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Abstract  

The use of drug nanocrystals in the drug formulation is increasing due to the large number of poorly 

water-soluble drug compounds synthetized and due to the advantages brought by the nanonization 

process. The downsizing processes are done using a top-down approach (milling and 

homogenization currently employed at the industrial level), while the crystallization process is 

performed by bottom-up techniques (e.g., antisolvent precipitation to the use of supercritical fluids 

or spray and freeze drying). In addition, the production of nanocrystals in confined environment can 

be achieved within microfluidics channels. This review analyzes the processes for the preparation of 

nanocrystals and co-crystals, divided by top-down and bottom-up approaches, together with their 

combinations. The combination of both strategies merges the favorable features of each process and 

avoids the disadvantages of single processes. Overall, the applicability of drug nanocrystals is 

highlighted by the widespread research on the production processes at the engineering, 

pharmaceutical, and nanotechnology level. 

 

Keywords: Nanocrystals; Co-crystals; Drug; Top-down; Bottom-up; Milling; Homogenization; 

Microfluidics; Supercritical fluids; Spray dryer  
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1. Introduction 

Poor solubility of drug molecules is a challenging problem in drug discovery and development, in 

which approximately 70–90% of the new compounds belong to the Biopharmaceutics Classification 

System (BCS) class II or class IV [1]. The formulation of poorly water-soluble drug compounds 

usually encounters low oral bioavailability and unpredictable absorption, because of their low 

solubility and dissolution rate, and consequently, their therapeutic effect is reduced [2].  

Different types of nanosystems have been approved to enhance the solubility of poorly water-

soluble drugs, to target the drugs to the desired location of action with increased precision, to 

control their release, and to improve the transport across biological barriers. The nanosystems 

formulated either for oral or parenteral drug delivery in the EU market include liposomes, 

nanoemulsions, polymeric therapeutics, polymeric NPs, nanocomplexes, and nanocrystals (Figure 

1) [3-5]. 

 

Figure 1. Overview of the nanosystems developed for oral or parenteral drug delivery in the EU 

market. Reproduced with permission from ref. [4], © 2018, Elsevier B.V. 
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Another strategy that has been exploited to increase the solubility of poorly water-soluble drugs is 

the use of co-solvents (e.g., water or ethanol) or solubilizing agents (e.g., surfactants like 

Cremophor EL). However, this leads to the increase of the side effects or toxic reaction to the body 

due to the solubilizing agents or traces of the organic solvents [2, 6]. Therefore, there is an urgent 

need for the development of safe and effective approaches to increase the solubility and 

bioavailability of poorly water-soluble drugs. In this way, different chemical and physical 

modifications have been performed, including salt formation of ionizable drugs [7], drug 

complexation with cyclodextrins [8, 9] or conjugation to dendrimers [10], preparation of drug 

dispersions in nanocarriers like self-microemulsifying drug delivery systems [11], nano/micro 

emulsions [12] or other lipid-based formulations [13]. In addition, particle size reduction to the 

micro/nano-meter range can be applied to formulate poorly water-soluble drugs, leading to a 

significant increase of the surface-to-volume ratio, and consequently, to an increase of dissolution 

rate [2]. Micronization is a very simple technology that can use jet milling or wet milling to reduce 

the particle size of drugs belonging to the poorly water-soluble drugs. However, many of the new 

drugs show such a low solubility that micronization does not effectively increase the bioavailability, 

leading to the nanonization of micronized drug particles by producing drug nanocrystals [14]. The 

production of drug nanocrystals has been developed since the beginning of the 1990s [2, 6]. 

Drug nanocrystals are an interesting approach for the delivery of poorly water-soluble drugs, 

because they are a carrier-free colloidal system in the nanometer range (100–1000 nm), with a 

theoretical drug loading of 100% [6, 15]. When dispersed in a liquid media, they need to be 

stabilized with surfactants or polymeric steric stabilizers [6, 16]. The main role of the stabilizers is 

to prevent the unstable particles from aggregation and/or Ostwald ripening during storage of the 

drug nanocrystal suspensions [17]. The dispersion media to formulate drug nanocrystal suspensions 

can be water or other aqueous solutions and non-aqueous solutions [6, 16]. The production of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

6 

nanocrystals after reducing the particle size to the nanosized range, leads to the modification of the 

intrinsic properties of the raw material, including its thermodynamic and kinetic characteristics [18].  

Two different approaches can be used for the production of drug nanocrystals with desired particle 

size and size distribution: (1) top-down technologies that involve high-energy mechanical forces to 

coarse the drug powder, which are provided by media milling or high-pressure homogenization, and 

(2) bottom-up methods, where nucleation and consequent crystal growth from solutions take place, 

triggered for example by adding an antisolvent or removing the solvent [19].  

In this review, we first introduce the general features of pure drug nanocrystals and co-crystals in 

drug delivery. Then, the principal approaches for the production of nanocrystals are addressed, 

namely the top-down methods like pearl-milling, high-pressure homogenization and ultrasonication. 

Bottom-up methods, including the solvent-antisolvent by a conventional method or using 

microfluidics, the supercritical fluid and the solvent removal are described and discussed. Finally, 

combinative technologies for the production of drug nanocrystals are presented and discussed, as 

well as the challenges for scale-up production of drug nanocrystals. 

 

1.1. Pure Drug Nanocrystals and Co-crystals in Drug Delivery 

1.1.1. Drug Nanocrystals  

Depending on the production method, transforming drug microcrystals to drug nanoparticles can 

lead to the production of a crystalline or an amorphous product. Although an amorphous drug 

nanoparticle should not be called nanocrystal, they are often referred as “nanocrystals in the 

amorphous state” [6]. The production of drug nanocrystals allows a reduction on the size of poorly 

water-soluble drug particles to the nanometer range, changing the thermodynamic and kinetic 

characteristics of the drug, solving its biopharmaceutical delivery problems [15, 18]. The delivery 

issues that poorly water-soluble drugs can encounter are: (i) low bioavailability after oral 

administration; (ii) low penetration into the skin, and consequent low dermal bioavailability; and 
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(iii) the need for a large injection volume for intravenous (i.v.) administration that leads to 

undesired side effects [15, 16]. To overcome the solubility problems, the production of drug 

nanocrystals leads to an increase in saturation solubility, an increase in dissolution rate, and an 

increased adhesiveness to surface/cell membranes (Figure 2) [15, 16]. The physical background of 

these effects is described in detail below. Furthermore, the general features of pure drug 

nanocrystals and co-crystals (i.e., mixture of two or more different components in a crystalline 

form) are also discussed and summarized in Table 1. 

 

Figure 2. General features of drug nanocrystals: (1) increased saturation solubility due to increased 

dissolution pressure of strongly curved small nanocrystals; (2) increased dissolution rate due to 

increased surface area; and (3) increased adhesiveness of nanomaterial due to increased contact area 

of small versus large particles. Reproduced with permission from ref. [15], © 2011, Elsevier B.V. 
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Table 1. Summary of the general features of pure drug nanocrystals and co-crystals for drug 

delivery [16]. 

Pure Drug Nanocrystals Co-crystals 

 Particle size below 1 μm 

 100% drug (no carrier) 

 Generally needed to be stabilized by surface 

active agent 

 Crystalline or amorphous structure (Amorphous 

state offers advantages) 

 Increased dissolution rate 

 Increased saturation solubility 

 Increased adhesiveness to surface/cell 

membranes 

 Long-term stability 

 Increased bioavalibility of the drug 

 Possible nanotoxicity and side effects 

 Improving the physicochemical properties of 

active pharmaceutical ingredients (APIs): 

- Dissolution rate 

- Intrinsic solubility  

- Melting point  

- Hygroscopicity  

- Compressibility  

- Bulk density  

- Friability 

 

Drug nanocrystals can reach an increased dissolution rate as compared to bulk drug as a 

consequence of the large interfacial area due to the decreased particle size, which can be explained 

by the Noyes-Whitney equation (Eq. 1) [20, 21]: 

𝑑𝐶

𝑑𝑡
=

𝐷𝑆

𝑉ℎ
(𝐶𝑆 − 𝐶𝑡) 

where, dC/dt is the rate (concentration change as a function of time), D is the diffusion coefficient, 

S is the surface area, V is the dissolution volume, h is the diffusion layer thickness, CS is the 

saturation concentration and Ct is the concentration at time t [16, 17]. Thus, particle size is an 

important factor in the determination of dissolution rate. For example, by reducing the particle size 

from 50 µm to 500 nm, the drug dissolution rate will increase 100 times [17].  

(1) 
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In general, the saturation solubility is a constant that depends on the physicochemical properties of a 

specific compound, dissolution medium and temperature, as well as the crystalline structure (i.e., 

lattice energy) and particle size [16]. For example, homogenization process produces amorphous 

fraction with high inner energy that contributes to an increased solubility of the substance. In 

addition, the saturation solubility increases when the particle size is reduced below 1 µm [16]. This 

effect can be explained by the Ostwald–Freundlich equation that directly describes the relation 

between the saturation solubility of the drug (CS) and the particle size (r) (Eq. 2) [18, 22, 23]: 

log
𝐶𝑆

𝐶𝛼
=

2𝜎𝑉

2.303 𝑅𝑇𝜌𝑟
 

where, CS is the saturation solubility, Cα is the solubility of large particles, σ is the interfacial 

tension of the substance, V is the molar volume of the particle material, R is the gas constant, T is 

the absolute temperature, ρ is the density of the solid, and r is the radius [16, 23]. Thus, an increase 

in the saturation solubility presents two advantages: (1) enhanced dissolution rate due to an 

increased in concentration gradient (CS − Ct)/h, according to the Noyes–Whitney equation, and (2) 

increased concentration gradient between gut lumen and blood that promote the permeation and 

absorption by passive diffusion [6, 16]. 

Drug nanocrystals present also an increased adhesiveness to surface/cell membranes compared to 

the microparticles, because of the reduced size and increased contact area of the small particles. 

Consequently, an improvement of oral absorption of poorly water-soluble drugs is observed, along 

with the increased saturation solubility and dissolution rate, due to the increased residence time, all 

factors presenting a positive impact on the bioavailability of the drug [16, 24]. 

In addition, the usage of drug nanocrystals in their amorphous state presents an advantage, because 

they have higher saturation solubility compared to their crystalline form. Consequently, the highest 

saturation solubility can be ideally obtained by combining the nanometer size and amorphous state 

of drug nanocrystals [6, 16]. The transformation of crystalline structures can occur during the 

fabrication process of drug nanocrystals, leading to an increase on the amorphous fraction in the 

(2) 
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particle or even forming completely amorphous particles, which make the drugs dissolving more 

rapidly [16]. However, the capacity to maintain the amorphous state during the shelf life of 

pharmaceutical products needs to be considered [6]. 

Another characteristic feature of drug nanocrystal suspensions is the long-term physical stability 

after stabilization with a stabilizer, leading to an absence of aggregation of nanocrystals and 

Ostwald ripening phenomenon. Ostwald ripening phenomenon happens when the solute 

concentration near the smaller particles is higher than the large particles due to the increased 

saturation solubility of small particles. Consequently, the molecules in the proximity of the small 

particles will deposit into the large particles driven by the concentration gradient, leading to the 

formation of microparticles as a result of the recrystallization on the surface of the larger particles. 

However, the differences in the saturation solubility due to the different particle sizes can be 

prevented when a narrow size distribution of drug nanocrystals is achieved [16]. Generally, the drug 

nanocrystal suspensions are thermodynamically unstable systems due to their large interfacial area, 

and consequent high interfacial free energy. The surface free energy (ΔG or ‘Gibbs energy’), 

associated with this area is explained by the following equation (Eq. 3):  

∆𝐺 = 𝛾𝑆𝐿 × ∆𝐴 − 𝑇∆𝑆 

where, ΔA is the change in surface area, γSL is the interfacial tension between the solid and liquid 

interface, T is the absolute temperature, and ΔS is the change in entropy of the system. Thus, the 

particles in a nanosuspension have a tendency to aggregate to minimize the surface energy of the 

system [4].  

To achieve a stable drug nanocrystal suspension, the addition of a surface active agent is required to 

provide electrostatic and steric repulsion between the nanocrystals, preventing the aggregation of 

drug nanocrystals [16]. The addition of stabilizers will inhibit the aggregation by increasing the 

activation energy of the process [25]. Several surface active agents can be used to stabilize drug 

nanocrystal suspensions, including ionic surfactants [e.g., sodium dodecyl sulfate (SDS) [26], 

(3) 
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sodium lauryl sulfate (SLS) [27], poly(ethylene imine) (PEI) [28], chitosan [29]], non-ionic 

surfactants [e.g., polysorbates, sorbitan esters, and Pluronics [30]], and polymers [e.g., polyvinyl 

pyrrolidone (PVP) [31], hydroxypropyl methyl cellulose (HPMCs) [25], and hydroxypropyl 

cellulose (HPCs) [27], d-α-tocopherol polyethylene glycol 1000 succinate (TPGS 1000) [32], 

polyethylene glycols (PEGs) [33], polyvinyl alcohols (PVAs) [31], amphiphilic amino acid 

copolymers [34], crystalline cellulose [35]]. In general, ionic surfactants are used to maintain the 

particles separated via electrostatic repulsion, while the non-ionic surfactants and polymeric 

stabilizers can be used to establish a steric barrier against aggregation [33, 36]. Moreover, the 

combination of an electrostatic and a steric stabilizer, also called ‘electrosteric stabilization’, 

showed better effectiveness for stabilizing drug nanocrystals [4, 33]. For example, poloxamer F68 

along with chitosan derivatives were combined to improve the stability of itraconazole nanocrystals, 

improving the stability of the nanocrystals when compared to F68 alone [37]. The selection of a 

suitable stabilizer for a drug nanocrystal suspension is still based on the trial-and-error method. The 

particle size and size reduction kinetics of the produced drug nanocrystal suspensions is affected by 

the type and concentration of stabilizer used. For example, when the concentration of the stabilizer 

is below the optimum concentration, the particle growth occurs due to the incomplete covering of 

the nanocrystals surface by the stabilizer; while in the case of stabilizer overdosing, particle growth 

occurs as a result of Ostwald ripening phenomenon [4, 38].  

Overall, drug nanocrystals show several benefits over the micronized particles. However, the 

nanotoxicity of drug nanocrystals cannot be ignored because the nanoparticles can be taken up by 

endocytosis and provoke damage to single cells, especially for drug nanocrystals stabilized by non-

degradable stabilizers with particle size below 100 nm. Furthermore, the persistency of 

nanoparticles in the body after administration also increase the risk of toxicity. Usually, the drug 

nanocrystals present low toxicity risk, because they can have a particle size higher than 100 nm and 

they are also biodegradable (i.e., when the water is sufficient to ensure the dissolution) [15, 16]. 
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1.1.2. Co-crystals  

Over the last 15 years, the production of pharmaceutical co-crystals has gained an increased 

attention to overcome the problems associated with the poorly-water soluble drugs, and more 

recently co-amorphous systems have also been produced [39, 40]. By definition, co-crystals (also 

called multi-component crystals) are crystalline materials composed by two or more different 

components in a well-defined stoichiometric ratio [41]. These components are usually an active 

pharmaceutical ingredients (API) and a co-crystal former, which can be an excipient or another 

drug [42]. The physicochemical properties of the APIs and the bulk material properties can be 

modified, while maintaining their therapeutic activity [43]. The rationale for co-crystals design 

implicates the formation of supramolecular heterosynthons of functional groups, such as carboxylic 

acid–aromatic nitrogen, carboxylic acid–amide and alcohol–pyridine, which are bonded in a non-

covalently way. In addition, co-crystals can be also formed via intermolecular interactions of 

homosynthons, including carboxylic acid–carboxylic acid and amide–amide synthons [39, 44-46]. 

However, the supramolecular heterosynthons are significantly more predominant compared to 

homosynthons and favor the formation of co-crystals, because the interactions between the 

molecules result in H–bonding and form thermodynamically stable co-crystals [39, 47]. Thus, the 

co-crystallization can enhance the physicochemical properties of APIs, such as dissolution rate, 

intrinsic solubility, melting point, hygroscopicity, compressibility, bulk density and friability [39].  

 

2. Production Methods of Drug Nanocrystals  

The particle size reduction for the formulation of drugs with poor aqueous solubility involves 

nanosization techniques based on two different approaches: top-down and bottom-up techniques 

[48, 49]. In the top-down methodologies, nanosized particles are produced by decreasing the 

particle size by mechanical erosion of the larger bulk drug powder into smaller sized particle in a 
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liquid suspension, using milling or homogenization techniques, while the bottom-up technologies 

enable the controlled precipitation or crystallization from the molecular state to produce drug 

nanoparticles of desired size, using precipitation techniques (Figure 3) [14, 16, 50].  

The majority of the commercial pharmaceutical products are most commonly produced using a top-

down approach, such as milling, because these techniques allow the repeatability at a high level and 

the changes in scaling-up are considerably easy to perform [17, 50]. In addition, the bottom-up 

processes need for solvent removal, and they are more difficult to control, as most of the poorly 

water-soluble drugs are poorly soluble not only in aqueous, but also in organic media [6]. The 

process yield can diverge according to the methodology applied to produce the drug nanocrystals. 

For example, using milling methods, the yield can be substantially high in the case of the a batch 

process, although some material can be lost on the surfaces of the beads and the vessel [17]. Several 

techniques can be utilized for co-crystallization, including an array of solid state, mechanochemical, 

and liquid assisted techniques. Furthermore, various innovative methodologies, such as freeze-

drying, microfluidics, and ultrasound-assisted co-crystallization have been potentially used in co-

crystals synthesis [39]. The main advantages and disadvantages of top-down and bottom-up 

approaches to produce drug nanocrystals are summarized in Table 2, and they will be discussed in 

detail in the following subsections. 
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Figure 3. Schematic representation of the main methods for the production of drug nanocrystals, 

using top-down and bottom-up approaches. 

 

Table 2. Summary of the general advantages and disadvantages of top-down and bottom-up 

approaches [2, 51].  

Methodology Advantages Disadvantages 

Top-down 

Approaches 

 Simple 

 Fast 

 Avoid organic solvents 

 High reproducibility 

 Easy of scale-up 

 Energy-intensive technique  

 Potential instability of drugs induced by 

high shear and temperature 

 Product contamination from the grinding 

media 

Bottom-up 

Approaches 

 Small particle size 

 Monodispersed particles 

 Cost-effective 

 Difficult to scale-up 

 Time-consuming to find the suitable 

conditions 

 Difficult to control the particle growth 

 Incomplete removal of toxic solvents 
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The combination of different particle size reduction technologies can also be employed to  improve 

the particles size reduction, combining the effectiveness of the standard top-down and bottom-up 

techniques [52, 53]. Generally, the first step consists of a precipitation approach (e.g., free-drying or 

spray drying) that modifies the drug structure to obtain a brittle and friable starting material for the 

subsequent homogenization process [52, 53]. The main combination technologies that have been 

used are discussed in detail in section 3. 

 

2.1. Top-down Approach 

In the top-down approach, microsized drug crystals are submitted to a mechanical attrition or high 

pressure collisions that leads to the decrease in the particle size to the nanometer range. The main 

processes employed to achieve this are milling and high-pressure homogenization (HPH) [54]. The 

main advantages of these processes include the preparation of crystalline nanoparticles, flexibility 

in the scale-up production, and no harsh solvents [55]. However, these methods involve high energy 

input and are highly inefficient and time-consuming [54, 56]. For example, using high pressure up 

to 1700 bar during the homogenization process, 50 to 100 cycles are still required to achieve the 

desired particle size and size distribution [6, 14]. The milling time can also differ from hours to 

days, according to the properties of the drug, the milling media, and the extent of particle size 

reduction [57]. In addition, the contamination from the grinding media can lead to unexpected side 

effects, which can be a problem when the nanocrystals are considered for i.v. administration [54, 

56]. 

The formation and physical stability of drug nanocrystal suspension can be affected by the 

manufacturing process, and consequently, alter the overall performance of drug nanocrystal 

suspensions [58, 59]. Heat sensitive drugs can be degraded by the heat generated in top-down 

methods [56]. Furthermore, the milling can cause crystal imperfections due to disordering of the 

crystal surface, and expose a hydrophobic surface with the decrease in the particle size. The 
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rearrangement of crystals defects and re-crystallization of amorphous regions can lead to both 

physical and chemical instability of the resulting products during storage [60].  

Industrially, the NanoCrystal
®
 technology is the classical milling process to reduce the particle size. 

Regarding the high pressure homogenization methods, the crystals can be grounded using three 

different technologies: Microfluidizer technology (IDD-P
®
 technology), Piston-gap homogenization 

in water (Dissocubes
®

 technology) or in water mixtures/non-aqueous media (Nanopure
®
 

technology) [15, 16]. Most of the nanocrystal products launched on the market are produced using 

the NanoCrystal technology for oral administration, as summarized in Table 3 [61]. Nanocrystals 

for oral administration are easier to prepare compared to the i.v. administration, and the drug 

nanocrystals are released from the tablets or suspensions [61].  

 

Table 3. Examples of nanocrystal products on the market. Adapted with permission from ref. [62]. 

Product Drug Compound Indication Administration 

Route 

Nanosizing 

Approach 

Pharma 

Company 

Approval 

Date 

Gris-Peg
®

 Griseofulvin Anti-fungal Oral Precipitation Novartis 1982 

Cesamet
®

 Nabilone Anti-emetic Oral Precipitation Lilly 2005 

Verelan 

PM
®
 

Verapamil Anti-

arrhythmia 

Oral Media Milling Schwarz 1998 

Rapamune

®
 

Sirolimus Immuno-

suppressant 

Oral Media Milling Wyeth 2000 

Focalin 

XR
®

 

Dexmethylphenida

te hydrochloride 

Anti-

psychotic 

Oral Media Milling Novartis 2001 

Avinza
®

 Morphine sulfate Anti- chronic 

pain 

Oral Media Milling King Pharm 2002 

Ritalin 

LA
®

 

Methylphenidate 

hydrochloride 

Anti-

psychotic 

Oral Media Milling Novartis 2002 

Herbesser

®
 

Diltiazem Anti-angina Oral Media Milling Mitsubishi 

Tanabe 

Pharma 

2002 

Zanaflex

™ 

Tizanidine 

hydrochloride 

Muscle 

relaxant 

Oral Media Milling Acorda 2002 

Emend
®

 Aprepitant Anti-emetic Oral Media Milling Merck 2003 

Tricor
®
 Fenofibrate Hypercholeste Oral Media Milling Abbott 2004 
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rolemia 

Megace
®
 

ES 

Megestrol acetate Appetite 

stimulant 

Oral Media Milling Par Pharma 2005 

Naprelan
®

 Naproxen sodium Anti-

inflammation 

Oral Media Milling Wyeth 2006 

Theodur
®
 Theophylline Bronchial 

dilation 

Oral Media Milling Mitsubishi 

Tanabe 

Pharma 

2008 

Tridlide
®
 Fenofibrate Hypercholeste

rolemia 

Oral High Pressure 

Homogenizati

on 

Skye 

Pharma 

2005 

Invega 

Sustenna 

Paliperidone 

palmitate 

Anti-

depressant 

Injection High Pressure 

Homogenizati

on 

Johnson & 

Johnson 

2009 

 

2.1.1. Wet Media Milling 

As the dry milling (e.g., jet milling) is not effective on reducing the particle size to the nanometer 

range, the wet media milling process can be applied. In wet media milling, also known as pearl 

milling or bead milling, the drug particles are dispersed in a surfactant/stabilizer solution and this 

macrosuspension is exposed to milling energy to produce ultrafine particle suspension [16]. The 

low energy pearl milling was initially developed by Liversidge et al. in 1991, leading to the 

NanoCrystals
®
 technology to achieve the particle size reduction [63]. Currently, NanoCrystal

®
 

technology is based on a high energy milling process to make this procedure more desirable for 

industrial pharmaceutical applications [64]. For that, the milling equipment needs to be sufficiently 

powerful to improve the process [65]. Using this method, high shear pearl mill consisting of milling 

chamber, milling pearls, milling motor, and a recirculation chamber is needed to produce the 

nanocrystal suspension (Figure 4).  

First, the suspension containing the drug, water and surfactants is charged into the milling chamber 

along with the milling pearls, and then rotated at a high rate driven by the motor while the drug 

crystals are being nanosized between the moving pearls by the high shear forces. Generally, the 

drug concentration can range from 1 to 400 mg/ml, the amount of drug in the milling chamber 
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ranges can vary between 2 and 30 wt-% [49, 57, 66], and the weight ratio of drug to stabilizer 

ranges from 2:1 to 20:1 [65]. The mills can be containers with small pearls, beads, or balls 

presenting different sizes, typically between 0.2 and 1 mm, and they can be made of different 

materials such as glass, zircon oxide, or polystyrene resin [2, 15, 67]. In this regard, the polystyrene 

resin beads might provide a better option to reduce the contamination caused by erosion from the 

mills into the drug formulation [18]. Usually, the number per volume of the milling pearls per beads 

can range between 10 to 50% of the weight per volume of the slurry [57]. Fine nanocrystal 

suspension can be obtained after minutes to several days and up to a week, according to a variety of 

parameters, including the drug hardness, viscosity, temperature, energy input, size of the milling 

media, surfactant concentration used and administration route of the particle [61]. For example, 

nanocrystals can be obtained either by low milling speeds (80–90 rpm) and long milling times (1–5 

days) or using high milling speeds (1800–4800 rpm) and short milling times (30–60 min) [57, 68-

71]. The progress can be performed in either batch, recirculation or continuous mode, with a very 

small batch-to-batch variation to obtain a narrow particle size distribution [2]. The batch mode is 

mainly used to the develop drug nanocrystal suspensions at the laboratory scale [4]. In the 

recirculation mode, the milling set-up is constituted by a recirculation pump and a holding tank, in 

which the pump allow the suspension to flow from the holding tank through the mill, and go back 

into the holding tank. This approach permits the production of a fixed batch size that is limited by 

the capacity of the holding tank. Nanocrystal
®
 Technology uses the recirculation media milling to 

produce drug nanocrystal suspensions in the marketed products [4, 72]. In addition, two types of 

continuous mode (multipass continuous and the cascade-continuous mode) can be used, where a 

receiving tank allows the continuous withdrawal of product from the mill. In the continuous modes, 

the suspension circulates from the holding tank through the mills, and finally goes into the receiving 

tank [72]. The continuous processing mode is widely used for large-scale production and the 
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pharmaceutical manufacturing sector is interested to move from batch processes to the continuous 

processes [4, 72].  

 

Figure 4. Schematic representation of the media milling process. The media containing drug, water 

and stabilizer is charged in the milling chamber and processed into a nanocrystalline dispersion. 

The mill can be operated in a batch or re-circulation mode. Typically, the residence time necessary 

to produce nanometer-sized dispersion with a mean diameter <200 nm is 30–60 min. Reproduced 

with permission from ref. [49], © 2003, Elsevier B.V. 

 

The main advantages of the milling process are their large-scale production and the simple and low-

cost technology regarding the milling itself. However, this process also present some disadvantages, 

such as: (i) the potential erosion from the mills leading to the product contamination; (ii) the growth 

of microorganisms in the water phase can occur when the milling time is too long and the progress 

is performed at room temperature; (iii) the process can be time-consuming; and (iv) the time and 

costs related to the separation procedure of the milling material from the drug nanoparticle 

suspension can increase, especially when considering the production of parenteral sterile products 
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[73]. Process parameters like bead size/material, stirring speed and energy input can also affect the 

level of contamination. Using the same bead material, the level of contamination can be minimized 

by shortening the process time and lowering the bead contact pressure by using smaller bead sizes 

[17]. In addition, amorphization or variations in the physical form of the drug can also occur during 

the milling process [74, 75]. The lattice vibrations can increase when the mechanical pressure rise 

above specific critical pressure values, destabilizing the crystal lattice. Consequently, the 

transformation into an amorphous state occurs when the number of defects on the crystal is too 

high, where the amorphous state is more stable than the destabilized crystals [57, 76]. Although the 

improvement on the drug dissolution, the formation of amorphous regions in nanocrystals is often 

undesirable due to their poor stability [76]. Thus, the formation of amorphous regions during the 

milling process is closely related to the process parameters and the properties of the individual drug 

and stabilizer, as well as the possible interactions between them. However, water in the wet milling 

of crystalline drugs can act as an inhibitor of the formation of amorphous material due to the 

reduced glass-transition temperature [74]. 

NanoCrystal
®
 technology have been widely used to produce drug nanocrystals mainly for oral 

administration, as shown in Table 3. These products have been formulated either as liquid oral 

dosage forms (suspensions) or as solid oral dosage forms (tablets and capsules). A solidification 

step is required after the preparation of drug nanocrystal suspensions to formulate solid oral dosage 

forms. For this, the drying process can be performed using spray and freeze drying techniques, as 

well as fluidized-bed coating, granulation, and pelletization that can yield formulations with more 

straightforward downstream processing to tablets or capsules [77]. Furthermore, the addition of 

matrix formers like sugars can be done to produce solid nanocrystalline particles that are able to 

redisperse upon rehydration and enhance their clinical performance [4, 78]. 

Rapamune
®
, an immunosuppressive drug (Sirolimus), was the first product using a pure drug 

nanoparticle platform to reach the market, and is available as oral tablets [6]. This product was 
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developed using NanoCrystal
®
 technology to overcome the limitations of the first commercially 

available lipid-based liquid solution of rapamycin. This formulation required cold storage and 

protection from light, had a complicated dispensing protocol and the taste was unpalatable [4, 65]. 

When processed using wet milling technology, a fine nanoparticle dispersion of rapamycin was 

produced, with a mean particle size lower than 200 nm. The NanoCrystal Colloidal Dispersion
®
 

intermediate was then post-processed into tablets of 1, 2 and 5 mg potency, which exhibited ca. 

27% increased bioavailability of the drug compared to the lipid-based solution, no restrictive 

storage conditions, and they are easy to administrate where needed, enhancing the patient 

compliance [4, 65, 79]. 

The second product developed using NanoCrystal
®

 technology was Emend
®

, a poorly-water soluble 

antiemetic drug aprepitant, formulated as capsules that contain sugar beads coated with an 

aprepitant drug nanocrystal suspension [80]. The free base crystalline compound was first processed 

into a fine particle dispersion using a wet milling technology, followed by processing into a solid 

dosage capsule formulation. This formulation allowed to eliminate the high fasted/fed state 

variation compared to the conventional dosage form and improve the drug bioavailability, providing 

a more elegant dosage form [4, 65]. 

Overall, the wet ball milling is a versatile technology that allow to process almost any API, opening 

the possibility to use this technology as a platform to formulate poorly water-soluble drug 

compounds. During the past years, different studies reported the preparation of particle sizes 

ranging between 100 and 300 nm (Table 4), showing the universal applicability of this particle size 

reduction method [81]. 

 

Table 4. Examples in the literature of drug nanocrystals prepared by wet milling methods.  

Drug Compound Indication Particle size (nm) Administration 

Route 

Reference 

Itraconazole Anti-fungal 128 Intravenous [82] 
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Itraconazole:maleic 

acid 2:1 co crystal 

Anti-fungal   [83] 

Candesartan cilexetil Hypertension 128 Oral [84] 

Loviride Anti-HIV agent 264  [71] 

Ketoconazole Anti-fungal 254 Oral [85] 

Cyclosporine Immunosuppressant 213 Intravenous [86] 

Cilostazol Antiplatelet, 

antithrombotic and 

vasodilating 

222 Oral [87] 

Hydrocortisone Inflammation 

disorders 

300 Ophthalmic [88] 

1,3-Dicyclohexylurea Hypertension 800 Subcutaneous [89] 

Niclosamide Anthelmintic, 

anticancer 

< 300 Intravenous [90] 

Indomethacin Anti-inflammatory < 400  [91] 

 

2.1.2. High-Pressure Homogenization 

High-pressure homogenization is another technology that has been applied to reduce the particle 

size of poorly water-soluble drug molecules. According to the homogenization equipment and the 

homogenization parameters, high-pressure homogenization can be divided into three basic 

processes: (i) Microfluidizer technology (IDD-P™ technology) based on the jet stream principle; 

(ii) piston-gap homogenization either in water (Dissocubes
®
 Technology); or (iii) in mixtures of 

water with water-miscible liquids (Nanopure
®
 Technology) [2, 61].  

The Canadian company RTP developed the Microfluidizer technology, also called Insoluble Drug 

Delivery-Particles (IDD-P™) technology, using a jet stream homogenizer [15]. Here, the API is 

suspended in a dispersion media (usually water), and the small particles are generated by a frontal 

collision of two high energy fluid streams in a chamber under pressure up to 1700 bar, leading to 

the particle collision, shear forces and cavitation forces (Figure 5A) [15, 16, 92]. This technique 

can use two different types of interaction chamber: Z-type and Y-type (Figure 5B). In the Z-type 

chamber, the direction of the suspension flow changes a few times, which leads to the particle 
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collision and shear forces, while in the Y-type, the suspension stream is divided into two streams 

that will frontally collide [14]. The Z-type chambers are typically used for solid dispersions, while 

the Y-type chambers are commonly used to prepare liquid-liquid types of dispersions such as 

emulsions and liposomes [92]. Surfactants can also be added to the solution to stabilize the prepared 

particles. The desired size of particles can be obtained after high number of cycles that can range 

from 50 to even 100 passages, representing a disadvantage of this method [14, 61]. In addition, the 

obtained product can also be composed by a relatively large fraction of microparticles, losing the 

benefits of a real homogeneous drug nanocrystal suspension [14]. 

 

Figure 5. Schematic representation of the Microfluidizer Technology: (A) Setup utilized for 

nanocrystal production and (B) Types of homogenization chamber (Z- or Y-type), adapted with 

permission from (A) ref. [92], © 2015, Microfluidics International Company and (B) ref. [54], © 

2016, Elsevier B.V. 

 

The Dissocubes
®

 technology uses piston-gap homogenizers to produce nanoparticle suspensions in 

water at room temperature. The particles are formed as a consequence of particle collision, shear 

and gravitation forces. In this case, the API, dispersed in an aqueous or non-aqueous surfactant 

solution, is forced by a piston to pass through the tiny homogenization gap, under pressure that can 

go up to 4000 bar, but usually varies between 1500 and 2000 bar (Figure 6) [6]. Consequently, the 
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high streaming velocity of the suspension origins an increased the dynamic pressure (q), which is 

compensated by a reduction in the static pressure (p) below the vapor pressure of the aqueous 

phase, according to Bernoulli's law (Eq. 4), where p0 is total pressure:  

𝑝0 = 𝑝 + 𝑞 

The reduction of particle size is a result of the lower pressure inside the piston-gap homogenizer 

than the atmospheric pressure, leading to the boiling of the solvents at room temperature. When the 

liquid leaves the homogenization gap, the formed gas bubbles implode immediately due to the 

sudden increase in pressure to 1 bar, leading to cavitation and particle collision [16, 18]. The mean 

size of the obtained particles will depend on the homogenizer pressure, number of homogenization 

cycles, and hardness of the drug [61]. However, the use of water can cause the hydrolysis of water-

sensitive drugs and some other issues related to the subsequent drying steps [16]. In addition, 

temperature is another important parameter that needs to be controlled, especially when the drug is 

temperature sensitive [2].  

 

Figure 6. Schematic representation of high pressure homogenization using a piston gap 

homogenizer. Adapted with permission from ref. [93] © 2018, Dairy Engineering Company. 

 

A development of this method using the piston-gap homogenizer is the Nanopure
®
 technology, 

which uses water-free media (e.g., oils, PEGs) or water-reduced media (e.g., glycerol/water 

(4) 
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mixtures for the production of isotonic formulations) dispersion media, with a low vapor pressure 

and low temperatures for the homogenization [16, 61]. In this case, the cavitation in the 

homogenization gap is reduced or practically inexistent, as a consequence of the low-vapor pressure 

and low temperatures (e.g., 0 °C) used during the homogenization process. The turbulent flow and 

shear forces are strong enough to reduce the drug particles to nanocrystals. In addition, the HPH in 

non-aqueous or water-reduced media is particularly beneficial if the drug nanocrystal suspension 

has to be transferred into a traditional final dosage form. For example, the oil dispersions can 

directly be filled into gelatin capsules for oral administration, or injected parenterally as controlled 

drug delivery depot. Furthermore, when the water content in the dispersion medium is reduced, the 

required energy is minimized for drying steps (e.g., spray-drying or fluidized bed drying). 

Moreover, the production of drug nanocrystal suspensions at 0 °C or even below can prevent 

temperature labile drugs from degradation [16, 61, 94]. 

Homogenization methods are low-cost and simple techniques already approved for the production 

of different pharmaceutical products, as well as in the cosmetics and food industry. In addition, the 

process can be easily converted from the lab-scale to the large production scale [95]. When the 

procedure is optimized after adjustment of the production parameters, high quality drug nanocrystal 

suspensions with little batch-to-batch variation can be achieved [16]. Although high pressure 

homogenizers consist mainly of steel parts, the impurity levels found in drug nanocrystal 

suspensions prepared via HPH processes are considerably lower than using wet milling. However, 

the abrasion and wearing of HPH equipment can happen when extremely hard material is processed 

in piston-gap homogenizers, leading to a reduction in process efficiency. For this reason, the 

homogenization valves have been recently equipped with ceramic tips, which can withstand harsh 

process conditions, to decrease the risk of contamination [81, 96]. 
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There are several examples in the literature using HPH to produce drug nanocrystal suspensions, as 

shown in Table 5. However, the particle size reduction seems to be less effective than wet milling, 

which can be due to the physicochemical properties of drug molecules.  

 

Table 5. Examples in the literature of drug nanocrystals prepared by HPH. 

Drug Compound Indication Particle size (nm) Administration Route Reference 

PX-18 Phospholipase A2 

inhibitor 

50 - [97] 

Asulacrine Topoisomerase II 

inhibitor 

133 Intravenous [98] 

Resveratrol Anti-oxidant 150–200  Topical [99] 

Celecoxib COX-2 inhibitor 130–1840 – [100] 

Azithromycin Antibacterial 400 Oral [101] 

Spironolactone Diuretic 400 Intravenous [102] 

Omeprazole Proton pump inhibitor 600 Intravenous [94] 

Hydrocortisone Glucocorticoid drug 539 – [103] 

Nimodipine Hypertension  650 Intravenous [104] 

Rutin Anti-oxidant 547 – 912  Oral [105] 

Oridonin Antitumoral 912 – [106] 

Diclofenac Nonsteroidal anti-

inflammatory  

<800 – [107] 

 

2.2. Bottom-up methods  

The bottom-up methods for the production of drug nanocrystals rely on the controlled precipitation 

of the drug molecules into nanocrystals [48, 108]. The most widely investigated production 

methods are solvent-antisolvent precipitation (both conventional in bulk and with the aid of 

microfluidics), the precipitation in supercritical fluids, solvent evaporation (spray dryer), and a 

decrease in the temperature (freeze dryer) [109, 110]. 

2.2.1. Solvent-antisolvent 
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The principle underlying the production of drug nanocrystals by solvent-antisolvent precipitation 

relies on the intensive mixing of a drug solution in organic solvent (miscible with water) into an 

antisolvent (usually water or other aqueous media), forming the supersaturation conditions in the 

aqueous phase that leads to the nucleation and the precipitation of drug molecules, and finally 

forming the nanosized drug nanocrystals [108, 111, 112]. The nucleation process proceeds along a 

change in the free energy (ΔGcryst) of the system which depends on the size of the crystal: thereby, 

for the nucleation process to occur, an energy barrier needs to be overcome [113]. The critical size 

leading to the formation of crystal nuclei is dependent on both supersaturation conditions and 

temperature [113]. Moreover, organic molecules can crystallize also following a non-classical 

pathway, where nanometer size particles forms superstructures when in presence of stabilizers, 

according to the mechanisms hypothesized in Figure 7, due to interactions between the surfactant 

molecules on the surface of the newly formed nanocrystal. [114]. 
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Figure 7. Process of formation of curcumin nanocrystal superstructures in presence of different 

stabilizers. (A) Interaction between primary curcumin crystal and stabilizer. (B) Morphology of the 

primary unit according to the interactions between crystal and stabilizer. (C) Aggregation of 

multiple primary structures. (D) Superparticles formed by primary units. (E) Scanning Electron 

Microscope (SEM) micrographs of the curcumin superstructures. Reproduced with permission from 

ref. [114], © 2014, Royal Society of Chemistry. 

 

2.2.1.1 Conventional methods 

As for the conventional method for the preparation of drug nanocrystals, Matteucci et al. evaluated 

the effect of variables on the particle size of itraconazole crystals formed by precipitation of the 

drug molecules in an ethanol:water system, in presence of a stabilizer (poloxamer 407) [115]. The 
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variables investigated included the mixing/precipitation time, concentration of drugs, volume ratio 

between the organic and aqueous phases, concentration and location of the surfactant (aqueous or 

organic phase), intensity/speed of mixing/stirring, injection rate of the organic solutions in the 

aqueous [115-117]. The drug concentration is inversely correlated to the size of the particles for 

intense mixing conditions: more concentrated drug solution will result into higher supersaturation in 

the aqueous phase, with the formation of a higher number of nuclei with smaller final size [116]. 

Moreover, the choice of the stabilizer influences the nanocrystals size, the use of hydrophobin 

allowed the production of beclomethasone propionate crystals presenting a size around 100 nm, and 

the stabilizer also increased the stability of the crystals both in solution and after freeze drying 

[118]. Homayouni et al. compared the properties of celocoxib crystals produced either by 

antisolvent precipitation or by HPH, with PVP as stabilizer. The celecoxib crystals produced by 

different techniques showed different morphology (spherical for precipitation and irregular shape 

for the other ones), different dissolution profiles (higher for the samples processed with HPH), and 

different particle size (the crystals precipitated and spray dried formed microsize particles, while 

both the samples precipitated and freeze dried and the ones processed by HPH formed nanocrystals 

in the range between 200 and 800 nm) [119].  

The precipitation of the nanocrystals can be helped by static mixing. The first two nanoprecipitation 

techniques introduced at industrial level are the preparation of hydrosols (patent owned by 

Novartis) and NanoMorph
®
 (Soliqs) [6]. In the case of NanoMorph

®
, amorphous drug nanoparticles 

can be prepared by producing a heated drug organic solvent solution, to increase the 

supersaturation, followed by the mixing with cooled antisolvent for a rapid nucleation [109]. 

As for the production of co-crystals, the drugs can be dissolved into different miscible organic 

solvents, premixed, and then added to aqueous solution to result into saturated drugs solutions with 

the controlled precipitation of the paired drug molecules [120, 121]. The precipitation conditions 

can be predicted by analyzing the phase solubility diagrams: micrococrystals of saccharin and 
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indomethacin were prepared by adding water to drug-cofomer solutions in different organic 

solvents, to evaluate the effect of the solvent characteristics on the precipitation process [122]. The 

yield is quite high, with a recovery of 70-80% [123]. The yield was further augmented by 

introducing cooling into the system: the timing of the cooling influenced the formation of the co-

crystals. The metastable α-indomethacin formed only when the cooling was applied before the 

nucleation [124]. 

A further reduction in the particles size of the crystals may be achieved by performing the 

precipitation together with other external factors. In ultrasound assisted antisolvent precipitation, 

ultrasounds (either from a bath or from a probe sonicator) are introduced in the solution containing 

the drug molecules, leading to an improved supersaturation thanks to the intense mixing inherent to 

the cavitation phenomenon [125, 126]. This technique is useful to prepare aceclofenac nanocrystals 

with average size around 112 nm, and a low polydispersity index (PdI) (0.165). The obtained 

crystals assessed both in vitro and in vivo, showed a great enhancement of the dissolution rate and 

an increase in the drug bioavailability [127]. The size of the crystals depend on the parameters of 

the sonication, such as the probe sonicator, the intensity and time of the sonication, the length of the 

probe, the position of the probe within the liquid, and the cavitation induced by the sonicator [109]. 

Xia et al. produced nifedipine nanocrystals by precipitation coupled with ultrasonication [128]. The 

effect of the energy input and of the length of the sonication on the particle size has been studied. 

The nanocrystals with an average particle size of 209 nm formed without any major change in the 

crystalline status. A comparison between the bottom-up and top-down approaches was performed 

by Soliman et al [129]. They prepared nanocrystals of avanafil by sono-assisted precipitation, and 

investigated the effect of different stabilizers on the particle size. The properties of the crystals were 

compared to formulations prepared by precipitation followed by HPH, highlighting the effect of the 

types of the stabilizers and the challenges in obtaining stable suspensions. Ultrasounds were 

employed in the formulation of co-crystals [121]. Interestingly, the use of this technique may also 
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enable the formation of co-crystals between substances that are non-congruently soluble. For 

example, in a system containing caffeine/maleic acid, a 2:1 co-crystal was obtained after ultrasound 

assisted solution crystallization [130]. 

High gravity controlled precipitation (or Higee) exploits a rotating packing bed on earth to enhance 

the mixing process [109, 131]. This technique was used for the production of drug nanocrystals of 

cephradine, with an average size between 200 and 400 nm, without any major change in the 

crystalline status [132]. High gravity antisolvent precipitation utilizes the same technique to prepare 

amorphous drug nanoparticles, e.g., ceforoxim axetil, danazol and salbutamol, in a solvent-free 

fashion [133-135]. 

Johnson and Prud'homme established the flash nanoprecipitation (FNP) technique that allows the 

control of the thermodynamic and kinetic conditions of the process to promote the particles 

nucleation, using a mixing time in this process on the order of milliseconds, rendering stable and 

controlled-size nanoparticles [136]. This process offers the local supersaturation conditions required 

for particle nucleation, via fast mixing in the turbulent regime in a confined volume of a stream 

containing the dissolved solute and stabilizer with an opposite stream that contains a miscible 

solvent, acting as a non-solvent for simultaneously precipitation of the solute and stabilizing 

molecule. Here, the block copolymer prevents further growth of the drug particles, and it can also 

provide steric stabilization due to the hydrophilic block on the surface of the particle.[137] Using 

FNP, Bteich et al. fabricated Cellax polymeric conjugates, composed by carboxymethyl cellulose 

functionalized with PEG and cabazitaxel, an anticancer drug [138]. Different parameters, including 

concentration, mixing rate, solvent ratios and subsequent dilution, were tested to produce 

nanoparticles with an average size of 60 nm. 

Another technique, evaporative precipitation in an aqueous solvent (EPAS) requires the heating of 

the drug molecules in organic solvent above the solvent boiling point. This organic solvent solution 

is then sprayed into the aqueous phase [139, 140]. 
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Examples of nanocrystals and nano co-crystals produced by conventional antisolvent precipitation 

can be found in Table 6. 

 

Table 6. Drug nanocrystals prepared according to the conventional antisolvent processes. 

Technique Drug Outcome Year Reference 

Solvent-antisolvent 

precipitation 

Itraconazole Nanocrystals, 

<300 nm 

2006 [115] 

 Beclomethasone 

Propionate 

Nanocrystals, 

<100 nm 

2010 [118] 

 Celocoxib Nanocrystals, 291–

442 nm 

2014 [119] 

Sonoprecipitation Aceclofenac Nanocrystals, 112 

nm, PdI 0.1655 

2017 [127] 

 Nifedipine Nanocrystals, 209 

nm 

2010 [128] 

 Avanafil Comparison 

between top-down 

and bottom-up 

approaches, 

1284868 nm  

2017 [129] 

 Caffein:Maleic 

Acid 2:1 

Formation of a co-

crystals from 

substances non 

congruently 

soluble 

2010 [130] 

High Gravity 

Controlled 

Precipitation 

Cephradine Nanocrystals, 

200400 nm 

2005 [132] 

High Gravity 

Antisolvent 

Precipitation 

Cefurozime axetil Amorphous 

nanoparticles, 300 

nm 

2006 [133] 

 Danazol Nanocrystals, 190 

nm 

2009 [134] 

Evaporative Itraconazole Higher dissolution 2005 [140] 
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Precipitation in 

Aqueous Solvent 

rate 

 

2.2.1.2 Microfluidics 

Microfluidics is a technique that manipulates small amount of fluids (10
−9

 to 10
−18

 litres) within 

channels presenting dimensions in the tens of micrometres [141, 142]. This technique has 

attracted increasing attention as a new method to prepare drug nanocrystals in the past few years 

due to its advantages (accurate manipulation of the fluids and customizable microscale 

channels). Moreover, this technique has been widely explored for the preparation of 

nanoparticles and composite nanoplatforms for a variety of applications, such as chemotherapy, 

cancer immunotherapy, treatment of liver failure, delivery of macromolecules in diabetes, 

enhancement of dissolution rate of poorly water-soluble drug molecules.[143-163] Comparing 

with the conventional production methods, microfluidics displays many advantages. The small 

spaces and large surface area-to-volume ratio in the microfluidics channels result in a reduced 

mixing path (tens of micrometers) and in a short mixing time (millisecond to microsecond) [157]. 

Thereby, drug nanocrystals prepared through microfluidics tend to have smaller size and narrower 

size distribution because of the fast mixing process and quick precipitation [164, 165]. 

Moreover, the size of the drug nanocrystals is tunable by modifying the flow rate of the solution, 

the solvent and antisolvent, the concentration of the drug, and the device configuration [166]. 

Furthermore, microfluidics can advantageously present lower batch-to-batch variation due to the 

continuous flow [167], and thus, represents a more cost-effective way to prepare drug 

nanocrystals compared to the bulk conventional methods. 

The variables involved in the microfluidics precipitation of drug nanocrystals can be described 

by various parameters. Reynolds number (Re) is an important dimensionless parameter that 
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describes the flow characteristics of the fluid in the channels [168]. Re can be calculated by the 

following equation (Eq. 5): 

                                                   Re =
 ρL

𝜂
                                      (5)                       

where, ρ is the density of the fluid,  is the velocity vector of the fluid, L is the characteristic 

length, and 𝜂 is the dynamic shear viscosity [168]. A laminar flow, which is characterized by 

distinct streamlines, usually appears when Re is lower than 1800 [157]. Contrarily, when Re is 

higher than 2300, the fluids flow in a turbulent way [157]. A turbulent flow does not present any 

distinct streamlines. Due to the reduced size of the channels, viscous force is the main factor 

regulating the behaviours of the fluids in a microfluidics device [169]. 

A wide range of materials, including glass, polydimethylsiloxane (PDMS), hydrogel, 

polycarbonate, silicon and polytetrafluoroethylene, are routinely employed in the preparation of 

microfluidics devices [157, 170-172]. Every material displays own unique features. Generally, a 

glass capillary is coaxially assembled within a series of larger capillaries (round or square) [173-

175]. Amongst the advantages, glass capillary microfluidics devices are able to tolerate high 

pressure, high flow rate, as well as present good compatibility with organic solvents [157]. As for 

the disadvantages, the manual fabrication and assembling process leads to differences amongst each 

device [174]. PDMS can be moulded into a wide range of device geometries. On the negative 

side, the channel geometries of devices made from PDMS will change when encountering high 

pressure and high flow rate. Furthermore, they reveal incompatibility towards various common 

organic solvent [142, 157, 176]. 

When preparing drug nanocrystals, one of the most common geometries of the microfluidics 

devices is the Y-shaped one [166]. Usually, Y- shaped microfluidics devices possess one outlet 

and two inlets [166]. Zhao et al. prepared danazol nanocrystals employing Y-shaped 

microfluidics device (Figure 8a) [177]. During the production process, ethanol and water were 

employed as solvent and antisolvent, respectively with no surfactants added to the system. As the 
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ratio of antisolvent and solvent increased, the drug nanoparticles showed smaller size and 

narrower size distribution (Figure 8b). The results of Fourier transform infrared spectroscopy 

(FTIR) and X-rays diffraction (XRD) confirmed the crystalline structure of the nanocrystals and 

demonstrated that there was no difference in the physical characteristics between the drug 

nanocrystal and raw danazol. Smaller particle size and larger surface area of the drug nanocrystal 

led to faster dissolution rate, where the drug nanocrystal and raw danazol after 5 min reached 

100 and 35%, respectively. Dong et al. synthesized fenofibrate nanoparticle by a sequential 

method combining first microfluidics, followed by spray drying [111]. The authors screened the 

characteristics of nanocrystals prepared from fenofibrate solutions in ethanol at different 

concentration, which contained 20 % polyvinylpyrrolidone K30 (PVPK 30). The antisolvent 

(water) contained lactose (at a concentration of 12.67 mg/mL). The solvent and antisolvent were 

pumped into the Y-shaped microfluidics device and the milky nanoparticle suspension was then 

delivered to a spray dryer through a silicon tube. The size of the drug nanoparticle varied from 

196 to 296 nm by increasing the volume ratio of water and drug solution, flow rate, and drug 

concentration. Compared with the physical mixture, the drug nanoparticles showed higher drug 

dissolution rate of 97.09 ± 3.04 % after 30 min, while the dissolution percentage of the physical 

mixture was only 36.24 ± 2.61 % after 2 h.  
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Figure 8. Drug nanocrystals prepared by microfluidics. (a) Photograph of Y-shaped microfluidics 

reactor. (b) Size distributions of danazol nanocrystals prepared at different antisolvent and 

solvent ratios. (c) Schematic illustration of the rotating tube processor. (d) Schematic illustration 

of the process of preparing drug nanocrystals through superfast sequential nanoprecipitation 

microfluidics. (ab) Reproduced with permission from ref. [177], © 2007, American Chemical 

Society; (c) Reproduced with permission from ref. [178], © 2013, Royal Society of Chemistry; 

(d) Reproduced with permission from ref. [146], ©
 
2017, American Chemical Society. 

 

Norfloxacin nanocrystals were prepared by microfluidics based impinging jet technology [179]. 

The jet velocities and energy dissipation in this kind of impinging jet reactor are several orders 

of magnitude higher than those achievable in the conventional one. In this system, dimethyl 

sulfoxide (DMSO) and water were used as the solvent and antisolvent, respectively. The 

increased pressure, decreased drug concentration, and supersaturation ratios resulted in a 

decrease in the size of nanocrystals. Moreover, the surfactant added in the system, Solutol, 

showed little influence on the size of drug nanocrystals. The solvent/antisolvent system had an 

impact on the crystalline structure of norfloxacin nanocrystal, however, in the DMSO/water 
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system, the variation of shear rate of the process did not affect the drug crystalline structure. In 

addition, Tahara et al. prepared phenytoin, bezafibrate, flurbiprofen, and miconazole 

nanocrystals through microfluidics based on impinging jet technology [180]. In this 

microfluidics system, ethanol and a polyvinyl alcohol (PVA) solution (0.1 %) served as solvent 

and antisolvent, respectively. The size of drug nanocrystals prepared through microfluidics 

(431–525 nm) was smaller than that of drug nanocrystals produced by conventional bottom-up 

crystallization (637–1130 nm). Benefiting from their smaller particle size, the drug nanocrystal 

prepared by microfluidics had the highest dissolution rates compared to the physical mixtures of 

the commercial drugs and the drug nanocrystals prepared by conventional bottom-up 

crystallization, in which almost 100% of the drug was dissolved after 60 min, with the exception 

of miconazole. In addition, phenytoin and flurbiprofen nanocrystals prepared by microfluidics 

showed ca. 3 times higher transport through the Caco-2 cell monolayer (a model established for 

evaluating in vitro the drug absorption in the intestine) and higher plasma concentrations after 

oral administration.  

Dev et al. synthesized curcumin [181] and meloxicam [178, 182] nanocrystals by microfluidics 

rotating tube processor (Figure 8c). Curcumin nanocrystals with a diameter lower than 50 nm 

were prepared employing didodecyl-dimethylammonium bromide and pluronic F127 as stabilizer 

[181]. Comparing with the free drug, the curcumin nanoparticle displayed enhanced cytotoxicity 

when incubated with MCA-MB 468 and MCF-7 breast cancer cells. Meloxicam nanocrystals 

were synthesized by continuous microfluidics based on rotating tube processor (Figure 8c) [178, 

182]. The particle size of the drug nanocrystal increased from 20 nm to 200 nm when the 

rotational speed varied from 500 to 1500 rpm [182]. Meloxicam was encapsulated with 

poloxamer 188 or polyelectrolytes to ensure the stability of the drug nanocrystals [178, 182]. 

The bare and encapsulated meloxicam nanocrystals displayed enhanced dissolution rate in 

comparison with the micronized drug particles [182]. Meloxicam nanoparticles coated by 
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polyelectrolytes in a range of concentrations from 10 to 500 µM showed no toxicity to 

pheochromocytoma and mouse fibroblast 3T3 cells [178]. 

Sorafenib (SFN) and itraconazole (ICZ) nanocrystals encapsulated by folic acid (FA) conjugated 

spermine-functionalized acetalated dextran (ADS), HSFN@ADS-FA and ICZ@ADS-FA, were 

produced through multistep microfluidics nanoprecipitation [183]. The HSFN@ADS-FA 

revealed core-shell structure, ultrahigh drug loading degree (~58.4%) and a pH sensitive release 

profile. Approximately 9.3% of SFN was released from the HSFN@ADS-FA at pH 7.4, while all 

SFN could be released from the nanovector at pH 5.0 within 2 h. Owning to the ultrahigh drug 

loading degree, HSFN@ADS-FA showed about 54-times lower half-maximal inhibitory 

concentration than that of a nanovector prepared by conventional single microfluidics 

nanoprecipitation. In addition, another core-shell nanocomposites with paclitaxel (PTX) and 

SFN nanocrystal core and hypromellose acetate succinate (HF) shell (PTX@HF and SFN@HF) 

was developed through superfast sequential nanoprecipitation microfluidics (Figure 8d) [146]. 

The inner fluid 1, inner fluid 2, and outer fluid refer to core and shell precursors, nonsolvent for 

the core precursor only and nonsolvent for both core and shell precursors, respectively. After the 

formation of the drug nanocrystal during the first mixing, the second mixing lead to the 

precipitation of HF on the surface of drug nanocrystal and the formation of core shell structure. 

Although no stabilizers were added, PTX@HF and SFN@HF showed higher stability than the 

freshly prepared bare PTX and SFN particles, because of the short time interval between the 

sequential precipitation processes and the formation of polymeric shell on the surface of drug 

nanocrystals. The PTX@HF and SFN@HF nanocrystals showed ultrahigh drug loading degree 

(42.6 and 45.2%, respectively), pH sensitive drug release, an increased drug dissolution kinetics, 

and high-throughput production rate at ~700 g/day on a single device.  

 

 2.2.2 Supercritical fluid technology 
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Supercritical fluid (SCF) technology has been employed to modify the solid state characteristics of 

the active principle ingredient powder, particularly for poorly water-soluble drug compounds [184]. 

Amongst the properties modified after supercritical precipitation are size, crystallinity, 

polymorphism, shape, and surface [185]. Moreover, the use of SCF has been evaluated also in the 

micronization of biopharmaceuticals and in the formulation of co-crystals [186, 187]. Supercritical 

carbon dioxide (sCO2) is widely employed as SCF for the precipitation of micro- and nano-

particles, including drug nanocrystals and amorphous drug nanoparticles, due to its favorable 

properties (mild critical conditions, T = 31.1 °C, p = 7.38 MPa, low cost, high safety, non-

flammability, easiness in the removal of the antisolvent by reducing the pressure) [185, 186, 188].  

 

In rapid expansion of supercritical fluid (RESS), the SCF is used as solvent for the drug and the 

precipitation of the nanocrystals occurs after an expansion of the gas in the collection chamber due 

to the induction of a drug supersaturation status in the supercritical fluid [189]. This process is 

suitable only for drugs that are soluble in the SCF, where the solution is prepared into an extractor, 

a pressurized container, before being sprayed into the collection vessel [190]. The parameters 

influencing the process and, thereby, the size and the yield of the nanocrystals recovered are the 

pressure and temperature, flow rate of the SCF, geometry and diameter of the spraying nozzle 

[190].  

Supercritical antisolvent (SAS) precipitation technique involves the use of the SCF as an 

antisolvent, to induce precipitation of the nanocrystals, from a solution of the drug in organic 

solvent, by a fast increase in the SCF molar fraction during the flight of the atomized drops in the 

SCF continuum [190, 191]. Furthermore, this can be considered a continuous process, leading to 

more reproducible results because the formation of the crystals occurs in a steady state when 

compared to RESS [190]. SAS process is routinely employed for the precipitation of amorphous 
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drug nanoparticles rather than drug nanocrystals, as in the case of atorvastatin or tacrolimus [185, 

192].  

One variant of the SAS process is the Supercritical Enhanced Dispersion Solution (SEDS): the 

reactor presents multichannel nozzles while the phases are mixed in a pre-chamber [190].  

The SCF can be further employed as dispersing agent in the particles from PGSS technique: SCF 

(in a lower amount compared to both RESS and SAS) is mixed with the drug of interest in a 

prechamber to a homogenous molten fluid. This fluid is then moved to another chamber, at lower 

pressure, where expansion of the SCF occurs, leading to the precipitation of the crystals [190]. The 

main advantage of this techniques relies on its being solvent free, thereby optimal for the 

precipitation of biopharmaceuticals, e.g., for the encapsulation of proteins within polymeric 

microstructures [193, 194]. 

The main studies focusing on the production of drug nanocrystals and nano co-crystals by 

supercritical fluid technology are summarized in Table 7. A more complete discussion about the 

technique can be found in the article “Supercritical carbon dioxide-based technologies for the 

production of drug nanoparticles/nanocrystals – a comprehensive review” by Padrela et al., in this 

issue.   
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Table 7. Drug Nanocrystals prepared by supercritical fluid processes. 

Technique Role of the SCF Compound Size Outcome Year References 

RESS Solvent Digitoxin, 70460 nm EtOH used as co-

solvent 

2010 [195] 

  Carbamazepine 430900 nm Production of 

pure crystals of 

monoclinic 

polymorph 

2012 [196] 

  Aspirin 100300 nm Decreased 

crystallinity by 

XRD, spherical 

crystals 

2005 [197] 

  Loperamide 300500 nm No evaluation of 

the crystalline 

status 

2006 [198] 

  Raloxifene 19137 nm Nanocrystals, 

reduction in the 

crystallinity in 

XRD 

2012 [199] 

  Ibuprofen 7250 nm Nanocrystals by 

XRD 

2016 [200] 

  Olanzapine 191 nm Nanocrystals by 

DSC 

2016 [201] 

SAS Antisolvent Camptothecin 250 nm Nanocrystals with 2010 [202] 
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lower degree of 

crystallinity by 

XRD 

  Lysozyme 70100 nm Biological 

activity of the 

protein retained 

2008 [203] 

  Amoxicillin 200900 nm 

depending on the 

parameters 

chosen in the 

process 

Nanocrystals 2010 [204] 

  Apigenin 400800 nm Spherical 

structure, no 

changes in the 

crystalline 

structure 

2013 [205] 
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2.2.3 Solvent evaporation and spray drying 

Spray drying is widely employed in the production of nanocrystals [206]. The process involves the 

atomization of a fluid (containing the drug in solution) by an atomizer into a hot drying gas 

(commonly, air) [207].  

The effects of the variables (flow rate, diameter of the atomizer, fluid properties, and equipment 

design) on the size and shape of the particles obtained after spray drying have been reviewed in 

detail by Nandiyanto et al [208]. Moreover, NanoCrySP
®
 represent a recent technology developed 

for the industrial production of nanocrystals in a spray dryer: the solution of the drug is spray 

together with small molecules that facilitate the beginning of the nucleation process, leading to the 

formation of drug nanocrystals into a solid dispersion of small molecules [209]. A downside of this 

technique is the high fraction of aggregates retrieved after the process which requires the addition of 

stabilizers.  

However, the production of nanoparticles in a spray dryer is limited, amongst others factors, by the 

difficulties in the collection of fine particles by the cyclone [210]. The Nano Spray Dryer B-90 was 

developed to enable high yield production of nanosized particles by spray drying [211]. We refer 

the reader to the article in this issue by Sverdlov and Sosnik “Electrohydrodynamic atomization and 

spray-drying for the production of pure drug nanocrystals and co-crystals”, for a deep insight into 

the preparation of nanocrystals by spray-drying.  

Freeze drying represent another solvent-evaporation procedure that leads to the production of 

nanocrystals. In order to obtain nanocrystals from this process, the organic solution of the drug is 

mixed with the antisolvent, which contains a cryoprotectant [212]. The solutions are immediately 

frozen and then dried. The crystallization process can occur either during the freezing process or 

during the drying one: the parameters to optimize in order to obtain smaller crystals are the 

concentration of the cryoprotectant (higher for crystallization occurring during the freezing phase, 
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lower in the other option), and the freezing speed. Spray freezing into liquid allows the production 

of nanosized amorphous drug particles by spraying a solution of the drug dissolved in an organic 

solvent, in liquid nitrogen [109]. The parameters influencing the size are the type of solvent chosen 

(either water or organic, or a mix of the two) and the concentration of the drug in solution in the 

precipitation of carbamazepine [213]. 

 

2.3. Combination of bottom-up and top-down approaches 

Combination processes involve the use of both bottom-up and top-down processes in sequence, as 

depicted in Figure 9. Usually, nanocrystals are first precipitated by bottom up methods, and then, 

are passed through one of the top-down process (HPH, ultrasounds, or high energy mixing) [109]. 

The advantages of the combination of process center around the production of smaller nanocrystals, 

however, the combination is used only when extremely needed, given the increase in the costs due 

to the double of preparation procedure [17]. 
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Figure 9. Schematic illustrating the combination between bottom-up and top-down processes. 

Reproduced with permission from ref. [214], © 2014, Elsevier B.V. 

 

The first technique developed and patented was Nanoedge
®
, which couples a solvent/antisolvent 

precipitation step with an annealing step given by HPH [215]. Other combination processes are 

those included in the Smart Crystals
®

 technology, where the pre-treatment processes include all the 
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techniques mentioned above for the bottom-up production of nanocrystals, followed by HPH [216]. 

In detail, Nano Pure
®
 involves no pre-treatment, H42 uses spray drying for the production of the 

crystals, H69 antisolvent precipitation, H96 lyophilization, while CT processes the drug by media 

milling [61]. 

 

3. Challenges for scale-up production 

The main challenges with the industrial production of nanocrystals are related with the scaling-up 

and the possibility for continuous manufacturing. As for bottom-up technologies, the use of SCF, 

particularly SAS configuration, enables a ready scale-up, with the possibility to implement also a 

continuous manufacturing process [217]. Other techniques are instead more indicated for a batch 

production (conventional precipitation, sonoprecipitation). Microfluidics represents another 

versatile technique to continuously manufacturing nanocrystals, with high yields [146]. 

Electrospray represents one of the solutions enabling continuous manufacturing of drug 

nanocrystals, for example, nanometer-sized crystals of niflumic acid were produced from an 

ultrafine mist, leading to particle size between 200 and 800 nm, as shown in Figure 10A and 10B. 

However, the presence of stabilizers was needed for obtaining a difference in the dissolution profile 

compared with the bulk drug [218]. Nanocrystals of carbamazepine (Figure 10C) were obtained by 

electrospray and the authors correlated the variables (drug concentration, conductivity, flow rate, 

voltage, and current) to the crystal sizes that fell within the range 320–1756 nm, depending on the 

experimental setup [219]. 
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Figure 10. (A) Electrospray setups: on the left single sprayer and on the right 8-channel sprayer. 

(B) SEM images of the nanocrystals of niflumic acid obtained with the electrospray technique. (C) 

SEM micrographs of carbamazepine nanocrystals produced by electrospraying. (A) and (B) 

reproduced with permission from ref. [218], © 2012 American Chemical Society. (C) Reproduced 

with permission from ref. [219], © 2011, Elsevier B.V. and the American Pharmacists Association. 

 

Electrospray is also employed in the production of co-crystals, as reported by Patil et al. However 

no specification on the size of the crystal is provided [220, 221].  

Overall, several techniques allow an easy scale-up or can be integrated within a continuous 

manufacturing plant. 

 

4. Conclusion and future prospective 

The relevance of nanocrystals in drug development is well-established. Several techniques are 

routinely used at the industrial level, with a wide range of formulations already on the market or 

under clinical trials. The traditional top-down processes offer reliable solutions for easy scaling-up, 

but present also disadvantages related to possible contaminations from the milling mediums, drug 

degradation, and longer time of processing. On the contrary, bottom-up processes offer an easy, 

greener alternative to the energy-dispersive top-down techniques. However, the control over the 

size and the stabilization of the product are still less reproducible than for the top-down processes. 

SCF constitute an excellent solution to prepare nanocrystals with optimal properties, with the 

possibility of connecting them to a continuous manufacturing line. Finally, microfluidics is bringing 

along advantages given by the high degree of control achievable in the system, the need for limited 

volume of solvents, and the high production yield (in some cases up to 700 g/day from a single 

device), together with an easy scaling-up (by having multiple chips either in series or in parallel).   
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Overall, we are thereby witnessing three different generations of processes for the production of 

nanocrystals, from the well-established top-down approach, to the first industrial applications of 

some bottom-up techniques, to the first steps of the confinement methods (microfluidcs) in 

research. 
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[163] D. Liu, B.r. Herranz-Blanco, E. Mäkilä, L.R. Arriaga, S. Mirza, D.A. Weitz, N. Sandler, J. 

Salonen, J. Hirvonen, H.l.A. Santos, Microfluidic templated mesoporous silicon–solid lipid 

microcomposites for sustained drug delivery, ACS applied materials & interfaces, 5 (2013) 12127-

12134. 

[164] P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer, Microfluidic technologies for 

accelerating the clinical translation of nanoparticles, Nat Nanotechnol, 7 (2012) 623-629. 

[165] R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. 

Farokhzad, Microfluidic platform for controlled synthesis of polymeric nanoparticles, Nano Letters, 

8 (2008) 2906-2912. 

[166] D. Liu, H. Zhang, F. Fontana, J.T. Hirvonen, H.A. Santos, Current developments and 

applications of microfluidic technology toward clinical translation of nanomedicines, Adv Drug 

Deliv Rev, (2017). 

[167] Q. Feng, J. Sun, X. Jiang, Microfluidics-mediated assembly of functional nanoparticles for 

cancer-related pharmaceutical applications, Nanoscale, 8 (2016) 12430-12443. 

[168] P.A. Zhu, L.Q. Wang, Passive and active droplet generation with microfluidics: a review, Lab 

on a Chip, 17 (2017) 34-75. 

[169] J. Wang, Y. Song, Microfluidic Synthesis of Nanohybrids, Small, 13 (2017) 1604084-n/a. 

[170] P.N. Nge, C.I. Rogers, A.T. Woolley, Advances in Microfluidic Materials, Functions, 

Integration, and Applications, Chem Rev, 113 (2013) 2550-2583. 

[171] W.K.T. Coltro, S.M. Lunte, E. Carrilho, Comparison of the analytical performance of 

electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner, Electrophoresis, 29 

(2008) 4928-4937. 

[172] C. Iliescu, H. Taylor, M. Avram, J.M. Miao, S. Franssila, A practical guide for the fabrication 

of microfluidic devices using glass and silicon, Biomicrofluidics, 6 (2012). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

60 

[173] T.T. Kong, J. Wu, M. To, K.W.K. Yeung, H.C. Shum, L.Q. Wang, Droplet based 

microfluidic fabrication of designer microparticles for encapsulation applications, Biomicrofluidics, 

6 (2012). 

[174] W.J. Duncanson, T. Lin, A.R. Abate, S. Seiffert, R.K. Shah, D.A. Weitz, Microfluidic 

synthesis of advanced microparticles for encapsulation and controlled release, Lab on a Chip, 12 

(2012) 2135-2145. 

[175] B. Herranz-Blanco, E. Ginestar, H. Zhang, J. Hirvonen, H.A. Santos, Microfluidics platform 

for glass capillaries and its application in droplet and nanoparticle fabrication, Int J Pharm, 516 

(2017) 100-105. 

[176] R. Vasiliauskas, D. Liu, S. Cito, H. Zhang, M.-A. Shahbazi, T. Sikanen, L. Mazutis, H.l.A. 

Santos, Simple microfluidic approach to fabricate monodisperse hollow microparticles for 

multidrug delivery, ACS applied materials & interfaces, 7 (2015) 14822-14832. 

[177] H. Zhao, J.X. Wang, Q.A. Wang, J.F. Chen, J. Yun, Controlled liquid antisolvent 

precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor, Industrial & 

Engineering Chemistry Research, 46 (2007) 8229-8235. 

[178] S. Dev, J. Toster, S. Vadhan Prasanna, M. Fitzgerald, K. Swaminathan Iyer, C.L. Raston, 

Suppressing regrowth of microfluidic generated drug nanocrystals using polyelectrolyte coatings, 

RSC Advances, 3 (2013) 695-698. 

[179] T. Panagiotou, S.V. Mesite, R.J. Fisher, Production of Norfloxacin Nanosuspensions Using 

Microfluidics Reaction Technology through Solvent/Antisolvent Crystallization, Industrial & 

Engineering Chemistry Research, 48 (2009) 1761-1771. 

[180] K. Tahara, M. Nishikawa, K. Matsui, K. Hisazumi, R. Onodera, Y. Tozuka, H. Takeuchi, In 

Vitro and In Vivo Characterization of Drug Nanoparticles Prepared Using PureNano (TM) 

Continuous Crystallizer to Improve the Bioavailability of Poorly Water Soluble Drugs, Pharm Res-

Dordr, 33 (2016) 2259-2268. 

[181] S. Dev, P. Prabhakaran, L. Filgueira, K.S. Iyer, C.L. Raston, Microfluidic fabrication of 

cationic curcumin nanoparticles as an anti-cancer agent, Nanoscale, 4 (2012) 2575-2579. 

[182] S. Dev, K.S. Iyer, C.L. Raston, Nanosized drug formulations under microfluidic continuous 

flow, Lab on a Chip, 11 (2011) 3214-3217. 

[183] D. Liu, C.R. Bernuz, J. Fan, W. Li, A. Correia, J.T. Hirvonen, H.A. Santos, A nano-in-nano 

vector: merging the best of both polymeric nanoparticles and drug nanocrystals, Advanced 

Functional Materials, 27 (2017) 1604508. 

[184] R. Campardelli, L. Baldino, E. Reverchon, Supercritical fluids applications in nanomedicine, 

The Journal of Supercritical Fluids, 101 (2015) 193-214. 

[185] M.S. Kim, S.J. Jin, J.S. Kim, H.J. Park, H.S. Song, R.H. Neubert, S.J. Hwang, Preparation, 

characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using 

supercritical antisolvent (SAS) process, Eur J Pharm Biopharm, 69 (2008) 454-465. 

[186] S.A. Shoyele, S. Cawthorne, Particle engineering techniques for inhaled biopharmaceuticals, 

Adv Drug Deliv Rev, 58 (2006) 1009-1029. 

[187] L. Padrela, M.A. Rodrigues, S.P. Velaga, A.C. Fernandes, H.A. Matos, E.G. de Azevedo, 

Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process, 

The Journal of Supercritical Fluids, 53 (2010) 156-164. 

[188] E. Reverchon, Supercritical antisolvent precipitation of micro-and nano-particles, The journal 

of supercritical fluids, 15 (1999) 1-21. 

[189] C. Vemavarapu, M.J. Mollan, M. Lodaya, T.E. Needham, Design and process aspects of 

laboratory scale SCF particle formation systems, Int J Pharm, 292 (2005) 1-16. 

[190] E. Badens, Y. Masmoudi, A. Mouahid, C. Crampon, Current situation and perspectives in 

drug formulation by using supercritical fluid technology, The Journal of Supercritical Fluids, 

(2017). 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

61 

[191] M. Mukhopadhyay, S.V. Dalvi, Mass and heat transfer analysis of SAS: effects of 

thermodynamic states and flow rates on droplet size, The Journal of supercritical fluids, 30 (2004) 

333-348. 

[192] Y. Wang, X. Han, J. Wang, Y. Wang, Preparation, characterization and in vivo evaluation of 

amorphous tacrolimus nanosuspensions produced using CO2-assisted in situ nanoamorphization 

method, Int J Pharm, 505 (2016) 35-41. 

[193] M.J. Whitaker, J. Hao, O.R. Davies, G. Serhatkulu, S. Stolnik-Trenkic, S.M. Howdle, K.M. 

Shakesheff, The production of protein-loaded microparticles by supercritical fluid enhanced mixing 

and spraying, J Control Release, 101 (2005) 85-92. 

[194] D.R. Perinelli, G. Bonacucina, M. Cespi, A. Naylor, M. Whitaker, G.F. Palmieri, G. 

Giorgioni, L. Casettari, Evaluation of P (L) LA-PEG-P (L) LA as processing aid for biodegradable 

particles from gas saturated solutions (PGSS) process, International journal of pharmaceutics, 468 

(2014) 250-257. 

[195] C. Atila, N. Yıldız, A. Çalımlı, Particle size design of digitoxin in supercritical fluids, The 

Journal of Supercritical Fluids, 51 (2010) 404-411. 

[196] D. Bolten, M. Türk, Micronisation of carbamazepine through rapid expansion of supercritical 

solution (RESS), The Journal of Supercritical Fluids, 62 (2012) 32-40. 

[197] Z. Huang, G.-B. Sun, Y.C. Chiew, S. Kawi, Formation of ultrafine aspirin particles through 

rapid expansion of supercritical solutions (RESS), Powder Technology, 160 (2005) 127-134. 

[198] J. Huang, T. Moriyoshi, Fabrication of fine powders by RESS with a clearance nozzle, The 

Journal of supercritical fluids, 37 (2006) 292-297. 

[199] A. Keshavarz, J. Karimi-Sabet, A. Fattahi, A. Golzary, M. Rafiee-Tehrani, F.A. Dorkoosh, 

Preparation and characterization of raloxifene nanoparticles using rapid expansion of supercritical 

solution (RESS), The Journal of Supercritical Fluids, 63 (2012) 169-179. 

[200] S.K. Sharma, R. Jagannathan, High throughput RESS processing of sub-10 nm ibuprofen 

nanoparticles, The Journal of Supercritical Fluids, 109 (2016) 74-79. 

[201] M.C. Paisana, K.C. Müllers, M.A. Wahl, J.F. Pinto, Production and stabilization of 

olanzapine nanoparticles by rapid expansion of supercritical solutions (RESS), The Journal of 

Supercritical Fluids, 109 (2016) 124-133. 

[202] X. Zhao, Y. Zu, Q. Li, M. Wang, B. Zu, X. Zhang, R. Jiang, C. Zu, Preparation and 

characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process, 

The Journal of Supercritical Fluids, 51 (2010) 412-419. 

[203] S.-C. Chang, M.-J. Lee, H.-M. Lin, Role of phase behavior in micronization of lysozyme via 

a supercritical anti-solvent process, Chemical Engineering Journal, 139 (2008) 416-425. 

[204] A. Montes, A. Tenorio, M. Gordillo, C. Pereyra, E.M. de La Ossa, Screening design of 

experiment applied to supercritical antisolvent precipitation of amoxicillin: exploring new miscible 

conditions, The Journal of Supercritical Fluids, 51 (2010) 399-403. 

[205] J. Zhang, Y. Huang, D. Liu, Y. Gao, S. Qian, Preparation of apigenin nanocrystals using 

supercritical antisolvent process for dissolution and bioavailability enhancement, European Journal 

of Pharmaceutical Sciences, 48 (2013) 740-747. 

[206] S.M. Dizaj, Z. Vazifehasl, S. Salatin, K. Adibkia, Y. Javadzadeh, Nanosizing of drugs: Effect 

on dissolution rate, Res Pharm Sci, 10 (2015) 95-108. 

[207] A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the 

production of pure drug particles and drug-loaded polymeric carriers, Adv Colloid Interface Sci, 

223 (2015) 40-54. 

[208] A.B.D. Nandiyanto, K. Okuyama, Progress in developing spray-drying methods for the 

production of controlled morphology particles: From the nanometer to submicrometer size ranges, 

Advanced Powder Technology, 22 (2011) 1-19. 

[209] G. Shete, A.K. Bansal, NanoCrySP technology for generation of drug nanocrystals: 

translational aspects and business potential, Drug Deliv Transl Res, 6 (2016) 392-398. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

62 

[210] M. Beck-Broichsitter, C. Schweiger, T. Schmehl, T. Gessler, W. Seeger, T. Kissel, 

Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery, J 

Control Release, 158 (2012) 329-335. 

[211] K. Schmid, C. Arpagaus, W. Friess, Evaluation of the Nano Spray Dryer B-90 for 

pharmaceutical applications, Pharm Dev Technol, 16 (2011) 287-294. 

[212] H. de Waard, W.L. Hinrichs, H.W. Frijlink, A novel bottom-up process to produce drug 

nanocrystals: controlled crystallization during freeze-drying, J Control Release, 128 (2008) 179-

183. 

[213] J. Hu, K.P. Johnston, R.O. Williams III, Spray freezing into liquid (SFL) particle engineering 

technology to enhance dissolution of poorly water soluble drugs: organic solvent versus 

organic/aqueous co-solvent systems, European journal of pharmaceutical sciences, 20 (2003) 295-

303. 

[214] V.K. Pawar, Y. Singh, J.G. Meher, S. Gupta, M.K. Chourasia, Engineered nanocrystal 

technology: in-vivo fate, targeting and applications in drug delivery, J Control Release, 183 (2014) 

51-66. 

[215] B.E. Rabinow, Nanosuspensions in drug delivery, Nat Rev Drug Discov, 3 (2004) 785-796. 

[216] A. Tuomela, J. Saarinen, C.J. Strachan, J. Hirvonen, L. Peltonen, Production, applications and 

in vivo fate of drug nanocrystals, Journal of Drug Delivery Science and Technology, 34 (2016) 21-

31. 

[217] R.B. Chavan, R. Thipparaboina, B. Yadav, N.R. Shastri, Continuous manufacturing of co-

crystals: challenges and prospects, Drug Deliv Transl Res, (2018). 

[218] N. Radacsi, R. Ambrus, T. Szunyogh, P. Szabó-Révész, A. Stankiewicz, A. Van Der Heijden, 
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