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Abstract 

Heat treatment of meat at temperatures between 50 and 65°C, for extended periods of time, is known as low-temperature 

long-time (LTLT) cooking. This cooking method produces meat that has increased tenderness and better appearance than 

when cooked at higher temperatures.  Public concerns regarding this method have focused on the ability to design heat 

treatments that can reach microbiological safety. The heat treatment induces modification of the meat structure and its 

constituents, which can explain the desirable eating quality traits obtained. Denaturation, aggregation, and degradation of 

myofibrillar, sarcoplasmic and connective tissue proteins occur depending on the combination of time and temperature during 

the heat treatment. The protein changes, especially in relation to collagen denaturation, along with proteolytic activity, have 

often been regarded to be the main contributors to the increased meat tenderness. The mechanisms involved and the possible 

contribution of other factors are reviewed and discussed. 
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1 Introduction 

Heating of meat modifies its eating quality including texture, colour and flavour (Aaslyng, Bejerholm, Ertbjerg, Bertram, 

& Andersen, 2003; Davey & Niederer, 1977; Kovácsné Oroszvári, Rocha, Sjöholm, & Tornberg, 2006; Martens, Stabursvik, & 

Martens, 1982). In addition, heating of meat increases the digestibility (Qi et al., 2017) and the energy that can be gained upon 

consumption as also observed when cooking starch-rich foods (Carmody, Weintraub, & Wrangham, 2011). The rate and extent 

of these changes is dependent on the amount of heat that is transferred to the meat, and on the heating rate (Cover, 1943; 

Tornberg, 2005). The ability to exert  control over these variables will define to what extent the meat becomes more palatable 

after cooking (Bertram, Aaslyng, & Andersen, 2005; Califano, Bertola, Bevilacqua, & Zaritzky, 1997; Obuz, Dikeman, Erickson, 

Hunt, & Herald, 2004). To the consumer, tenderness, juiciness and flavour are the main factors influencing choice and 

acceptance of cooked meat (Aaslyng et al., 2003; Creed, 1995; Resurreccion, 2004). Therefore, a continuing aim of the meat 

industry is to find improvements in processing that ensure and enhance these desirable sensory attributes, while still yielding 

a product that is safe to consume (Banerjee & Verma, 2015; Holdsworth & Simpson, 2007). Among those improvements is low-

temperature long-time (LTLT) processing. As the name indicates, the method consists in heating the product to a low end-

point temperature using extended heating times. The cooking temperature is often close to 60°C or lower, and the product is 

kept isothermally for a long time, from hours to even days. Cooking in this way has been long known to produce meat of a high 

sensorial quality (Christensen et al., 2012; Dinardo, Buck, & Clydesdale, 1984; Mortensen, Frøst, Skibsted, & Risbo, 2012), 

consistently tender and juicy (Bouton & Harris, 1981; Cover, 1943; Laakkonen, Wellington, & Sherbon, 1970; Machlik & 
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Draudt, 1963) and have steadily gained popularity in restaurants, centralized kitchens and catering operations (Bañón, Nieto, 

& Díaz, 2007). 

One of the most popular forms of LTLT cooking is the cook-in-bag technique called sous vide (under vacuum), which 

applies the principle to vacuum packaged meat with water, or steam, as heating media (Baldwin, 2012; Bañón et al., 2007; 

Creed, 1995; Myhrvold, Young, Bilet, & Smith, 2011). LTLT cooking has been said to represent a large contribution to culinary 

science (Hesser, 2005), but also to the industry of convenience products with extended shelf life (Baldwin, 2012; Bañón et al., 

2007; Sheard & Rodger, 1995). 

It is our aim in this review to offer a summary of the current knowledge about LTLT heat treatments, and also to review 

and discuss the possible mechanisms behind the obtained desirable consumer traits. 

 

2 The eating quality of LTLT cooked meat 

2.1 Tenderness 

Cover (1943) reported that beef roasts (triceps brachii and biceps femoris muscles) obtained after cooking at 80°C for long time 

(up to 43 h) were always more tender than those cooked at 125°C for much shorter time (about one third of the time 

compared to the lower oven temperature), thus highlighting the importance of a slow heating rate. Later on, Bramblett & Vail 

(1964) demonstrated that roasts cooked to a core temperature of 65°C had better eating quality (tenderness and overall 

appearance) when heated at an oven temperature of 68°C rather than 93°C. They also stated that increasing the holding time 
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when the core temperature was close to 60°C was crucial for obtaining more tender meat. Other studies (Laakkonen, 

Wellington, et al., 1970; Machlik & Draudt, 1963) found that cooking at temperatures close to 60°C for extended periods not 

only avoided the increase in meat toughness observed at higher temperatures, but also improved meat tenderness after 4 h of 

holding. These observations have been further confirmed (Table 1), in beef (Beilken, Bouton, & Harris, 1986; Bouton & Harris, 

1972a, 1981; Christensen et al., 2013; Dinardo et al., 1984), pork (Becker, Boulaaba, Pingen, Krischek, & Klein, 2016; Becker, 

Boulaaba, Pingen, Röhner, & Klein, 2015; Christensen, Ertbjerg, Aaslyng, & Christensen, 2011b) and lamb (Roldán, Antequera, 

Martín, Mayoral, & Ruiz, 2013). 

The consensus is that LTLT cooking results in a greater meat tenderness. However, variations among studies have been 

reported in relation to the characteristics of the raw materials and the temperature/time combination that was applied. For 

beef, the longissimus muscle tenderised less than tougher muscles (semitendinosus, semimembranosus, biceps femoris and/or 

rectus femoris) after 4 h of holding at 60°C, as measured by sensory panels and Warner-Bratzler shear force (Dinardo et al., 

1984; Laakkonen, Wellington, et al., 1970; Machlik & Draudt, 1963). Increasing the holding time from 5 to 17 h did not change 

the shear force values of semitendinosus from slaughter pigs at any temperature between 48°C and 63°C, whereas longissimus 

tenderised in treatments at 58°C and 63°C with extended holding (Becker et al., 2015; Christensen et al., 2011b). Sánchez del 

Pulgar et al. (2012) studied pork masseter muscle, which contains a large amount of connective tissue, and reported that 

Texture Profile Analysis (TPA) parameters (hardness, adhesiveness, springiness, cohesiveness and chewiness) were not 
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affected by an increase in holding time from 5 to 12 h at 60 °C, but a clear decrease was observed when the meat was cooked 

at 80°C for 12 h (Sánchez del Pulgar, Gázquez, & Ruiz-Carrascal, 2012). 

In the few available studies using young and old animals, age played a role in determining the extent of tenderisation 

too (Table 1). For example, meat of veal and young bulls (0-12 months) had reduced shear force and adhesion values after less 

than 4 h when heated between 50-53°C (Beilken et al., 1986; Christensen et al., 2013), while steers and cows (aged between 2 

and 17 years) required 55-65°C and between 8 and 24 h of heating to achieve similar reductions in toughness (Bouton & 

Harris, 1981; Christensen et al., 2013). We have found only one study in which the age-dependent effect of LTLT treatments in 

pork was studied; the results showed that toughness of longissimus and semitendinosus muscles from old sows remained 

essentially unchanged with holding times between 5 and 17 h  in the temperature range between 48°C and 63°C , whereas 

meat toughness decreased with holding time in muscles from slaughter pigs under similar conditions (Christensen et al., 

2011b). 

Warner-Bratzler peak force is widely used to represent the overall toughness of meat. However, many studies suggest 

that the initial yield in the Warner-Bratzler deformation curve reflects the strength of the myofibrils (Beilken et al., 1986; 

Bouton & Harris, 1981; Bouton, Harris, Macfarlane, & Snowden, 1977; Møller, 1981). Using this reasoning, the difference 

between peak force and initial yield (PF-IY) has been used to obtain information on the mechanical strength of other 

components of meat. In muscles that have not shortened (sarcomere length of 1.8 µm or greater) PF-IY has been attributed to 

the strength of connective tissue. LTLT treatments have been shown to produce a significant decrease in the PF-IY component 
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of the shear force value (Beilken et al., 1986; Bouton & Harris, 1981; Christensen et al., 2013), suggesting connective tissue 

weakening. Regarding the mechanical strength of myofibrils, using shear force tenderometer and  Warner-Bratzler initial 

yield, no clear effect from animal age or muscle group has been reported (Beilken et al., 1986; Bouton, Harris, & Ratcliff, 1981; 

Davey & Gilbert, 1974),  but in general, the myofibrillar strength was reduced with temperature (between 55-65°C) and time 

(Beilken et al., 1986; Bouton et al., 1981; Davey & Gilbert, 1976). 

Some authors have tried to explain the changes in beef tenderness following LTLT cooking between 50 and 65°C in terms 

of characteristics of the connective tissue (Table 1). The importance of weakening of the connective tissue as part of the 

mechanism of tenderisation of LTLT cooked beef is indicated by the clear differences between age groups (mirroring the 

collagen heat stability) and between types of muscle (reflecting the collagen content). The contribution from connective tissue 

to tenderisation upon LTLT cooking is likely of a different nature than during long time boiling and stewing of meat (see 

section 3), where the higher temperatures allow for a complete denaturation of collagen (Micklander, Peshlov, Purslow, & 

Engelsen, 2002; Voutila, Ruusunen, & Puolanne, 2008). However, shear force measurements of cooked meat do not provide a 

direct measurement of the contribution from the connective tissue, so the results cannot be generalised.  

 

2.2 Juiciness and cook loss 

Long heating times seem to affect tenderness and juiciness oppositely. LTLT meat was juicier when cooking temperature and 

holding time were reduced, according to the results of the sensory evaluations available for pork and beef (Becker et al., 2016; 
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Christensen et al., 2012; Dinardo et al., 1984; Mortensen et al., 2012; Vaudagna et al., 2002). Given that juiciness and 

tenderness are the most important sensory attributes in cooked meat, any LTLT process must be designed to obtain optimum 

values in both traits. Some authors even pointed out how a juicier feel enhanced the perception of tenderness, even when 

values of shear force were not correspondingly low (Becker et al., 2016; Dinardo et al., 1984). Other parameters could be 

affected by a low juiciness score. Becker et al. (2016), found that even if pork longissimus muscle cooked at 58°C for 20 h was 

more tender, panellists described it as “crumbly” and less juicy, when compared to other treatments at low temperature (53°C 

and 20 h, and  60°C with no holding time), results that corroborated the trends observed previously by Mortensen et al. (2012) 

for beef. 

Cook loss is, along with shear force measurements, one of the most studied parameters of LTLT meat (Table 1), since it is 

correlated with juiciness and yield of the final product. For example, Hansen, Knøchel, Juncher, & Bertelsen (1995) reported 

yields of 89% for beef roasts cooked for 5  h at 62°C and 93% for treatments at 59°C. Certainly, reducing cook losses is 

beneficial for the industry and is an advantage of LTLT cooking method when compared to others that used higher 

temperatures (Dinardo et al., 1984; Roldán et al., 2013; Sánchez del Pulgar et al., 2012). 

Care should be applied when comparing cook loss results because of the difference in sample size, heating schedule, raw 

product history (e.g. freezing-thawing cycles, type of packaging, etc.),  given that these variables affect the kinetics of weight 

and water loss (Oillic, Lemoine, Gros, & Kondjoyan, 2011). However, for LTLT cooking, some trends can be found in relation to 

holding time. Laakkonen et al. (1970) reported that the main weight loss in beef (longissimus and semitendinosus muscles) 
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occurred during initial heating and the first 3 h of holding at 60°C. Beilken et al. (1986) also reported greater cook loss in the 

temperatures between 50 and 60°C, with weight changes occurring in the first 8 h of cooking for veal muscles, and for as long 

as 48 h for steer muscles; these age-related differences and cooking-related trends also occurred in other beef studies (Bouton 

& Harris, 1981, 1972b; Christensen et al., 2013). Similarly, increased cooking losses for LTLT cooked pork muscles 

(longissimus and semitendinosus) have been reported when meat was heated between 45°C and 60°C (Becker et al., 2016, 

2015; Christensen, Bertram, Aaslyng, & Christensen, 2011a; Zielbauer, Franz, Viezens, & Vilgis, 2016). The largest losses 

occurred at the initial stages of cooking.  

Few studies have compared the amount of cook loss with water content measurements. In pork longissimus, LTLT 

resulted in higher cooking losses as well as lower water content as the temperature was increased from 53°C to 58°C (Becker 

et al., 2016). Similar observations were made for lamb longissimus (Roldán et al., 2013) and pork masseter (Sánchez del Pulgar 

et al., 2012). However, holding time did not have such a clear effect: while longer times at 60°C significantly increased weight 

losses, the observed reductions in moisture of lamb longissimus (Roldán et al., 2013) and pork masseter muscles were not 

significant. This was attributed to the loss of other components, such as soluble collagen and various other proteins, as has 

been observed in beef upon longer isothermal heating at 60°C (Christensen et al., 2013; Laakkonen et al., 1970).  

The lower cooking losses obtained with LTLT, compared to conventional cooking,  are probably due to the combination 

of processing factors, mainly a low end-point temperature. Furthermore, most LTLT is done using thermostatic water baths, 

which offer a more uniform heating and a slow average rate of heat penetration (Buck, Hickey, & Rosenau, 1979), and thus, the 
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product can stay in the water for several hours without presenting signs of over-cooking and additional cooking losses 

(Baldwin, 2012; Buck et al., 1979). Additionally, LTLT cooking is typically performed on vacuum packaged meat which helps 

avoiding evaporative losses associated with other cooking methods, like oven roasting (Bañón et al., 2007; Church & Parsons, 

2000; Myhrvold et al., 2011). 

 

2.3  Colour and flavour 

While long cooking at high temperatures produces meat that is soft but with an unattractive colour, LTLT cooked meat has 

been shown to be consistently more appealing and uniform in appearance (Bramblett & Vail, 1964; Dinardo et al., 1984). LTLT 

cooking also offers more leverage when it comes to controlling the final appearance of meat in terms of doneness (i.e. degree 

of cooking), which accounts for its popularity among chefs (Baldwin, 2012; Bañón et al., 2007).  

Colour and visual appearance are used as indicators of doneness of cooked meat (F.S.I.S., 2011; King & Whyte, 2006). 

“Well-done” meat looks pale, dry and greyish-brown, while “rare” meat is reddish-pink and moist (King & Whyte, 2006; 

Mortensen, Frøst, Skibsted, & Risbo, 2015). It has been shown in studies on slow-roasting that a “rare” beef colour occurred 

from the 6th hour of cooking onwards with temperatures between 50-60°C (Bramblett, Hostetler, Vail, & Draudt, 1959; 

Bramblett & Vail, 1964; Cover, 1943; Laakkonen, Wellington, et al., 1970). In sous vide pork and beef, Christensen et al. (2012) 

observed that a more “done” appearance was obtained by cooking longer (time increased from 6 h to 30 h). 
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Most colour measurements agree with visual assessments of LTLT meat’s internal colour stability over time. Redness 

values have been shown to reduce with increasing temperature in the interval from 50 to 65°C in, for example, pig and lamb 

longissimus (Becker et al., 2016; Roldán et al., 2013) and beef semitendinosus (Botinestean, Keenan, Kerry, & Hamill, 2016; 

Vaudagna et al., 2002), but also to remain quite constant over time once the core has reached the final temperature. Slightly 

higher yellowness and lightness values have been found with very prolonged heating times, but often not enough to indicate a 

“done” appearance in pork (Becker et al., 2015; Christensen et al., 2011a; Sánchez del Pulgar et al., 2012), or lamb (Roldán et 

al., 2013). 

It is widely accepted that most of the volatile aromatic compounds that contribute to the palatability of cooked meat are 

formed at temperatures above 70°C, so it would be expected that a pleasant cooked flavour would not develop at a low 

temperature cooking between 50 and 60°C (Calkins & Hodgen, 2007; Cross, Stanfield, & Koch, 1976). The meat flavour and 

taste after cooking at low temperatures is, therefore, a combination of the contribution from fatty acid degradation products 

and the non-volatile compounds (Aaslyng & Meinert, 2017). The effect of LTLT cooking at 60 and 80°C on the volatile profile of 

meat has been studied in pork masseter and lamb longissimus muscles (Roldán, Antequera, Armenteros, & Ruiz, 2014; Roldán, 

Ruiz, del Pulgar, Pérez-Palacios, & Antequera, 2015; Sánchez del Pulgar, Roldán, & Ruiz-Carrascal, 2013), using headspace 

solid phase micro-extraction followed by mass spectrometry. They reported a decreasing presence of most volatiles derived 

from lipid oxidation (especially linear aldehydes) as heating intensified (higher temperature and/or longer time) and greater 

levels of volatile compounds from degradation of amino acids and/or thiamine. 
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The development of cooked meat flavour encompasses a complex set of reactions promoted by the amount of heat 

provided (Calkins & Hodgen, 2007; Mottram, 1998).  Indeed, the observed decrease of carbonyl compounds derived from lipid 

oxidation points to their implication in further reactions with other compounds (proteins, amino acids, etc.) to produce new, 

and more desirable volatiles (Roldán et al., 2015; Sánchez del Pulgar et al., 2013). 3-Methylbutanal has been associated with 

the development of meaty-nutty flavours in dry-cured hams (Ruiz, Ventanas, Cava, Andrés, & Garcı́a, 1999), and was also 

detected in LTLT meat after 24 h of heating at 60°C (Roldán et al., 2015; Sánchez del Pulgar et al., 2013). Cooking time also 

increased the products from Strecker degradation of other amino acids and thiamine, such as carbon disulfide, dimethyl 

disulfide, 2-methyl-thiophene, 2-pentylthiophene and benzothiazole. These compounds possess a low odour threshold and are 

known to provide the meaty, savoury, roast and boiled flavours associated with cooked meat (Calkins & Hodgen, 2007; Pegg & 

Shahidi, 2014).  

It is difficult to assess the significance of the detected volatile compounds on the palatability of meat without sensory 

analyses. A study that dealt with limited flavour descriptors (meaty, bloody, metal and acidic) determined that, even if LTLT 

treatments (53°C and 58°C, 6-30 h) enhanced the perception of meaty flavour in pork and beef, the effects on tenderness and 

juiciness were of greater importance to the overall acceptance of this type of meat (Christensen et al., 2012). Increasing time 

(from 3 to12 h) consistently had greater influence than temperature on the perception of brothy and boiled veal 

flavour/aroma of beef (Mortensen et al., 2012). In agreement, Vaudagna et al. (2002) reported a greater “cooked beef” flavour 

and aroma scores in meat cooked at 55°C for 6.5 h than at 65°C for 1.5 h, while other authors found a decrease in roast flavour 
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when cooking at 60°C  for 2 to 4 h (Dinardo et al., 1984). It appears that increasing time becomes crucial for the formation of 

most desirable flavour/aroma traits in a relative narrow temperature range. At the same time, most studies have shown that 

the intensity of desirable flavour attributes is medium to low when compared to meat cooked at higher temperatures (Roldán 

et al., 2015; Sánchez del Pulgar et al., 2013), due to the lack of products from Maillard reactions. Therefore, it is common 

practice prior to serving to sear LTLT meat at high temperatures (130-150°C) for a few seconds to attain a more appealing 

appearance (a caramelised surface) and flavour. 

 

3 Physical and chemical changes during LTLT cooking 

Detailed information on the general effect of heat on meat proteins is described in reviews by Tornberg (2005), focusing on 

structural and quality changes of meat products, and by Yu, Morton, Clerens, & Dyer (2017) summarizing the literature on 

primary-level modifications of proteins due to cooking of meat. Only limited information is available on the heat induced 

changes of meat components attained by LTLT cooking. A recent study by Zielbauer et al. (2016) systematically investigated 

the impact of time at different cooking temperatures up to 74°C. In the following sections, heat-induced modifications are 

discussed to bring more clarity on the mechanisms behind the improved eating quality of LTLT meat.  
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3.1 Structural changes 

Protein denaturation (see section 3.2) will occur at temperatures as low as 35 to 40°C, and with increasing temperature there 

will be a shrinkage in the structure (Warner et al., 2017). As meat temperature is increased from 50 to 60°C, there is a 

significant reduction in muscle fibre diameter (Bendall & Restall, 1983; Palka & Daun, 1999). At temperatures over 60°C, 

shrinkage proceeds, both in diameter and in the longitudinal axis (parallel to the sarcomeres) (Hughes, Oiseth, Purslow, & 

Warner, 2014). Bouton, Harris, & Shorthose  (1976) reported increased size reduction as the end-point temperature rose, and 

indeed larger shrinkage is experienced when heating above 60°C (Bendall & Restall, 1983). This decrease in diameter has been 

attributed to reduction of the inter-fibre spacing due to myofibrillar protein denaturation and, after that, to the severe 

contraction of collagen fibres (Bendall & Restall, 1983; Brüggemann, Brewer, Risbo, & Bagatolli, 2010). Increasing holding time 

has a, relatively, smaller effect than increased temperature on diameter changes and, thus in pork longissimus heated at 53, 55, 

57 or 59°C there were no clear differences in fibre diameter as cooking time was increased from 3 to 20 h (Christensen et al., 

2011a). In lamb longissimus heated at 60, 70 or 80°C (6, 12 or 24 h of cooking) the fibres in micrographs were smaller at 60°C, 

and there was no effect of time of heating (Roldán et al., 2013). Sarcomere length, a measure of longitudinal shrinkage, was not 

significantly reduced in pork longissimus (Christensen et al., 2011a), and decreased only slightly in veal pectoralis as 

temperatures were increased from 50 to 60°C and cooking times from 1 to 24 h (Bouton & Harris, 1981). 

As meat shrinks, fluid is expelled as water and other components such as fat and solubilised proteins (Kovácsné 

Oroszvári et al., 2006; Sánchez del Pulgar et al., 2012; Tornberg, 2005). Transversal shrinkage of the myofibrils is responsible 
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for the majority of the water lost during cooking (Bertram et al., 2005), but, as heating proceeds, denaturation of collagen and 

longitudinal shrinkage will account for additional losses (Brüggemann et al., 2010; Hughes et al., 2014; Palka & Daun, 1999). 

The limited longitudinal shrinkage registered in LTLT cooking can be part of the reason why this process produces smaller 

losses than other cooking methods in which higher temperatures are used. Also proteolysis by more heat-stable proteolytic 

enzymes (section 3.3) during the slow heating and long holding times may affect water-holding and cook losses. Thus 

Kristensen & Purslow (2001) hypothesized that proteolytic degradation of the cytoskeleton is linked to water-holding and 

Zeng, Li, & Ertbjerg (2017) observed degradation of the Z-disk proteins desmin and α-actinin following incubation with 

various proteases, suggesting that swelling of the filament lattice is related to improved water-holding of myofibrils. 

Although the direct relationship between dimensional changes and toughness of cooked meat remain unclear, some 

structural changes of meat components upon heating do affect the tenderness of the end product (Bouton et al., 1977; Lewis & 

Purslow, 1989; Mutungi, Purslow, & Warkup, 1996). Shrinkage of collagen fibres between 50 and 65°C decreased the breaking 

strength of the perimysial connective tissue, while only smaller changes in toughness of myofibrils were observed 

(Christensen, Purslow, & Larsen, 2000). At higher temperatures, the overall influence of denaturation of intramuscular 

connective tissue is tenderising, whereas the structural changes in myofibrils cause toughening (Bouton et al., 1977; 

Christensen et al., 2000; Lewis & Purslow, 1989; Mutungi et al., 1996).  

Extended holding times have, as outlined in the previous section, been shown to increase meat tenderness. Hours long 

isothermal heating of meat above 70°C is commonly used in order to tenderise meat from old animals or tough cuts due to 
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collagen conversion into gelatine (Davey & Niederer, 1977; Davey, Niederer, & Graafhuis, 1976), and similar observations 

during LTLT cooking have led to the suggestion that the tenderisation effect of this cooking method is partly via connective 

tissue degradation. However, it has also been found that long-time cooking of aged meat decreases the strength of myofibrils 

by weakening of the forces holding them together, causing an increased level of fragmentation upon shearing (Davey et al., 

1976) and, therefore, it is also possible to achieve a high degree of tenderisation in meats with low connective tissue, when 

cooking at lower temperatures in the range of 50 to 60 °C (Davey & Niederer, 1977). The reason for this progressive 

weakening may be ascribed to the increasing amount of heat delivered, however, proteolysis is also likely to be involved as 

outlined in section 3.3. 

 

3.2 Protein denaturation 

As outlined in the previous sections, the main heat induced modifications occur at the level of muscle proteins, and greatly 

influence the texture, juiciness/cook loss, colour and flavour of meat. The energy input from cooking causes the proteins to 

lose their thermodynamic stability and rearrange themselves in the irreversible process of denaturation.  

The denaturation temperatures of muscle proteins during ramp heating have been investigated using a variety of 

techniques, including differential scanning calorimetry (DSC) (Beltrán, Bonnet, & Ouali, 1992; Berge et al., 2001; Bertola, 

Bevilacqua, & Zaritzky, 1994; Martens et al., 1982; Voutila et al., 2008; Wagner & Anon, 1985), Second Harmonic Generation 

Microscopy (SHG) (Brüggemann et al., 2010; Sun et al., 2006) and low field Near Magnetic Resonance (NMR) (Bertram et al., 
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2005; Christensen et al., 2011a). It has been shown that if meat proteins are heated for prolonged times, then proteins 

denature even if the cooking temperatures are well below the actual denaturation temperatures otherwise reported (Bertola 

et al., 1994; Martens et al., 1982; Zielbauer et al., 2016). 

 

3.2.1 Myofibrillar proteins 

The myofibrils are dynamic protein networks, composed of several different proteins that interact with each other providing 

stability to the protein complexes and muscle structures (Ertbjerg & Puolanne, 2017; Fraterman, Zeiger, Khurana, Wilm, & 

Rubinstein, 2007). Given that myosin and actin constitute a major part of the myofibrillar proteins, they have been the interest 

of many studies in relation to protein denaturation. 

Myosin is rather thermolabile. The globular heads of the myosin molecule start to denature at 40°C (Warner, Kauffman, 

& Greaser, 1997), and structural alterations are observed in myosin subfragment-1 (Liu, Puolanne, & Ertbjerg, 2014), while 

heating above 53°C marks a more complete denaturation (Berhe, Engelsen, Hviid, & Lametsch, 2014; Brüggemann et al., 2010). 

Holding time has some effect on myosin denaturation in combination with the end-point temperature. DSC studies have shown 

extensive myosin denaturation in meat after 3 h of holding at 53-54°C and only a limited amount of native protein remains 

after a few minutes of heating at 60°C (Berhe et al., 2014; Bertola et al., 1994; Brüggemann et al., 2010). Denaturation of 

myosin corresponds to structural changes observed with low field NMR, such as reduction in the T21 relaxation time and, 

consequently, reduced water-protein interactions, shrinkage and increased cook loss in the initial stages of LTLT cooking 
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(Bertram et al., 2005; Christensen et al., 2011a). An increasing hydrophobic environment, as a consequence of unfolding of 

myofibrillar proteins such as myosin has also been reported upon heating between 40 and 65°C, and this change can also 

affect the water binding of cooked muscle (Berhe et al., 2014; Chelh, Gatellier, & Santé-Lhoutellier, 2006; Santé-Lhoutellier, 

Théron, Cepeda, Grajales, & Gatellier, 2008). 

Actin has been reported to require somewhat high temperatures, between 68 and 80°C, before it starts to denature 

(Berhe et al., 2014; Bertola et al., 1994; Martens et al., 1982). However, DSC studies have shown that the relative amount of 

native actin in beef and pork appear to decrease with extended holding time, even at temperatures below 60°C (Bertola et al., 

1994; Christensen et al., 2011a, 2013; Martens et al., 1982; Zielbauer et al., 2016). Denaturation of actin could thus be a factor 

causing some of the reduction in fibre diameter observed under prolonged isothermal heating.  

Myofibrillar protein denaturation is associated with toughening upon traditional cooking of meat, especially above 

60°C (Bertola et al., 1994; Martens et al., 1982). It remains a question why the extensive denaturation of actin during LTLT 

cooking apparently does not cause increased toughness, as observed in other more severe thermal treatments (Califano et al., 

1997; Cheng & Parrish, 1979; Martens et al., 1982). Furthermore, some denaturation phenomena of myofibrillar proteins (like 

their unfolding and aggregation dynamics) under long isothermal heating have not been studied to the same extent as in 

traditional high temperature cooking, so their contribution to properties of LTLT cooked meat is not well understood. 
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3.2.2 Collagen 

The connective tissue and associated collagen is also irreversibly modified as the temperature is raised. Shrinkage of collagen 

fibrils has been observed to occur at 57°C (Brüggemann et al., 2010), but there are indications that structural deformations 

can occur even at lower temperatures (e.g. 55°C) (Sun et al., 2006). However, the shortening occurring at temperatures above 

64°C is much more extensive, and coincides with an increase in cook loss and a reduction in the breaking strength of collagen 

(Bailey & Light, 1989). When heated to temperatures of 58 – 64°C the collagen molecule undergoes a transition from the 

helical (crystalline) state to a randomly coiled (amorphous) structure (Lepetit, 2007). The transition is caused by breakage of 

hydrogen bonds and, consequently, there will be reduction of water-protein interactions, loosening of the fibrillar structure, 

and contraction of the collagen molecule. Unrestrained collagen fibres shrink when heated to temperatures of 60 to 70°C 

(Tornberg, 2005), denaturation then proceeds into granulation, increased solubilisation and then gelatinisation, in connection 

with the breaking of intermolecular bonds by increasing heat (Palka, 2003; Palka & Daun, 1999; Voutila et al., 2008). Although 

complete gelatinisation occurs at temperatures above 65°C at the heating rate of 5°C/min. Brüggemann et al. (2010) and 

Voutila et al. (2008) found (using a slower heating rate), that most collagen fibres in the epimysium melt at 59°C.  These 

changes are strongly considered tenderising, but gelation of collagen has been also proposed as a process which can account 

for increased water holding in temperatures between 45 and 60°C (Zielbauer et al., 2016) 

As holding time increases at temperatures close to 60°C, a continuous degradation of collagen occurs, measurable in the 

reduction of the second endothermic peak of cooked meat after 3 h (Bertola et al., 1994) and in the greater amount of 
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solubilised collagen expelled in cook loss after hours of isothermal heating (Christensen et al., 2011b, 2013;  Dinardo et al., 

1984). It is uncertain how extensive the solubilisation/gelatinisation is at low temperatures, as some collagen fibrils are 

known to retain a recognisable form even after heating for extended cooking times (60°C and 12 h) (García-Segovia, Andrés-

Bello, & Martínez-Monzó, 2007; Sánchez del Pulgar et al., 2012; Voutila et al., 2008). In LTLT cooking, positive correlations 

between solubilised collagen and tenderness in pork and beef (Christensen et al., 2011b, 2013), suggested that collagen 

denaturation was involved in the tenderizing mechanism.  

 

3.2.3 Myoglobin and other sarcoplasmic proteins 

Although the sarcoplasmic proteins do not possess structural function in muscle, they are responsible for the colour of cooked 

meat and, to some extent, its texture (Martens et al., 1982; Tornberg, 2005) and water-holding (Liu, Arner, Puolanne, & 

Ertbjerg, 2016). The complex mixture of water-soluble proteins denatures over a wide range of temperatures, from 

approximately 40 to 90°C (Davey & Gilbert, 1974), according to solubility measurements.  

Myoglobin starts denaturing between 55°C and 65°C in meat, reaching a maximum by 75-80°C (Hunt, Sørheim, & Slinde, 1999; 

Mancini & Hunt, 2005). Of the three myoglobin forms, deoxymyoglobin has shown the greatest heat stability, followed by 

oxymyoglobin and then metmyoglobin (Hunt et al., 1999). The main denaturation phenomenon in myoglobin is the unfolding 

of the globin moiety to form ferrohemochrome (pink/red) or ferrihemochrome (brown) pigments, depending on the oxidation 

state of the native protein (Hunt et al., 1999; Trout, 1989). The denaturation of globin leaves the heme site more vulnerable to 
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oxidation, and, therefore, ferrohemochrome will often turn into the ferric form (ferrihemochrome), which is associated with a 

“done” appearance after extensive cooking (Hunt et al., 1999; King & Whyte, 2006; Mancini & Hunt, 2005; Trout, 1989). In this 

context, the greater proportion of red-pink pigments found in LTLT cooked meats has been attributed to the presence of 

higher amounts of native oxymyoglobin, or deoxymyoglobin, because of the mild heat treatment and the oxygen-free 

environment provided by vacuum packaging.  

It has been proposed that the transition of meat into a gel is a reason for the increase in tenderness between 50 and 65°C 

(Davey & Gilbert, 1974; Tornberg, 2005). During LTLT cooking, solubilised collagen and sarcoplasmic proteins could deposit 

inside myofibres and form a gel, which could be one mechanism behind the changes in texture. In agreement, it has been 

observed in sous vide cooking that meat appears more gel-like as cooking intensifies, with a consequent reduction in toughness 

(García-Segovia et al., 2007; Roldán et al., 2013; Sánchez del Pulgar et al., 2012). Micrographs of LTLT pork masseter showed 

that the amount of a homogeneous substance became more obvious as time was increased from 5 to 12 h at 60°C (Sánchez del 

Pulgar et al., 2012). Furthermore, images of lamb longissimus showed that, meat fibres cooked for 24 h, even at the lowest 

temperature (60°C), seemed swollen, and the structure of the meat more compact, with granular deposits between them 

(Roldán et al., 2013). Gelation of myosin and sarcoplasmic proteins may also be a factor influencing the complex relationships 

observed between cook loss and protein denaturation in pork (Zielbauer et al., 2016). 
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3.3 Proteolysis  

It has long been suggested proteolysis acts as an auxiliary mechanism to heat in the degradation of collagen during mild heat 

treatments, where a combination of low temperature and a slow heating rate are applied (Laakkonen, Sherbon, & Wellington, 

1970; Penfield & Meyer, 1975).  

 Laakkonen, Sherbon, et al. (1970) found residual collagenolytic activity during LTLT treatments of aged meat, but they 

also reported that the detected activity was too great to be solely attributed to collagenase, which suggested involvement of 

other proteolytic systems. Due to the thermal stability of cathepsins, they were proposed as an alternative system as they were 

active during long time cooking (Davey & Gilbert, 1976; Davey & Niederer, 1977). These endopeptidases are contained within 

lysosomes but, upon ageing or heating, they are released and diffuse into meat structures (Christensen, Larsen, Ertbjerg, & 

Purslow, 2004; Ertbjerg, Mielche, Larsen, & Møller, 1999; Spanier, McMillin, & Miller, 1990).Their proteolytic activity is broad, 

as they are capable of degrading myofibrillar and connective tissue proteins (Agarwal, 1990; Baron, Jacobsen, & Purslow, 

2004; Bechet, Tassa, Taillandier, Combaret, & Attaix, 2005; Burleigh, Barrett, & Lazarus, 1974).  

Only recently, residual cathepsins B and L activity have been measured in the cook loss of meat heated for a long time at 

low temperature. Residual cathepsin activity measured in cooked pork muscles (semitendinosus and longissimus) increased 

with temperature from 48 to 58°C (Christensen et al., 2011b), and to a lesser extent by increasing holding time from 5 to 17 h. 

Based on similar findings, Ertbjerg, Christiansen, Pedersen, & Kristensen (2012) suggested the possibility of heat activation of 

pro-cathepsins during thermal processing. According to Burleigh et al. (1974) and Etherington, (1976) cathepsins can 
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destabilise native collagen, and also degrade thermally weakened collagen into peptides, that can be further attacked by other 

enzymes. Proteolysis in conjunction with heat denaturation, therefore, could act synergistically to produce the increased 

weakening of collagen and tenderisation seen in LTLT treatments. 

The contribution of proteolysis to myofibrillar degradation during LTLT treatment may be different from that 

postulated above and is not yet clearly understood. Calpains are unlikely to be responsible for the tenderisation during 

prolonged holding times, as calpain-2 starts to lose activity at 40°C, and is rapidly inactivated at 55°C (Ertbjerg et al., 2012). 

Heat-induced denaturation of myofibrillar proteins could facilitate proteolysis by changing the protein conformation which in 

turn leads to a mechanical weakening of the structure during prolonged heating. But the dynamics in myofibrils could be more 

complex than those of collagen as heat denaturation progresses. It has been found that the exposure of hydrophobic sites 

during the unfolding of proteins can enhance proteolysis by systems like the proteasome (Pacifici, Kono, & Davies, 1993), 

however, there are also indications that intense aggregation of muscle proteins can be detrimental and even inhibiting to 

proteolytic action (Santé-Lhoutellier, Astruc, Marinova, Greve, & Gatellier, 2008; Santé-Lhoutellier, Théron, et al., 2008). 

 

4 Safety and stability of LTLT products 

The advantages offered by LTLT sous vide in terms of sensorial quality may be overshadowed by concerns relating to the 

microbiological safety and shelf stability of meat cooked at very low temperatures. This is of particular importance since meat 
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is an ideal growth medium for many organisms, including pathogens like Salmonella, Listeria monocitogenes, Escherichia coli, 

Clostridium perfringens. 

Traditionally, to obtain safe meat, government agencies recommend cooking the product just until the slowest heating 

point (i.e. the geometric centre) reaches temperatures between 63°C and 71°C. Using the concept of equivalent processing, 

when cooking at lower temperatures, longer holding times are required to achieve successful inactivation, thus LTLT 

processes can be designed to be safe in terms of a target microorganism. For example, Vaudagna et al. (2002) calculated 

pasteurisation values for 6.5 h of cooking at 50°C and 55°C to be equivalent to 𝑃70
10 =5.99 min and 𝑃70

10 =17.77 min, and 

sufficient to inactivate L. monocitogenes, a fairly heat tolerant pathogen that is commonly used as a safety indicator for low-

temperature long-time heat treatments. 

 

4.1 Microbial safety 

Total plate counts and total viable cell counts were used to evaluate LTLT processes applied in beef (50-62°C), resulting in 

significant reductions of microorganism counts for mesophiles and psychrotrophs after cooking (Botinestean et al., 2016; 

Hansen et al., 1995; Vaudagna et al., 2002). Counts  also showed to be significantly lower after cooking pork at 53°C for several 

hours (Becker et al., 2015; Salaseviciene, Vaiciulyte-Funk, & Koscelkovskienė, 2014) in terms of Enterobacteriaceae and 

mesophiles. Roldán et al. (2013) reported that at least 6 h of cooking lamb at 60°C was sufficient to reduce counts of 
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microorganisms (lactic acid bacteria, gram positive cocci, Enterobacteriaceae, coliforms, Bacillus thermosphacta, L. 

monocitogenes and Salmonella typhimurium) found in raw lamb loins to values lower than 1 CFU/g. 

Assaying specific pathogens, Christensen et al. (2012) and Gunvig & Jacobsen (2012) agreed that at prolonged holding 

time at 53°C is sufficient to achieve 5-log to 6.7-log (5D to 6.7D) reduction of Listeria monocitogenes in beef. For pork, Becker, 

Boulaaba, Pingen, Röhner, & Klein (2015) inoculated longissimus muscles with various pathogens (Salmonella Enteritidis, L. 

monocitogenes and E. coli (O157:H7)) that were inactivated at levels of 5D after 10h at 53°C,; the same reduction for 

Salmonella under LTLT at 53°C and 58°C was also mentioned by Christensen et al. (2012) for pork semitendinosus. 

Smith, Evans, & Buck (1981), evaluated growth and survival of Clostridium perfringens in beef muscles (semimembranosus, 

semitendinosus, biceps femoris, quadriceps femoris and longissimus) cooked to a core temperature of 60°C with increased 

holding times. They found that not only vegetative cell numbers decrease by 3-log cycles (3D) with minimal holding, but also 

lethal effects start at lower temperatures (48.9°C) when heating rates are elevated. The authors recommended a minimum of 

2.3 h holding time in a water bath for a 12D reduction, ensuring both safety and without loss of quality when initial counts are 

higher than expected (as tested with inoculated roasts at 106 cells/g). Vaudagna et al. (2002) also recommended the use of 

treatments more severe than 50°C and 6.5 h of holding to achieve the minimum of a 6D reduction of this organism, which can 

produce food poisoning. Recently, the growth and inactivation of C. perfringens was evaluated under different rates of heating 

in pork cooking; slow heating resulted in greater heat tolerance and, therefore, longer isothermal cooking at 53°C was needed 
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to inactivate the microorganism and reduce the counts below detection levels (Duan, Hansen, Hansen, Dalgaard, & Knøchel, 

2016). 

Mesophiles like Salmonella spp. and E. coli (O157:H7) are not pathogens of concern in LTLT products since they are not 

heat tolerant and cannot reproduce under well-kept refrigeration conditions. They are rather used, along with 

Enterobacteriaceae, as indicators of hygienic processing conditions. However, Becker, Boulaaba, Pingen, Röhner, & Klein 

(2015) were able to qualitatively isolate E. coli after cooking at 53°C for three hours, and recommended validation of all 

treatments before stating their safety. Ensuring the safety of a process is of particular importance when LTLT meat products 

are to be served to immuno-compromised costumers, such as the elderly (Botinestean et al., 2016). 

Given the possibility of mild heat treatments creating thermal resistance in some microbes (Duan et al., 2016; Hansen & 

Knøchel, 1996) as well as the observed variations in the logarithmic reductions, it is highly advisable to use raw meat with low 

initial counts of microorganisms, follow hygienic guidelines to prevent cross contamination, consider the use of preserving 

additives (Juneja, Bari, Inatsu, Kawamoto, & Friedman, 2009), and avoid temperature abuse of both cooked and raw meat 

(Baldwin, 2012; FDA, 2011; Hyytia-Trees et al., 2000; Vaudagna et al., 2002). Purslow (2016) pointed out that the parasites 

Trichinella spiralis and Toxoplasma gondii present a concern for the use of low temperature cooking of pork in some 

geographical areas such as Argentina. Safety in this case would be dependent on the quality of the raw materials, so careful 

inspection to ensure the absence of parasites should be a priority in those countries.  
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Inactivation of Clostridium spp. is relevant because some species have the ability to germinate and grow in refrigeration 

when there is temperature abuse and little or no additives are present (salts, for example), thus causing package swelling and 

toxin formation (Hansen et al., 1995; Juneja & Marmer, 1998). For LTLT meat that is not to be served immediately, and rather 

placed in cold storage (cook- chill approach) the risk posed by toxin-producing nonproteolytic Clostridium botulinum, given 

the heat tolerance of its spores, would be of concern. Thermal treatments at temperatures above 60°C, commonly applied in 

sous vide ready meals, are often unable to achieve a safe reduction of C. botulinum spores (Hansen et al., 1995; Hyytia-Trees et 

al., 2000; Vaudagna et al., 2002). Indeed, the use of higher temperatures (above 80°C) for close to 30 min is recommended in 

order to obtain a 6D reduction of this target microorganism (Holdsworth & Simpson, 2007; Lindström et al., 2001; Sheard & 

Rodger, 1995). However, for the reasons explained in the previous sections, this approach to cooking can cause deterioration 

of the sensorial quality of meat hence an effective control of the storage temperature (under 4°C) should be applied, as well as 

limiting the shelf life of the product to a few days, to decrease the risk of spore germination (Baldwin, 2012; Graham, Mason, 

Maxwell, & Peck, 1997; Hansen et al., 1995; Peck & Stringer, 2005; Vaudagna et al., 2002). 

 

4.2 Stability 

Spoilage and storage stability are also concerns for LTLT cook-chill meat. In successful low temperature cooking and 

during storage (≤5°C), some meat borne pathogens (Listeria, E. coli and B. thermosphacta) have not been detected,  and even 

though microbial counts have shown increases, the pathogens were always below the detection limits, ensuring 
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microbiological stability of cooked beef for 35 days (Hansen et al., 1995) and 55 days (Vaudagna et al., 2002), and during 14 

days for pork (Salaseviciene et al., 2014).  

The low cooking temperatures used in LTLT influences the nutritional value of the meat and thus vitamin B12 has been 

reported to be better retained (Rinaldi et al., 2014). Few studies have addressed the sensorial and chemical deterioration of 

LTLT meat under storage. ‘Blood’ and ‘metal’ were common descriptors used for off-flavours and off-odours of beef roasts, 

which appear after 21 and 23 days of storage (Hansen et al., 1995; Vaudagna et al., 2002).  Vaudagna et al. (2002) reported 

growing rates of lipid oxidation (as measured by Thiobarbituric acid reactive substances, TBARS) from the 13th day of storage 

onwards, in beef cooked at 65°C, and from the 21st day onwards in the treatments at 55°C. Grigioni, Margaría, Pensel, Sánchez, 

& Vaudagna (2000) also reported significant increments in TBARS for LTLT cooked meat (50°C, 6.5 h) from day 20 of storage 

to day 34. Both studies found similar changes in the scores for warmed-over flavour (WOF) measured by either sensory panel 

or electronic nose. Hansen et al. (1995) found low levels of TBARS and WOF for beef roasts, which did not increase for up to 

day 34 of storage, although they noted changes in texture after 10 days in meat cooked at 59°C. The authors also stated that, in 

their study conditions, the odour and chemical changes were minor if the package was kept intact but increased dramatically 

after opening and slicing.  

The results presented in these studies seem to indicate that the sensorial deterioration is also a limiting factor for 

determining the shelf life of LTLT cook-chill meat products, in agreement with observations about higher temperature sous 

vide processes (Armstrong & McIlveen, 2000; Díaz, Nieto, Garrido, & Bañón, 2008). 
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5 Conclusions 

Low-temperature Long-time cooking offers multiple advantages to traditional high temperature cooking. The ability to reach 

thermal equilibrium with the heating medium allows for a uniform eating quality and reduces the risk of overcooking, as well 

as allowing more control over the doneness of the product. The main advantage is the possibility of obtaining more tender 

meat, when the right combinations of time and temperature are applied, regardless of the characteristics of the raw meat 

(species, type of muscle or age of the animal). The mechanisms behind this feature of LTLT cooking are not yet completely 

understood. Evidence has suggested that the observed tenderisation under LTLT cooking, is a consequence of the complex 

interplay between heat-induced protein denaturation and proteolysis of connective tissue and, possibly, myofibrillar 

structures.  

Over the years, concerns about the safety of LTLT meat products have arisen. It is now known that mesophilic bacteria are 

inactivated by some of the mildest temperatures applied, provided the holding time is sufficiently long. However, additional 

measures are required to avoid the risks posed by the survival of more thermoresistant pathogens. 
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Table 1. Synopsis of studies investigating tenderness and cook loss during LTLT cooking of meat. WB-SF: Warner-Bratzler 

shear force; WB-PF: Warner-Bratzler peak force; WB-IY: Warner-Bratzler initial yield. 

Reference 
Cooking conditions 

Muscles Measurements Observations/Highlights Temperature 
(°C) 

Holding 
Time (h) 

Beef 

Laakkonen, 
Wellington, et al. 

(1970) 
60 0-6 

Longissimus, 
semitendinosus, 
rectus femoris 

WB-SF, weight loss 

Slow heating and holding at 60°C 
produce increased tenderness. 

Weight losses are mainly present 
during the heating phase. 

Bouton and Harris 
(1972) 

40, 50, 60, 70, 
75 and 90 

1-16 

Pectoralis , biceps 
femoris, 

semitendinosus, 
semimembranosus, 

psoas major 

WB-SF, 
compression, 

extension/ 
adhesion, weight 

loss, expressed juice 

For tenderisation, young animals 
require milder treatments than 

older ones. 

Davey (1976) 
30, 60, 65 and 

70 
24-96 

Sternomandibularis 
Tenderometer, 
standardized 

shearing 

The tenderisation occurring as 
holding time increases (60-65°C) is 

due to a biochemical reaction 
weakening the myofibrils. 

Davey (1977) 65 and 80 1-9 

Tenderising at 65°C occurs rapidly, 
with additional shear force 

reductions after long isothermal 
heating. 

 

Bouton and Harris 
(1981) 

Bouton et al. (1981) 
50 and 60 1 and 24 

Pectoralis profundus, 
semitendinosus, 

longissimus, biceps 
femoris 

WB-PF, 
compression, 

adhesion, weight 
loss 

Degradation of collagen can explain 
the tenderisation at 50-60°C, given 

age dependence. No clear 
myofibrillar involvement in 

tenderisation. 

Dinardo et al. 
(1984) 

60 
0, 2 and 

4 

Longissimus, biceps 
femoris, 

semitendinosus, 
WB-SF, weight loss 

Cooking in a waterbath allows for a 
more uniform doneness. Collagen 

solubilisation increased with 
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semimembranosus, extended holding time at 60°C. 
 

Hansen et al. (1995) 59 and 62 5 Semitendinosus WB-SF, weight loss 

Yield is higher at 59°C. Shear force 
was lower at 62°C. Both parameters 

changed with storage time. 
 

Beilken et al. (1986) 
50, 55, 60 and 

65 

0.5, 1, 2, 
4 and 8 

1,24 and 
48 

Semimembranosus   
WB-PF and WB-IY, 

weight loss 

A combination of connective tissue 
degradation and ageing of the 

myofibrillar structure takes place at 
55-60°C and extended holding. 

 

Vaudagna et al. 
(2002) 

50, 55, 60 and 
65 

1.5, 3, 
4.5 and 

6.5 
Semitendinosus WB-SF, weight loss 

As temperature raises from 50 to 
65°C SF decreases and cook loss 

increases. Studied times do not have 
a significant effect. 

 

Christensen et al. 
(2013) 

53, 55, 58 and 
63 

5 and 17 Semitendinosus 
WB-PF, WB-IY, 

weight loss 

Reduction of SF is caused by 
weakening of connective tissue. 

Increased solubilisation of collagen 
can be related to Cathepsin activity. 

 

Botinestean et al. 
(2016) 

60 and 70 4.5 Semitendinosus WB-SF, TPA 

Sous vide at low temperatures led to 
decreases in SF. Hardness and 

chewiness were also reduced when 
cooking at 60°C. Appearance was 

also improved. 
 
 

Pork      

Christensen et al. 
(2011b) 

48, 53, 58 and 
63 

0, 5 and 
17 

Longissimus, 
semitendinosus 

WB-SF, weight loss 

Lower toughness and increased cook 
loss were more apparent between 53 

and 58°C. Solubilisation of collagen 
required more time. Sows require 

more time and temperature to 
tenderise. 
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Christensen et al. 
(2011a) 

53, 55, 57 and 
59 

3 and 20 Longissimus Weight loss 

Prolonged cooking (20h) results in 
decreasing water-protein interactions 

and higher cook loss. 
 

Sánchez del Pulgar 
et al. (2012) 

60 and 80°C 5 and 12 Masseter 
TPA, weight loss, 
moisture content 

Cooking at low temperature produces 
lower cook losses and helps 

preserving water. Samples at 60°C 
present broken but not completely 

denatured collagen fibres. 
 

Becker et al. (2015) 53 and 58 
10, 20 
and 30 

Longissimus WB-SF, weight loss 

After 30h of heating there are no 
significant decreases in shear force or 

increases in cook loss. 
 

Zielbauer et al. 
(2016) 

45, 51, 60 and 
74 

Up to 48 Psoas major Weight loss 

Protein denaturation and water 
binding show similar trends with 
respect to time and temperature. 

Shrinkage and gel formation kinetics 
follow different time scales than 

water loss. 

Lamb 

Roldán et al. (2013) 60, 70 and 80 
6, 12 and 

24 
Longissimus 

TPA, weight loss, 
moisture content, 

WB-SF 

Hardness decreases with time 
indicate disintegration of the 

connective tissue surrounding the 
fibres.  
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