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Abstract

Rare earth elements (REE) are important 
metals used in green and low-carbon energy and 
information technologies and are widely used 
for geological petrogenetic studies. It is becom-
ing increasingly evident that the REE can be 
mobile in certain hydrothermal fluids and even 
form hydrothermal REE deposits. This study fo-
cuses on the formation of hydrothermal REE 
deposits rich in the REE-phosphates (monazite 
[(LREE,Y)PO4] and xenotime [(Y,HREE)PO4]). 
The main objective of the study was to char-
acterise the Olserum-Djupedal REE-phosphate 
mineralisation in SE Sweden. Based on this, the 
study evaluates different sources of REE and P 
in hydrothermal deposits and assesses how REE 
and P are transported in hydrothermal fluids. To 
characterise the Olserum-Djupedal REE miner-
alisation, this study combines fieldwork, petro-
graphical and textural analysis, major and trace 
element mineral chemistry of REE-bearing min-
erals and the main gangue phases, stable Cl iso-
topic and halogen analysis of fluorapatite, and 
fluid inclusion microthermometry and LA-ICP-
MS analysis.

The primary Olserum-Djupedal REE miner-
alisation comprises co-existing monazite-(Ce), 
xenotime-(Y) and fluorapatite. These occur main-
ly within veins dominated by biotite, magnetite, 
gedrite and quartz forming within metasedimen-
tary rocks in or close to the contact aureole of a 
peraluminous alkali feldspar granite. The veins 
are also hosted by the granite within the outer-
most part of this granite. Primary REE-miner-
als formed by granitic-derived NaCl-FeCl2-KCl-

CaCl2-HF-H2O fluids at high temperatures of 
~600 °C at c. 1.8 Ga. Subsequently, the ore as-
semblages were variably modified during cool-
ing by CaCl2-NaCl to NaCl-CaCl2 brines, and 
partly, CO2-rich fluids down to temperatures of 
~300 °C and to at least 1.75 Ga.

Hydrothermal REE deposits rich in REE-
phosphates are commonly associated with 
alkaline magmatism, particularly in silicate-
carbonatitic systems. This is because REE 
and P both exhibit strong chemical affinities 
with carbonatitic systems and the potential 
for mobilisation of REE and P are high. This 
study shows that REE deposits can also form 
by hydrothermal activity related to subalkaline 
magmatic rocks. Peraluminous granites exhibit 
the greatest potential to exsolve fluids carrying 
REE and P, which can lead to the formation 
of hydrothermal REE deposits rich in REE-
phosphates.

The general understanding on how hydro-
thermal REE-phosphate deposits form is that 
REE and P are transported in separate fluids 
and that the REE-phosphates form when these 
two fluids mix, or the REE-phosphates form 
when REE-bearing fluids interact with P-rich 
rocks. The lack of rocks pre-enriched in P in 
the Olserum-Djupedal district and the 
co-crystallisation of fluorapatite, monazite-(Ce) 
and xenotime-(Y), however, suggest that such 
scenarios not necessarily account for all occur-
rences of hydrothermal REE-phosphate depos-
its. As an alternative, REE and P can have been 
transported by the same fluid. This study dem-
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onstrates that the most probable conditions for 
co-transport of REE and P are at temperatures 
exceeding 400 °C and with increasing salinity 
of the fluids, conditions that agree well with that 
of the Olserum-Djupedal system. The most 
effective co-transport of REE and P would 
occur at acidic conditions by REE-Cl, REE-
F or REE-SO4 complexes. Yet, co-transport of 
REE and P may also be feasible at neutral to alka-
line conditions by REE-OH complexes. In low-

temperature hydrothermal systems, the interac-
tion of REE-bearing fluids with P-rich rocks or 
fluids is probably the most efficient mechanism 
for precipitating REE-phosphates. In high-tem-
perature magmatic-hydrothermal systems, REE 
and P probably share a common origin and were 
transported by the same fluid. In such systems, 
pH changes, cooling and the destabilisation of the 
chief REE transporting complexes jointly con-
tribute to the precipitation of REE-phosphates.
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Svensk sammanfattning

De sällsynta jordartsmetallerna (på engelska för-
kortat REE; Rare Earth Elements) är en grupp 
grundämnen som idag har en nyckelroll i mån-
ga högteknologiska applikationer inklusive s.k. 
grön och fossilfri energiteknik. Över tid har flera 
REE-mineraliseringar konstaterats ha bildats helt 
eller delvis av hydrotermala fluider (högtemper-
erade vattenlösningar). Hur sådana förekomster 
kan bildas är ett idag högaktuellt forskningsom-
råde. Den här studien är fokuserad på bildan-
det av hydrotermala REE-förekomster inne-
hållande REE-fosfaterna monazit [(LREE,Y)
PO4] och xenotim [(Y,HREE)PO4], två viktiga 
värdmineral för REE i jordskorpan. Studien in-
riktar sig främst på att karakterisera de nyup-
ptäckta REE-mineraliseringarna i området kring 
Olserum-Djupedal utanför Västervik i sydöstra 
Sverige. Fortsättningsvis undersöks ursprunget 
av REE och P i dessa förekomster, hur REE och 
P transporteras i de hydrotermala lösningarna och 
vilka processer som lett fram till bildandet av 
monazit och xenotim från dem.

Den primära mineraliseringen i Olserum-
Djupedal domineras av samexisterande monazit-
(Ce), xenotim-(Y) och REE-förande fluorapatit i 
gångar huvudsakligen bestående av biotit, mag-
netit, gedrit och kvarts. Gångarna förekommer 
i metasedimentära bergarter kring och i kontak-
tgården till en peraluminös alkalifältspatgranit. 
Gångarna uppträder även i utkanten av samma 
granit. Sammantaget visar resultaten att den 
primära REE-mineraliseringen har ett hydroter-
malt ursprung och bildades för omkring 1,8 mil-
jarder år sedan av högtempererade (ca. 600°C) 
fluider från den närliggande graniten. De primära 
associationerna omvandlades därefter under 
avtagande temperatur till ca. 300°C för åtmin-
stone 1,75 miljarder år sedan.

Hydrotermala mineraliseringar med REE-
fosfater förknippas vanligtvis med alkalina 
magmatiska bergarter och karbonatiter eftersom 
både REE och P i regel uppvisar en stark kemisk 
affinitet till sådana magmor. Den här studien 
visar att REE-fosfatförekomster även kan bildas 
av hydrotermal aktivitet relaterad till magmatiska 
bergarter av betydligt mindre alkalin karaktär. Av 
dessa system så har graniter med peraluminös 
karaktär störst potential att avge fluider anrikade 
på både REE and P.

Den generella uppfattningen om hur hydro-
termala REE-fosfatmineraliseringar har bildats 
är att REE och P transporterats i separata flu-
ider och att REE-fosfater fällts ut som en kon-
sekvens av att dessa fluider blandats, eller att 
REE-fosfater bildats som ett resultat av att 
REE-förande fluider reagerat med fosforrika 
bergarter. Avsaknaden av fosforrika bergarter i 
området kring Olserum-Djupedal och förekom-
sten av samexisterande fluorapatit, monazit-(Ce) 
och xenotim-(Y) visar dock att sådana scenarier 
inte nödvändigtvis förklarar alla förekomster av 
hydrotermala REE-fosfatmineraliseringar. Som 
ett alternativ kan REE och P ha transporterats 
i samma fluid. De mest troliga förhållanden för 
samtransport av REE och P är i fluider med tem-
peraturer som överstiger 400°C och som har höga 
salthalter. Vidare så gynnar låga pH samtrans-
port av REE och P då olika metallkomplex med 
REE, exempelvis REE-Cl, REE-F eller REE-
SO4, är väldigt stabila under dessa förhållanden. 
Samtransport av REE och P är också möjlig vid 
ett mer neutralt eller basiskt pH. I ett scenario 
som innefattar samtransport av REE och P så 
kan pH-förändringar, sänkta temperaturer och 
destabilisering av viktiga REE-metallkomplex i 
kombination bidra till utfällning av REE-fosfater. 
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Sammanfattningsvis kan man säga att i låg-
tempererade hydrotermala system har REE-
fosfaterna sannolikt inte bildats av fluider 
omfattande samtransport av REE och P, utan 
genom blandning av två olika fluider eller ge-
nom samverkan mellan REE-förande fluider och 

fosforrika bergarter. I många högtempererade 
magmatisk-hydrotermala system (> 400°C) 
så har förmodligen REE och P i REE-fosfaterna 
däremot haft ett gemensamt ursprung och trans-
porterats i samma fluid.
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1 Introduction

The scientific interest in the rare earth elements 
(REE) has always been strong. With the increas-
ing recognition that the REE can be mobile in 
certain hydrothermal fluids, recent geochemi-
cal modelling has highlighted how the REE be-
have in hydrothermal systems, i.e., how REE 
are transported in aqueous solutions and what 
controls the precipitation of REE (e.g., Migdisov 
and Williams-Jones, 2014; Migdisov et al., 2016; 
2018; Perry and Gysi, 2018). These models are 
based on experimental data, and it is thus im-
portant to test and compare them to how REE 
behave in natural hydrothermal systems. This 
study explores the key processes and system 
parameters that are important for the formation 
of hydrothermal REE deposits rich in the REE-
phosphates monazite [(LREE,Y)PO4] and xe-
notime [(Y,HREE)PO4]. This is done by study-
ing the Olserum-Djupedal REE mineralisation 
in south-eastern Sweden. This is an exceptional 
example of a hydrothermal REE system domi-
nated by monazite-(Ce), xenotime-(Y) and flu-
orapatite, thus providing a unique opportunity 
to study how REE and P behave in hydrother-
mal systems.

1.1 The REE; what are they?
The REE include the 15 lanthanides (Z = 57 to 71, 
La to Lu) and Y (Z = 39; Table 1). Scandium (Z 
= 21) is officially also included in this definition 
by the International Union of Pure and Applied 
Chemistry (IUPAC; e.g., Gupta and Krishnamur-
thy, 2005; Wall, 2014), although commonly ex-
cluded from the REE when discussing geologi-
cal processes. Contrary to what the term “rare 
earth” may imply, the REE are not particularly 
rare in nature. This term was given because of 
the extreme difficulties in chemically separating 
the elements from one and other and to signify 

the stable nature of the REE as oxides (termed 
“earths”) rather than metals (Wall, 2014). The 
challenge in separating the elements is reflected 
in the extended period it took to isolate them. The 
first REE to be isolated, or more accurately, the 
first “earth”, was “yttria” by the Finnish chemist 
J. Gadolin in 1794 from the mineral gadolinite 
[(REE,Y)2Fe2+Be2O2(SiO4)2] from the Ytterby 
pegmatite in Sweden (Gupta and Krishnamurthy, 
2005). From the Bastnäs mines in Sweden, it was 
realised in the same time period that another 
mineral (cerite; [Ce9(Mg,Fe)(SiO4)6(SiO3OH)
(OH)3]) was found to contain the REE, and in 
1804, “ceria” was separated. However, it was 
soon realised that “yttria” and “ceria” were mix-
tures of several REE. From “yttria” and “ceria”, 
all REE were finally discovered by 1907 (Gupta 
and Krishnamurthy, 2005; Wall, 2014). Prome-
thium was not verified until 1945 (Gupta and 
Krishnamurthy, 2005), because of its very short 
half-life; the most stable isotope 145Pm has a half-
life of 17.7 years (Audi et al., 2003).

The difficulties in separating the REE stem 
from the very similar physical and chemical 
properties exhibited by the individual REE 
(excluding Sc). This mainly originates from 
the similar electronic configuration of the REE 
(Table 1). The lanthanides are part of the f-block 
of elements together with the actinides. Starting 
from Ce, the inner transition 4f electron shells 
in the atoms are subsequently filled towards 
Lu. Lanthanum is technically not a lanthanide 
(the term means lanthanum-like) due to the 
lack of 4f electrons (Gupta and Krishnamurthy, 
2005). Because of the shape of the seven inner 
4f-orbitals, they exert only a weak shielding 
effect on the valence electrons from the 
positive nucleus charge. Thus, with increasing 
atomic number, the effective nuclear charge 
increases, and the valence electrons are more 
strongly pulled towards the nucleus. This result 
in a steady reduction in the atomic and ionic 



13

E
le

m
en

t
Sy

m
bo

l
Z

A
to

m
ic

 
w

ei
gh

t

E
le

ct
ro

n 
co

nfi
gu

ra
tio

n 
(a

to
m

ic
)

E
le

ct
ro

n 
co

nfi
gu

ra
tio

n 
(io

ni
c)

E
ff

ec
-

tiv
e 

io
ni

c 
ra

di
us

 (Å
)

U
pp

er
 c

ru
st

 
ab

un
da

nc
e 

(p
pm

)

C
1 

C
ho

nd
ri

te
 

ab
un

da
nc

e 
(p

pm
)

A
pp

lic
at

io
ns

/u
se

s

Sc
an

di
um

Sc
21

44
.9

6
[A

r]
 4

s2  3
d1

[A
r]

 (3
+)

0.
87

 (3
+)

14
5.

92
A

er
os

pa
ce

 m
at

er
ia

ls
, c

on
su

m
er

 e
le

ct
ro

ni
cs

, l
as

er
s, 

m
ag

ne
ts

, l
ig

ht
ni

ng
, 

sp
or

tin
g 

go
od

s

Y
ttr

iu
m

Y
39

88
.9

1
[K

r]
 5

s2  4
d1

[K
r]

 (3
+)

1.
07

5 
(3

+)
21

1.
57

C
er

am
ic

s, 
co

m
m

un
ic

at
io

n 
sy

st
em

s, 
LE

D
, l

ig
ht

ni
ng

, f
re

qu
en

cy
 m

et
er

s, 
fu

el
s a

dd
iti

ve
, j

et
 e

ng
in

e 
tu

rb
in

es
, t

el
ev

is
io

ns
, m

ic
ro

w
av

e 
co

m
m

un
ic

a-
tio

ns
, s

at
el

lit
es

, v
eh

ic
le

 o
xy

ge
n 

se
ns

or
s

La
nt

ha
nu

m
La

57
13

8.
91

[X
e]

 6
s2  5

d1
[X

e]
 4

f0  (
3+

)
1.

21
6 

(3
+)

31
0.

23
7

C
om

pa
ct

 fl
uo

re
sc

en
t l

am
ps

, c
at

al
ys

t i
n 

pe
tro

le
um

 re
fin

in
g,

 te
le

vi
si

on
, 

en
er

gy
 st

or
ag

e,
 fu

el
 c

el
ls

, n
ig

ht
 v

is
io

n 
in

st
ru

m
en

ts
, r

ec
ha

rg
ea

bl
e 

ba
tte

r-
ie

s
C

er
iu

m
C

e
58

14
0.

12
[X

e]
 6

s2  4
f1  5

d1
[X

e]
 4

f1  (
3+

),
[X

e]
 4

f0 
(4

+)
1.

19
6 

(3
+)

, 
0.

97
 (4

+)
63

0.
61

3
C

at
al

yt
ic

 c
on

ve
rte

rs
, c

at
al

ys
t i

n 
pe

tro
le

um
 re

fin
in

g,
 g

la
ss

, d
ie

se
l f

ue
l 

ad
di

tiv
e,

 p
ol

is
hi

ng
 a

ge
nt

, p
ol

lu
tio

n-
co

nt
ro

l s
ys

te
m

s
Pr

as
eo

dy
m

iu
m

Pr
59

14
0.

91
[X

e]
 6

s2
 4

f3
[X

e]
 4

f2 
(3

+)
1.

17
9 

(3
+)

7.
1

0.
09

28
A

irc
ra

ft 
en

gi
ne

 a
llo

y,
 a

irp
or

t s
ig

na
l l

en
se

s, 
ca

ta
ly

st
, c

er
am

ic
s, 

co
lo

ur
-

in
g 

pi
gm

en
t, 

el
ec

tri
c 

ve
hi

cl
es

, fi
br

e 
op

tic
 c

ab
le

s, 
lig

ht
er

 fl
in

t, 
m

ag
ne

ts
, 

w
in

d 
tu

rb
in

es
, p

ho
to

gr
ap

hi
c 

fil
te

rs
, w

el
de

r's
 g

la
ss

es

N
eo

dy
m

iu
m

N
d

60
14

4.
24

[X
e]

 6
s2

 4
f4

[X
e]

 4
f3 

(3
+)

1.
16

3 
(3

+)
27

0.
45

7
A

nt
i-l

oc
k 

br
ak

es
, a

ir 
ba

gs
, a

nt
i-g

la
re

 g
la

ss
, c

el
l p

ho
ne

s, 
co

m
pu

te
rs

, 
el

ec
tri

c 
ve

hi
cl

es
, l

as
er

s, 
M

R
I m

ac
hi

ne
s, 

m
ag

ne
ts

, w
in

d 
tu

rb
in

es
Pr

om
et

hi
um

Pm
61

14
4.

91
[X

e]
 6

s2
 4

f5
[X

e]
 4

f4 
(3

+)
B

et
a 

so
ur

ce
 fo

r t
hi

ck
ne

ss
 g

as
es

, l
as

er
s f

or
 su

bm
ar

in
es

, n
uc

le
ar

-p
ow

-
er

ed
 b

at
te

ry
Sa

m
ar

iu
m

Sm
62

15
0.

36
[X

e]
 6

s2
 4

f6
[X

e]
 4

f5 
(3

+)
1.

13
2 

(3
+)

4.
7

0.
14

8
A

irc
ra

ft 
el

ec
tri

c 
sy

st
em

s, 
el

ec
tro

ni
c 

co
un

te
r m

ea
su

re
 e

qu
ip

m
en

t, 
el

ec
tri

c 
ve

hi
cl

es
, fl

ig
ht

 c
on

tro
l s

ur
fa

ce
s, 

m
is

si
le

 a
nd

 ra
da

r s
ys

te
m

s, 
op

tic
al

 g
la

ss
, p

er
m

an
en

t m
ag

ne
ts

, p
re

ci
si

on
 g

ui
de

d 
m

un
iti

on
s, 

st
ea

lth
 

te
ch

no
lo

gy
, w

in
d 

tu
rb

in
es

Eu
ro

pi
um

Eu
63

15
1.

96
[X

e]
 6

s2
 4

f7
[X

e]
 4

f7 
(2

+)
,

[X
e]

 4
f6 

(3
+)

1.
30

0 
(2

+)
, 

1.
12

 (3
+)

1
0.

05
63

C
om

pa
ct

 fl
uo

re
sc

en
t l

am
ps

, l
as

er
s, 

LE
D

, t
el

ev
is

io
n 

sc
re

en
s (

C
RT

, 
LC

D
, P

la
sm

a)
, t

ag
 c

om
pl

ex
 fo

r t
he

 m
ed

ic
al

 fi
el

d
G

ad
ol

in
iu

m
G

d
64

15
7.

25
[X

e]
 6

s2
 4

f7 
5d

1
[X

e]
 4

f7 
(3

+)
1.

10
7 

(3
+)

4
0.

19
9

C
om

pu
te

r d
at

a 
te

ch
no

lo
gy

, m
ag

ne
to

-to
pi

c 
re

co
rd

in
g 

te
ch

no
lo

gy
, 

m
ic

ro
w

av
e 

ap
pl

ic
at

io
ns

, M
R

I m
ac

hi
ne

s, 
po

w
er

 p
la

nt
 ra

di
at

io
n 

le
ak

s 
de

te
ct

or
Te

rb
iu

m
Tb

65
15

8.
93

[X
e]

 6
s2

 4
f9

[X
e]

 4
f8 

(3
+)

1.
09

5 
(3

+)
0.

7
0.

03
61

C
om

pa
ct

 fl
uo

re
sc

en
t l

am
ps

, e
le

ct
ric

 v
eh

ic
le

s, 
fu

el
 c

el
ls

, t
el

ev
is

io
ns

, 
op

tic
 d

at
a 

re
co

rd
in

g,
 p

er
m

an
en

t m
ag

ne
ts

, w
in

d 
tu

rb
in

es

D
ys

pr
os

iu
m

D
y

66
16

2.
5

[X
e]

 6
s2

 4
f10

[X
e]

 4
f9 

(3
+)

1.
08

3 
(3

+)
3.

9
0.

24
6

El
ec

tri
c 

ve
hi

cl
es

, h
om

e 
el

ec
tro

ni
cs

, l
as

er
s, 

pe
rm

an
en

t m
ag

ne
ts

, w
in

d 
tu

rb
in

es
H

ol
m

iu
m

H
o

67
16

4.
93

[X
e]

 6
s2  4

f11
[X

e]
 4

f10
 (3

+)
1.

07
2 

(3
+)

0.
83

0.
05

46
M

ic
ro

w
av

e 
eq

ui
pm

en
t, 

co
lo

ur
 g

la
ss

Er
bi

um
Er

68
16

7.
26

[X
e]

 6
s2  4

f12
[X

e]
 4

f11
 (3

+)
1.

06
2 

(3
+)

2.
3

0.
16

C
ol

ou
r g

la
ss

, fi
br

e 
op

tic
 d

at
a 

tra
ns

m
is

si
on

, l
as

er
s

Th
ul

iu
m

Tm
69

16
8.

93
[X

e]
 6

s2
 4

f13
[X

e]
 4

f12
 (3

+)
1.

05
2 

(3
+)

0.
3

0.
02

47
X

-r
ay

 p
ho

sp
ho

rs

Y
tte

rb
iu

m
Y

b
70

17
3.

04
[X

e]
 6

s2  4
f14

[X
e]

 4
f13

 (3
+)

1.
04

2 
(3

+)
1.

96
0.

16
1

Im
pr

ov
in

g 
st

ai
nl

es
s s

te
el

 p
ro

pe
rti

es
, s

tre
ss

 g
ag

es

Lu
te

tiu
m

Lu
71

17
4.

97
[X

e]
 6

s2  4
f14

 5
d1

[X
e]

 4
f14

 (3
+)

1.
03

2 
(3

+)
0.

31
0.

02
46

C
at

al
ys

ts
, p

os
itr

on
 e

m
is

si
on

 to
m

og
ra

ph
y 

(P
ET

) d
et

ec
to

rs

Ta
bl

e 
1.

 L
ist

 o
f t

he
 R

EE
, s

om
e 

pr
op

er
tie

s 
an

d 
th

ei
r a

pp
lic

at
io

ns
. T

ab
le

 c
om

pi
le

d 
fro

m
 S

ha
nn

on
 (1

97
6)

, M
cD

on
ou

gh
 a

nd
 S

un
 (1

99
5)

, R
ud

ni
ck

 a
nd

 G
ao

 (2
00

3)
, G

up
ta

 a
nd

 K
ris

hn
am

ur
th

y 
(2

00
5)

, a
nd

 N
av

ar
ro

 a
nd

 Z
ha

o 
(2

01
4)

.



14

DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A

size, which is termed the lanthanide contraction 
(Gupta and Krishnamurthy, 2005; Wall, 2014). 
The magnitude of this effect becomes stronger 
for the heavy rare earth elements (HREE), thus 
approaching similar atomic and ionic sizes as Y. 
This readily explains the common association 
of Y with the HREE, and why Y usually is 
placed between Dy and Ho in normalised REE 
distribution patterns.

The 4f-electrons also govern the magnetic 
behaviour of the REE. Excluding REE lacking 
these electrons (Sc, Y, and La) and those that 
have filled 4f-shells (Yb and Lu), the REE are 
strongly paramagnetic and becomes antiferro-
magnetic or ferromagnetic at lower temperatures. 
Gadolinium(III) exhibits the highest magnetic 
moment because it can have 7 unpaired electrons 
in the f-shell, and is therefore used in magnetic 
resonance imaging (MRI) techniques. Samari-
um in alloys with cobalt (SmCo5) create strong 
magnets with high coercivity (a measure of a 
material’s resistance to becoming demagnetised). 
However, Nd in alloy with Fe and B (Nd2Fe14B) 
create even stronger magnets. Because of Nd 
being the 3rd most abundant REE and Fe being 
readily available (compared to Co), these strong 
Nd-magnets are now widely used in a variety of 
applications, such as in electric motors for the 
electric car industry and in generators in wind 
turbines, or in applications requiring small but 
strong magnets such as in hard drives and smart-
phone speakers (Table 1; Gupta and Krishnamur-
thy, 2005). Dysprosium is also used as a key dop-
ant in the Nd magnets to increase the coercivity 
and the high-temperature performance.

The REE mostly occur in nature in a trivalent 
state but can also occur as divalent or tetravalent 
ions because of the strive to attain empty, half-
filled or filled f-shell configurations. For instance, 
Ce may occur as (IV) because it can obtain an 
empty f-shell, whereas Eu commonly occurs as 
(II) as it can attain a half-filled f-shell configura-

tion (Table 1). The trivalent ions, excluding Ce3+ 

and Yb3+, display very sharp absorption-emission 
bands in the ultraviolet and visible light spectrum 
resulting from f-f-electron transitions (Gupta and 
Krishnamurthy, 2005). This has been utilised in 
several applications, for example, in colouring 
or decolouring glass or ceramics. More technical 
applications include the REE as doping agents 
or activators in crystals (for example Nd-doped 
Yl-Al-garnet, Nd:YAG) so they can be used as 
solid-state lasers. These are widely used for cut-
ting procedures in medical applications, or cut-
ting, welding and marking metals, or as the laser 
source in laser-ablation techniques. The REE are 
also commonly used as phosphors, i.e., materi-
als that exhibit luminescence, for video display 
screens (CRT, plasma, LCD), fluorescent lights 
and LED, amongst others.

The REE are classified as critical metals 
(particularly Nd, Eu, Dy, Tb, and Y) for mod-
ern-day industrial and green-energy applications 
(Goodenough et al., 2016; Paulick and Mach-
acek, 2017, and references therein). The global 
production of REE doubled from 1994 (65000 
t) to 2010 (130000 t), while today’s numbers are 
around 120000 t (Weng et al., 2015; Paulick and 
Machacek, 2017). China has been the dominat-
ing supplier following the loss of other actors 
from the market in the late 1990s (e.g., USA 
and Australia amongst others), and today, at least 
85% of the REE are supplied by China, mainly 
from the giant Bayan Obo deposit. Following 
the global REE price peak in 2011 as a result 
of export restrictions from China and domestic 
ambitions, the price of REE has dropped back 
to levels prior to the boom, and other producers 
than China have again entered the market, like 
USA (Mountain Pass), Australia (Mt. Weld) and 
Russia (Lovozero). From the exploration boom, 
the defined REE mineral resources outside of 
China more than doubled from 40 Mt (2011) to 
98 Mt (2016; Paulick and Machacek, 2017). The 
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global total rare earth oxide (TREO) resources 
are estimated to about 165 Mt, which would 
be enough to cover hundreds of years of the de-
mand of REE at present yearly consumption rates 
(120000 t; Paulick and Machacek, 2017). How-
ever, the demand for the most critical REE is 
estimated to increase at a rate of approximately 
5-10% per year, albeit with some caveats (Hatch, 

2012; Massari and Ruberti, 2013), because of 
the expanding use of REE in current and future 
technologies (Wall, 2014). There are also few 
substitutes for some of the REE (Wall, 2014). 
The vulnerability of China being the major actor 
in the market is a strong incentive to study how 
the REE behave in geological systems.

Fig. 1.  Crustal abundance of chemical elements as a function of atomic number. Modified from Haxel et al. (2002).
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1.2 Hydrothermal REE deposits 
The REE are lithophile elements, i.e., they are 
enriched in the crust (Castor and Hendrick, 
2006). The REE have a similar crustal abundance 
as Cu and Zn down to that of Bi and are more 
abundant than the precious metals Au and Pt (Fig. 
1; Table 1). Light rare earth elements (LREE; 
from La to Sm) are more abundant than the heavy 
rare earth elements (HREE; from Eu to Lu). REE 
with even atomic numbers are more abundant 

than those with odd atomic numbers because of 
the Oddo Harkins effect (North, 2008).

The REE are typically disseminated in the 
Earth’s crust and rarely enriched in high concen-
trations. When they do occur in higher concentra-
tions, they make up a REE mineralisation. If the 
REE concentrations are high enough so that REE 
extraction is economically feasible, they consti-
tute a REE deposit. The enrichment of REE to 
form REE deposits can occur through primary 
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processes such as from magmatism or hydrother-
mal (re-)mobilisation, or by secondary processes 
such as weathering and by gravity separation dur-
ing sedimentary processes. Hydrothermal REE 
deposits are those that have formed dominantly 
by hydrothermal processes; i.e., REE-minerals 
precipitated from hot aqueous solutions (hydro-
thermal fluids). Most of the hydrothermal REE 
deposits form in association with magmatism 
of different chemical affinity, from alkaline to 
peralkaline granites and syenites (e.g., Strange 
Lake, Canada; Gysi and Williams-Jones, 2013; 
Vasyukova et al.; 2016), to carbonatites (e.g., 
Lofdal, Namibia; Wall et al., 2008; Bodeving 
et al., 2017), to peralkaline agpaitic rocks (e.g., 
Nechalacho, Canada; Möller and Williams-
Jones, 2016, 2017), and seldom with subalkaline 
granitic or granitoid rocks (e.g., Kutessay II, Kyr-
gyzstan, Djenchuraeva et al., 2008). Iron-oxide 
copper-gold (IOCG) deposits, although likely 
associated with magmatism as well, are mostly 
mined for Cu or Au but can sometimes contain 
high concentrations of REE (e.g., Olympic Dam, 
Australia; Schmandt et al., 2017).

Excluding REE deposits associated with 
peralkaline systems, in which REE mostly are 
hosted in REE silicates or oxides (e.g., gado-
linite, fergusonite [(REE,Y)(Nb,Ti)O4] and alla-
nite [(Ca,REE,Y)2(Al,Fe)3(SiO4)Si2O7)O(OH)]) 
and primary magmatic zircon- and titanosili-
cates (e.g., eudialyte [Na15Ca6Fe3Zr3Si(Si25O73)
(O,OH,H2O)3(Cl,OH)2]), common REE-bear-
ing minerals in most hydrothermal systems are 
the REE-phosphates monazite [(LREE,Y)PO4] 
and xenotime [(Y,HREE)PO4], and the REE-
fluorocarbonates, chiefly bastnäsite [(REE,Y)
CO3F]. The REE-phosphates can be the princi-
pal REE-bearing minerals in deposits associated 
with carbonatites (e.g., Ashram, Canada, Mitch-
ell and Smith, 2017; Fen, Norway, Andersen, 
1986; Marien et al., 2018; Lofdal, Namibia, 
Williams-Jones et al., 2015), in granitic-hydro-

thermal deposits (Kutessey II, Kyrgyzstan; Djen-
churaeva et al., 2008), in IOCG deposits (e.g., 
Lala, China; Chen and Zhou, 2015), and in vein-
type REE-Th deposits in USA (Diamond Creek 
and Lemhi Pass; Long et al., 2010). In many of 
these deposits, monazite-(Ce) or monazite-(Nd) 
is the dominating REE-phosphate. Importantly, 
a rather newly recognised group with xenotime-
(Y) as the principal mineral is unconformity-
related REE deposits, which show a similar 
geological environment and formation condi-
tions as unconformity-related uranium deposits 
(e.g., Maw Zone in the Athabasca Basin, Can-
ada; Rabiei et al., 2017; Wolverine, Killi Killi 
Hills and John Gault deposits, Australia; Vallini 
et al., 2007; Richter et al., 2018; Nazari-Deh-
kordi et al., 2018).

1.3 Hydrothermal transport 
of REE and P
Prerequisites for the formation of hydrothermal 
REE deposits rich in the REE-phosphates are: 1) 
significant transport of REE and P in hydrother-
mal fluids, either together or in separate fluids and 
2) efficient precipitation mechanisms to remove 
the REE, and in part, P, from the fluid(s). Trans-
port of REE in a fluid requires the formation of 
stable metal complexes with available ligands 
(anion species) in the fluid at the specific con-
ditions of the hydrothermal system to keep the 
REE in solution. A variety of ligands occur in 
natural systems, such as Cl-, F-, SO4

2-, OH-, CO3
2-, 

and PO4
3-. As a first approximation, based on the 

HSAB (Pearson’s hard/soft acid/base) principle, 
REE are hard cations (high charge and small 
ionic radius) and should form stable complexes 
with hard ligands such OH-, F-, CO3

2-, and SO4
2-

, and less stable complexes with the borderline 
ligand Cl- (Williams-Jones and Migdisov, 2014). 
Indeed, experimental studies have demonstrated 
that the dominant REE-F complexes are two to 
three orders more stable than the dominant REE-
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Cl complexes (Migdisov et al., 2009). However, 
the ability to form stable complexes is not the 
only important factor in controlling the transport 
of REE. This depends strongly on the activity 
or the concentration of the specific ligand in the 
system, and if the specific ligand is bounded or 
not to other aqueous species present in the fluid. 
This is in turn strongly dependent on the solu-
bility of the REE mineral containing this spe-
cific ligand because the mineral will act as a 
buffer of the REE concentrations in the fluid. A 
more insoluble REE-mineral can buffer the REE 
to rather low concentrations. The availabilities 
of ligands also depend on pH and temperature. 
Hydrochloric acid (HCl) is a strong acid and at 
temperatures up to 300-400 °C, HCl is largely 
dissociated and occurs as the free ions H+ and 
Cl- at a pH higher than 2. At even higher tem-
peratures, HCl can even be largely associated 
at acidic conditions. However, hydrofluoric acid 
(HF) is a weaker acid and depending on temper-
ature, only at near-neutral and alkaline pH does 
HF occur as the free dissociated ions H+ and F- 
(Migdisov and Williams-Jones, 2014). Thus, at 
near-neutral to alkaline conditions, more F ions 
are available to bind with the REE, but this also 
coincides with a reduction of the solubility of the 
REE-fluoride mineral and the REE concentration 
in the fluid drops. However, the involvement of 
stable REE-OH complexes at higher pH may 
oppose the buffering effect the REE-fluorides 
have on the REE concentrations, and the fluid 
may retain high concentrations of REE even at 
higher pH conditions.

The solvent, H2O, is also important because, 
with increasing temperature and decreasing pres-
sure, the degree of hydrogen bonding decreases 
(dielectrical constant decreases). This explains 
why metals occur dominantly as simple cations 
in solutions at ambient conditions whereas, at 
elevated temperatures, metals form complexes 
because of strong ion-pairing (stronger elec-

trostatic attraction between charged ions). This 
also means that Cl- forms stable ion-pars with 
Na+ and K+, cations common in hydrothermal 
fluids, at elevated temperatures, thus decreasing 
the availability of Cl- ions. However, NaCl° and 
KCl° complexes are relatively weak compared 
to the REE complexes at higher temperatures, 
thus compensating for the reduced Cl activity 
and promoting REE complexing with increasing 
temperature (Williams-Jones and Migdisov, 2014).

The most common ligand in hydrothermal 
fluids is Cl-. Experimental studies have shown 
that the mono- and dichloride species, REECl2+ 
and REECl2

+, are the dominating REE-Cl species 
up to 300 °C. The overall stabilities of the REE-
Cl complexes increase with temperature and the 
complexes with LREE are more stable than with 
HREE, an effect that is accentuated at higher 
temperatures (Migdisov et al., 2009; 2016).

REE complexes involving F- were early be-
lieved to be the major REE-transporting agent 
in hydrothermal fluids because REE form very 
stable complexes with F compared to Cl. This 
was mainly based on early theoretical predic-
tions, which showed an increased mobility of the 
REE along the lanthanide series (increasing sta-
bilities of REE-F complexes; Wood, 1990; Haas 
et al., 1995). This increase in stabilities of REE-F 
complexes follows the HSAB principle because 
the data were extrapolated from ambient condi-
tions. Because F- is a hard ligand, and the REE 
become increasingly harder along the lanthanide 
series (ionic radius decreases), the stabilities of 
REE-F complexes should increase with increas-
ing atomic number, which is the case at ambi-
ent temperatures (Williams-Jones et al., 2012). 
However, at elevated temperatures, the decreased 
hydrogen-bonding ability of H2O enables elec-
tron transfer and “softening” of ions. Thus, F- 
is much softer at elevated temperatures than at 
ambient conditions, which will result in that the 
increase in REE-F complex stabilities along the 
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series should be weaker or even reversed. This 
also explains why HREE-Cl relative to LREE-
Cl complexes are much weaker at elevated tem-
peratures than at ambient conditions (because 
Cl- is much softer; Williams-Jones et al., 2012). 

Experimental studies show that the stabilities 
of the REE-F complexes mostly decrease along 
the series at elevated temperatures (> 150 °C) 
and that they are overall less stable than predicted 
theoretically, which conforms to the above theo-
ry of “softening” of ions (Migdisov et al., 2009; 
2016). At ambient temperatures and up to 100 
°C, REEF2+ and REEF2

+ are the dominant spe-
cies. Above 100 °C, REEF2+ is the only dominant 
species, and its stability increases with tempera-
ture (Migdisov et al., 2009). Experimental work 
on Y shows that at low temperature (100 °C), 
YF2

+ dominates, whereas Y3+ and YF2+ are the 
dominant species at low and high F activity at 
temperatures up to 250 °C (Loges et al., 2013).

Phosphorous in aqueous solutions mostly 
occurs as phosphoric acid (H3PO4

°) and the 
dissociated acids H2PO4

-, HPO4
2- or PO4

3-, or as 
polyphosphoric acids and their dissociated ions 
(e.g., H4P2O7

° and H3P2O7
-) depending on tem-

perature, pH and activity of P (Pourtier et al., 
2010). The stabilities of phosphate complexes 
with the REE have not been studied at hydro-
thermal conditions. Because H2PO4

-, HPO4
2- and 

PO4
3- are hard ligands, REE form stable com-

plexes (REEH2PO4
2+, REEHPO4

+, REEPO4) 
with them at ambient temperatures (Haas et al., 
1995; Williams-Jones and Migdisov, 2014). In 
contrast to REE complexation with H2PO4

-, com-
plexation of REE with HPO4

2- and PO4
3- should 

also only occur at high pH conditions because 
H3PO4 is a weak acid. Thus, at low pH, only 
strongly protonated forms of the ligands occur 
(H3PO4

° and H2PO4
-). A limiting factor for sig-

nificant REE transport by phosphate complexing 
is the low solubilities of monazite and xenotime. 
The solubilities of monazite and xenotime are ret-

rograde up to 300 °C (solubility decreases with 
increasing temperature; Poitrasson et al., 2004; 
Cetiner et al., 2005; Gysi et al., 2015; 2018). 
However, another recent study suggests a pro-
grade solubility (increases with temperature) of 
monazite from 300 °C up to 800 °C (Pourtier 
et al., 2010), which may indicate that REE-P 
complexing may be important at higher temper-
atures, or that phosphate is co-transported with 
REE in the fluid and the REE are complexed 
with other ligands.

Other potential ligands in hydrothermal 
fluids include SO4

2-, OH-, CO3
2-, and HCO3

-. The 
REE-sulphate complexes are more stable than 
REE-Cl complexes, but not as stable as REE-F 
complexes. The dominating species are REE-
SO4

+ and REE(SO4)
2-, and experimental studies 

show that they become increasingly stable at in-
creasing temperatures (Migdisov and Williams-
Jones, 2008). The hydroxyl group (OH-) forms 
stable complexes with the REE at high pH con-
ditions. The principal species are REE(OH)3

°, 
REE(OH)2+, and REE(OH)2

+. At elevated tem-
peratures (290 °C), all three species are impor-
tant, in addition to the simple hydrated REE3+ 

ion, which dominates at low pH. There is also 
an increase in stability with temperature (Wood 
et al., 2002). The carbonate (CO3

2-) or bicarbon-
ate (HCO3

-) ligands form stable complexes with 
the REE (REECO3

+ and REEHCO3
2+) consistent 

with the HSAB principle. No experimental stud-
ies have been conducted up to this point, and the 
data at hydrothermal conditions originates from 
the theoretical predictions (Wood, 1990; Haas et 
al., 1995). These show that the stabilities increase 
with temperature and that the REECO3

+ species 
is overall the stronger complex. In organic-rich 
fluids, carboxylates such as acetate (CH3COO-) 
and propanoate (CH3CH2COO-) may be impor-
tant REE transporting ligands (Lecumberri-San-
chez et al., 2018).
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1.4 Objectives of the study
The main objectives of this study were:

1) By using a multi-analytical approach, 
comprehensively characterise the hydrothermal 
REE mineralisation in the Olserum-Djupedal 
district. This included detailed studies on the 
mineralogy, paragenetic evolution and mineral-
chemistry of the REE-bearing minerals and the 
gangue minerals (Papers I, II, and III), charac-
terisation of the style of mineralisation and field 
relationships (Paper II), and identification of the 
source and evolution of the hydrothermal fluids 
(Papers II and III).

2) Based on the findings from the papers, 
evaluate different sources of REE and P in 
hydrothermal REE-phosphate deposits and 
discuss how REE and P are transported in 
fluids, and compare this to models of hydro-
thermal transport of REE (and P) based on 
experimental studies. Ultimately, the aim is to 
define conditions that are imperative for the for-
mation of hydrothermal deposits rich in REE-
phosphates.

2 Geological background

2.1 Regional Geology
The studied Olserum-Djupedal REE-phosphate 
mineralisation is located in the Olserum-Djupedal 
district, which comprises three main mineralised 
areas; Olserum, Bersummen, and Djupedal. 
The Olserum-Djupedal district is situated NW 
of the city of Gamleby in the Västervik region, 
close to the border between the Palaeoprotero-
zoic Västervik metasedimentary Formation and 
the Transscandinavian Igneous Belt (TIB) and 
just south of the Svecofennian domain (Fig. 
2; Gavelin, 1984; Gaál and Gorbatchev, 1987, 
Gorbatchev, 2004). The Svecofennian domain 

formed by an accretionary-type orogeny at 1.92-
1.77 Ga. This unit is bordered in the west and 
south by the large, NNW-SSE trending plutonic 
and subvolcanic TIB complex, which formed 
along an active continental margin between 1.85 
and 1.65 Ga (Gorbatchev, 2004).

The Västervik Formation consists of meta-
supracrustal rocks, mainly quartzites, and meta-
arenites and minor meta-argillites and metavol-
canic rocks, deposited between c. 1.88 and 1.85 
Ga within an extensional tectonic regime (Gav-
elin, 1984; Beunk and Page, 2001; Bergström 
et al., 2002; Sultan et al., 2005). Subsequently, 
magmatic rocks of various geochemical and tec-
tonic affinity intruded the metasupracrustal unit. 
These have traditionally been referred to as con-
sisting of an older, c. 1.85 Ga deformed augen 
gneiss and younger, c. 1.81-1.77 Ga granitoids 
of the TIB-1 suite (Gavelin 1984; Kresten, 1986; 
Åhäll and Larsson, 2000; Andersson and Wik-
ström 2004). Nolte et al., (2011) and Kleinhanns 
et al. (2015) recently proposed a new tectono-
magmatic model for the Västervik region based 
on new zircon U-Pb age data, and new petro-
graphical and geochemical classification of the 
granitoids. According to this model, deposition of 
the Västervik sediments first occurred in a back-
arc environment between 1.88-1.85 Ga followed 
by ferroan magmatism at around 1.85 Ga. Dur-
ing 1.85-1.81 Ga, a compressional regime was 
prevalent featuring the intrusion of Cordilleran-
type (or magnesian) granitoids. These comprise 
most of the magmatic rocks in the region. This 
stage was followed by an extensional or trans-
tensional regime with the intrusion of moderately 
shallow, mostly peraluminous ferroan anatectic 
granites at or slightly after 1.8 Ga. A series of 
syn- and anticlines trending NW and SE com-
prise the main structural fabrics in the Västervik 
Formation (Gavelin, 1984), and are presumably 
pre- to syn-kinematic with the emplacement of 
the youngest anatectic granites (Westra et al., 
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1969; Elbers, 1971).
The Västervik region hosts a variety of Fe ± 

U ± REE mineralisations (Uytenbogaardt, 1960; 
Welin, 1966a, 1966b; Hoeve, 1974, 1978), but is 
mostly known for the occurrence of various types 
of Cu ± Mo ± Co ± Fe mineralisations, e.g., the 
Gladhammar deposit (Tegengren, 1924; Uyten-
bogaardt, 1960; Sundblad, 2003; Billström et al., 
2004). Three types of U ± REE mineralisations 
have been recognised (Uytenbogaardt, 1960): 1) 
quartzite-hosted heavy mineral-rich palaeobeds 

(palaeoplacers) containing uraninite and thucho-
lite, 2) magnetite ore with U ± REE minerals; and 
3) U ± REE minerals in pegmatites and aplites. 
Previous interpretations of the three types of U ± 
REE mineralisations include: 1) magmatic origin 
(Uytenbogaardt, 1960); 2) palaeoplacer origin 
remobilised during the intrusion of the younger 
anatectic granites (Welin, 1966a, 1966b); or 3) 
hydrothermal origin linked with Na ± Ca altera-
tion and formation of distinct quartz-plagioclase 
rocks (Hoeve, 1974, 1978).

Fig. 2. Geological map of the Västervik region with black stars indicating the location of the exposed REE mineralised 
areas. Open stars represent locations of supplementary samples. The lower-left inset map portrays the regional 
geology of southern Sweden, redrawn from Andersen et al. (2009). LLDZ: Loftahammar-Linköping Deformation Zone 
(Beunk and Page, 2001); TIB: Transscandinavian Igneous Belt (Gorbatschev, 2004); OJB: Oskarshamn-Jönköping 
Belt (Mansfeld et al., 2005).
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2.2 Geology of the Olserum-
Djupedal district
Detailed geological mapping in the Olserum-
Djupedal district prior to this study is lacking. 
This section is thus based on field mapping con-
ducted during this study (Paper II). The domi-
nant rock type in the district is a ferroan, per-
aluminous, calc-alkalic to alkali-calcic, alkali-
feldspar TIB granite with an age about 1.8 Ga 
(Fig. 3). Metasedimentary REE-bearing rocks 
(Olserum-Djupedal metasediments) are exposed 
in an ESE-WNW trending zone in the contact 
zone between the alkali-feldspar granite and 

the rocks of the Västervik Formation. Similar 
metasedimentary REE-bearing rocks are also ex-
posed in the Bersummen area and as larger mig-
matisised REE-bearing metasedimentary bodies 
farther NW in the Djupedal area. The metasedi-
mentary rocks are non-foliated to gneissic whose 
fabric is trending roughly NW to SE. Feldspar-
porphyritic TIB intrusions occupy the area to 
the north of the Olserum-Djupedal REE min-
eralisation (Fig. 3). Characteristic white quartz-
plagioclase rocks formed by Na ± Ca metasoma-
tism, similar to those described by Hoeve (1974, 
1978), are widespread in an area north of the 
Djupedal area (Fig. 3).
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Fig. 3.  A simplified geological map of the Olserum-Djupedal district. Modified after Paper II.
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3 Analytical methods

3.1 Sampling and field work
Samples for the study (papers I, II and III) were 
all collected during 2015 and 2016. Samples 
were both obtained from drill cores drilled by 
Tasman Metals Ltd. and stored at the archives 
of the Geological Survey of Sweden in Malå 
and from surface sampling during field mapping 
in 2015 and 2016. Sampling was targeted to 
obtain a representative suite of samples of the 
REE mineralisations and the host rocks. Field 
mapping was conducted to get an understanding 
of the style and timing of the REE mineralisa-
tion in the Olserum-Djupedal district. Additional 
sampling and field mapping from other occur-
rences in the Västervik region (Klockartorpet, 
Gränsö, and Berg; Fig. 2) were conducted for 
regional comparison.

3.2 Petrographical and 
textural analysis
Petrographical and textural analysis were con-
ducted using a standard petrographical micro-
scope. More detailed textural analysis and pre-
liminary identification of minerals were per-
formed during the electron microprobe sessions 
using back-scattered electron (BSE) imaging and 
energy-dispersive spectrometry analysis. This 
was performed on a JEOL JXA-8600 Super-
probe at the University of Helsinki.

A CITL CL8200 Mk5-2 cold-cathode cath-
odoluminescence system coupled to a Leica 
DM2700 polarisation microscope and equipped 
with a Peltier-cooled Leica DFC450C high-
resolution digital camera at the University 
of Helsinki was used for cathodoluminescence 
(CL) imaging of feldspars (Paper II) and apatite 
(Paper III). The beam current and voltage used 
were 0.25 mA and 7.0 kV, respectively.

3.3 Major and trace element 
mineral chemistry
Major and trace element analysis on REE-
bearing minerals and gangue minerals were 
performed by electron-probe micro-analysis 
(EPMA) and laser-ablation inductively cou-
pled plasma spectrometry (LA-ICP-MS) anal-
ysis at the University of Helsinki. EPMA was 
conducted on monazite-(Ce), xenotime-(Y), al-
lanite-(Ce)–ferriallanite-(Ce), bastnäsite-(Ce) 
and synchysite-(Ce) (Paper I), on biotite, mag-
netite, amphibole (gedrite and anthophyllite), 
tourmaline (schorl-dravite and uvite), musco-
vite and chlorite (Paper II), and on fluorapatite 
(Paper III). All measurements were performed 
by wavelength-dispersive spectrometry on a 
JEOL JXA-8600 Superprobe integrated with 
the SAMx hardware and XMAs/IDFix/Diss5 
analytical and imaging software package on 
carbon-coated thin or thick sections.

For the REE-bearing minerals, X-Ray lines 
were selected to minimise the interference 
between the different REE following the 
guidelines of Pyle et al. (2002). Beam current 
and accelerating voltage used were optimised 
and set to 25 nA and 20 kV, respectively. Anal-
yses were performed with a defocused beam of 
~7 μm diameter for monazite-(Ce) and xenotime-
(Y), and a focused beam for allanite-(Ce)–fer-
riallanite-(Ce), bastnäsite-(Ce) and synchysite-
(Ce). For biotite, magnetite, amphibole, tourma-
line, muscovite and chlorite, all analyses were 
performed using a beam current of 15 nA, 
an accelerating voltage of 15 kV and a fo-
cused beam. For fluorapatite, the settings were 
optimised to minimise the F and Cl diffusion in 
apatite due to electron beam exposure (Stormer 
et al., 1993; Stock et al., 2015). Final conditions 
used were a defocused beam of ~15 μm, a beam 
current of 15 nA, and an accelerating voltage of 
15 kV. Complete analytical details (X-Ray lines, 
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standards, counting times, and analyser crystals) 
can be found in Papers (I), (II) and (III), and their 
respective supplementary information.

LA-ICP-MS trace element analysis was per-
formed with a Coherent GeoLas MV 193 nm 
laser-ablation system coupled to an Agilent 
7900s ICP mass spectrometer. Trace element 
concentrations were measured in monazite-
(Ce), xenotime-(Y), allanite-(Ce)–ferriallanite-
(Ce) and bastnäsite-(Ce) (Paper I), in biotite and 
magnetite (Paper II), and in fluorapatite (Paper 
III). Flow rates were set to 15 L/min for Ar plas-
ma gas, 1.0 L/min for He carrier gas, and 0.85 L/
min for Ar auxiliary gas for during all sessions. 
Replicate measurements of the reference mate-
rials NIST SRM 610 and USGS GSE-1G were 
conducted to bracket the sample analyses and to 
correct for instrumental drift. NIST SRM 610 
was selected as an external standard for mon-
azite-(Ce), xenotime-(Y), bastnäsite-(Ce) and 
fluorapatite, whereas the GSE-1G standard was 
selected for biotite, magnetite, and allanite-(Ce)–
ferriallanite-(Ce). For quantification of element 
concentrations, 27Al (biotite and allanite-(Ce)–
ferriallanite-(Ce)), 43Ca (fluorapatite), 57Fe (mag-
netite), 89Y (xenotime-(Y)) and 140Ce (monazite-
(Ce) and bastnäsite-(Ce)) were selected as in-
ternal standards. Data treatment and quantifica-
tion of LA-ICP-MS signals were done with the 
SILLS software package (Guillong et al., 2008). 

Energy density, repetition rate and the 
number of pulses of the laser were optimised 
for the individual minerals. The accuracy of 
the LA-ICP-MS system has been verified and 
monitored by daily measurements of the refer-
ence material NIST SRM 612 as an unknown. 
The long-term accuracy for most elements is 
within 5% of the reference material (Spandler 
et al., 2011). Complete analytical details (laser 
settings, spot sizes, isotopes measured, dwell 
times) can be found in Papers (I), (II) and (III).

3.4 Stable Cl isotope and halogen 
analysis of fluorapatite
The in situ stable Cl isotopic and halogen (F, 
Cl, Br, and I) compositions of fluorapatite from 
the Olserum-Djupedal REE mineralisation were 
acquired by secondary ion mass spectroscopy 
(SIMS). These analyses were performed at the 
NORDSIM facility in Stockholm using a Cam-
eca IMS1280 large geometry SIMS instrument. 
To avoid beam exposure to fluorapatite prior to 
analysis, the SIMS analyses were conducted on 
new epoxy mounts prepared from the same sam-
ple cut-offs as those used for the thin or thick 
sections, which were used during initial BSE im-
aging. These mounts were then gold-coated and 
pre-selected spots were measured with SIMS, 
one spot for the halogens and one for the Cl iso-
topes as close to each other as possible. EPMA 
and LA-ICP-MS analysis were subsequently 
performed on a spot adjacent to the SIMS spots.

The halogen and the Cl isotopic composi-
tions were measured with a critically focused 
133Cs+ beam yielding a current of 1.2-1.6 nA for 
the halogen routine and 1.25-1.55 nA for the Cl 
isotopic routine. The mass resolving power was 
set to ~4000 M/ΔM for the halogens and ~2500 
M/ΔM for the Cl isotopic routine. A field aper-
ture of 3000 μm was used for both analytical 
routines to minimise surface contamination. The 
spots were also pre-sputtered for 90 s prior to 
analysis in a 20 by 20 μm area to reduce surface 
contamination. For the halogens, secondary ion 
intensities were collected over five scans with a 
total integration time of 120 s on Faraday cup 
(for species with counts > 106 cps) or electron 
multiplier (for species with counts < 106 cps). 
Because of the interference of CaCl species 
on 79Br and 81Br, Br was measured on the com-
bined [81Br + 44Ca37Cl + 46Ca35Cl]- mass peak. 
The peaks were normalised to the 40Ca31P matrix 
signal and the standard Durango apatite was used 
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to determine absolute concentrations. Measure-
ments of the Durango standard (n = 25) yielded 
a relative standard deviation of 1% for F, 1.2% 
for Cl, 11.4% for Br, and 1.5% for I. For the Cl 
isotopic analysis, 35Cl and 37Cl were collected 
simultaneously using multicollection mode on 
Faraday cup with an overall counting time of 
160 s, conducted over four blocks of ten integra-
tions. Measurements of the Durango apatite stan-
dard with a known isotopic composition (δ37Cl 
= +0.5‰) were regularly interspersed between 
the unknowns to correct for instrumental drift 
and matrix-dependent instrumental fractionation. 
The Cl isotopic compositions are expressed us-
ing the δ-notation defined as:

δ37Cl (‰) = {[(37Cl/35Cl)sample - (37Cl/35Cl)SMOC] / 
(37Cl/35Cl)SMOC} ∙ 1000

where SMOC is the Standard Mean Ocean Chlo-
ride with a defined value of 0.0‰ (Kaufmann et 
al., 1984). The reproducibility of δ37Cl was 0.09 
to 0.20‰ based on multiple measurements (n = 
50) of the Durango apatite standard during three 
analytical sessions.

3.5 Fluid inclusion microthermo-
metry and LA-ICP-MS analysis
Fluid inclusions were studied on double-polished 
thick sections of quartz (200 to 500 μm thick-
ness). Microthermometry was performed on a 
Linkam THMSG-600 heating-freezing stage 
mounted on a Leica DM2500P petrographic 
microscope. Daily calibration was made using 
synthetic H2O, H2O-NaCl and H2O-CO2 fluid in-
clusion standards (SynFlinc™). Calibration was 
performed against the H2O-CO2 Q3 quadruple 
point (–56.6 °C), the H2O-NaCl eutectic (–21.2 
°C), and the melting of ice (0.0 °C). Heating runs 
were calibrated against the critical temperature 
of H2O (374.1 °C). Estimated reproducibility for 
freezing experiments is 0.3 °C and that for heat-

ing runs is c. 5 °C.
For L-V inclusion, salinity was calculated 

from the final ice melting temperature assum-
ing NaCl-H2O compositions using the equation 
of Bodnar (1993). For L-V-S inclusions, three 
different types were recognised based on appear-
ance at room temperature, behaviour during 
microthermometry and compositions determined 
by LA-ICP-MS. Different approaches were used 
to estimate the salinities of these fluid inclusions 
depending on the type. For L-V-S inclusions 
approximated by the NaCl-FeCl2-KCl-CaCl2-
H2O system (Na-Fe-K-Ca brines; Table A1), an 
estimated total salinity of 45 wt% for all fluid in-
clusions assemblages (FIA) was used based on an 
average temperature of halite melting of 300 °C. 
L-V-S inclusions in the CaCl2-NaCl-H2O system 
(Ca-Na brines) did not freeze during cooling, and 
melting of ice, hydrohalite or antarcticite could 
not be observed. Salinity and bulk composition 
were thus estimated by combining the measured 
mass Na/(Na+Ca) ratio by fluid inclusion LA-
ICP-MS analysis and the temperature of halite 
melting (final melting temperature; Steele-Ma-
cInnis et al., 2011). Halite melting temperatures 
were initially measured for many of the FIA’s 
after LA-ICP-MS analysis to avoid the risk of 
decrepitation of fluid inclusions during heating 
prior to LA-ICP-MS analysis (marked with * in 
Table A1). However, because of the low halite 
melting temperatures of these inclusions (< 200 
°C), halite melting temperatures could be mea-
sured prior to LA-ICP-MS analysis for the FIA’s 
targeted during the second session of LA-ICP-
MS analysis. An average Na/(Na+Ca) ratio (of 
0.125) was used for the FIA’s not analysed by 
LA-ICP-MS. For one FIA (sample EJ-14-2B, 
FIA17), melting of antarcticite was observed. 
The salinity and bulk composition could thus 
be calculated using melting temperatures of ant-
arcticite and halite, which yield a similar Na/
(Na+Ca) ratio and salinity as those calculated 
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using this ratio determined by LA-ICP-MS anal-
ysis and halite melting temperatures. For L-V-S 
inclusions in the NaCl-CaCl2-(KCl)-H2O system 
(Na-Ca brines), salinity and bulk composition 
were calculated using the ice and halite melting 
temperature employing the graphical method of 
Vanko et al. (1988).

Fluid inclusion LA-ICP-MS was performed 
using an Agilent 7900s quadrupole ICPMS cou-
pled to a Coherent Geolas Pro MV 193 nm 
excimer laser-ablation system at the University 
of Helsinki. A 1 cm3 ablation cell was used for 
fast washout to ensure high element sensitivities 
and low limits of detections. The analytical proto-
col and settings used followed that of Fusswinkel 
et al. (2017, 2018). Elements measured were 7Li, 
11B, 23Na, 24Mg, 27Al, 39K, 44Ca, 49Ti, 55Mn, 56Fe 
or 57Fe, 66Zn, 85Rb, 88Sr, 133Cs, 137Ba, 208Pb, 89Y, 
140Ce, 146Nd, 35Cl, 81Br, and 127I. Data treatment 
was performed with the SILLS software package 
(Guillong et al., 2008). Elements were quantified 
using the reference material NIST SRM 611 as 
an external standard, except for Cl, Br, and I. The 
halogens were standardised to the natural scapo-
lite standard Sca-17 (Seo et al., 2011; Fusswinkel 
et al., 2018). Concentrations were calculated us-
ing Na concentrations (as NaCl equivalent) de-
termined from microthermometry as an internal 
standard. A mass balance routine implemented in 
the SILLS software using cation/chlorine ratios 
from the LA-ICP-MS signals was used to deter-
mine the bulk fluid composition. Cations used for 
mass balancing were Na, Ca, K, or Fe depend-
ing on the fluid inclusion type. The intervals for 
the fluid inclusions were selected based on the 
peaks of the major components in the fluid in-
clusions (Ca, Na, and Cl) and the return of these 
signals to the background level. The signals of 
all remaining elements were carefully checked 
for each of the fluid inclusions. Calculated ele-
ment concentrations for the remaining elements 
were rejected if the signals were not synchronous 

with the major element signals. Host correction 
was made assuming 100% SiO2 and by closely 
bracketing the fluid inclusions signals. Fluid in-
clusion LA-ICP-MS data are presented as FIA 
averages (Table A2).

4 Summary of original papers

4.1 Paper I. Mineralogy, para-
genesis, and mineral chemistry 
of REEs in the Olserum-
Djupedal REE-phosphate 
mineralization, SE Sweden

This study established the mineralogical, tex-
tural and mineral-chemical framework for a 
relatively unusual hydrothermal REE miner-
alisation in the Olserum-Djupedal district in 
SE Sweden. By combining mineralogical and 
petrological studies with mineral chemistry of 
the REE mineral phases, we could show that 
abundant xenotime-(Y) and monazite-(Ce) co-
crystallised with fluorapatite and subordinate 
(Y,REE,U,Fe)-(Nb,Ta)-oxides during an initial 
high-temperature stage (~600-650 °C). These 
mainly formed within veins dominated by biotite, 
magnetite, amphibole, and quartz. Further, fol-
lowing the evolution of the hydrothermal fluid, 
allanite-(Ce) formed locally. Subsequent cool-
ing of the hydrothermal system induced altera-
tion and replacement of primary xenotime-(Y), 
monazite-(Ce), fluorapatite and (Y,REE,U,Fe)-
(Nb,Ta)-oxides, which resulted in the remobili-
sation of REE, Th, U and Nb-Ta, and the forma-
tion of secondary monazite-(Ce), xenotime-(Y), 
fluorapatite and allanite-(Ce)–ferriallanite-(Ce) 
and subordinate uraninite, thorite, columbite-
(Fe) and (Th,U,Y,Ca)-silicates. Monazite-
xenotime thermometry showed that these 
alteration processes occurred down to temper-
atures of about ~400 °C. Bastnäsite-(Ce) and 
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minor synchysite-(Ce) formed from lower-tem-
perature (<400 °C) alteration of allanite-(Ce) and 
allanite-(Ce)–ferriallanite-(Ce) and represented 
the latest stage of REE mineral formation. The 
mineralogy and alteration processes between the 
two main mineralisation areas, i.e., Olserum and 
Djupedal areas, were found to differ from each 
other slightly. This was interpreted to result from 
the increase in the Ca concentration of the fluid 
in the Djupedal area. This caused the forma-
tion of allanite-(Ce) and extensive replacement 
of primary monazite-(Ce). This contrasts with the 
REE assemblages in the Olserum area, where no 
allanite-(Ce) formed and monazite-(Ce) only 
exhibited moderate replacement to secondary 
fluorapatite. The primary hydrothermal REE-
bearing assemblages and alteration processes 
in the Olserum-Djupedal mineralisation dem-
onstrate the joint mobility of REE, Th, U, and 
Nb-Ta in F-bearing high-temperature fluids.

4.2 Paper II. Origin of the high-
temperature Olserum-Djupedal 
REE-phosphate mineralisation, 
SE Sweden: A unique contact 
metamorphic-hydrothermal system

This study combined field and petrographic 
relationships with major and trace element chem-
istry of the main gangue minerals to constrain 
the timing and origin of the Olserum-Djupedal 
REE mineralisation. Field relationships revealed 
that REE mineralisation is exposed at three main 
areas; Olserum, Bersummen and Djupedal, and 
dominantly occurs as ESE-WNW to SE-NW 
trending veins and vein zones in metasedimen-
tary rocks in or close to the contact aureole of 
a ferroan, peraluminous alkali-feldspar granitic 
pluton. The veins and vein zones host abundant 
monazite-(Ce), xenotime-(Y) and fluorapatite, 
which are variably fractured and recrystallised. 
REE-bearing veins were also found to be 
hosted within a granite to granitic gneiss 

present in the outermost parts of the pluton. The 
veins and vein zones are frequently transected by 
abundant pegmatitic to granitic dykes in Olserum 
and Bersummen areas. In the Djupedal area, 
extensive post-mineralisation migmatisation 
formed within the REE-mineralised metasedi-
mentary rocks. Collectively, the field evidence 
led us to suggest a close association of the REE 
mineralisation with the granite.

The major and trace element chemistry of 
co-existing biotite and magnetite revealed that 
all the mineralised areas belong to the same 
REE-mineralising system. High concentrations 
of Na in biotite and amphibole and the abun-
dance of biotite indicated a Na-K-rich character 
of the original REE-mineralising fluid forming 
the REE-phosphates. As shown by the presence 
of Ca-rich minerals such as allanite-(Ce) and cal-
cic tourmaline (uvite) in the Djupedal area, the 
fluid evolved to more Na-Ca-rich compositions 
during cooling of the hydrothermal system. At 
this stage, alteration of the granite and the wall 
rocks induced by the Ca-Na nature of the flu-
ids produced distinct white quartz-plagioclase 
rocks. Halogen fugacities as calculated from bio-
tite compositions showed that the primary REE-
mineralising fluid was Cl-dominant, but with a 
high F component. The calculated log(fHF/fHCl) 
values decrease in a sequence from granite- and 
metasediment-hosted biotite in the Olserum area 
(log(fHF/fHCl) of –1.0 to –1.2) to metasediment-
hosted biotite in the Bersummen (log(fHF/fHCl) of 
–1.5 to –1.8) and Djupedal areas (log(fHF/fHCl) of 
–1.6 to –2.0).

The combined evidence led us to propose 
a hydrothermal origin of the REE mineralisa-
tion, formed by granitic-derived REE-P-Cl-F-
enriched fluids expelled at an early stage of the 
magmatic evolution. Following this, an older 
model involving the assimilation and remobili-
sation of former heavy mineral-rich beds was 
discarded. The primary REE mineralisation and 
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alteration processes in the Olserum-Djupedal 
district were probably coeval with regional-scale 
K-Na and Na-Ca metasomatism closely associ-
ated with granitic magmatism at around 1.8 Ga 
in the Västervik region.

4.3. Paper III. Apatite as a tracer 
of the source, chemistry, and 
evolution of ore-forming fluids: 
the case of the Olserum-Djupedal 
REE mineralisation, SE Sweden.

This study explored the suitability of using 
apatite as a tracer of the source, chemistry, 
and evolution of ore-forming fluids using the 
halogen (F, Cl, Br, and I), stable Cl isotopic and 
trace element compositions of fluorapatite from 
the Olserum-Djupedal REE mineralisation in 
SE Sweden. Based on the textural relations and 
mineral-chemical compositions, four main fluid 
events were recognised; 1) deposit-scale zoning 
of primary fluorapatite representing the prima-
ry hydrothermal fluid flow, 2) high-temperature 
dissolution-reprecipitation processes following 
primary fluorapatite formation, 3) internal zon-
ing of primary fluorapatite caused by lower-
temperature remobilisation, and 4) secondary flu-
orapatite replacing primary monazite-(Ce). The 
primary hydrothermal fluid flow was recognised 
as a down-temperature flow and was recorded in 
a sequence from granite-hosted fluorapatite, via 
metasediment-hosted fluorapatite in the Olserum 
area to metasediment-hosted fluorapatite in the 
Bersummen and Djupedal areas. This sequence 
recorded a gradual increase in Cl (~800 to 5000 
ppm) and Br (~1 to 20 ppm) concentrations, and 
a decrease of F (~3.75 to 2.9 wt%) and I (~0.75 
to 0.45 ppm) concentrations and in δ37Cl values 
(+1.0 to –0.5 ‰). Calculated log(fHF/fHCl) values 
of primary fluorapatite followed those of co-
existing biotite for the defined sequence, indi-
cating that the incorporation of the halogens into 
apatite are dominantly governed by the chemis-

try of the evolving ore-forming fluid. Later low-
temperature remobilisation was found to only 
cause marginal changes in halogen and trace el-
ement concentrations in specific domains of the 
fluorapatite crystals (rims, recrystallised grains, 
and domains adjacent to fractures), whereas δ37Cl 
values remained unchanged. This suggests that 
apatite can retain its initial composition inherit-
ed by the original ore-forming fluid despite later 
overprinting fluid events.

As apatite was found to be sensitive to 
changing fluid compositions, apatite showing 
the chemically least evolved character needed 
to be recognised in order to trace the origin of 
the primary ore-forming fluid. In the Olserum-
Djupedal REE mineralisation, this corresponds 
to the granite-hosted primary fluorapatite. This 
fluorapatite has δ37Cl values (–0.4 to +1.6 ‰) 
and molar halogen ratios (Br/Cl of 0.45 to 0.80 
· 10-3 and I/Cl of 190 to 310 · 10-6) comparable 
to fluids associated with S-type granites in SE 
England (δ37Cl of +1.7 to +2.0 ‰, Br/Cl of 0.45 
to 0.9 · 10-3 and I/Cl of 50 to 110 · 10-6), which 
have a similar petrogenesis as the Olserum-
Djupedal granite. The small fractionation of 
Br from I observed between altered fluorapatite 
and Na-Ca and Ca-Na fluid inclusions analysed 
by LA-ICP-MS suggested that Br and I do not 
necessarily fractionate to the degree proposed 
earlier and that Br and I may even have com-
parable partition coefficients (DBr

apatite-fluid and 
DI

apatite-fluid). This led us to interpret the halogen 
signatures and the stable Cl isotopic composition 
of the granite-hosted fluorapatite to represent an 
original magmatic fluid.

No trace element in primary fluorapatite 
adhered to the trend defined by the deposit-
scale zoning. This suggested that trace element 
compositions of apatite are mostly influenced 
by host rock environment and co-crystallisation 
with other minerals. However, the characteris-
tically elevated Fe concentrations of primary 
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fluorapatite may suggest elevated FeCl2 of the 
ore-forming fluid. Moreover, the REE and par-
ticularly normalised ratios (La/Sm, La/Yb, Gd/
Yb, and Y/Ho) were found to trace the evolution 
of the primary ore-forming fluid and can also 
discriminate between apatite forming by min-
eral replacement from apatite forming from the 
primary ore-forming fluid. In conclusion, apatite 
was found to be suitable in tracing the source, 
chemistry, and evolution of ore-forming fluids.

5 Discussion

5.1 Textural, mineralogical and 
fluid-chemical evolution of the 
hydrothermal Olserum-Djupedal 
REE-phosphate mineralisation

This section aims to bring together the early four-
stage paragenesis model (Paper I) with new find-
ings from subsequent papers and from fluid in-
clusion data into a new integrated model (Fig. 4). 
During stage A, primary mineralisation started 
at high temperatures (550-650 °C) with the for-
mation of coeval fluorapatite, monazite-(Ce) and 
xenotime-(Y) with subordinate (Y,REE,U,Fe)-
(Nb,Ta)-oxides. These formed in veins and vein 
zones dominated by biotite-magnetite from fluids 
exsolved from the Olserum-Djupedal granite 
early during crystallisation and fractionation. 
The veins and vein systems developed primarily 
in metasedimentary rocks in the contact aureole 
of the granite and within the outermost zone of 
the granite. Primary mineralisation took place 
at c. 1.8 Ga, coeval with the crystallisation of 
Olserum-Djupedal granite. Fluid flow was pre-
sumably from the granite towards the metased-
imentary rocks, with the mineralisations in the 
Bersummen and Djupedal areas forming in a 
more distal position.

No fluid inclusions from the primary ore-

forming stage have been identified. In paper II 
and III, biotite and fluorapatite have been used 
as proxies for the ore-forming fluid. Halogen 
compositions of biotite and fluorapatite indi-
cate that the REE-mineralising fluid was at first 
dominantly Cl-bearing but with a relatively high 
F concentration. Subsequent crystallising of 
fluorapatite and biotite depleted the fluid in 
F, passively enriching the fluid in Cl. The 
relatively high F concentration in the fluid aided 
with the transport of high field strength elements 
(HFSE) such as Nb-Ta and Th that accompanied 
the REE in the primary REE-mineralising fluid 
(e.g., Keppler and Wyllie, 1990, 1991; Jiang et 
al., 2005; Timofeev et al., 2015, 2017).

The mineral paragenesis and major and trace 
element chemistry of the main gangue miner-
als suggest a Na-K-Fe-Ca dominated composi-
tion of the primary ore-forming fluid. Initially, 
the fluid probably possessed a high K/Na ratio 
because of the abundance of biotite precipitated 
from this fluid. The Ca concentration must have 
been relatively high too to precipitate fluorapa-
tite but low enough to promote the formation 
of REE-phosphates from the available P in the 
fluid instead of only fluorapatite. In addition, the 
Ca and F concentrations were sufficiently low 
to inhibit fluorite saturation. L-V-S fluid inclu-
sions identified in quartz from pegmatitic dykes 
cross-cutting the REE ore in the Olserum area 
exhibit Na-Fe-K-Ca compositions (Table A2). 
Although these inclusions likely represent a more 
evolved and trapped fluid, as indicated by low 
homogenisation temperatures and by the occur-
rence in cross-cutting pegmatite dykes, they are 
likely close in composition to the original REE-
mineralising fluid.

Incipient dissolution and re-precipitation of 
fluorapatite forming monazite-(Ce) and xeno-
time-(Y) inclusions took place when the hydro-
thermal system was still at high temperatures, 
comparable to those forming the primary min-
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Fig. 4. A modified schematic illustration showing the textural evolution of the REE-mineralising system in the Olserum-
Djupedal REE mineralisation. Modified after Paper I.

eralisation. The fracturing of primary minerals 
during stage B aided in the modification of the 
primary ore assemblages by initiating remobili-
sation of REE and other elements. In the 
Djupedal area, the fluid evolved to more 
calcic compositions, promoting the formation 
of allanite-(Ce) and calcic tourmaline (uvite).

During subsequent cooling, the ore assem-
blages were further modified during stage C 

by extensive alteration, which caused remobili-
sation of REE, Th, U, and Nb-Ta. Highly cal-
cic fluids in the Djupedal area triggered the per-
vasive and partial alteration of monazite-(Ce) 
forming secondary fluorapatite and allanite-
(Ce)–ferriallanite-(Ce). The calcic fluids also 
promoted the formation of accessory fluorite 
and scheelite. In the Olserum and Bersummen 
areas, monazite-(Ce) only exhibits moderate re-
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placement to secondary fluorapatite indicating 
a lower calcic component of the metasomatic 
fluid. Monazite-(Ce) and xenotime-(Y) from all 
mineralised areas were heavily altered, resulting 
in the formation of uraninite, thorite and other 
(Th,U,Y,Ca)-silicates. Local alteration of prima-
ry (Y,REE,U,Fe)-(Nb,Ta)-oxides led to the for-
mation of columbite-(Fe), uraninite, xenotime-
(Y) ± monazite-(Ce). Monazite-xenotime ther-
mometry showed that these alteration processes 
occurred down to temperatures of about ~400 °C.

The clear difference in alteration assem-
blages between the Olserum and Bersummen 
areas to that of the Djupedal area were caused 
by chemically distinct fluids. High-density L-V-S 
fluid inclusions have been found in quartz from 
the Djupedal area (Ca-Na brines; Table A1 and 
A2) and in quartz from the Olserum area (Na-
Ca brines). Although they were trapped at lower 
temperatures (probably below 300 °C) than the 
inferred lower-temperature limit for this altera-
tion stage, they show distinct chemical compo-
sitions that likely depict the differences in fluid 
compositions between the areas during the alter-
ation stage. High-density fluid inclusions in the 
Djupedal are very calcic, whereas similar high-
density fluid inclusions in the Olserum area are 
more sodic but still relatively rich in Ca (Table 
A2). Such a difference in composition is con-
sistent with the alteration features recognised in 
the different mineralised areas.

The formation of bastnäsite-(Ce) marks the 
latest stage of REE-mineral formation. Bast-
näsite-(Ce) formed locally in the Djupedal area 
during chloritisation of allanite-(Ce) or allanite-
(Ce)–ferriallanite-(Ce). This required CO2-rich 
fluids. Quartz from the Djupedal area frequently 
contains secondary fluid inclusion arrays with 
almost pure low-density CO2 inclusions (Table 
A1). The Ca-Na brine inclusions from the 
Djupedal area also frequently co-exist with 
similar CO2 inclusions. The Ca-Na brine in-

clusions also contain a carbonate solid phase and 
rarely hematite. Halogen (Cl, Br, and I) measure-
ments of the brine inclusions show that they are 
very rich in Br and I relative to seawater (Fig. 5). 
The very high salinity and the high Br/Cl and I/
Cl ratios are proposed to result from fluid desic-
cation during the chloritisation of biotite, allanite-
(Ce) or allanite-(Ce)–ferriallanite-(Ce) and, in 
part, magnetite, where chlorite sequestered H2O 
from the fluid. This also resulted in halite pre-
cipitation, which can explain the increasing Br 
and I in the fluid as they are both incompatible 
in halite (Holser, 1979; Campbell et al., 1995; 
Fusswinkel et al., 2018). Because bastnäsite-(Ce) 
formed during the chloritisation of allanite-(Ce) 
or allanite-(Ce)–ferriallanite-(Ce), it is likely that 
the Ca-Na brine was related to this and trapped 
in quartz after bastnäsite-(Ce) had formed. Low 
trapping temperatures of the Ca brine inclusions 
(< 300 °C) indicate that bastnäsite-(Ce) formed at 
around 300 °C. Alteration of the primary miner-
alisation stage likely occurred to at least 1.75 Ga.

Some primary fluorapatites in the Olserum 
area have distinctly different Br/Cl and I/Cl 
signatures following the fluid desiccation trend 
(Fig. 5). Hematite trapped in the Ca-Na brine in-
clusions demonstrates that hematite was stable 
during the entrapment of the Ca-Na and Na-Ca 
brines. Hematite is extensively replacing magne-
tite in the surrounding mineral matrix of this type 
of fluorapatite. It is thus likely that the halogen 
chemistry of this fluorapatite was inherited by 
alteration fluids similar to the Na-Ca and Ca-Na 
brines when extensive martitisation took place. 
I have also observed a more intense martitisa-
tion of magnetite in the Djupedal area where 
quartz contain abundant Na-Ca fluid inclusions. 
The good agreement between this fluorapatite 
and the measured fluid inclusions indicates a 
smaller fractionation of Br from I during apa-
tite precipitation.

By using the halogen compositions of the 
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In summary, primary REE mineralisation 
formed from granitic-derived fluids at high 
temperatures (~600 °C) at c. 1.8 Ga. The 
fluids were relatively reducing and dominated 
by Na-K-(Fe-Ca)-Cl-F, which locally evolved 
to more Cl- and Ca-bearing fluids. During sub-
sequent cooling of the hydrothermal system, the 
ore assemblages were variably altered by Ca-Na 
to Na-Ca-dominated fluids down to temperatures 
of around 300 °C to at least 1.75 Ga.

5.2 Source of REE and P in 
REE-phosphate deposits
Because many hydrothermal REE-phosphate 
deposits are associated with alkaline magmatic 
rocks, particularly carbonatites, it is warranted 
to discuss first what type of processes enrich the 
REE and, in part P, in carbonatites. Because car-
bonatites commonly co-exist with coeval ultra-
mafic and alkaline rocks, their origin have main-
ly been assigned to fractional crystallisation or 
liquid immiscibility of alkali-rich carbonatite-
silicate magmas derived from the lithospheric 
or asthenospheric mantle, whereas only a few 
may originate directly from low-degree mantle 
melts (Mitchell, 2005; Chakhmouradian and 
Zaitsev, 2012).

The endowment of REE in carbonatites can 
be explained either by fractional crystallisation 
of REE-poor oxides and silicate minerals and 
subsequent extraction of a carbonatite fraction-
ated melt, or by carbonatite-silicate liquid 
immiscibility because the REE (and P) mostly 
prefer the carbonatite melt over the silicate melt 
(Chakhmouradian and Zaitsev, 2012; Veksler et 
al., 2012; Martin et al., 2013). Because apatite 
solubility is high in carbonatite melts compared 
to silicate melts (Watson and Capobianco; 1981; 
Harrison and Watson, 1984; Wolf and London, 
1994; Hammouda et al., 2010; Chakhmouradian 
et al., 2017), fractional crystallisation in a pure 
carbonatite system will lead to an enriched P 

concentration in the melt. In carbonatite-silicate 
systems, however, specific rocks with very high 
P2O5 contents, usually termed phoscorite occur 
(Chakhmouradian et al., 2017, and references 
therein). Other parameters than apatite solubil-
ity, such as the activity of F and P, and possible 
fluid exsolution, thus dictate whether apatite will 
crystallise as a cumulate phase or if P will 
be enriched in a residual carbonatite melt. 
Because the REE are compatible in apa-
tite, REE will be depleted in carbonatite-silicate 
systems where significant apatite fractionation 
occurs, although fractionation of other miner-
als and magma replenishment also affects the 
REE budget in such systems (Chakhmouradian 
et al., 2017). Yet, carbonatites or carbonatite-
alkaline silicate systems exhibit strong affinities 
for REE, especially LREE (Fig. 6), and for P. 
The observation that monazite, which typically 
forms by late hydrothermal-carbothermal pro-
cesses (e.g., Zaitsev et al., 2015; Chakhmoura-
dian et al., 2017, and references therein; Marien 
et al., 2018), is the principal REE-mineral in 
many hydrothermal REE deposits associated 
with carbonatites is thus not surprising consider-
ing the high probability for mobilisation of REE 
and P in such systems.

In peralkaline quartz-saturated rocks that 
exhibit a strong affinity for the REE (Fig. 6), 
the P content is usually low (e.g., Boily and 
Williams-Jones, 1994; Dostal et al., 2014, 
Möller and Williams-Jones, 2016), presum-
ably due to early fractionation of apatite as 
result of the low solubility of apatite in peral-
kaline silicate magmas (Watson and Capobian-
co, 1981). In quartz-undersaturated peralkaline 
systems, which also are strongly affiliated with 
high REE concentrations (Fig. 6), the P concen-
tration can be high too, especially in cumulate 
units related to alkaline-carbonatite magmatism 
(e.g., rocks in the Kola Province; Zaitsev et al., 
2015, and references therein). However, mona-
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zite or xenotime are uncommon hydrothermal 
minerals associated with such rocks.

For the REE-phosphate rich Olserum-
Djupedal REE deposits, no alkaline source of 
REE is plausible because of the complete lack 
of rocks with such compositions with the same 
age (1.8 Ga) in the Västervik region. Alkaline 
rocks of Palaeoproterzoic age in the Fennoscan-
dian Shield mainly occur in Finland, including 

-

Ma Naantali carbonatite (Woodard and Heth-

in Bergslagen is the closest alkaline rocks with 
a similar age in Sweden (c. 1.88 Ga; Delin and 

the Norra Kärr alkaline complex are geo-
graphically close but are much younger (1.49 Ga; 

Fig. 6. Whole-rock REE distribution diagrams normalised to primitive mantle for the most relevant magmatic sources 

green lines). Sources: peralkaline granites (Boily and Williams-Jones, 1994; Kovalenko et al., 1995; Kynicky et al., 

Möller and Williams-Jones, 2016); carbonatites (Lottermoser, 1990; Xu et al., 2008; Moore et al., 2015; Trofanenko 
et al., 2016; Bodeving et al., 2017; Marien et al., 2018); bulk continental crust (Rudnick and Gao, 2003); ferroan 
granites (Collins et al., 1982); the others are from Chakmouradian and Zaitsev (2012).
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dykes intruded at a similar age as that inferred 
for the Olserum-Djupedal REE mineralisation, 
suggesting that carbonatites may have formed at 
depth during the tectonic regime that was preva-
lent at that time (cf., Rutanen et al., 2011; Wood-
ard and Hetherington, 2014). However, several 
lines of evidence strongly suggest a granitic 
source of the REE for the Olserum-Djupedal 
REE mineralisation: 1) field relationships indi-
cate a strong spatial and temporal relationship 
of the mineralisation with the dominant TIB 
Olserum-Djupedal granite in the district (Fig. 3), 
2) the halogen compositions of fluorapatite indi-
cate a hydrothermal fluid flow from this granite 
towards the metasedimentary host rocks and, 3) 
the halogen and Cl isotopic compositions of flu-
orapatite is consistent with a granitic source of the 
ore-forming fluids. In addition, the composition 
of the Naantali carbonatite is LREE-dominated 
(Woodard and Hetherington, 2014), whereas the 
ore at Olserum-Djupedal REE mineralisation is 
more HREE-rich (Fig. 6). The mineral-chemical 
compositions of fluorapatite and monazite-(Ce) 
from the Olserum-Djupedal REE mineralisa-
tion are also distinct from those of the Naantali 
carbonatite (Woodard and Hetherington, 2014).

Findings from this study suggest that REE 
and P can be derived from other sources than 
alkaline magmatic sources. The clear associa-
tion of the Olserum-Djupedal REE mineralisa-
tion with the peraluminous Olserum-Djupedal 
granite suggests that REE and P were derived 
from this magmatic system. But how can the 
high-grade REE-phosphate ore (Fig. 6) be recon-
ciled with the generally low REE (∑REE ~300 
ppm) and P (0.04-0.07 wt% P2O5) contents of 
the granite?

The solubility of apatite in silicate rocks 
is highest for hot mafic melts compared to 
colder felsic melts. In metaluminous silicate 
melts, the P2O5 concentration decreases with 
increasing fractionation towards high silica 

members as a result of decreasing temperature 
and solubility of apatite (Watson, 1979, 1980; 
Watson and Capiobianco, 1981; Harrison and 
Watson, 1984; Piccoli and Candela, 2002). In 
peraluminous silicate melts, the solubility of apa-
tite increases with peraluminousity, and peralu-
minous granites can have significantly higher 
P2O5 contents than metaluminous granites with 
similar silica contents (Bea et al., 1992, 1994; 
Pichavant et al., 1992; Wolf and London, 1994). 
The solubilities of monazite and xenotime are 
low and decrease with increasing peraluminos-
ity, and are highest for peralkaline silicate melts 
(Montel, 1986, 1993; Rapp et al., 1987; Wolf and 
London, 1995). Thus, for peraluminous melts, 
melting at the source will generate a melt un-
dersaturated in apatite and crystallisation of feld-
spar will increase the P/Ca ratio so that excess 
P can be incorporated into P-minerals with low 
solubilities such as monazite or xenotime and 
into K-feldspars with increasing fractionation 
and peraluminosity (London et al., 1999; Pic-
coli and Candela, 2002). This is consistent 
with the Olserum-Djupedal granite, which 
contains xenotime-(Y) and monazite-(Ce) but 
rarely primary fluorapatite. Xenotime-(Y) and 
monazite-(Ce) are predominantly enriched in bi-
otite-magnetite schlieren in the granite and rarely 
as disseminated grains within the groundmass. 
London (1992) noted that P exhibits highly noni-
deal mixing in felsic melts, which can cause local 
heterogeneities due to unmixing of P-enriched 
domains. Local high P solubility can proba-
bly also stem from local heat fluxes. Notably, 
London (1992) further suggested that these 
P-enriched domains would accumulate with 
REE and other HFSE in basic and Fe-rich 
melts domain. This could explain the common 
and local occurrence of monazite-(Ce) and xeno-
time-(Y), and zircon within the biotite-magnetite 
schlieren. Thus, the low REE and P whole-rock 
contents may not necessarily imply low REE and 
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P concentrations of the original melt. In addi-
tion, P can be lost to pegmatites formed from 
more evolved P-enriched residual melts via 
filter-pressing or be lost due to extensive sericitic 
and argillic alteration of alkali feldspars (Lon-
don, 1992; London et al., 1993).

Although the Olserum-Djupedal granitic sys-
tem yet is poorly understood, abundant pegma-
titic and granitic dykes and veins crosscut both 
the main granitic body and the surrounding ore-
bearing metasedimentary rocks. These dykes 
and veins contain sillimanite, which indicates a 
strongly peraluminous character, and the dykes 
and veins probably represent the most evolved 
melt. Primary fluorapatite is rare in these dykes 
and veins too, but fine-grained secondary fluor-
apatite is abundant close to or in altered feld-
spar domains. This could imply that feldspar in 
these evolved rocks initially contained high P 
concentrations, which were released and formed 
fluorapatite during feldspar alteration. It is thus 
quite plausible that P to some extent was 
extracted from the initial melt and enriched in 
P-rich pegmatites.

Fluid exsolution could also sequester REE 
and P from the melt. The REE almost invariably 
partition in favour of the melt over the fluid/
vapour (London et al., 1988; Webster et al., 
1989; Reed et al., 2000; Zajacz et al., 2008; 
Borchert et al., 2010). However, partition 
coefficients (Dfluid-melt) for REE are higher for per-
aluminous melts compared to metaluminous and 
peralkaline melts and increase with peraluminos-
ity (London et al., 1988; Borchert et al., 2010). 
They also increase with a pressure drop (Flynn 
and Burnham, 1978; Webster et al., 1989; Bai 
and Van Groos, 1999) and strongly increase with 
increasing Cl concentrations of the fluids (Web-
ster et al., 1989; Reed et al., 2000; Borchert et 
al., 2010). Chlorine always partitions into the 
fluid over the melt, and the partition coefficient 
for Cl (DCl

fluid-melt) increases with increasing tem-

perature and peraluminosity of the melt, while 
it decreases with increasing F concentration of 
the melt (Webster and Holloway, 1988). At 650 
°C, REE partitioning into the fluid is about 50% 
stronger than at 775 °C in peraluminous melts 
(London et al., 1988). Phosphorous favours the 
melt over the fluid, but the partitioning of P to 
the fluid is one magnitude higher in peralu-
minous compared to metaluminous systems, 
and P usually has a higher or a similar parti-
tion coefficient as the REE (London et al., 1988; 
1993). The most suitable conditions for partition-
ing of REE and P into the fluids should thus be 
in peraluminous systems exsolving high-salinity 
fluids, possibly at temperatures of about 650 °C. 
These conditions coincide well with that of the 
Olserum-Djupedal REE-mineralising system.

The detailed exposition about the P and REE 
concentrations of felsic melts and fluid-melt par-
titioning of REE and P serves to illustrate that a 
fractionating peraluminous granitic system has 
a great potential to exsolve fluids relatively 
enriched in REE and P. Fluid exsolution at an 
early stage for the Olserum-Djupedal REE min-
eralisation, as proposed in Paper II, is also advan-
tageous because the ore-forming fluid will have 
more time to interact and scavenge REE and 
P from minerals (potentially early-crystallised 
monazite-(Ce) and xenotime-(Y)) and from the 
melt. In addition, if fluid saturation occurs early, 
the F concentration of the melt will be relatively 
low because of limited fractionation, and DCl

fluid-

melt remains high (Audétat et al., 2000). Thus, low 
REE and P2O5 concentrations of the granite do 
not imply low REE and P concentrations of the 
peraluminous melt at the time of primary REE 
mineralisation, but rather resulted from a com-
bination of fluid exsolution, melt heterogeneities 
and late pegmatite extraction. In other silicate 
systems, low solubility of apatite will lead to ear-
ly crystallisation of apatite during fractionation, 
removing most of the P in the system. Lower 
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REE and P fluid-melt partition coefficients in 
such systems also indicate a lower potential for 
the exsolution of REE-P-rich fluids.

In hydrothermal REE deposits not related to 
any known igneous activity such as xenotime-
(Y)-rich unconformity-related REE deposits 
(Vallini et al., 2007; Rabiei et al., 2017; Nazari-
Dehkordi et al., 2018; Richter et al., 2018), REE 
and P are probably transported in separate fluids. 
The source of P is likely from P-enriched sedi-
mentary beds such as phosphorites, which also 
can contain high concentrations of REE (Ems-
bo et al., 2015), while REE originate from the 
alteration of basement rocks (Nazari-Dehkordi 
et al., 2018).

5.3 Hydrothermal transport of 
REE and P and precipitation 
of REE-phosphate minerals

Transport of REE in a fluid requires the formation 
of stable metal complexes with available ligands 
in the fluid at the specific conditions of the hydro-
thermal system to keep the REE in solution. Re-
cent experimental studies on the stabilities of dif-
ferent REE complexes at elevated temperatures 
(up to 250 °C) and geochemical modelling show 
that significant REE transport primarily occurs 
by REE-Cl complexes (REECl2+ and REECl2

+) 
only at acidic conditions in Cl-F-bearing fluids 
(e.g., Migdisov et al., 2009, 2014, 2016). Addi-
tion of the SO4

2- ligand expands the pH range 
in which the REE can be transported, especially 
at higher temperatures (300-400 °C) due to the 
formation of stable REE(SO4)

2- (Migdisov et al., 
2016). In F-free fluids, the REE can be trans-
ported at neutral conditions to slightly alkaline 
conditions with the addition of SO4

2- (Migdisov 
et al., 2016), or even at alkaline conditions by 
REE-OH complexes (Wood et al., 2002; Pourt-
ier et al., 2010; Perry and Gysi, 2018). The re-
duced solubilities for the REE at higher pH in 
F-bearing fluids are thought to originate because 

of the increased dissociation of HF at increasing 
pH (Fig. 7), which results in more F ions being 
able to bind with the REE until the fluid reaches 
REEF3(s) saturation (Williams-Jones et al., 2012; 
Migdisov et al., 2016). However, REEF3 miner-
als are rare in nature, but the point is rather that 
insoluble REE-F-bearing minerals, for example, 
bastnäsite-(Ce), may govern the availability of 
REE in hydrothermal fluids at increasing pH. 
However, it is also possible that high stabilities 
of REE-OH-F complexes at high pH can inhibit 
saturation of REEF3(s) or other REE-F-bearing 
minerals and retain the REE in solution (Vasyu-
kova and Williams-Jones, 2018). To precipitate 
the REE as REE-bearing minerals, a process or 
processes are required to drive the system into 
conditions that promote REE mineral formation 
instead of favouring REE complexation. Based 
on geochemical modelling (Migdisov and Wil-
liams-Jones, 2014; Migdisov et al., 2016), pos-
sible mechanisms to induce REE precipitation 
are 1) pH-changes, 2) introduction of binding 
ligands, 3) destabilisation of REE-transporting 
complexes, or 4) cooling.

Phosphorous, as phosphate, is considered a 
strong binding ligand in REE-mineralising sys-
tems and probably contribute nothing to the 
transport of REE. This has been inferred based 
on the low and retrograde solubilities of mona-
zite and xenotime at temperatures up to 300 °C 
in acidic solutions (pH ≤ 2; cf., Poitrasson et 
al., 2004; Cetiner et al., 2005; Gysi et al., 2015; 
2018; Migdisov et al., 2016). Modelling shows 
that when phosphate is introduced into the 
hydrothermal system, either by fluid-rock inter-
action with P-enriched rocks or by mixing with 
P-enriched fluids, the REE in the solution will 
immediately react with phosphate and precipitate 
monazite or xenotime. This is probably a very 
efficient precipitation mechanism when REE and 
P are not transported by the same fluid. Pourtier 
et al. (2010) suggested that monazite solubility 
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is prograde at least from 300 to 800 °C at more 
neutral pH, which indicates that REE may be 
complexed with phosphate at higher tempera-
tures, or that phosphate is co-transported with 
REE in the fluid and the REE are complexed 
with other ligands (e.g., OH-). This supports the 
study of Ague (2017), who demonstrated a strong 
correlation between REE and P mobility during 
regional metamorphism in crustal and subduc-
tion zone environments.

A recent attempt to model the mobility of 
REE (along with Fe and U) by F-bearing fluids 
in rock-buffered granitic-hydrothermal environ-

ments and at conditions approximating those of 
the Olserum-Djupedal REE-mineralising system 
(Xing et al., 2019) showed that:

1) The solubility of La was higher in F-
bearing fluids compared to F-free fluids because 
of the stability of LaF2+.

2) The pH of F-bearing fluids decreases with 
increased temperature and salinity. For a salinity 
exceeding 2 m (~10 wt% NaCl) and a tempera-
ture over 400 °C, the pH of the F-bearing fluids 
is lower than that of F-free fluids. This directly 
affects the solubilities of REE as the REE are 
more soluble at lower pH.

Fig. 7. A diagram showing the acid dissociation constant (pKa) for the reactions involving the common phosphate 
species (H3PO4

°, H2PO4
-, and HPO4

2-), HCl°, and HF° as an effect of temperature at 200 MPa. The blue line shows 
how the neutral pH changes with temperature. Calculated using data from the SUPCRT92 database (Johnson et al., 
1992) and complementary data from Shock et al. (1997) and Tagirov et al. (1997). At pKa, the activities of dissociated 
(e.g., H3PO4

°) and associated (e.g., H2PO4
-) species are equal. When pH > pKa, the dissociated species predominate.
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3) The soluble P concentration is in general 
higher for F-free fluids compared to F-bearing 
fluids. However, at temperatures above ~400 °C 
and salinities exceeding 10 wt% NaCl, the con-
centration of P is higher for F-bearing fluids than 
for F-free fluids. It also seems that the differ-
ence between the soluble P concentration in F-
bearing fluids relative to F-free fluids increases 
with increasing temperature, even beyond the 
maximum temperature of 450 °C for the model.

These results suggest that co-transport of 
REE (as F- and Cl-complexes) and P can occur 
in acidic fluids with a salinity greater than 10 wt% 
NaCl at temperatures above 400 °C. These con-
ditions also coincided with the highest solubility 
of Fe in F-bearing fluids. The rock-buffered 
concentration of La in the fluid is ~1 ppm. 
If compared to various magmatic-hydrothermal 
REE-bearing fluids (Table 2), this concentration 
is similar to some low to intermediate salinity 
fluids from the Strange Lake REE deposit and 
other magmatic-hydrothermal systems. However, 
it is one magnitude lower than compared with 
many brine inclusions, especially the extremely 
high-salinity “fluids” at Capitan Mountain and 
associated REE mineralisation (Table 2; Banks 
et al., 1994; Campbell et al., 1995; Audétat et 
al., 2008). Soluble P concentration in the model 
by Xing et al. (2019) is low, 10-3 to 10-4 ppm. 
However, in vapour/melt experiments for per-
aluminous granitic systems, concentrations of 
P and of individual REE in the co-existing 
vapour phase were ~400 ppm and ~0.2 ppm, 
respectively (London et al., 1988). This indi-
cates that exsolved magmatic fluids from per-
aluminous granitic systems can contain elevated 
P concentrations.

In summary, high capability for co-transport 
of REE and P in F-bearing fluids seems most 
probable with increasing salinity of the fluids 
and at temperatures above 400 °C. Moreover, 
co-transport of REE and P primarily occurs at 

acidic conditions but depending on the stabili-
ties of REE-OH-F complexes at these temper-
atures, co-transport of REE and P may be fea-
sible even at neutral to alkaline conditions (cf., 
Vasyukova and Williams-Jones, 2018). The low 
solubilities of monazite and xenotime in acidic 
fluids at temperatures below 300 °C (Poitrasson 
et al., 2004; Cetiner et al., 2005; Gysi et al., 2015; 
2018; Migdisov et al., 2016) likely preclude co-
transport of REE and P at those conditions. In 
F-free fluids, co-transport of REE and P are 
also probable to more neutral or alkaline con-
ditions, particularly with increasing temperatures 
up to 800 °C. An evaluation of different mecha-
nisms that can precipitate REE-phosphates can 
thus be made:

1) pH change; changes in pH of the solution 
would be achieved by for instance fluid-rock 
interaction with a suitable rock or mixing with 
a fluid of different pH (Migdisov and Williams-
Jones, 2014; Migdisov et al., 2016). At acidic pH, 
P mostly occurs as associated H3PO4

° or possi-
bly as H4P2O7

° at high P concentration (P ~ 0.1 
molal or 0.3 wt% P; Pourtier et al., 2010). When 
pH increases, H3PO4

° (and H4P2O7
°) become in-

creasingly dissociated and more H2PO4
- ions (and 

H3P2O7
- ions) will dominate. For instance, at 500 

°C and 200 MPa, pKa is 4.7 for H3PO4
° (and 3.7 

for H4P2O7
°; neutral pH is at 5.1 at these condi-

tions; Fig. 7). Thus, if the REE- and P-bearing 
fluids initially were rather acidic, the fluid will 
get increasingly richer in dissociated ions upon 
neutralisation until it eventually reaches satura-
tion with respect to REEPO4(s). When this occurs 
is strongly controlled by the solubility product 
of REEPO4(s), which also will depend on the 
initial concentrations of REE3+ and P in the flu-
id. REEPO4(s) saturation is also controlled by 
the stabilities of REE complexes at higher pH 
(e.g., REE-OH complexes), which may retain 
the REE in solution. Additional components in 
the fluid such as F (or CO2) will determine if 
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the fluid will become saturated with REEF3(s) 
(or possible REE-fluorocarbonates) instead of 
REEPO4(s) with increasing pH. As the solubil-
ity of REEPO4(s) thus is dependent on tempera-
ture, pH, stabilities of REE complexes, and the 
concentrations of different elements in the fluid 
(e.g., Cl, F, P, and S), all these parameters need to 
be considered for a specific hydrothermal REE-
mineralising system if precipitation by changes 
in the pH is a feasible precipitation mechanism 
or not.

2) The destabilisation of REE-transporting 
complexes; because REECl2+ and REECl2

+, 
and in some fluids, REEF2+, or REESO4

+ and 
REE(SO4)

2-, or REE(OH)3
° and REE(OH)2

+, are 
the chief REE transporting agents, destabilising 
these will decrease the solubility of REE and 
saturate the solution in REEPO4(s). To destabi-
lise REE-Cl complexes, mixing with fluids of 
lower salinity such as metamorphic or meteoric 
fluids will dilute the REE-transporting fluid and 
thus the ability to dissolve the REE (Migdisov 
et al., 2016). If the REE-transporting fluid con-
tains high S concentration, transport of REE by 
REE-SO4 complexes are very likely. The desta-
bilisation of these complexes could be effec-
tively achieved by precipitation of insoluble 
barite, or by the reduction of SO4 to sulphide or 
other reduced species (Migdisov et al., 2016). A 
decrease of F in the fluid by precipitating miner-
als exhibiting a strong preference for F such as 
fluorapatite (Zhu and Sverjensky, 1991; Spear 
and Pyle, 2002; Harlov, 2015; Kusebauch et al., 
2015a, 2015b) will effectively destabilise REE-F 
complexes and Th-F and (Nb,Ta)-F complexes. 
This could be responsible for the formation of 
REE-(Nb,Ta) oxides in the Olserum-Djupedal 
REE mineralisation. The destabilisation REE-
OH complexes may be achieved by fluid mixing 
with a lower pH-fluid. However, if REEPO4(s) 
saturation occurs will be highly dependent on the 
concentrations of other elements in the fluid, and 

the stabilities of their respective REE-complexes.
3) Cooling generally reduces the solubility of 

REE in fluids by the lowering the stabilities of 
transporting REE complexes (e.g., Migdisov et 
al., 2016). Cooling also decreases the solubility 
of monazite in neutral-pH fluids at temperatures 
between 300 and 800 °C (Pourtier et al., 2010). 
Cooling also increases the dissociation of H3PO4

0 
at constant pH. Cooling, however, also increases 
the availability of the important REE complexing 
ligands Cl- and F- due to the increased dissocia-
tion of HCl° and HF° species. These competing 
factors thus dictate whether saturation of the flu-
id with REEPO4(s) will occur during cooling.

4) Introduction of phosphate ligand; very 
efficient precipitation mechanism if REE and 
P are not co-transported or if a REE-bearing fluid 
interacts with P-enriched lithologies. Yet, even 
if REE and P are co-transported, with additional 
P added to the solution, it would probably reach 
saturation of REEPO4(s) earlier. One potential 
limitation with this mechanism is identifying the 
rock type or fluid that are sufficiently enriched 
in P to facilitate this process. In carbonatite-
silicate systems, such a rock could potentially 
be early apatite cumulates or apatite-rich carbon-
atites (Zaitsev et al., 2015; Chakhmouradian et 
al., 2017, and references therein). In such sys-
tems, fluid-interaction with early formed apa-
tite is likely the most important precipitation 
mechanism. In other hydrothermal systems, 
however, it could be challenging to recognise 
pre-existing P-enriched rocks. A joint source of 
REE and P may thus be more common than 
not in many magmatic-hydrothermal systems. In 
low-temperature systems such as unconformity-
related REE deposits, co-transport of REE and P 
is unlikely, and they are probably transported in 
separate fluids. Some specific basinal fluids can 
be P-enriched, and xenotime precipitates when 
the REE-bearing fluid mixes with the basinal 
P-enriched fluid (Nazari-Dehkordi et al., 2018).
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5.4 Outlook and remaining 
research topics
Although the approach of this research project 
has shifted slightly from the original idea, the 
purpose has stayed the same; to contribute to 
the understanding of how hydrothermal REE 
deposits form. The main goal was to identify the 
main REE-transporting agents in hydrothermal 
REE systems by determining the compositions of 
REE-bearing fluids and to use geochemical mod-
elling to identify key depositional mechanisms. 
While this goal has partially been reached, this 
study has primarily contributed to the under-
standing and recognition of a new and potentially 
regional-scale hydrothermal REE system, and 
the implications this have had on the gen-
eral understanding of hydrothermal REE-
mineralising systems.

Modelling of hydrothermal REE-mineral-
ising systems has aptly been made in several 
studies in recent years (Migdisov and Williams-
Jones, 2014; Migdisov et al., 2016; 2018; Perry 
and Gysi, 2018; Xing et al., 2019). These studies 
have laid the foundation for the understanding of 
REE transport and precipitation of REE-bearing 
minerals. However, the models have not consid-
ered co-transport of REE and P. This is mainly 
because of the general lower temperatures used 
for these models. This is, however, a direct conse-
quence of the lack of experimental studies at the 
relevant conditions where co-transport of REE 
and P is likely to occur. 

Additional experimental data are thus 
required before new geochemical modelling can 
be conducted. Such new models should also 
consider high-temperature conditions, which 
would be applicable to the Olserum-Djupedal 
REE-mineralising system. For instance, studies 
on the solubilities of monazite, xenotime and 
the apatite end-members as well as other REE-
bearing minerals (e.g., bastnäsite) in addition to 

studies on the stabilities of different REE com-
plexes (including PO4-complexes) at magmatic-
hydrothermal conditions would be extremely 
desirable. Constraints on the concentration of 
P in magmatic-hydrothermal fluids of differ-
ent affinity would be vital in order to model the 
formation of hydrothermal REE-phosphate 
deposits. Likewise, reliable concentrations 
of individual REE in magmatic-hydrothermal 
fluids, and of other potential ore-forming flu-
ids, would also be highly desirable. At that point 
would it be possible to make better predictions 
on how REE are transported in crustal fluids 
and how REE deposits form in various hydro-
thermal settings.

6 Conclusions

This study has foremost focused on understand-
ing the origin and evolution of the Olserum-
Djupedal REE mineralisation in SE Sweden. 
The mineralisation is unique in many aspects, 
like in the paragenesis and style, and hosts abun-
dant monazite-(Ce), xenotime-(Y) and variably 
REE-bearing fluorapatite. The main findings and 
implications of the study can be summarised as 
follows:

I. Primary REE mineralisation in the Olserum-
Djupedal district formed at magmatic-hydrother-
mal conditions (~600 °C) by magmatic NaCl-
FeCl2-KCl-CaCl2-HF-H2O fluids at c. 1.8 Ga. 
During subsequent cooling, the ore assemblages 
were variably altered by CaCl2-NaCl to NaCl-
CaCl2 brines and partly by CO2-bearing fluids 
down to temperatures of around 300 °C and to 
at least 1.75 Ga.

II. Co-crystallisation of fluorapatite, mona-
zite-(Ce) and xenotime-(Y) in the Olserum-
Djupedal REE mineralisation and lack of 
rocks pre-enriched in terms of P suggest a 



42

DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A

joint source of REE and P. There is no need to 
invoke a scenario where REE and P are trans-
ported by separate fluids.

III. High capability for co-transport of 
REE and P is most probable at increasing 
salinity of the hydrothermal fluids and at 
increasing temperatures above 400 °C. Acid-
ic conditions would make the co-transport of 
REE and P more effective. Yet, depending on 
the stabilities of REE-OH complexes at these 
temperatures, co-transport of REE and P may 
be feasible even at neutral to alkaline conditions. 
Additional constituents in the fluid such as F, S 
and, CO2 will also influence the co-transporting 
ability of the fluid.

IV. While hydrothermal REE mineralisations 
are typically related to alkaline magmatism, par-
ticularly to alkaline silicate-carbonatitic systems, 
this study shows that high-grade hydrothermal 
REE-mineralising systems can also develop in 
association with subalkaline magmatism. Out 
of the subalkaline granitic systems, fraction-
ating peraluminous granites show the greatest 
potential to exsolve fluids carrying REE and P, 
which can lead to the formation of hydrothermal 
REE deposits rich in REE-bearing phosphates.

V. REE-phosphate precipitation by the 
interaction of a REE-bearing fluid with a P-rich 
rock or fluid is a very efficient mechanism at 
conditions where co-transport of REE and P are 
improbable. In fluids co-transporting REE and P, 
cooling, pH changes or the destabilisation of the 
main REE transporting agents, or more viably, a 
combination of these are likely the most promi-
nent mechanisms precipitating REE-phosphates.
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