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Abstract  23 

Background and aims Differences among plant genotypes can influence ecosystem functioning such as the 24 

rate of litter decomposition. Little is known, however, of the strength of genotypic links between litter 25 

quality, microbial abundance and litter decomposition within plant populations, or the likelihood that these 26 

processes are driven by natural selection.  27 

Methods We used 19 Betula pendula genotypes randomly selected from a local population in south-eastern 28 

Finland to establish a long-term, 35-month litter decomposition trial on forest ground. We analysed the 29 

effect of litter quality (N, phenolics and triterpenoids) of senescent leaves and decomposed litter on 30 

microbial abundance and litter mass loss. 31 

Results We found that while litter quality and mass loss both had significant genotypic variation, the 32 

genotypic variation among silver birch trees in the quantity of bacterial and fungal DNA was marginal. In 33 

addition, although the quantity of bacterial DNA at individual tree level was negatively associated with 34 

most secondary metabolites of litter and positively with litter N, litter chemistry was not genotypically 35 

linked to litter mass loss.  36 

Conclusions Contrary to our expectations, these results suggest that natural selection may have limited 37 

influence on overall microbial DNA and litter decomposition rate in B. pendula populations by reworking 38 

the genetically controlled foliage chemistry of these populations. 39 

 40 

Keywords: litter quality, bacteria, fungi, phenolic compounds, nitrogen, triterpenoids, decomposition, 41 

natural selection 42 

43 
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Introduction 44 

Plant litter decomposition, one of the fundamental ecosystem processes, is determined by the interaction of 45 

litter quality, the decomposers that colonize the litter, and environmental conditions. Plant species are 46 

known to differ in the quality of litter they produce (Bardgett and Wardle 2010; Wardle 2002), and as a 47 

legacy of these differences, communities of litter degrading microbes (Grayston and Prescott 2005; Kang 48 

and Mills 2004; Templer et al. 2003; Weand et al. 2010) and rates of litter decomposition (Cornelissen 49 

1996; Cornwell et al. 2008; Wardle et al. 1998) vary by plant species. Within ecosystems, this can create 50 

spatial variation of soil organisms and processes (Bardgett and Wardle 2010). Similar variation can also be 51 

created by intraspecific genetic variation, however, and this variation is increasingly recognized as an 52 

important driver of the structure and dynamics of plant associated communities and ecosystem functioning 53 

(Pastor 2017; Whitham et al. 2006; Whitham et al. 2008).  54 

 55 

Microbes, i.e. fungi and bacteria, are the main decomposers of plant litter and account for ca. 95% of soil 56 

decomposer biomass and respiration (Chapin et al. 2011). High nitrogen (N) concentration is assumed to 57 

enhance microbial growth and litter decomposition (Heal et al. 1997; Melillo et al. 1982). Secondary 58 

metabolites, which remain in senescent leaves as a highly diverse group (Paaso et al. 2017), differ as 59 

microbial resources due to differences in their chemical structure. Soluble low-molecular weight phenolics 60 

are relatively easily utilized by soil microbes (Bowman et al. 2004; Schimel et al. 1996), whereas the 61 

phenolic polymers, such as lignin and condensed tannins (proanthocyanidins) can retard microbial activity 62 

(Kraus et al. 2003; Madritch and Hunter 2003; Makkonen et al. 2012; Schimel et al. 1996). In general, it 63 

appears that litters that have low concentrations of nutrients and high concentrations of lignin and other 64 

phenolic compounds are characterized by fungal-dominated microbial communities and slow 65 

decomposition rates and nutrient release (Bardgett and Wardle 2010; Wardle 2002). Supporting the 66 

importance of genotypic variation in driving ecosystem functioning, many studies have shown how plant 67 

genotypes vary in litter quality and decomposition rate (Crutsinger et al. 2009; LeRoy et al. 2012; Madritch 68 

et al. 2006; Silfver et al. 2007, 2015). Especially for Populus, evidence has accumulated of the biomass, 69 

activity and composition of microbial communities varying remarkably among the litters of different 70 

genotypes (Madritch et al. 2009; Schweitzer et al. 2008a). What is still partly lacking, however, is the 71 
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evidence that leaf litter quality, microbial abundance and litter decomposition rate are genotypically linked 72 

within local plant populations, i.e. at the scale of intraspecific variation where green leaf traits are subjected 73 

to natural selection. It has also been argued that the role of genetic variation may be overestimated in the 74 

current literature because most studies have focused on systems with particular ecological characteristics, 75 

such as hybrid zones and clonal plant species (Tack et al. 2012). In addition, the examined genotypes are 76 

often collected from a wide area to maximize genetic variation, whereas the experiments are performed in 77 

common gardens to minimize environmental variation (Tack et al. 2012). More studies that use non-clonal 78 

plant species and intrapopulation genotypic variation in an experimental setting, where the environmental 79 

and genotypic variation represent equal spatial scale, are therefore needed. 80 

 81 

Our study species, Betula pendula Roth, has a wide distribution in Europe, being particularly abundant in 82 

the eastern parts (Atkinson 1992; Hynynen et al. 2010). Using genotypes randomly selected from a B. 83 

pendula population in south-eastern Finland, significant intrapopulation genotypic variation has earlier 84 

been found for many B. pendula traits, including green foliage secondary chemistry (Laitinen et al. 2000), 85 

leaf N resorption efficiency (Mikola et al. 2018) and litter decomposition rate (Silfver et al. 2007, 2015). 86 

The green foliage chemistry of tree populations is a reflection of various selection forces that act on the 87 

genotypic structure of populations, and we have recently shown that most secondary metabolites of B. 88 

pendula foliage, and their intrapopulation genotypic variation, can remain in the senescent leaves and partly 89 

decomposed leaf litter (Paaso et al. 2017). As secondary metabolites can affect litter decomposition 90 

(Hättenschwiler and Vitousek 2000; Schweitzer et al. 2008b), this should allow natural selection to 91 

influence ecosystem functioning through acting, e.g. in terms of herbivore defense (Bryant et al. 2009), on 92 

the green leaf chemistry of B. pendula populations. On the other hand, we found that the concentrations of 93 

lignin and condensed tannins, which both can restrict decomposition (Hobbie et al. 2006; Melillo et al. 94 

1982; Schweitzer et al. 2008b; Talbot and Treseder 2012; Vaieretti et al. 2005), had a negative genotypic 95 

correlation with each other in the senescent leaves and that the heritable variation in lignin concentrations 96 

vanished during decomposition (Paaso et al. 2017). These patterns might counteract a straightforward 97 

genotypic link between the green leaf chemistry and litter decomposition rate.  98 

 99 
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To examine (1) if the high intrapopulation genotypic variation of N and secondary metabolites in B. 100 

pendula senescent leaves (Paaso et al. 2017; Mikola et al. 2018) have predictable, long-term effects on litter 101 

decomposition rate when the litter is placed on heterogeneous forest ground, and particularly, (2) if these 102 

effects can be understood by the effects of metabolites on bacterial and fungal abundances, we established a 103 

35-month litter decomposition trial using the same genotypes, originating from a single B. pendula 104 

population, which were previously studied by Paaso et al. (2017) and Mikola et al. (2018). We 105 

supplemented the data available from these studies by measuring litter N concentration after early 106 

decomposition, and predicted that microbial abundance and litter mass loss would follow the variation in 107 

the concentrations of N and secondary metabolites in the senescent leaves. Due to the persistence of 108 

genotypic variation in litter chemistry through decomposition (Paaso et al. 2017), we further predicted that 109 

the variation in overall quantity of fungal and bacterial DNA and litter mass loss would exhibit a significant 110 

genetic component. This would effectively link natural selection with ecosystem functioning if those traits 111 

that were originally selected for other functions in live trees (such as protection against herbivores) would 112 

also have an effect on litter-dwelling microbes and decomposition.  113 

 114 

Materials and methods 115 

Plant material, growing site and leaf litter collection 116 

The mother trees of the 19 B. pendula genotypes used in this study were originally selected from a naturally 117 

regenerated 0.9-ha B. pendula – B. pubescens Ehrh. forest stand in Punkaharju, southeast Finland (61°48’ 118 

N, 29°18’ E) and thus represent the genotypic variation of a local B. pendula population. The trees we used 119 

were micropropagated from the mother trees in the spring 1998 (Laitinen et al. 2005) and were planted at 120 

the Kuikanniitty growing site in June 1999. The Kuikanniitty site (61°47′ N, 29°21′ E, 79 m above sea 121 

level) is an abandoned, agricultural field with a soil defined as fine sandy till (Laitinen et al. 2005). When 122 

established, the site was divided into six replicate blocks, each of which had plots of four identical saplings 123 

randomly selected from the genotypes. Two of the trees in each plot were later harvested, leaving more 124 

space for the remaining two, and one of these trees was randomly selected for our study (n=6 for each 125 

genotype).  126 

 127 
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Leaf litter was collected by enclosing two south-facing branches of each tree at the height of 1.4-3 m in 128 

white polyethylene mesh bags (150 cm × 60 cm, mesh size 2 mm) before autumn leaf abscission 129 

(September 8 to 10) . The bags were removed after leaves had fallen in all trees (October 28 to 30), the 130 

litter was pooled within trees, stored at ambient temperature, and from each litter sample twenty random 131 

leaves were collected for microbial and chemical analyses. These sub-samples, hereafter called senescent 132 

leaves, were ground in liquid N and stored at -80 oC. The remaining litter material was used for the 133 

decomposition trial. 134 

 135 

Litter decomposition trial 136 

The decomposition trial was established in November 2008 at a forest site in Loppi, south Finland (60°36’ 137 

N, 24°24’ E, 140 m above sea level), instead of the Kuikanniitty agricultural field, to ensure that 138 

decomposer microbes adapted to tree leaf litter decomposition would colonize the litter. The site was clear-139 

cut in early 2008 to allow planting of B. pendula saplings for the purposes of other experiments (Mikola et 140 

al. 2014; Silfver et al. 2015). Before the clear-cut, the site was covered by a mixed Pinus sylvestris – B. 141 

pendula forest. The soil at the site is post-glacial sorted fine sand, topped by a few centimeters of humus, 142 

with a pH of 5.0 and total C and N concentrations of 6 and 0.3%, respectively, in the upper 0–5 cm layer 143 

(Mikola et al. 2014). The ground layer vegetation is dominated by a fern Pteridium aquilinum (L.) Kuhn, 144 

grasses Calamagrostis arundinacea (L.) Roth and Deschampsia flexuosa (L.) Trin., and dwarf shrubs 145 

Vaccinium myrtillus L. and Vaccinium vitis-idea L. (Mikola et al. 2014). The site has six replicate blocks, 146 

each divided into 2×2 m planting plots (Mikola et al. 2014), and for the present study, a litter patch 147 

(diameter ca. 30 cm, 10 g of litter as dry mass equivalent) was established in a random selection of the plots 148 

for each of the trees sampled in the Kuikanniitty site (Mikola et al. 2018). Allocation of tree individuals to 149 

field blocks followed the blocking at the Kuikanniitty growing site, and within each block the litter of 150 

different genotypes was randomly allocated to the planting plots.  151 

 152 

Before the patches were established, four litter bags (10×10 cm; mesh size 0.5 mm), one for each of the 153 

four consecutive harvests, were produced for each patch using the patch litter. Each bag included five to 154 

eight randomly picked and weighed leaves. The litter bags were buried in their corresponding patches and 155 
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the patches were covered, but not enclosed by white polyethylene mesh (2 mm). To mimic the annual input 156 

of fresh litter, each patch was augmented with 25 g of newly collected litter (as a dry mass equivalent) in 157 

autumns 2009 and 2010. The litter used for the patches and the litter bags was not dried for initial dry mass 158 

measurements to preserve the microbes such as endophytes (Saikkonen et al. 2003), which naturally grow 159 

on the falling litter. Instead, a subsample of eight random leaves was picked from each litter sample and 160 

dried, and the water content was used to estimate the amount of dry litter added into each patch as well as 161 

the initial litter dry mass used in the litter bags. 162 

 163 

Litter bags were harvested for measuring mass loss in June 2009, October 2009, July 2010 and October 164 

2011, i.e. after decomposition of 7, 11, 20 and 35 months. The intervals from Nov 2008 to June 2009, from 165 

Oct 2009 to July 2010 and from July 2010 to October 2011 include 4 to 5 months of mean air temperature 166 

< 0 °C. In each harvest, litter samples were dried at 60 oC for 72 h and weighed for dry mass. Litter 167 

chemistry was analyzed for 7-month old litter and bacterial and fungal abundance for 7- and 11-month old 168 

litter. In each case, ten to twenty random leaves were picked from the patch and transported to a laboratory, 169 

where they were ground in liquid N and stored in -80 oC. Litter chemistry included concentrations of N, 170 

condensed tannins, lignin, intracellular phenolics, epicuticular flavone aglycones and epicuticular 171 

triterpenes, which were available from the studies by Paaso et al. (2017) and Mikola et al. (2018), except 172 

for the N concentration of the 7-month old litter, which was analyzed for this study. Nitrogen concentration 173 

was analyzed using a LECO CNS-2000 Analyzer (LECO Corporation, USA) and the concentration of 174 

condensed tannins using the acid butanol assay (Hagerman 2002). Lignin concentrations were determined 175 

using the acetylbromide method (Brinkmann et al. 2002), with slight modifications, and those of low 176 

molecular phenolic compounds using high-performance liquid chromatography-mass spectrometry (Paaso 177 

et al. 2017). 178 

 179 

The microbial abundances, i.e. quantities of fungal and bacterial DNA in the senescent leaves and in the 180 

litter after 7 and 11 months of decomposition, were analyzed using the real-time quantitative PCR (qPCR). 181 

DNA was isolated from 25-125 mg of ground litter using FastDNA@Spin Kit for Soil (Obiogene, USA). 182 

The same extraction method was used for the pure cultures of bacteria (Escherichia coli, own collection) 183 
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and fungi (Saccharomyces cerevisiae, commercially available yeast), which served as positive controls in 184 

the qPCR analysis. Sterilized water and the reaction mixture without the template served as negative 185 

controls. The samples were amplified using the LightCycler Quantitative real-time PCR machine (Roche 186 

Diagnostics Penzberg, Germany). The primers pE (5'-AAA CTC AAA GGA ATT GAC GG-3') and pF’ 187 

(5'-ACG AGC TGA CGA CAG CCA TG-3') were used for the domain Eubacteria (Edwards et al. 1989), 188 

and the primers ITS3 (5'-GCA TCG ATG AAG AAC GCA GC-3') and ITS4 (5'-TCC TCC GCT TAT 189 

TGA TAT GC-3') for fungi (Manerkar et al. 2008). The total reaction volume was 20 µl, which included 2 190 

µl of diluted template (dilution for bacteria 1:100 and for fungi 1:1000), 10 µl of reaction mixture (Dynamo 191 

HS SYBR Green qPCR Kit), 0.5 µl of each bacterial or 0.25 µl of each fungal primer, and 7 µl or 7.5 µl of 192 

water (for bacterial and fungal analysis, respectively). The PCR temperature program for the bacteria 193 

included initial denaturation of 10 min at 94 °C, 30 cycles of 10 s at 94 °C followed by annealing for 20 s at 194 

57 °C and extensions for 30 s at 72 °C and for 1 s at 81 °C. For the fungi, the program consisted of initial 195 

denaturation of 15 min at 95 °C, 41 cycles of 60 s at 95 °C followed by annealing for 60 s at 58 °C and 196 

extensions for 60 s at 72 °C and for 1 s at 77 °C. For both microbial groups, the melting curve analysis for 197 

the amplicon was performed at 60-95 °C with measurements of the fluorescence signal at every 0.2 °C for 1 198 

s. A standard curve with four to five dilutions of positive standards was used to calculate the number of 199 

copies in the original template. This value was then divided by the dry weight of the litter sample used in 200 

the DNA extraction. 201 

 202 

2.3.  Statistical analysis 203 

The broad-sense heritabilities (H2) (Falconer and Mackay 1996) of litter N concentration, microbial DNA 204 

quantity and litter mass loss were calculated according to equation 1, where 𝜎𝐺
2 and 𝜎𝐸

2 are variance 205 

components for genotypes and environment (or error), respectively. Calculating broad-sense heritabilities 206 

allowed us to estimate how large a proportion of the total variation in microbial DNA quantity and litter 207 

mass loss could be explained by the genotypic variation of our study population. The variance components 208 

were calculated using the SPSS GLM Variance components procedure (ANOVA, Type III Sum of 209 

Squares). In the calculation model, the genotype was treated as a random factor and the field block, 210 

following a common practice in forest breeding, as a fixed factor. This differs from some of our earlier 211 
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studies (Mikola et al. 2014; Silfver et al. 2015), where we were interested in the size of the block-scale 212 

environmental variation and treated the block as a random factor. Coefficients of genotypic variation (CVG) 213 

were further calculated according to equation 2, where 𝑥̅ is the phenotypic mean.  214 

  215 

Eq. 1     𝐻2 =
𝜎𝐺

2

(𝜎𝐺
2 + 𝜎𝐸

2)
⁄  216 

Eq. 2     𝐶𝑉𝐺 =  
√𝜎𝐺

2

𝑥̅
⁄   217 

 218 

The statistical significance of genotypic variation in litter N concentration, microbial DNA quantity and 219 

mass loss was tested using the Analysis of Variance (ANOVA; SPSS statistical package, version 22; IBM 220 

SPSS Statistics). In the ANOVA models, the genotype was treated as a random factor and the field block as 221 

a fixed factor, thus following the procedure in the calculations of variance components. The qPCR run was 222 

included in the models of microbial DNA as a fixed factor, but the effects of the qPCR run and the field 223 

block were not fully distinguishable as we analyzed the microbial samples block by block. Moreover, 224 

although the field block was a statistically significant source of variation for many response variables, its 225 

meaningful interpretation is difficult as it retains variation from two undistinguishable sources, i.e. the 226 

variation originating from the tree growing site and that arising from the litter patch location. For these 227 

reasons, neither the block nor the qPCR run effect is presented in the ANOVA table. To fulfil the 228 

assumptions of normality and homoscedasticity, the data were log(x+1) or square root transformed when 229 

necessary. Equality of variances was tested using a median-based Levene’s test as suggested by Nordstokke 230 

and Zumbo (2007). 231 

 232 

The associations among the attributes of litter chemistry (N, condensed tannins, lignin, intracellular 233 

phenolics, surface flavone aglycones and surface triterpenes), microbial DNA quantity and litter mass loss 234 

were examined both at the level of genotypes (genotype mean values used in calculations of genotypic 235 

correlations) and individual trees (values for individual trees used in calculations of phenotypic 236 

correlations) and using Spearman’s rank correlation test. In these correlations, the chemistry attributes were 237 

always contrasted with microbial DNA quantity and mass loss of one harvest further (e.g. the N 238 
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concentration of senescent leaves was contrasted with the mass loss of the 7-month old litter and the N 239 

concentration of the 7-month old litter with the mass loss of the 11-month old litter). The associations 240 

between microbial DNA quantity and mass loss were tested both within the harvests and between the 241 

harvests. 242 

 243 

Results 244 

Litter N concentration 245 

The genotypic variation in litter N concentration was statistically significant after 7 months of 246 

decomposition, with the genotype explaining 20% of total phenotypic variation (Table 1, Fig. 1). The 247 

genotype means of N concentration in 7-month old litter correlated positively with the genotype means of 248 

N concentration in senescent leaves (ρ=0.63, P=0.004, n=19). Concentrations of N and secondary 249 

metabolites did not correlate at the genotype level in either senescent leaves or decomposed litter, except 250 

for the weak negative correlation in senescent leaves between N and intracellular phenolics (ρ=-0.463, 251 

P=0.046, n=19) . 252 

 253 

Bacterial and fungal DNA 254 

The quantity of DNA on decomposing leaves in comparison to senescent leaves was on average 2- and 4-255 

fold higher for bacteria after 7 and 11 months of decomposition, respectively, and 1.3- and 2-fold higher for 256 

fungi after 7 and 11 months of decomposition, respectively (Fig. 2). In senescent leaves, the genotype 257 

explained 10% of the total variation in bacterial and fungal DNA, but statistically, the genotype effect was 258 

only marginally significant (Table 1). After 7 and 11 months of decomposition, the genotype effect was not 259 

statistically significant for either microbial group, although after 7 months the genotype could still explain 260 

4% of the total variation in the amount of fungal DNA (Fig. 2, Table 1). The quantities of bacterial and 261 

fungal DNA did not correlate with each other at the level of tree genotype in the senescent leaves (ρ=0.075, 262 

P=0.759, n=19) or after 7 (ρ=0.28, P=0.238) or 11 months of litter decomposition (ρ=-0.10, P=0.679). The 263 

quantities of bacterial and fungal DNA did not correlate with each other at the level of individual trees in 264 

the senescent leaves (ρ=0.07, P=0.475, n=112) or after 7 months of litter decomposition (ρ=0.18, P=0.058), 265 

but had a weak negative correlation after 11 months of decomposition (ρ=-0.20, P=0.035). 266 
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 267 

Litter mass loss 268 

On average 9, 24, 28 and 51% of litter mass was lost during the 7, 11, 20 and 35 months of decomposition, 269 

respectively (Fig. 3). After 7 months of decomposition, the genotype explained 25% of the total variation in 270 

mass loss and the genotype effect was statistically significant (Table 1). In the later stages of 271 

decomposition, the heritability estimates were considerably smaller (0.5-7%) and the genotype effect was 272 

not statistically significant (Table 1). The genotype means of litter mass loss were, however, positively 273 

correlated between the 7- and 11-month old litter (ρ=0.43, P=0.069, n=19) and between the 7- and 20-274 

month old litter (ρ=0.70, P=0.001), but not between the 7- and 35-month old litter (ρ=0.14, P=0.571).  275 

 276 

Associations among litter chemistry, microbes and mass loss 277 

At the genotype level, the quantity of bacterial DNA had a positive correlation with litter mass loss at the 278 

11-month harvest when contrasted within and between the harvests, whereas no significant correlation was 279 

found for fungi (Table 2).  At the level of individual trees, the quantity of bacterial DNA had a positive 280 

correlation with litter mass loss at the 11-month harvest, whereas the quantity of fungal DNA correlated 281 

negatively with litter mass loss both in the senescent leaves and 11-month old litter (Table 3). 282 

 283 

No genotypic correlation was found between litter chemistry and microbial DNA quantity or mass loss 284 

(Table 4). At the level of individual trees, however, the N concentration in senescent leaves was positively 285 

and concentrations of intracellular phenolics and epicuticular flavonoid aglycones negatively correlated 286 

with the quantity of bacterial DNA in the 7-month old litter (Table 5). These patterns were mostly repeated 287 

later as the concentrations of lignin and N in the 7-month old litter were positively correlated and 288 

intracellular phenolics and condensed tannins negatively with the quantity of bacterial DNA in the 11-289 

month old litter (Table 5). In contrast, none of the senescent leaf chemistry attributes were associated with 290 

the fungal DNA or litter mass loss at the early stage of decomposition (Table 5). However, N and lignin 291 

concentrations in the 7-month old litter were negatively associated with the quantity of fungal DNA (Table 292 

5), and the concentration of condensed tannins was negatively and the concentration of lignin positively 293 

correlated with litter mass loss (Table 5).  294 
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 295 

Discussion 296 

Litter chemistry and microbial abundance 297 

In line with our earlier observations of high and persistent intrapopulation genotypic variation of N and 298 

secondary metabolites in B. pendula senescent leaves (Mikola et al. 2018; Paaso et al. 2017), we found that 299 

the N concentration of partly decomposed litter had substantial genotypic variation. In the senescent leaves, 300 

the genotypic variation was found to explain 34% of the total phenotypic variation (Mikola et al. 2018), 301 

which corresponds with the earlier estimates of 28 and 27% of green leaf N concentrations explained by 302 

genotype in Populus trichocarpa (Guerra et al. 2016) and Pinus radiata (Li et al. 2015), respectively. 303 

Although the estimates of heritability and CVG decreased during the first 7 months of decomposition (H2 304 

from 0.34 to 0.20 and CVG from 0.080 to 0.050), the ranks of genotype means of N concentration were 305 

strongly positively correlated between the senescent leaves and decomposed litter, thus giving strong 306 

support to the earlier suggestions that the genotypic variation of foliage chemistry persists through the early 307 

stages of decomposition (Paaso et al. 2017). 308 

 309 

The effect of tree genotypic variation on the quantities of bacterial and fungal DNA found on senescent 310 

leaves (CVG 0.087 and 0.093, respectively) is in line with earlier observations of genotypic structure of tree 311 

populations controlling fungal infections in green leaf foliage (Barbour et al. 2009). The genetic variation 312 

we found may be due to microbes of senescent leaves originating from the epiphyte and endophyte 313 

communities of the green foliage (Busby et al. 2016; Peñuelas et al. 2012; Saikkonen et al. 2003) as the 314 

variation disappeared during the first 7 months of decomposition, i.e. during the period when the litter 315 

microbes presumably became more dominated by soil decomposers (for the endophyte–saprotroph fungal 316 

continuum see U´Ren and Arnold 2016). Our results thus seem to suggest that even though the genotypic 317 

variation of foliage chemistry persists through the senescence and early decomposition of litter, it is the 318 

green leaf microbial community that is responsive to this variation rather than the decomposers that later 319 

colonize the litter. In fact, this is not surprising considering the high metabolic flexibility of soil 320 

communities to decompose litters of different origin (Lavelle 2002; Makkonen et al. 2012). However, we 321 

did not use any amplicon-sequencing method to quantify variation at finer taxonomic resolution of 322 
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microbes across our genotypes. It is therefore possible that even though microbial abundance, i.e. the 323 

overall DNA quantity, was not affected by B. pendula genotype in partly decomposed 7- and 11-mo old 324 

litters, the composition of fungal and bacterial communities varied across the genotypes as shown in an in-325 

stream Populus study by Marks et al. (2009). 326 

 327 

Earlier studies of the variation of microbial abundances in plant litter among plant phenotypes and 328 

genotypes have produced mixed results. No difference was found in microbial activity and biomass among 329 

litters originating from Quercus laevis phenotypes in an oak forest after 3–36 months of decomposition 330 

(Madritch and Hunter 2002, 2005). In contrast, Le Roy et al. (2007) found that genotypic variation in both 331 

P. angustifolia and P. fremontii affected the fungal biomass in the litter after 7 days of decomposition in an 332 

aquatic environment, but similarly to our study, the variation disappeared in P. fremontii during early 333 

decomposition. When microbial abundances have been analyzed in the humus layer beneath 7- to over 20-334 

year old trees, significant genotype effects on microbial abundances have been found for B. pendula 335 

(Kasurinen et al. 2005), Populus angustifolia (LeRoy et al. 2007; Schweitzer et al. 2008a) and P. 336 

tremuloides (Madritch et al. 2009; Madritch and Lindroth 2011), but not for P. fremontii, which generally 337 

seems to express much less variation in many studied traits (e.g. leaf secondary chemistry, litter 338 

decomposition) than other Populus crosstypes (Schweitzer et al. 2008a and references therein). Altogether 339 

these results suggest that soil microbial decomposers can respond to the genotypic variation in leaf litter 340 

characteristics, but the response may take years to develop and for some tree species the connection may 341 

not exist or be weak. The strength of response might also depend on the composition of bacterial and fungal 342 

communities at the study site, which could be tested using reciprocal litter transplant experiments. 343 

  344 

There was no genotypic link between litter chemistry and the overall quantity of bacterial and fungal DNA, 345 

which was most probably due to the vanishing genotypic variation in microbial abundances during litter 346 

decomposition. Considering that bacteria and fungi are the primary decomposers of plant litter, this would 347 

suggest that the high genotypic variation of B. pendula litter chemistry (Paaso et al. 2017; Mikola et al. 348 

2018) may have little influence on litter decomposition. On the other hand, when looking at this 349 

relationship on the phenotypic level of individual trees, our results show that litter chemistry and the 350 
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quantity of microbial DNA were connected, the quantity of bacterial DNA being negatively associated to 351 

the concentration of phenolics and positively to the concentrations of N and lignin during the first year of 352 

decomposition. The soluble low-molecular weight secondary compounds are often considered as a suitable 353 

resource for microbes (Bowman et al. 2004; Schimel et al. 1996), but our results suggest that bacterial 354 

abundance may in general be retarded by these compounds. The negative association between the quantity 355 

of bacterial DNA and the concentration of condensed tannins was anticipated based on earlier studies 356 

(Kraus et al. 2003; Madritch and Hunter 2003; Makkonen et al. 2012; Schimel et al. 1996), whereas the 357 

positive association between the quantity of bacterial DNA and the concentration of lignin was not  358 

(Sariyildiz and Anderson 2003; Vaieretti et al. 2005). This positive correlation may, however, be related to 359 

the fact that lignin and tannin concentrations were negatively correlated in the senescent leaves (Paaso et al. 360 

2017). The positive association between N concentration and the quantity of bacterial DNA was expected 361 

and supports the idea that N rich litter induces a decomposer community that is dominated by bacteria 362 

(Bardgett and Wardle 2010; Wardle 2002). In a stark contrast to the quantity of bacterial DNA, the quantity 363 

of fungal DNA had no significant connection to phenolic concentrations, but instead was negatively 364 

associated with N and lignin concentrations. In general, the contrasting responses of the two microbial 365 

groups to litter characteristics may partly mirror the fact that fungi are the main decomposers of 366 

carbohydrates, whereas bacteria are adapted to digesting substrates with higher protein contents and low 367 

C:N ratios (Lavelle and Spain 2001).  368 

 369 

Litter mass loss and links to litter chemistry and microbial abundance 370 

The high genotypic variation in the early litter mass loss diminished in our study when the decomposition 371 

proceeded and practically no genotypic variation was left after three years. The positive genotypic 372 

correlation of mass loss between the 7- and 20-month old litters, however, implies that despite the 373 

diminishing genotypic variation, the genotypic rank of mass loss rate remained the same through the first 374 

20 months of decomposition. Most earlier studies that have examined the intraspecific genotypic variation 375 

in plant litter decomposition at field conditions have been short-term and lasted no more than one year. In 376 

some of these studies, genotypic variation may have been overemphasized by the use of hybrid zones and 377 

clonal plant species or common garden approaches with genotypes originating from different populations 378 
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(Tack et al. 2012), but the genotypic effects and heritability estimates they report (Crutsinger et al. 2009; 379 

LeRoy et al. 2012; Madritch et al. 2006) are near to those measured in our study. For instance, in an in-380 

stream decomposition trial, LeRoy et al. (2012) found that 30% of the total variation in litter decomposition 381 

rate was explained by P. tremuloides genotype. This is well in line with our observation of genotype 382 

explaining 25% of the variation in B. pendula litter mass loss (H2=0.248) during the first seven months of 383 

decomposition.  By contrast, the few long-term trials, lasting over 18 months, have reported non-significant 384 

genotypic or phenotypic effects on litter decomposition (Korkama-Rajala et al. 2008; Madritch and Hunter 385 

2005). For example, similarly to our findings, Madritch and Hunter (2005) found significant phenotypic 386 

differences in the decomposition rate of Quercus laevis leaf litter after 18 months of decomposition, but no 387 

difference after 36 months of decomposition. Together with our results, these results seem to indicate that 388 

genotypic and phenotypic variation in decomposition rate disappear after the initial phases of 389 

decomposition. On the other hand, Madritch and Hunter (2005) found that long-term nutrient fluxes can be 390 

influenced by plant phenotype, suggesting that the genotypic and phenotypic variation in nutrient dynamics 391 

may persist longer than the variation in litter decomposition rate.  392 

 393 

We found no genotypic correlation between litter chemistry and the quantity of microbial DNA and litter 394 

mass loss. It thus appears that while B. pendula litter quality and litter mass loss both have significant 395 

genotypic variation, these variations are not linked by the abundance of decomposer microbes. This 396 

suggests that the genotypic variation in the concentrations of N and secondary compounds in B. pendula is 397 

not a good predictor of the genotypic variation in litter mass loss. What could be the reason for such 398 

apparent lack of genotypic link between litter chemistry and litter mass loss? First, it is possible that the 399 

physical attributes of litter, such as leaf toughness and specific leaf area, instead of chemistry, drive the 400 

variation in litter decomposition. There is some evidence that leaf toughness can better explain interspecific 401 

differences in litter decomposition than litter N content and the C/N-ratio (Li et al. 2009; Pérez-402 

Harguindeguy et al. 2000). Second, as lignin concentration is among the most important factors regulating 403 

litter decomposition (Hobbie et al. 2006; Melillo et al. 1982; Vaieretti et al. 2005), the quickly diminishing 404 

genotypic variation of lignin concentrations in our litter (Paaso et al. 2017) could be part of the explanation. 405 

Third, as we already earlier speculated, the negative genotypic correlation between lignin and condensed 406 
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tannins (Paaso et al. 2017) may counteract the link between the genotypic variation in the concentrations of 407 

individual metabolites and litter mass loss. Fourth, our results suggest that bacterial and fungal abundance 408 

can have contrasting responses to the variation in litter chemistry and differ in their link to decomposition 409 

rate, with bacterial abundance having a positive and fungal abundance a negative correlation with litter 410 

mass loss. In the same way as the negative correlations between metabolite concentrations, such a 411 

discrepancy between the responses and effects of the two main groups of decomposers may explain why 412 

litter chemistry does not appear to be connected to litter decomposition. Moreover, analyzing bacterial and 413 

fungal community composition might further have revealed differences in the responses of microbial taxa 414 

within communities. All in all, while there is several potential reasons that could explain our findings, the 415 

evidence is accumulating that the chemistry and mass loss of B. pendula litter are surprisingly weakly 416 

connected (cf. Silfver et al. 2015). Thus, in contrast to what we expected (Paaso et al. 2017), selection may 417 

not be able to drive decomposition rate through acting on green leaf chemistry in B. pendula populations.  418 

 419 

Nitrogen mineralization is a process closely linked to organic matter decomposition. Microbes break down 420 

organic matter using exoenzymes, which liberates dissolved organic N (DON) in the soil (Chapin et al. 421 

2011). Microbes absorb DON for their growth requirements and depending on whether microbial growth is 422 

C or N limited, secrete surplus NH4 into the soil (Chapin et al. 2011). We have recently shown that litter N 423 

mineralization rate in B. pendula is tightly controlled by the genotypic variation in N resorption efficiency 424 

(and the following senescent leaf N concentration), not by the genotypic variation in green leaf N 425 

concentration (Mikola et al. 2018). Together with our current findings these results have three implications 426 

for understanding the variation of litter decomposition and N mineralization within tree populations. First, 427 

intrapopulation genotypic variation in green leaf chemistry may be a poor predictor of litter decomposition 428 

and mineralization rates. Second, the links of plant foliage traits with the rates of litter mass loss and litter 429 

N mineralization may be decoupled, the link with N mineralization being more prominent because of the 430 

strong control by N resorption efficiency. Third, although these results leave little space for natural 431 

selection to drive ecosystem functioning through acting on green leaf chemistry in tree populations, the 432 

process is still possible through selection acting on other live plant traits such as the leaf N resorption 433 

efficiency. 434 
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 435 

Conclusions 436 

Our results show that while B. pendula litter chemistry and litter mass loss both have significant genotypic 437 

variation, the variation in chemistry of the litter may not trigger significant genotypic variation in the 438 

overall microbial DNA and may not be related to the variation in litter mass loss. In contrast to what we 439 

expected (Paaso et al. 2017), this suggests that selection may not be able to drive litter decomposition rate 440 

in B. pendula populations through acting on the green leaf chemistry of these populations. However, the 441 

link between selection and ecosystem processes is still possible through selection acting on other live plant 442 

traits such as the leaf N resorption efficiency that appears to be tightly correlated with the genotypic 443 

variation of B. pendula litter N mineralization rate (Mikola et al. 2018).  444 
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 670 

 671 

Figure legends 672 

 673 

Figure 1. The mean (+ SE, n = 5-6) of N concentration in the litter after 7 months of decomposition in 19 674 

Betula pendula genotypes (the genotype order follows the 7-month mass loss in Fig. 3). 675 

 676 

Figure 2. The mean (+ SE, n = 5-6) of the number of bacterial and fungal DNA copies in the senescent 677 

leaves and litter after 7 and 11 months of decomposition in 19 Betula pendula genotypes (the genotype 678 

order follows the 7-month mass loss in Fig. 3).   679 

 680 

Figure 3. The mean (+SE, n = 4-6) of leaf litter mass loss after 7, 11, 20 and 35 months of decomposition 681 

in 19 Betula pendula genotypes (the genotypes are in the order of increasing mass loss after 7 months). 682 

  683 
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Tables 684 

Table 1. Number of observations (N), the mean (𝑥̅), variance components (σ2;G = Genotype, E = 685 

Environment), broad-sense heritability (H2), coefficient of genotypic variation (CVG) and the statistical 686 

significance of the genotype effect on mass loss, number of bacterial and fungal DNA copies and N 687 

concentration of Betula pendula litter.  688 

 689 

 690 

   N 𝑥̅ σ2
G σ2

E H2 CVG Genotype effect  

        F P 

Litter mass loss            

7-mo old litter 111 8.84 5.099 15.44 0.248 0.255 2.93 < 0.001 
11-mo old litter 111 23.5 2.280 30.55 0.069 0.064 1.44 0.136 

20-mo old litter 111 27.5 2.658 39.33 0.063 0.059 1.39 0.155 

35-mo old litter 105 50.5 0.650 140.3 0.005 0.016 1.03 0.442 

Bacterial DNA             

Senescent leavesa 110 1.1E+4 1.1E+6 1.0E+7 0.094 0.093 1.58 0.084 

7-mo old litterb  112 8.33 0 0.084 0 0 0.76 0.739 

11-mo old litterb 112 8.67 0 0.054 0 0 0.94 0.532 

Fungal DNA             

Senescent leavesa 110 7.0E+4 3.7E+7 3.3E+8 0.102 0.087 1.58 0.086 

7-mo old litterb 112 9.79 0.003 0.061 0.040 0.005 1.27 0.231 

11-mo old litterb 112 9.97 0 0.041 0 0 0.75 0.748 

N concentration         

7-mo old litter 112 1.16 0.003 0.013 0.202 0.050 3.53 < 0.001 
a square root transformed 691 
b log(x+1) transformed 692 
  693 
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Table 2. Spearman’s rank correlations (and their P-values) between the genotype means (n = 19) of Betula 694 

pendula litter mass loss and the number of bacterial and fungal DNA copies found in the litter.  695 

 696 

 Mass loss 
 After 7 months After 11 months 

Bacterial DNA    

Senescent leaves 0.45 (0.054)  

7-mo old litter 0.31 (0.190) <0.01 (1.00) 

11-mo old litter  0.48 (0.036) 

Fungal DNA    

Senescent leaves 0.03 (0.920)  

7-mo old litter 0.39 (0.099) 0.45 (0.056) 

11-mo old litter  -0.11 (0.642) 

  697 
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Table 3. Spearman’s rank correlations (and their P-values) between litter mass loss and the number of 698 

bacterial and fungal DNA copies extracted from the litter of individual Betula pendula trees (n = 110-111).  699 

 700 

 Mass loss 

 After 7 months After 11 months 

Bacterial DNA    

Senescent leaves 0.14 (0.156)  

7-mo old litter 0.09 (0.362) 0.10 (0.281) 

11-mo old litter  0.27 (0.005) 

Fungal DNA    

Senescent leaves -0.21 (0.026)  

7-mo old litter 0.10 (0.320) 0.03 (0.764) 

11-mo old litter  -0.24 (0.012) 

  701 



25 
 

Table 4. Spearman’s rank correlations (and their P-values) between genotype means (n = 19) of B. pendula 702 

in senescent leaf and litter chemistry and the number of bacterial and fungal DNA copies and litter mass 703 

loss measured one harvest further. Data of secondary metabolites and senescent leaf N are from Paaso et al. 704 

(2017) and Mikola et al. (2018), respectively. 705 

 706 
 Bacterial DNA Fungal DNA Litter mass loss 
Senescent leaves 7-mo litter  

Intracellular phenolics -0.03 (0.909) -0.24 (0.325) 0.01 (0.972) 

Epicuticular flavonoid aglycones -0.22 (0.371) -0.13 (0.596) 0.33 (0.166) 

Epicuticular triterpenoids -0.04 (0.875) -0.11 (0.658) 0.26 (0.290) 

Condensed tannins 0.12 (0.627) -0.28 (0.244) -0.15 (0.528) 

Lignin 0.02 (0.932) 0.05 (0.836) -0.03 (0.920) 

Nitrogen 0.38 (0.110) -0.06 (0.814) 0.27 (0.267) 

7-mo old litter 11-mo litter 

Intracellular phenolics -0.42 (0.071) 0.26 (0.286) -0.40 (0.094) 

Epicuticular flavonoid aglycones 0.21 (0.379) 0.28 (0.251) 0.23 (0.351) 

Epicuticular triterpenoids 0.17 (0.482) 0.34 (0.152) 0.14 (0.562) 

Condensed tannins -0.03 (0.920) 0.28 (0.251) -0.16 (0.523) 

Lignin -0.28 (0.238) -0.27 (0.273) -0.18 (0.468) 

Nitrogen 0.38 (0.110) 0.42 (0.074) 0.22 (0.359) 

  707 
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Table 5. Spearman’s rank correlations (and their P-values) between individual B. pendula trees (n = 101-708 

111) in senescent leaf and litter chemistry and the number of bacterial and fungal DNA copies and litter 709 

mass loss measured one harvest further. Data of secondary metabolites and senescent leaf N are from Paaso 710 

et al. (2017) and Mikola et al. (2018), respectively.  711 

 Bacterial DNA Fungal DNA Litter mass loss 
Senescent leaves 7-mo litter  

Intracellular phenolics -0.31 (0.002)   -0.11 (0.265)   -0.09 (0.354) 

Epicuticular flavonoid aglycones -0.27 (0.007)   -0.02 (0.814)    <0.01 (0.994) 

Epicuticular triterpenoids    -0.15 (0.130)    0.04 (0.717)   -0.04 (0.708) 

Condensed tannins    -0.06 (0.492)   -0.05 (0.632)   -0.08 (0.385) 

Lignin    -0.07 (0.451)    0.16 (0.084)   -0.06 (0.560) 

Nitrogen  0.26 (0.007)    0.04 (0.663)   -0.01 (0.928) 

7-mo old litter 11-mo litter 

Intracellular phenolics   -0.28 (0.004)  -0.09 (0.359)  -0.19 (0.058) 

Epicuticular flavonoid aglycones   -0.05 (0.645)  -0.02 (0.884)   0.05 (0.624) 

Epicuticular triterpenoids    0.07 (0.469)  -0.05 (0.629)   0.08 (0.426) 

Condensed tannins   -0.23 (0.017)   0.09 (0.358)  -0.23 (0.017) 
Lignin    0.41 (<0.001)  -0.30 (0.001)   0.26 (0.006) 
Nitrogen    0.21 (0.027)  -0.19 (0.041)   0.14 (0.154) 

 712 
 713 
 714 

 715 



 

Figure 1.  
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Figure 2. 
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Figure 3. 
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