-β2 isoform 
in BA during PE and LTx. It localized to myofibroblasts, hepatocytes and BECs. 
Differences in expression at the time of PE compared to LTx and their relationship to 
fibrosis are controversial [13, 134, 182]. Lee et al. studied plasma TGF-β2 expression 
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and did not find any difference between BA patients and healthy controls at the 
time of LTx and PE [182].

The hepatic upregulation of CTGF in BA at the time of PE and LTx resembles 
TGF-β1. CTGF is produced by activated myofibroblasts, inflammatory cells, 
hepatocytes and BECs, the latter being peculiar to BA compared to healthy controls 
and those with other chronic liver disease [12, 187, 188]. Plasma CTGF levels after 
PE have also been higher compared to healthy controls [149, 189]. How CTGF 
liver expression and plasma values relate to BA liver fibrosis and outcomes is 
controversial [12, 149, 185, 187-190].

Four studies have explored the hepatic protein and gene expression of PDGF in 
BA during PE and LTx. Its expression is increased compared to healthy controls, 
and it localizes to inflammatory cells, myofibroblasts, hepatocytes and BECs, the 
latter being peculiar to BA [13, 134, 179, 191]. Faiz Kabir Uddin Ahmed et al. 
found increased expression at the time of PE compared to LTx, while Malizia et 
al. found a positive correlation to stage of fibrosis and ductular reactions [13, 179].

In studies with experimental BA animal models, a steady increase in hepatic 
expression of MMP-7 and TIMP-1 has been found [162, 166, 177, 192-194]. In BA 
patients at the time of PE and LTx, TIMP-1 expression is upregulated compared 
to healthy controls with controversial results of correlation to the stage of fibrosis 
[165, 178, 195, 196]. MMP-2 is increased and MMP-9 decreased at the time of 
LTx compared to healthy controls, but no statistically significant correlation to 
histologic fibrosis has been found [15, 134, 163-165, 195, 196]. 

Increased hepatic protein and gene expression of MMP-7 has been repeatedly 
associated with BA liver fibrosis [15, 163, 165]. Its expression is also increased 
compared to neonatal intrahepatic cholestasis and parenteral-nutrition–related 
biliary cirrhosis [164, 197]. Huang et al. explored the localization of MMP-7 protein 
and gene expression at the time of PE and LTx and found that it is expressed in 
Kupffer cells, hepatocytes and BECs in both healthy controls and BA patients. The 
expression was significantly increased in BA compared to controls, and it correlated 
with the stage of fibrosis [15]. Iordanskaia et al. compared 47 BA patients with 
fibrotic and inflammatory gene signature at the time of PE and found a twofold 
increase in MMP-7 gene expression in the former group [163]. Lertudomphonwanit 
et al. noted an increased MMP-7 protein and gene expression in BA at the time 
of PE compared to healthy controls and those with other neonatal liver diseases, 
and expression was localized mostly to BECs [14]. 

MMP-7 serum levels were upregulated in two different studies in BA at the 
time of PE compared to healthy controls and those with age-matched neonatal 
intrahepatic cholestasis; diagnostic sensitivity was 98% and specificity 95%. MMP-7 
was suggested as a potential diagnostic biomarker for BA. At the time of PE, serum 
levels of MMP-7 did not correlate with histologic fibrosis [14, 198]. 
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2.4 Outcome

2.4.1 Clearance of jaundice, overall survival and native  
 liver survival
Several measures are used to evaluate treatment outcomes: median age at PE, COJ, 
native liver survival and overall survival. Median age at PE reflects the primary care 
practitioners’ awareness to diagnose BA early and the effectiveness of diagnostic 
procedures to make early operation possible. COJ measures the efficacy of surgery. 
Native liver survival reflects not only the success rate of PE but also the long-
term postoperative (medical) treatment and regular follow-up of the patients. 
Additionally, overall survival depicts the availability and outcomes of LTx [22].

Table 1 shows the national reports with the most recent and/or largest data 
available (age at PE, primary LTx, COJ, native liver and overall survival rates) from 
13 countries worldwide. Median age at PE is 54–79 days, and in most European 
countries, it has been around 60 days in recent years. Of operated children, 29–
75% achieve COJ, with the usual rate around 40%. The percentage of primary 
LTx varies among countries from nearly 0% (Taiwan, Japan and Croatia) to 18% 
(South Korea). In Japan, deceased donor LTx was legalized only in 1999, even 
though living donor LTx was available 10 years earlier [90]. Five- and ten-year 
native liver survival rates vary from 33% (Switzerland) to 60% (Japan) and from 
24% (Canada) to 53% (Japan), respectively. Overall survival rates 5 and 10 years 
after birth are from 42% (Taiwan) to 92% (Switzerland) and from 40% (Taiwan) 
to 95% (South Korea), respectively. In most European countries, COJ rates over 
40%, 5-year native liver survival over 40% and 5-year overall survival over 85% 
are achieved (Table 1).

2.4.2 Predictive factors 
The most confirmed predictive factor for better native liver survival is the rate of 
COJ after PE; i.e., when the PE is successful, the likelihood of surviving longer 
with a native liver is higher [30, 33, 45, 50, 53, 54, 111, 113, 118, 199-203]. 

One of the most studied possible factors concerning the outcome in BA is the 
age at PE. Theoretically, the younger the patient is during the corrective surgery, 
histologic changes in the liver would also be milder and therefore the outcome 
would be better. Some studies support the positive correlation between age and 
hepatic fibrosis at the time of PE [48, 110-113]. Although many studies support the 
protective role of younger age at PE, there is controversy concerning the critical 
cut-off age, and 30, 45, 60 or even 90 days have been suggested [6, 29, 30, 32, 35, 
45, 78, 79, 199, 203-208]. In Taiwan, a screening system with a stool color card 
was implemented nationally, and the rate of performing PE before 60 days of age 
raised from 49% to 66%, leading to an improved COJ rate from 35% to 61%, a 
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five-year jaundice-free native liver survival rate from 27% to 64%, and an overall 
survival rate from 56% to 89% [209].

BASM has often been found to have a negative effect on outcomes including COJ, 
native liver and overall survival [6, 62, 90, 205, 210-212]. However, not all studies 
have found a difference in survival rates between isolated and BASM patients [5, 
30, 45, 47, 59, 65, 67, 213]. One explanation might be the different definitions 
of BASM among the studies. Some studies have shown a decreased age at PE in 
BASM [4, 69] while others have not [49, 62, 67]. The degree of histologic liver 
fibrosis at the time of PE appears comparable to isolated BA [64, 67]. Two studies 
have found decreased COJ and overall survival rates among syndromic patients 
(i.e., patients with any kind of congenital anomaly) [4, 50], while there was no 
difference in outcomes between these two groups in other studies [36, 49, 51, 67].

Concerning how the amount of histologic fibrosis or ductular reaction at the time 
of PE affects outcomes, the available data are controversial, which may be a result 
of variable analytical methods and patient age [8, 48, 66, 111-113, 115-118, 120, 124, 
213, 214]. A positive correlation between hepatic collagen and α-SMA expression 
during PE and  outcome have been found in multiple studies [111, 112, 131, 138, 
181]. Concerning inflammation, Lampela et al. did not find a correlation between 
histologic inflammation at PE and native liver survival by two years [8]. However, 
Azarow et al. did find a correlation with the amount of lobular inflammation and 
failure of PE, and Davenport et al. noticed that a decreased amount of macrophages 
correlated with better outcomes postoperatively [109, 215].

2.4.3 Concentration of care
Considering the rarity of BA, it would be logical to achieve improvements in surgical 
expertise and multi-professional care and follow-up if the care of BA patients were 
centralized to selected expert centers. The first paper supporting this was published 
in 1985 in the United Kingdom; 114 patients were treated in 16 different centers 
during 1980–1982. There was a statistically significant improvement in COJ rates 
in those centers, which treated over five cases a year (43%) compared to those 
with only one case a year (11%) [216]. Two further studies have affirmed these 
results: in 1993–1995, slightly fewer than 100 BA patients were treated in the UK 
in 15 different centers, with only two centers treating over five cases a year. Those 
centers had significantly better results in 5- and 13-year native liver survival rates 
(61% and 54%) compared to those with less than five cases a year (14% and 27%). 
Overall survival was significantly better after 5 years but not after 13 years, which 
might reflect the already established centralization of LTx [47, 200]. After these 
findings, the British government centralized the treatment of BA patients to three 
centers in 1999, which all treated over five cases (7–20) a year during 1999–2009 
with comparable results [4, 210]. 
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In France, the population and incidence of BA are roughly the same as in the UK. 
In 1999, a French study group published results of national BA treatment during 
1986–1996. At that time, there were 32 different centers caring for BA patients, 
with 29 treating less than two cases a year and only one center treating over 20 
cases (the remaining two treated 3–5 cases a year). Both native liver survival and 
overall survival were significantly improved with a growing center caseload [212]. 
Subsequently, the French Observatory of BA was created, and all centers were 
encouraged to actively collaborate with more experienced units. Since then, the 
native liver survival rates have improved in centers with lower caseloads, and no 
effect of center size on outcomes was observed anymore in cohorts 1997–2002 
and 2003–2009. However, the 10-year native liver survival rate did improve only 
in centers that treated 3–5 patients a year (from 28% to 42%) [6, 211].

In Germany, 183 BA patients were treated in 29 clinics in 2001–2005, with the 
majority of hospitals (n=22) treating less than five cases during the study period. 
Two-year native liver survival improved from 8% to 26% and overall survival 
from 74% to 84% when compared to centers that treated over five cases during 
that time [33]. 

In Finland, the treatment of BA patients was centralized from five university 
hospitals to one in 2005. Lampela et al. studied cohorts 1987–2005 and 2005–
2010 and found that COJ, two-year native liver and overall survival improved 
significantly (from 42% to 75%, 38% to 75%, and 68% to 92%, respectively) after 
centralization [5]. In a multicenter retrospective observational study of six centers 
in the Nordic countries, COJ rate was 64%, and cumulative 5-year native and 
overall survival rates were 53% and 88%, respectively. The annual caseload of 
over three patients a year predicted both early performance of PE and long-term 
native liver survival [203]. 

In Canada, 230 BA patients were treated in 12 university hospitals in 1992–
2002. There was no difference in native liver and overall survival rates when the 
one center treating over five cases a year was compared to other centers with less 
than five patients (six treated less than one patient a year). It was concluded that 
the treatment is already centralized to academic hospitals, and because of the 
low population density, centralization to a lesser number of hospitals could cause 
delays and logistic problems [217].

In Switzerland, where the population is less than 15% of that in France and 
the UK, five surgical centers treated 43 BA patients in 1994–2004 (two treated 
1 case each, one 6 cases, one 14 cases, and one treated 21 cases). No statistically 
significant difference was found between these five centers concerning the rate of 
four-year native liver survival [30].

Collectively, the available data suggest that the concentration of BA care results 
in improved outcomes, which are reachable with a minimum of 3–5 patients per 
year.
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2.4.4  Future improvements in outcome
BA is the most common indication for pediatric LTx worldwide. Even after the 
successful restoration of bile flow after PE, the progression of liver fibrosis leads 
to ensuing complications and ultimately liver failure usually before adulthood. 
The development of antifibrogenic therapy to postpone or reduce the need for LTx 
would further improve native liver and overall survival rates and reduce morbidity 
related to transplantation. The invention of such therapy requires knowledge of 
the underlying molecular pathobiology of progressive liver fibrosis after successful 
PE and recognition of subgroups of possibly different etiopathogenesis. 
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3 AIMS OF THE STUDY

The general aim of this thesis was to investigate the pathobiology underlying liver 
fibrogenesis after successful PE and to address predictors of survival.

The specific aims were:

1) To explore mediators of fibrogenesis after successful PE (I,II). 

2) To investigate the hepatic expression of MMP-7 and other matrix metallo-
proteinases after successful PE, their correlations to fibrosis, and their possible 
roles as serum markers of liver fibrosis after successful PE (III).

3) To address predictors of COJ, native liver survival and overall survival in BA, 
and investigate predictors of outcome (IV).

4) To examine possibly different outcomes and hepatic expression of fibrogenic 
cytokines in syndromic and isolated BA patients.
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4 PATIENTS AND METHODS

4.1 Patients and clinical data

Study subjects included BA patients treated at Helsinki University Hospital in 
Finland during 1991–2013 (studies I–II), 1991–2011 (study III), and 1987–2016 
(study IV). For studies I–III, only those who cleared their jaundice (serum bilirubin 
fell below 20 µmol/L after PE) were included. Tables 2 and 3 show the study 
design outline and patient characteristics. Treatment of BA patients in Finland 
was centralized to Helsinki University Hospital in 2005, and management and 
follow-up protocol were standardized, as depicted in detail in study IV. Hospital 
records were reviewed for laboratory tests, imaging studies, operative findings, 
and outcomes (Table 4). The AST to platelet ratio index (APRI) was calculated as 
depicted in Table 4. Syndromic BA was defined as the presence of any congenital 
structural malformation, and BASM as the presence of polysplenia or asplenia [62, 
64]. Anomalies were recorded retrospectively from all available imaging studies 
(x-ray, ultrasound, magnetic resonance imaging) and intraoperative findings. 
Splenomegaly was defined as spleen length over two standard deviations above 
the reference value of age- and gender-matched healthy children [218]. Portal 
hypertension was defined by endoscopic verification of esophageal varices or 
the presence of splenomegaly and thrombocytopenia (platelet count below 150 
x 109/L) [219]. 

4.2 Controls

For studies I–III, as depicted in Table 2, 10 children [median age 11.4 (interquartile 
range IQR 7.8–14.8) years] undergoing operation for complicated cholelithiasis 
with (n=3) or without liver disease were used as non-fibrotic controls for ribonucleic 
acid (RNA) expression analyses. 19 (studies I–II) or 14 (studies III) donor liver 
biopsies were used as controls for immunohistochemical studies, with a median age 
of 15 (8–16) or 14.2 (8.0–16.2) years, respectively. As fibrotic controls, intestinal 
failure patients with associated liver disease were used for ribonucleic acid (RNA) 
(studies I–III), immunohistochemical (studies I,III) and serum analyses (study III) 
[11 for studies I–II, age 4.7 (3.5–9.7) years and 10 for study III, age 4.6 (3.0–8.4) 
years]. Blood samples from healthy controls were obtained from 47 [study II, age 
6.5 (4.2–12.6) years] or 78 [study III, age 8.5 (4.5–14) years] day-surgery patients 
without any evidence of hepatobiliary, metabolic or endocrinological diseases. 
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Table 2. Study design outline.

 

Table 2. Study design outline.  

 

 Study I Study II Study III Study IV 
Main issue Expression of 

profibrotic and 
inflammatory 
mediators after 
successful PE 

Expression of 
TGF-β superfamily 
cytokines after 
successful PE 

Expression of 
MMPs and TIMPs 
after successful PE 

Effect of 
centralization on BA 
outcomes and 
predictive factors of 
COJ and survival 

Study 
design 

Cross-sectional Cross-sectional Cross-sectional Prospective / 
retrospective, 
observational 

Inclusion 
criteria 

Of the BA 
patients (n=51) 
treated in 
Helsinki 
University 
Hospital between 
1991 and 2013, 
those who 
cleared their 
jaundice after PE 
were included 

Of the BA patients 
(n=51) treated in 
Helsinki University 
Hospital between 
1991 and 2013, 
those who cleared 
their jaundice after 
PE were included 

Of the BA patients 
(n=46) treated in 
Helsinki University 
Hospital between 
1991 and 2011, 
those who cleared 
their jaundice after 
PE were included 

BA patients treated 
in Helsinki University 
Hospital between 
1987 and 2016 with 
at least 4-month 
follow-up 

BA 
patients 

28 28 25 61 

Controls  10 non-fibrotic 
liver biopsies 
(RNA) 

 19 non-fibrotic 
donor liver 
biopsies 
(immuno-
histology) 

 11 fibrotic 
controls (RNA, 
immunohistolo
gy) 

 

 10 non-fibrotic 
liver biopsies 
(RNA) 

 19 non-fibrotic 
donor liver 
biopsies 
(immuno-
histology) 

 11 fibrotic 
controls (RNA) 
 
 

 47 non-fibrotic 
serum controls 

 

 10 non-fibrotic 
liver biopsies 
(RNA)  

 14 non-fibrotic 
donor liver 
biopsies 
(immuno-
histology) 

 10 fibrotic 
controls (RNA, 
immunohistolog
y, serum) 

 78 non-fibrotic 
serum controls 
 

- 

 

BA=biliary atresia; PE=portoenterostomy; TGF-β=transforming growth factor-beta; 
MMP=matrix metalloproteinase; TIMP=tissue inhibitor of matrix metalloproteinase, 
RNA=ribonucleic acid;   
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Table 3. Patient characteristics.

Table 3. Patient characteristics. 

 

 Study I-II Study III Study IV 

Patients (n) 28 25 61 

Age at PE 61 (40–84)  
days 

2.0 (1.3–2.9) months 64 (39–85)  
days 

Age at follow-up 3.0 (2.1–6.7)  
years 

3.3 (2.1–7.4)  
years 

- 

Male (n,%) 14 (50%) 13 (52%) 28 (46%) 

Anomalies (n,%) 12 (43%) 9 (36%) 22 (36%) 

BASM (n,%) 8 (29%) - 10 (16%) 

Splenomegaly 
(n,%) 

9 (32%) 9 (36%) - 

Portal 
hypertension 
(n,%) 

14 (50%) 13 (52%) - 

 

PE=portoenterostomy; BASM=biliary atresia splenic malformation syndrome 

   

4.3 Liver biopsies and hepatic protein  
 expression analyses

Liver biopsies obtained at PE and at follow-up for studies I–III are depicted in Table 
4. All follow-up liver biopsies were taken percutaneously with ultrasound guidance 
under general anesthesia for endoscopic variceal surveillance and were part of the 
routine follow-up liver biopsies for BA patients initiated in 2005 and performed 1, 
5, and 10 years after PE and at transition or when clinically indicated. Biopsies were 
fixed in formalin, embedded in paraffin, sliced and stained with H&E and other 
conventional stains, CK-7 (analyzed with SP52 monoclonal antibody and ultraView 
Universal DAB Detection Kit, Ventana, Tucson, AZ) and specific immunohistologic 
stains: MMP-7, TIMP-1, Collagen 1, α-SMA, TGF-β1, TGF-β2, CTGF and decorin 
(Tables 5 and 6, and specific instructions for MMP-7 and TIMP-1 analyses in study 
III). Two experienced pediatric pathologists blinded to clinical data analyzed con-
ventional histology and CK-7 immunoreactivity semiquantitatively until consensus 
was reached (Table 5). Antibodies and dilutions used for specific immunohistologic 
stains are depicted in Table 6. Anna Kerola performed semiquantitative grading 
for those with a Leica DM RXA Microscope (Leica Microsystems GmbH, Wetzal, 
Germany), as depicted in Table 7 In studies I–II, for CK-7, α-SMA and Collagen 1, 
the area fraction (proportion of the antibody-positive area to the entire biopsy area) 
was calculated with ImageJ Image Analysis Software (SciJava Common open source 
software; Rasband, W.S., ImageJ, U.S. National Institutes of Health, Bethesda, 
Maryland, USA; http://imagej.nih.gov.ij/; 1997–2014). 
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Table 4. Laboratory values and liver histology at portoenterostomy (PE) and at follow-up.

Table 4. Laboratory values and liver histology at portoenterostomy (PE) and at follow-up. 

 

                                    Study I-II (n=28)          Studies III (n=25)  

 Scale/ 
unit 

at PE at follow-up at PE at 
follow-up 

Liver biochemistry      
Bilirubin total µmol/L 159 (116–204)d 10 (4–17) 159  

(116–204)d 
10 (4–17) 

Bilirubin 
direct/conjugated 

µmol/L 115 (83–159)d 4 (2–8) 115 (83–159)d 4 (2–8) 

Gamma-glutamyl 
transferase (GGT) 

U/L - - - - 

Bile acids µmol/L 143 (73–197)d 32 (16–92) 143 (73–197)d 32 (16–92) 

Prealbumin mg/L - - - - 
Alanine 
aminotransferase 
(ALT) 

U/L 87 (42–164)d 45 (24–94) 87 (42–164)d 45 (24–94) 

APRIa  0.83            
(0.42–1.41) 

1.18         
(0.45–1.95) 

0.83           
(0.42–1.41) 

1.18         
(0.45–1.95) 

Liver histology (n)  24 28 24 28 
Metavir fibrosis 0–4 2 (2–3) 2 (1–4) 2 (2–3) 2 (1–4) 
Portal fibrosis 0–4 - - - - 
Intracanalicular 
cholestasis 

0–3 2 (1–3)d 0 (0–0) 2 (1–3)d 0 (0–0) 

Bile ductular 
cholestasis 

0–3 - - - - 

Intracellular 
cholestasis  

0–3 - - - - 

Ductal proliferationb 0–2 - - - - 
Cytokeratin-7 
expression of 
periportal 
hepatocytes 

0–4 - - - - 

Ductal reactionc %  5.0  
(3.3–7.0) 

2.4  
(1.8–4.9) 

5.0  
(3.3–7.0) 

2.4  
(1.8–4.9) 

Portal inflammatory 
cell infiltrate 

0–3 2 (2–3)d 1 (0–1) 2 (2–3)d 1 (0–1) 

 
a APRI=[Aspartate aminotransferase (AST, U/L)/50/Platelet count (E9/L)]; b Ductal 
proliferation analyzed using cytokeratin-7 immunostaining; c Cytokeratin-7 expression in 
proliferative bile ductules, adjacent periportal hepatocytes, and bile ducts; d P <0.05 in 
Wilcoxon signed-rank test between PE and follow-up  
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Table 5. Grading and staging of histologic findings in liver biopsies.

Table 5. Grading and staging of histologic findings in liver biopsies. 

 

Histologic / 
immunohistologic finding 

Grade/
scale 

Definition 

Metavir fibrosis  
reference [225] 

0 
1 
2 
3 
4 

No fibrosis 
Portal fibrosis without fibrous septae 
Porto-portal fibrous septae 
Porto-portal and porto-central fibrous septae 
Cirrhosis 

Portal fibrosis 0 
1 
2 
3 
4 

Absent or fibrous expansions of some portal areas 
Fibrous expansions of most portal areas 
Focal portal-to-portal bridging 
Marked portal-to-portal bridging 
Cirrhosis 

Intracanalicular, bile 
ductular and intracellular 
cholestasis 

0 
1 
2 
3 

Absent 
Minimal  
Marked 
Prominent 

Portal inflammatory cell 
infiltrate 

0 
1 
2 
3 

Absent or minimal 
Mild 
Moderate 
Marked 

Cytokeratin-7 positive 
ductal proliferation 

0 
1 
2 

Absent 
Present 
Prominent 

Cytokeratin-7 expression in 
periportal hepatocytes 

0 
1 
2 
3 
4 

Absent 
Rare 
Present 
Prominent 
Extensive 

 

Table 6. Antibodies for immunohistological analyses in studies I-III.
Table 6. Antibodies for immunohistological analyses in studies I-III. 

 

Molecule Dilution Antibody 
(clone) 

Manufacturer 

MMP-7 1:1500 141-72 Merck Millipore, Merck KGaA, Damstradt, Germany 
TIMP-1 1:50 63515 R&D Systems, Minneapolis, MN 
Collagen 1 1:1000 1-8H5  Abnova corporation, Taipei City, Taiwan 
α-SMA 1:200 1A4 Dako-Cytomation, Glostrup, Denmark 
TGF-β1 1:50 TGFB17 Leica Novocastra, Leica Biosystems, Nussloch, 

Germany 
TGF-β2 1:1000 MGC116892 Abnova corporation, Taipei City, Taiwan 
CTGF 1:400 L-20 Santa Cruz Biotechnology Inc., Dallas, Texas, USA 
Decorin 1:750 NBP1-84970 Novus Biologicals, LLC, Littleton, CO, USA 

 

MMP=matrix metalloproteinase; TIMP=tissue inhibitor of matrix metalloproteinase;            
α-SMA=alfa smooth muscle actin, TGF-β=transforming growth factore beta; 
CTGF=connective tissue growth factor 
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Table 7. Grading of immunohistologic findings in liver biopsies.

Table 7. Grading of immunohistologic findings in liver biopsies. 

 

Immunohistologic finding Grade Definition 
MMP-7 staining in biliary 
epithelial cells 
Also staining of periportal 
hepatocytes a 

0 
1 
2 
3 
4 

No staining 
Staining only at apical/luminal side 
Completely stained with weak intensity 
Completely stained with moderate intensity 
Completely stained with strong intensity 

TIMP-1 
Also staining of periportal 
hepatocytes a 

0 
1 
 
2 
3 

No staining 
Staining of individual spindle-shaped stromal cells at 
portal or parenchymal areas 
Staining in less than 30% of hepatocytes  
Staining in over 30% of hepatocytes 

Collagen 1 0 
1 
2 
3 
4 

Slight expression at portal areas 
Expanded expression at portal areas 
With portal-to-portal septaes 
With portal-to-portal and portal-to-central septaes 
Extended nodular expression (cirrhosis) 

α-SMA 
(modified from reference [226]) 
Also periductal staining 
surrounding bile ducts and 
ductal proliferation a 

0 
 
1 
2 
3 
4 

Staining in smooth muscle cells within portal vessel 
walls only 
Mild or moderate periportal expression  
With mild or moderate bridging between portal tracts 
With strong bridging between portal tracts 
Marked portal expression in the enire portal area 
with portal bridging 

TGF-β1 
Also staining of periportal 
hepatocytes a and localization b 

0 
1 
2 
3 

No staining 
Mild staining at fibrotic and lobular areas 
Moderate staining at fibrotic and lobular areas 
Strong staining in fibrotic and lobular areas 

TGF-β2 
Also staining of bile duct 
epithelial cells and periportal 
hepatocytes a 

0 
1 
2 

No staining 
Mild staining  
Moderate staining 

CTGF 
Also staining of periportal 
hepatocytes a and localization b 

0 
1 
2 
3 

No staining 
Mild staining at fibrotic and lobular areas 
Moderate staining at fibrotic and lobular areas 
Strong staining in fibrotic and lobular areas 

Decorin 0 
1 
2 
3 
4 

Slight expression at portal areas 
Expanded expression at portal areas 
With portal-to-portal septaes 
With portal-to-portal and portal-to-central septaes 
Extended nodular expression  

 
a Dichotomus grading: 0=no staining, 1=staining; b Most staining in 0=fibrotic, 
1=parenchymal, or 2=both areas. MMP=matrix metalloproteinase; TIMP=tissue inhibitor of 
matrix metalloproteinase; α-SMA=alfa smooth muscle actin; TGF-β=transforming growth 
factor beta; CTGF=connective tissue growth factor. 
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4.4 Gene expression analyses

For studies I–III, gene expression analyses were performed by embedding liver 
tissue specimens in RNAlater solution (Ambion, Life Technologies, Thermo Fisher 
Scientific Inc, Waltham, MA) and freezing them until analyzed. RNA was extracted 
with the RNeasy Mini Kit (QIAGEN, Frederick, Maryland, USA). Integrity of RNA 
was assessed spectrophotometrically. Human Fibrosis RT2 Profiler PCR Array 
(QIAGEN SABiosciences, Frederick, MD) on an ABI 7700 Sequence Detection 
System (Perkin-Elmer Life Sciences, Boston, MA) was used to analyze gene 
expression in triplicate by a quantitative real-time polymerase chain reaction, 
according to the manufacturer’s directions. Quantification of target gene mRNA 
expression was performed using the ∆∆Ct Method [220] and expressed after 
normalization to housekeeping genes (B2M, HPRT1, RPL13A, GAPDH, ACTB) 
and relative to control subjects. Genes analyzed for study I were COL1A2, ACTA2, 
PDGFA, IL1A, IL1B, IFNG, TNF, IL4, IL5, IL10, for study II TGFB1, TGFB2, TGFB3, 
TGFBR1, TGFBR2, SMAD2, SMAD6, CTGF, DCN and for study III MMP-1, -2, 
-3, -7, -8, -9, -13, -14, TIMP-1, -2, -3, -4.

4.5 Serum analyses

For studies I and III, the serum concentrations of TGF-β2, decorin, MMP-7, 
MMP-9 and TIMP-1 were determined with commercially available enzyme-linked 
immunosorbent assay (ELISA) kits, and analyses were carried out according to the 
manufacturer’s protocol as follows: Biovendor R&D (Bratislava, Slovakia) for TGF-β2 
and decorin, The Quantine® kit (R&D Systems, Inc., Minneapolis, MN) for MMP-7 
and Buotrak ELISA systems (Amerisham Biosciences UK, Ltd., Buckinghamshire, 
UK) for MMP-9 and TIMP-1. Time-resolved immunofluorometric assay (Medix 
Biochemica, Kauniainen, Finland) was used for MMP-8 analyses. The inter assay 
coefficient of variations (CV%) and detection limits are depicted in detail in studies 
I (for MMP-7, -8, -9 and TIMP-1) and III (for TGFβ2 and decorin).

4.6 Statistical analyses

All data are expressed as median and interquartile range (IQR) unless otherwise 
stated. In study IV, categorical data are expressed as frequencies. Nonparametric 
tests were used for comparison. Pairwise comparisons of continuous variables 
were performed using the Mann-Whitney U test (for independent variables) or 
the Wilcoxon signed-rank test (for repeated measurements). Independent multiple 
comparisons were analyzed using the Kruskall-Wallis test. Dichotomous variables 
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were compared using the McNemar test (for repeated measurements) and Fisher’s 
exact test (for independent variables), the latter also being used to compare 
frequencies between groups. Correlations were calculated using Spearman’s rank 
correlation. For study I, predictive values were perceived as the area under the 
receiver operating characteristics curves (AUROC). For study IV, linear regression 
was used to evaluate predictors of bilirubin levels at 3 months after PE, the follow-
up Metavir score, and fibrosis progression, and binary logistic regression was used 
for COJ odds ratios (OR) with 95% confidence intervals (CIs). Those predictors, 
which showed significant association with outcomes variables in simple regression 
were included in multiple regression analyses. Kaplan-Meier curves were used to 
analyze cumulative native liver and overall survival rates, and univariate predictors 
of survival were evaluated with the log-rank test. Multivariate survival models were 
performed by generating hazard ratios with 95% CIs with the Cox proportional 
hazards regression model, adjusted for statistically significant variables from 
univariate models and for age at PE for native liver survival. In all studies, a P 
value below 0.05 was considered statistically significant. Statistical analyses were 
performed with SPSS software (IBM Corp., Armonk, NY, USA).  

4.7 Ethical considerations

The study protocol was approved by the Ethics Committee of the Hospital District of 
Helsinki and Uusimaa (number 345/13/03/03/2008) and by the Finnish National 
Authority of Medicolegal Affairs and Health. In all studies, ethical guidelines of 
the 1975 Declaration of Helsinki were obeyed, and informed consent was obtained 
from all participating adults and children’s legal guardians before any procedures.
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5 RESULTS

5.1 Evolution of liver histology after successful  
 PE (I,II,III,IV)

During three years after successful PE, serum bilirubin remained low (Table 4). 
Despite the resolution of biochemical and histologic cholestasis, histologic liver 
fibrosis and ductal proliferation persisted, while inflammation decreased (Figure 
5, Table 4, studies I–IV). CK-7 expression of periportal hepatocytes was enhanced 
after PE, and the amount of CK-7 positive ductal reactions correlated with Metavir 
fibrosis stage (Table 4). The progression of fibrosis was more pronounced when COJ 
was not achieved (IV). Age did not correlate with the liver fibrosis stage at follow-up.

At the time of follow-up, BA patients with congenital anomalies (n=12) had 
significantly lower Metavir fibrosis stage and portal inflammation grade than 
isolated patients (I–II). Despite a similar trend, the difference in Metavir fibrosis 
stage was not statistically significant in patients with BASM compared to those 
without (I). Metavir fibrosis stage increased after successful PE only in isolated 
patients but not in syndromic ones (II). Similarly, the magnitude of ductal reaction 
decreased only in syndromic patients but not in isolated BA patients (II). 

A
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Figure 5.
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Figure 5. After portoenterostomy (PE), the degree of fibrosis and periportal hepatocyte-cholangiocyte 
metaplasia increased and ductal reaction persisted in all patients, while portal inflammation decreased 
only after successful PE. Representative native liver histology from the same patient (A, B, C) at PE (17 
days old) and (D, E, F) 2.4 years after successful PE (200 x magnification). (A, D) Portal inflammation 
(0–3) reduced from grade 3 to 1 (hematoxylin and eosin). (B, E) Metavir fibrosis stage (0–4) increased 
from 2 to 4 (Herovici stain). (C, F) Ductal reaction (0–2, arrow, dark brown) increased from grade 1 to 
2, and hepatocyte-cholangiocyte metaplasia in periportal hepatocytes (0–4, asterisk, light brown) from 
0 to 4 (cytokeratin-7 stain). Pictures reprinted from study IV with kind permission from the publisher.
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5.2 Expression of profibrogenic and inflammatory   
 mediators (I,II)

After successful PE, protein expressions of collagen 1 and α-SMA were increased 
compared to fibrotic and non-fibrotic controls (Figure 6). In BA, collagen staining 
was seen at fibrotic portal areas and septae, while α-SMA concentrated to portal 
and periductal areas. There was no difference in the expression of collagen 1 and 
α-SMA between PE and follow-up (Table 8, I). The intensity of CK-7 positive ductal 
reactions correlated with both collagen and α-SMA expression. 

A

DC

B

Figure 6.

Collagen 1

α-SMAα-SMA

Collagen 1

*

*

† ‡ † ‡

† †‡

Figure 6. Hepatic protein and gene expression of collagen 1 (A–B) and alfa-smooth muscle actin (α-SMA) 
(C–D) 3.0 years after successful portoenterostomy in biliary atresia (n=28) compared to fibrotic (n=11) 
and non-fibrotic (protein n=19, gene n=10) pediatric controls. Box plots display median (bold transverse 
line), interquartile range (rectangle) and range. Significance evaluated by the Mann-Whitney U test for 
each group. P<0.05: * BA vs. fibrotic controls, † BA vs. non-fibrotic controls, ‡ fibrotic vs. non-fibrotic 
controls. n=28.
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Table 8. Evolution of liver fibrosis and ductal reaction in relation to collagen expression, myofibroblast 
activation (α-SMA) and profibrotic cytokine expression (studies I and II).

Table 8. Evolution of liver fibrosis and ductal reaction in relation to collagen expression, 
myofibroblast activation (α-SMA) and profibrotic cytokine expression (studies I and II). 

 

 At PE 
n=24 

At follow-up 
n=28 

P-value 

Metavir, stage (0–4) 2 (2–3) 2 (1–4) 0.170 
Ductal reaction,              
area fraction (%) 

5.0 (3.3–7.0) 2.4 (1.8–4.9) 0.227 

Collagen, grade (0–4) 3 (2–3) 2 (1–3) 0.210 
Collagen, area fraction (%) 17.4 (12.6–22.4) 15.6 (10.0–22.5) 0.484 
α-SMA, grade (0–4) 3 (2–3) 2 (1–4) 0.833 
α-SMA, area fraction (%) 16.8 (13.7–21.3) 13.9 (11.1–20.5) 0.783 
TGF-β1, grade (0–3) 2 (2–3) 1 (0–1) <0.001 
TGF-β2, grade (0–2) 1 (1–1) 1 (0–1) 0.09 
CTGF, grade (0–3) 2 (2–3) 1 (0–1) <0.001 
Decorin, grade (0–4) 2 (2–3) 2 (1.5–2.5) 0.409 

________________________________________________________________________ 

Data are median (interquartile range). Significance between groups evaluated by Wilcon 
Signed rank test. 

TGF-β=transforming growth factor beta; CTGF=connective tissue growth factor 

 

   Periductal α-SMA staining surrounding bile ducts and ductal proliferations 
was unique to BA compared to fibrotic and non-fibrotic controls. All histologic 
liver samples at PE stained positively with periductal α-SMA at the time of 
PE, but it persisted in 64% of follow-up samples and correlated positively with 
immunohistologic staining of collagen, α-SMA, the amount of ductal reaction, and 
plasma levels of total and direct bilirubin and bile acids. 

In BA, gene expression of COL1A2 (encoding for collagen 1), ACTA (encoding for 
α-SMA) and PDGFA (encoding for PDGF subunit A) were upregulated compared 
to non-fibrotic controls, as well as those of COL1A2 and PDGFA when compared to 
fibrotic controls (Figure 7). The upregulation of PDGFA was positively correlated to 
collagen area fraction, α-SMA grade and presence of periductal α-SMA expression. 
RNA expression of several inflammatory cytokines (IL1A, IL1B, IFNG, TNF, IL4, 
IL5, IL10) was comparable or lower when compared to either fibrotic or non-
fibrotic controls.

After successful PE, hepatic protein expression of TGF-β1, TGF-β2, CTGF and 
decorin were all increased compared to non-fibrotic controls (II). Compared to PE, 
follow-up expression of TGF-β1 and CTGF, but not that of TGF-β2 and decorin, 
decreased significantly (Table 8, II). Lobular hepatocytes expressed both TGF-β1 
and TGF-β2, and the latter was also expressed by periportal hepatocytes, especially 
at follow-up. BECs did not express TGF-β2 at PE, while one-fourth expressed 
it during follow-up (P=0.125). CTGF localized to spindle-shaped periportal cells 
and lobular hepatocytes, especially periportal ones at PE compared to follow-up. 
Decorin expression localized to portal areas and fibrotic septae.
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Figure 7. Hepatic gene expression of COL1A2 for collagen 1 (A), ACTA for alfa-smooth muscle actin 
(B) and PDGFA for platelet-derived growth factor (C) 3.0 years after successful portoenterostomy in 
biliary atresia compared to fibrotic (n=11) and non-fibrotic (n=10) pediatric controls. Box plots display 
median (bold transverse line), interquartile range (rectangle) and range. Significance evaluated by the 
Mann-Whitney U test for each group. P<0.05: * BA vs. fibrotic controls, † BA vs. non-fibrotic controls, 
‡ fibrotic vs. non-fibrotic controls. n=28.
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At follow-up, the RNA expression of TGF-β2 and TGF-β3, but not that of TGF-β1, 
was upregulated in BA compared to both non-fibrotic and fibrotic controls (II). The 
expression of CTGF and decorin was upregulated compared to fibrotic controls, 
as well as decorin in relation to non-fibrotic controls. TGF-β receptor 1 coding 
TGFBR1 and SMAD2 was also upregulated compared to both non-fibrotic and 
fibrotic controls.

At follow-up, both protein and RNA expression of TGF-β1 correlated with 
Metavir fibrosis stage (II), which also correlated with the immunoreactivity of 
TGF-β2, CTGF and decorin. The magnitude of CK-7 positive ductal reaction 
correlated positively with the protein expression of decorin and CTGF. 

The histologic marker of activated HSCs, α-SMA protein expression depicted 
as an area fraction correlated with gene expression of TGF-β1, protein expression 
of decorin, and the hepatic gene and protein expressions of TGF-β2 and CTGF 
(II). The gene expression of α-SMA (ACTA) correlated with TGF-β2, CTGF and 
decorin gene expression (II). PDGFA gene expression correlated positively with 
α-SMA protein and gene expression (r=0.542, P=0.007 and r=0.618, P=0.001, 
respectively).

At follow-up, serum TGF-β2 levels were increased in BA compared to non-
fibrotic controls, but they did not correlate with Metavir fibrosis stage (II). There 
was no difference in serum decorin levels between BA patients and non-fibrotic 
controls. Syndromic BA patients had significantly lower protein expressions of 
collagen, α-SMA and TGF-β1 compared to isolated BA patients, but no difference 
in respective RNA expression was observed (II). 

5.3 Expression of MMPs and TIMPs (III)

Of the various MMPs and TIMPs studied, RNA expression of MMP-7 (29.2-fold), 
MMP-2 (3.12-fold), and TIMP-1 (1.80-fold) showed the strongest upregulation after 
successful PE. Increased protein expression localized to the BECs of bile ducts and 
ductal reactions and periportal hepatocytes (Table 6). Similarly to CK-7, MMP-7 
expression localized to periportal hepatocytes and BECs of ductal proliferations 
and bile ducts. Biliary epithelial expression of MMP-7 correlated positively with 
histologic fibrosis and portal inflammatory cell infiltrate. Protein expression of 
MMP-7 also correlated positively with plasma-conjugated bilirubin and bile acids. 
TIMP-1 expression was seen in hepatocytes and individual spindle-shaped stromal 
cells at portal or parenchymal areas, but its intensity did not differ between BA 
patients and controls. 

Serum MMP-7 levels were increased compared to non-fibrotic controls, and 
they correlated positively with its protein and gene expression. Serum MMP-7 
levels also correlated positively with plasma conjugated bilirubin and bile acids. 
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The patients without (n=4) portal fibrosis had significantly lower serum MMP-7 
levels, having a significant predictive value for portal fibrosis with an AUROC of 
0.925 (Figure 8).

Figure 8.

Figure 8. Area under the receiver operating characteristics curve (AUROC) showing the predictive 
value of serum MMP-7 for histological portal fibrosis after successful portoenterostomy (PE). Area of 1.0 
represents the ideal test, whereas the area under 0.5 represents no diagnostic value. Figure reprinted 
from study I with kind permission from the publisher.

When MMP-7 expression in BA patients was compared with intestinal 
failure patients with comparable Metavir fibrosis stage, the BA patients showed 
significantly higher hepatic RNA expression, immunohistologic expression and 
serum levels. No correlation between Metavir fibrosis stage and liver or serum 
MMP-7 expression was seen among fibrotic controls.

At the time of follow-up, syndromic patients had significantly lower protein 
expression of MMP-7 compared to isolated ones [grade 2 (0.5–2.5) vs. 3 (2–3), 
P=0.015]. Despite a similar trend, there was no statistically significant difference 
in RNA expression [14.5 (7.67–43.0) vs. 44.2 (7.89–80.10), P=0.493] or serum 
concentrations [12.8 (6.22–32.3) vs. 16.0 (6.91–27.4) ng/mL, P=0.929].
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5.4 Predictors of outcome (IV)

Incidence of BA in Finland is 1 in 18 600. Before centralization in 2005, the caseload 
in Helsinki University Hospital was 1 (1–2) per year, and after centralization, it was 
3.5 (2–4.3) per year. After centralization, patients were younger at PE (54 vs. 73 
days, P=0.016), and the COJ rate was higher (80% vs. 42%). In logistic regression 
analyses, COJ predictors were operation after centralization, high-grade portal 
inflammation in liver biopsy at the time of PE, and young age at operation, but in 
multiple regression, only the effect of high-grade portal inflammation at the time 
of PE remained significant.

The cumulative native liver survival is depicted in Figure 9. Two-year native liver 
survival before and after centralization was 37.5% (±SE 9.6%) and 77.6% (±7.5); 
five-year survival was 37.5% (±9.9) and 70.2% (±8.4); and ten-year survival was 
33.3% (±9.6) and 65.2% (±9.2). In univariate analyses, significant predictors of 
native liver survival were a bilirubin level below 20 µmol/L at 3 months and at 6 
months, portal inflammation grade ≥ 2 at PE, and operation after centralization. 
In the multivariate regression model, only a bilirubin level below 20 µmol/L at 3 
months significantly predicted native liver survival.

Before and after centralization, cumulative 2-, 5- and 10-year overall survival 
rates were 68.0% (±9.3) and 93.7% (±4.3), respectively. In univariate analyses, 
bilirubin levels below 20 µmol/L at 3 months [100% vs. 66.7% (±8.6), P=0.001] and 
operation after centralization [93.7% (±4.3) vs. 68.0% (±9.3), P=0.007] predicted 
overall survival, but in multivariate analyses, neither remained significant.

At follow-up, in simple regression model a slower Metavir fibrosis stage 
progression rate was associated with a higher portal inflammation grade at PE 
and COJ, but in the multiple regression model, only the latter remained significant. 
Follow-up fibrosis stage associated with CK-7 positive periportal hepatocytes in 
multiple regression.  
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Figure 9.

Era of treatment

Portal inflammation grade at PEBilirubin levels at 3 months after PE

Clearance of jaundice

Figure 9. Cumulative native liver survival rates according to (A) era of treatment, (B) clearance of jaundice, 
(C) plasma bilirubin levels at 3 months after portoenterostomy (PE), and (D) portal inflammation grade 
at PE. Subgroups compared with the log-rank test. Cohort A=1987–2004; cohort B=2005–2016. Figure 
reprinted from study IV with kind permission from the publisher. 
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6 DISCUSSION

Previous studies have shown that fibrosis persists even after successful PE, despite 
the resolution of histologic inflammation and cholestasis [8, 89, 122, 124, 221]. 
Findings in studies I–IV show that after successful PE, liver fibrosis progresses 
or at least persists in all BA patients despite their COJ status, but inflammation 
diminishes, and cholestasis resolves only in those who undergo successful PE. 
Table 9 aggregates the observed changes in selected fibrosis and inflammatory 
mediators among BA patients after successful PE (I–III).

In cholestatic liver diseases, histologic cholestasis is often accompanied by 
inflammation, which is thought to have a crucial role in transforming BECs into 
reactive cells promoting fibrogenesis [7, 96]. However, in study IV, a higher portal 
inflammatory grade at PE predicted a slower fibrosis progression rate and better 
native liver survival, and inflammation decreased only after successful PE. In study 
I, RNA expression of proinflammatory cytokines remained relatively low after 
successful PE. These findings may indicate that inflammation is mainly secondary 
to cholestasis, while those with a predominantly inflammatory reaction at PE might 
represent a modifiable disease form before proceeding to a predominantly fibrotic 
form. This is supported by Moyer et al., who found different molecular profilings in 
the fibrotic and inflammatory groups at the time of PE and decreased native liver 
survival among the fibrotic group [44]. Anti-inflammatory corticosteroids seem 
to improve bile drainage in the early postoperative period but have no effect on 
native or overall survival [9, 45, 82, 83]. Findings in studies I–IV also suggest that 
after successful PE, anti-inflammatory therapy might not be an effective means to 
reduce the progression of fibrosis, but instead studies with antifibrogenic therapies 
affecting profibrogenic cytokines and reactive BECs producing these molecules 
should be considered.

Ductular reaction is a distinctive histologic feature characteristic of biliary 
obstruction, and it correlates with portal fibrosis in BA [98, 101, 104, 117]. Findings 
in studies I–IV strengthen the role of ductal reactions in liver fibrogenesis after 
successful PE. MMP-7 was expressed by BECs in ductal reactions and periportal 
hepatocytes, and persistence of periductal α-SMA expression after PE associated 
with fibrosis and the degree of ductal reaction. This supports the crucial role of 
reactive BECs in ductal reactions sustaining and promoting fibrogenesis after 
successful PE. Previous studies have found CK-7 positive periportal hepatocytes 
in BA, possibly reflecting the role of hepatocyte-to-cholangiocyte metaplasia in the 
progression of the disease [8, 117, 120]. In the present study (III), the magnitude 
of CK-7 positive periportal hepatocyte immunoreactivity associated with MMP-7 
expression. As these CK-7 positive periportal hepatocytes associated with fibrosis at 
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follow-up, this supports the importance of hepatocyte-to-cholangiocyte metaplasia 
in liver fibrogenesis after PE. More studies are needed to further investigate the 
function and origin of CK-7 positive periportal hepatocytes in BA-associated liver 
injury [102, 103, 106].

Table 9. Schematic overview of the observed changes in selected fibrosis mediators among BA patients 
following successful portoenterostomy.

Table 9. Schematic overview of the observed changes in selected fibrosis mediators 
among BA patients following successful portoenterostomy. 

 

Variable Liver protein 
expression 

Liver RNA 
expression 

Serum 
level 

Correlation to 
histologic liver 

fibrosis 
Collagen ↑ ↑ ↑ ↑  protein 

α-SMA ↑ ↑  ↑  protein 

TGF-β1 ↑     protein, RNA 

TGF-β2 ↑ ↑ ↑ ↑ protein 

Decorin  ↑  ↑ ↑  
protein 

CTGF  ↑  ↑  
 protein 

PDGFA  ↑ ↑  RNA 

MMP-7 ↑ ↑ ↑ ↑ ↑ ↑ protein, serum 

TIMP-1  ↑ ↑ RNA 

IL1A  ↓     

IL10   ↓   

TNF      

 

Changes presented in relation to control patients with (blue) and without (red) liver fibrosis. 
Data found in studies I-III, except for liver protein expression BA vs fibrotic controls: CTGF 
[1 (0–1) vs 1 (0.75–2), P=0.115] and Decorin [2 (1.5–2.5) vs 1.5 (1–2), P=0.137].  

α-SMA=alfa smooth muscle actin; TGF-β=transforming growth factore beta; 
CTGF=connective tissue growth factor; PDGFA=platelet-derived growth factor alfa; 
MMP=matrix metalloproteinase; TIMP=tissue inhibitor of matrix metalloproteinase; 
IL=interleukin; TNF=tumor necrosis factor 

 

 

 
Study II showed that after successful PE, hepatic expression of TGF-β1 and 

CTGF selectively decreased, and both protein and RNA expressions of TGF-β1 
correlated with fibrosis. In previous studies, TGF-β1 expression has been found 
to decrease from PE to LTx [181, 183]. Kobayashi et al. found that the expression 
of TGF-β1 was lower in patients with persistent jaundice compared to those with 
COJ and suggested that it might be due to the incapability of HSCs to produce 



50

TGF-β1 in patients with end-stage liver fibrosis since the expression of α-SMA, 
the indicator of HSC activation, was also low in this group [181]. However, our 
findings challenge this interpretation since, in our patients with COJ, there was an 
abundance of α-SMA compared to healthy controls. Selective downregulation of 
TGF-β1 and CTGF together with persistent overexpression of antifibrogenic decorin 
might have a protective role in liver fibrogenesis, while persistent upregulation of 
TGF-β2 or PDGF may overpower their antifibrogenic effects. Profibrogenic PDGF 
has been shown to be overexpressed in BA and correlate with fibrosis [13, 179, 
191]. Findings in study I suggest that this is an important cytokine sustaining 
fibrogenesis also after successful PE, and further research should concentrate 
on this growth factor. The coupling of hepatic protein and gene expression of 
TGF-β1, TGF-β2, CTGF, decorin and PDGFA with expression of α-SMA, a marker 
of activated myofibroblasts, strengthens their role in persisting fibrogenesis after 
the resolution of cholestasis in BA (study II).

In previous studies, hepatic MMP-7 expression has been shown to be 
upregulated in BA at the time of PE and LTx with an association to liver fibrosis 
[14, 15, 163, 165]. Study III strengthened the important role of MMP-7 in BA 
fibrosis and was the first study to show that serum and liver tissue expression of 
MMP-7 also increases after successful PE, is specific to BA, and associates with 
histologic fibrosis and ductal reactions at follow-up. Recently, serum MMP-7 has 
also been shown to be an accurate biomarker for BA at the time of diagnosis [14, 
198]. However, MMP-7 did not reflect the degree of liver fibrosis at the time of 
PE [14, 198]. Our findings indicate that MMP-7 may be essentially involved with 
the progression of liver injury and fibrosis among patients who normalize their 
bilirubin by PE. Collectively, these findings encourage further investigation into the 
role of MMP-7 in BA fibrogenesis. It also raises the possibility for antifibrogenic 
therapy targeted against MMP-7. MMP-7 inhibitors nobiletin and isofraxidin have 
shown promising initial results in cancer cells, and marimastat reduced MMP 
hyperactivity in cystic cholangiocytes in polycystic liver diseases [222-224]. In 
the rhesus rotavirus–injected rat model of BA, the MMP-7 inhibitor batimastat 
prevented BEC injury and bile duct obstruction [14]. 

Overall, 36–43% of patients had at least one congenital anomaly. Anomalies 
included cardiac defects (at least a septal defect), polysplenia, vascular anomalies, 
intestinal malrotation, situs inversus and pancreatic anomalies. Just two patients 
had only polysplenia without other anomalies. A similarly high proportion (over 
30%) of syndromic patients have been found in the USA and Canada [34, 52, 54, 
115]. One explanation for the high percentage of syndromic patients could be the 
thorough assessment for associated malformations. In studies I–II, syndromic 
patients were found to have milder fibrosis compared to isolated ones, and their 
progressions of fibrosis and ductal proliferation were less prominent than in 
isolated patients after successful PE. The slower progression of fibrosis in syndromic 
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patients associated with decreased liver expression of collagen, α-SMA, TGF-β1 
and MMP-7. This might reflect the different etiology and pathogenesis between 
syndromic and isolated patients. This raises the question of possible need for 
stratifying patients into isolated and syndromic disease forms in future studies 
instead of merely based on splenic anomaly in accordance with the concept of 
biliary atresia structural malformation as previously suggested [46, 49, 60, 61]. 

Study IV showed an improved five-year native liver survival from 38% to 70% 
and overall survival from 68% to 78% after the treatment of BA was centralized from 
five university hospitals into one in 2005, with a caseload of three to four children 
a year. These results demonstrated that even with the relatively low caseload, high-
quality outcomes can be achieved when interdisciplinary treatment is standardized 
in a center with experience on complex hepatobiliary surgery. The potential benefits 
of centralization of BA care are well established [4-6, 33, 203, 210-212, 216]. In 
this respect, the crucial issue is the concentration of experience, which is also 
achievable by active cooperation with expert centers [6, 211]. 

The studies’ limitations include a relatively small sample size and age range 
among patients and controls. Control material was obtained from several different 
sources due to the limited availability of liver specimens for obvious reasons. The 
cross-sectional study design provides only associations than proof of causality. 
Localization of the studied proteins relied on immunohistochemistry, which is 
prone to methodological inaccuracies. However, immunohistochemistry was 
supplemented with RNA expression to increase reliability. The other strengths 
of these studies include age-matched “healthy” and cholestatic controls, and 
the thorough evaluation of liver histology and potential fibrogenic mechanisms 
underlying the progressive liver fibrosis in BA after successful PE. 

Sixty-four years after Morio Kasai’s development of an effective surgical 
procedure to restore bile flow, BA is still the leading indication for pediatric LTx 
worldwide [1]. Molecular mechanisms underpinning ongoing liver fibrogenesis 
after successful PE are still mostly a mystery that needs to be resolved for the 
development of effective antifibrogenic therapies [2]. Our findings suggest directing 
future research to reactive BECs in ductal reactions and metaplastic periportal 
hepatocytes maintaining liver fibrosis, possibly through actions of MMP-7, TGF- 
β, PDGF and CTGF after successful PE in children with BA. 
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7 CONCLUSIONS

Based on the results, the main conclusions of these studies are the following:

1) After successful PE, a molecular signature of active fibrogenesis with increased 
expression of collagen, α-SMA and PDGFA prevails, and the expression of 
proinflammatory cytokines is low. There is a decline in the expression of 
TGF-β1 and CTGF, and no change in TGF-β2 and antifibrogenic decorin, which 
might indicate that TGF-β2 together with PDGF are important in mediating 
progressive liver fibrogenesis after cholestasis has resolved by successful PE.

2) After successful PE, there is an increased hepatic expression of MMP-7 specific 
to BA, which correlates with the degree of liver fibrosis. MMP-7 could serve as 
a therapeutic target to extend native liver survival and serum MMP-7 could 
be used as a postoperative follow-up tool in BA after successful PE.

3) High-grade inflammation in liver histology at the time of PE predicted COJ and 
the normalization of serum bilirubin levels following PE native liver survival. 
High-quality outcomes are achievable in a small country when standardized 
BA care is concentrated to an assigned interdisciplinary team.

4) A subgroup of syndromic patients showed less pronounced progressions 
of histologic fibrosis, ductal reaction, and expression of MMP-7, TGF-β1 
and α-SMA compared to isolated patients. This might indicate a different 
etiopathogenesis between these two subgroups. 
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