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1. Introduction

For planar continuous flows, every non-empty compact omega limit set of an orbit

containing no equilibria is a closed orbit by the Poincaré-Bendixson theorem. This

theorem also applies to three-dimensional (3D) strongly continuous-time competitive

systems due to Hirsch’s carrying simplex theory [1]. Roughly speaking, this theory

states that any strongly competitive system of differential equations of Kolmogorov

type possesses a globally attracting codimension-one invariant hypersurface Σ such that

every nontrivial orbit is asymptotic to one in Σ. Therefore, the Poincaré-Bendixson

theorem precludes any kind of chaos in these three dimensional systems and makes the

dynamics easy to analyze [2, 3].

Based on the existence of a carrying simplex, Zeeman proposed in [4] a classification

(the equivalence relation is called nullcline equivalence) for the Lotka-Volterra (LV)

system

dxi
dt

= xi

(
ri −

3∑
j=1

bijxj

)
, i = 1, 2, 3, (1)

where ri, bij are all positive real numbers. In these 33 equivalence classes, she further

showed that every solution of (1) tends to some equilibrium when there is no interior

equilibrium (classes 1 − 18) or there is a unique interior equilibrium with index −1

(classes 19 − 25). Driessche and Zeeman [5] further ruled out closed orbits in classes

32 and 33, and hence these two classes also have trivial dynamics. Nontrivial dynamics

(such as closed orbits and heteroclinic cycles) can only occur in classes 26 − 31 which

admit a unique interior equilibrium with index 1. The reader can consult, for instance,

[6, 7, 8], for additional results on Lotka-Volterra systems.

For discrete-time competitive systems, there have also been a lot of literature on

the existence of a carrying simplex Σ since the early work of Smith [9] and Hirsch [1];

see [10, 11, 12, 13, 14, 15, 16] for results on carrying simplices for discrete-time systems.

Recently, Balreira, Elaydi and Lúıs provided in [17] a criterion on the global stability

of discrete-time competitive systems via the carrying simplex; Mierczyński [18] proved

that the carrying simplex for a three-dimensional competitive map is actually a C1

submanifold-with-corners neatly embedded in the first octant under mild conditions.

Just like the continuous-time competitive systems, in order to investigate the global

dynamics of such discrete-time systems, it suffices to investigate the dynamics on Σ.

Even so, only very few tools can apply to such discrete-time systems. In particular, the

Poincaré-Bendixson theorem does not hold, because chaotic behavior can arise in two-

or even one-dimensional discrete-time systems (such as the Hénon map [19] and the

Ricker map [20]). Therefore, it is still a challenging topic to study the global dynamics

of such discrete-time systems, even for low-dimensional systems.

In this paper, we study the dynamical behavior of 3D discrete-time Kolmogorov

systems

T (x) = (T1(x), T2(x), T3(x)) = (x1F1(x), x2F2(x), x3F3(x)), (2)
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which possess a carrying simplex Σ, where Fi(x) > 0 for any x ∈ R3
+, i = 1, 2, 3. Under

mild conditions, Jiang and Niu [21] deduced a “Poincaré-Hopf-like” index formula for

these systems. Specifically,∑
θ∈Fv

index(T ; θ) + 2
∑
θ∈Fs

index(T ; θ) + 4
∑
θ∈Fp

index(T ; θ) = 1, (3)

where index(T ; θ) denotes the index of T at a fixed point θ, and Fv (Fs, Fp) denotes

the set of all nontrivial axial (planar, interior) fixed points. A direct application of (3)

is that one can obtain the existence and index of interior fixed points by the boundary

fixed points. Moreover, based on index formula (3), an equivalent classification theory

(the equivalence relation is called equivalent relative to ∂Σ; here ∂Σ = Σ ∩ ∂R3
+) for

the classical 3D Leslie-Gower models and Atkinson-Allen systems was established in

[16] and [21, 22], respectively. Such a classification theory has also been established

for the 3D Ricker maps having a carrying simplex in [23]. The three kinds of discrete-

time systems all have 33 stable equivalence classes like Zeeman’s classification for LV

systems. Together with Ruiz-Herrera’s exclusion criterion [14], it was proved that

the classes possessing no interior fixed point (classes 1 − 18) have trivial dynamics

and the whole dynamics on Σ for each of these classes was also presented further; see

[16, 21, 22, 23]. Nontrivial dynamics (e.g. Neimark-Sacker bifurcations) may occur

in other classes possessing a unique interior fixed point which has index 1. Although

Neimark-Sacker bifurcations were ruled out in the classes possessing a unique interior

fixed point with index −1 (classes 19− 25), whether they have trivial dynamics or not

remains an open problem. Specifically, for class 19 for 3D Leslie-Gower models [16] (see

also class 19 for 3D Atkinson-Allen systems [21, 22] and Ricker maps [23]), there are

only five fixed points on Σ, say s{1}, s{2}, s{3}, v{1}, q, where q is the unique interior fixed

point. The local behavior of the equilibria is the following: q is hyperbolic and has index

−1, s{2}, s{3} are hyperbolic local attractors and s{1}, v{1} are hyperbolic local repellers

lying on ∂Σ. The dynamics (partial) on Σ is as shown in Figure 1. Unfortunately,

whether this class has trivial dynamics or not, i.e. whether each orbit in this class will

converge to a fixed point or not, is unknown.

Recall that for 3D continuous-time competitive systems (such as LV systems [4, 6]

and Gompertz systems [24]) which admit a carrying simplex with the dynamics shown

in Figure 1, it follows from Poincaré-Bendixson theorem immediately that every orbit

tends to a fixed point and the whole dynamics on Σ can also be obtained further; see

Figure 2. Naturally, it is interesting whether such discrete-time systems have the similar

dynamics as continuous-time systems or not.

The main tool of this paper consists of a topological result to guarantee trivial

dynamics for orientation preserving homeomorphisms defined on a planar disk D. This

result is deduced in Section 2 and could be perceived not only as a technique for analyzing

(2) but have its own interest. In fact, an orientation preserving homeomorphism f from

a topological disk D ⊂ Rk (definitions will be given in Section 2) onto itself with a

unique fixed point q of index −1 in IntD has trivial dynamics. The application of this

abstract result to (2) leads to surprising properties: the number of equilibria on the
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Figure 1: Partial dynamics on Σ of class 19 for Leslie-Gower models, where the big

circle © denotes a region of unknown dynamics. Redrawn from [16]. A fixed point is

represented by a closed bullet • if it attracts on Σ, by an open bullet ◦ if it repels on

Σ, and by the intersection of its hyperbolic manifolds if it is a saddle on Σ.

Figure 2: The whole dynamics on Σ for continuous-time systems admitting a carrying

simplex with the dynamics shown in Figure 1, where A1 (resp. A2) is the basin of

attraction of s{2} (resp. s{3}) on Σ. The fixed point notation is as in Figure 1.

boundary and the local behavior around them can determine completely the dynamical

behavior of the system when there is a unique positive fixed point which has index −1.

Specifically, if T has exactly four hyperbolic fixed points {p1, p2, p3, p4} on the boundary

of Σ with {p1, p3} local attractors and {p2, p4} local repellers; and there exists a unique

hyperbolic fixed point in the interior of Σ, then T has trivial dynamics. We will apply

the results to some classical models such as the Leslie-Gower models, the Atkinson-Allen

systems, and the Ricker maps. As a consequence, we also solve some corresponding open

problems presented in [16, 21, 22, 23], i.e. these systems (3D) do have trivial dynamics
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when they admit a unique positive fixed point having index −1, and hence the stable

classes 19− 25 for these systems have trivial dynamics. In particular, the discrete-time

systems admitting a carrying simplex with the dynamics shown in Figure 1 have the

similar dynamics as continuous-time systems which is as shown in Figure 2.

2. Main Topological Results

The aim of this section is to give a criterion of trivial dynamics for orientation preserv-

ing homeomorphisms defined on a topological disk D with a unique fixed point in IntD,

the interior of D. As usual, a topological disk is a set contained in Rk (k ≥ 2) which

is homeomorphic to the closed unit disk D1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, where Rk

denotes the k-dimensional Euclidean space. A striking consequence of our result is that

the whole dynamics of those maps can be determined from the knowledge of the number

of fixed points in the boundary of D and the local behavior around them. For a map

f : D 7→ D, we denote by Fix(f) the set of all its fixed points, by ω(x, f) the omega

limit set of the orbit emanating from x, and by index(f ; q) the topological index of f

at q; see [25, 26].

• Throughout this section D denotes a topological disk, and f is an orientation preserv-

ing homeomorphism from D onto D.

Next we state the main theorem of this section.

Theorem 2.1. Assume that Fix(f) ∩ IntD = {q} and index(f ; q) = −1. Then f has

trivial dynamics, that is, for all x ∈ D, ω(x, f) is a connected set contained in Fix(f).

Furthermore, if f has only finitely many fixed points, then any orbit of f converges to

some fixed point.

2.1. Translation arcs and proof of Theorem 2.1

The proof of Theorem 2.1 relies on the theory of translation arcs. For the reader’s

convenience, we recall some known results, (see [27, 28, 29, 30] for a more detailed

discussion on this technique).

A translation arc α for an orientation preserving homeomorphism h : D 7→ D is an

arc contained in IntD with ends at q and h(q) and satisfying that

h(α \ {h(q)}) ∩ (α \ {h(q)}) = ∅.

First we collect the main two ingredients of the proof of Theorem 2.1.

Lemma 2.2 (Proposition 2.1 in [29]). Assume that h : D 7→ D is an orientation

preserving homeomorphism and D1 ⊆ IntD is a topological disk with

h(D1) ∩D1 = ∅.
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Then, given points z1, . . . , zn ∈ IntD1, there is a translation arc α with ends at

q, h(q) ∈ IntD and satisfying that

z1, . . . , zn ∈ α \ {q, h(q)}.

Lemma 2.3 (Brouwer’s lemma [30]). Assume that h : D 7→ D is an orientation

preserving homeomorphism and α is a translation arc with

hn0(α) ∩ α 6= ∅

for some n0 ≥ 2. Then there is a Jordan curve Γ ⊂ IntD \ Fix(h) such that

deg(id− h,Ri(Γ)) = 1

with Ri(Γ) the bounded connected component of R2 \ Γ.

Proof of Theorem 2.1.

All the notions involved in the theorem are invariant by topological conjugacy.

Therefore, it is not restrictive to assume that D = {(x, y) : x2 + y2 ≤ 1}.
Noticing that f(IntD) = IntD and f(∂D) = ∂D, we first show that for all x ∈ IntD,

ω(x, f) ⊆ Fix(f). Assume by contradiction that there is some p ∈ IntD such that

ω(p, f) * Fix(f).

Then there is a sequence σ(n) : N 7→ N strictly increasing so that

fσ(n)(p)→ r ∈ D

with f(r) 6= r. Using that f(IntD) = IntD, we have that fn(p) ∈ IntD for all n ∈ N.

Now, we take ε > 0 such that the Euclidean closed ball centered at r with radius ε, say

D1, which satisfies that

f(D ∩D1) ∩ (D ∩D1) = ∅.

Note that f(r) 6= r. Since fσ(n)(p) → r, there are two indices k1 < k2 such that

σ(k2) − σ(k1) > 2 and fσ(k1)(p), fσ(k2)(p) ∈ Int(D ∩ D1). Next, take D̃1 a topological

disk contained in Int(D1 ∩ D) so that fσ(k1)(p), fσ(k2)(p) ∈ Int(D̃1). This topological

disk can be constructed as follows. Take γ an arc joining fσ(k1)(p), fσ(k2)(p) contained

in Int(D1 ∩D) and set D̃1 = {(x, y) ∈ D : dist((x, y), γ) ≤ δ} with δ > 0 small enough;

see Figure 3.

Note that f(D̃1) ∩ D̃1 = ∅. Now, we can apply Lemma 2.2 to obtain a translation arc

α such that fσ(k1)(p), fσ(k2)(p) ∈ α. Observe that

fσ(k2)(p) ∈ α ∩ fσ(k2)−σ(k1)(α).

Then, by Lemma 2.3, there is a Jordan curve Γ ⊂ IntD\{q} so that deg(id−f,Ri(Γ)) =

1. This is a contradiction because the uniqueness of the fixed point q and the condition

index(f ; q) = −1 imply that deg(id− f,Ri(Γ)) = −1 if q ∈ Ri(Γ) and 0 otherwise. At
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Figure 3: The construction of D̃1.

this moment we have proved that ω(x, f) ⊆ Fix(f) for all x ∈ IntD.

Now suppose that there is some z ∈ ∂D such that ω(z, f) * Fix(f). Also, there is a

strictly increasing sequence σ(n) : N 7→ N so that

fσ(n)(z)→ r ∈ D

with f(r) 6= r. Take an Euclidean closed ball D1 centered at r satisfying

f(D ∩D1) ∩ (D ∩D1) = ∅.

Then there are two indices k1 < k2 with σ(k2) − σ(k1) > 2 such that fσ(k1)(z),

fσ(k2)(z) ∈ D ∩D1. By continuity of fσ(k1) and fσ(k2), there is a neighborhood Uz ⊂ D

of z satisfying that fσ(k1)(Uz), f
σ(k2)(Uz) ⊆ D ∩D1. Choose p ∈ Uz ∩ IntD. Therefore,

one has fσ(k1)(p), fσ(k2)(p) ∈ Int(D∩D1). Then repeat the above arguments for the case

p ∈ IntD, one will obtain the contradiction. Thus, we have proved that ω(x, f) ⊆ Fix(f)

for all x ∈ D.

We now show that ω(x, f) is a connected set. By a contradiction suppose that ω(x, f)

can be divided into two disjoint nonempty closed sets Ω1 and Ω2. Note that Ωi ⊂ Fix(f),

i = 1, 2, so Ωi is invariant under f . While it is a contradiction because ω(x, f) is

invariantly connected by [31, Theorem 5.2], i.e. ω(x, f) cannot be the union of two

nonempty disjoint closed invariant sets. The last conclusion is immediate. �

2.2. Whole dynamics on D

The aim of this subsection is to provide some dynamical insights of f when it has exactly

two locally asymptotically stable attractors and two locally asymptotically repellers. We

will say that p is locally asymptotically stable attractor if there exists {Un} a decreasing

sequence of neighbourhoods of p such that f(Un) ⊂ Un+1 with ∩∞n=1Un = {p}. The basin

of attraction of p is defined as

{r ∈ D : fn(r) −→ p}.
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In an analogous manner, we can define a locally asymptotically repeller and the basin of

repulsion simply replacing f by f−1. For the point q, that is essentially a saddle point,

we define its stable manifold

W s(q, f) = {y ∈ D : lim
n→+∞

fn(y) = q}

and its unstable manifold

W u(q, f) = {y ∈ D : lim
n→+∞

f−n(y) = q}.

Theorem 2.4. Assume that

• Fix(f) ∩ ∂D = {p1, p2, p3, p4};
• p1, p3 are local attractors and p2, p4 are local repellers;

• Fix(f) ∩ IntD = {q}, index(f ; q) = −1 and index(f−1; q) = −1.

Then

(i) IntD = W s(q, f) ∪ (C1 ∪ C3) ∩ IntD where C1 (resp. C3) is the basin of attraction

of p1 (resp. p3). Moreover, {q, p2, p4} ⊆ ∂C1 ∩ ∂C3;

(ii) IntD = W u(q, f)∪ (C2 ∪C4)∩ IntD where C2 (resp. C4) is the basin of repulsion of

p2 (resp. p4). Moreover, {q, p1, p3} ⊆ ∂C2 ∩ ∂C4;

(iii) W s(q, f) ∪W u(q, f) ∪ {p1, p2, p3, p4} partitions D into four invariant components,

namely, C1 ∩ C2, C1 ∩ C4, C3 ∩ C1, and C3 ∩ C2; see Figures 4.)

Proof. By Theorem 2.1, we know that f and f−1 have trivial dynamics.

(i) Take r ∈ IntD with r 6∈ C1 ∪ C3. Since f has trivial dynamics and the number of

fixed points is finite, the sequence {fn(r)} converges to a fixed point. Such a fixed point

has to be q because p2, p4 are repellers and r is not in the basin of attraction of p1 or p3.

This claim proves that IntD = W s(q, f)∪ (C1∪C3)∩ IntD. It is clear that the boundary

of the basin of attraction of p1 or p3 on the boundary of D are the points p2 and p4.

Finally, we take a point r ∈ IntD ∩ ∂C1. It is clear that r 6∈ C3 because C3 is an open

set and C1 ∩ C3 = ∅. Then, arguing as above,

fn(r) −→ q.

Observe that ∂C1 is an invariant set and so q ∈ ∂C1. In the same way, we can prove

that q ∈ ∂C3.

(ii) The argument is the same as (i) simply using that f−1 has trivial dynamics.

(iii) Since f is homeomorphism, W s(q, f) ∪W u(q, f) are invariant and f(∂D) = ∂D,

the conclusion is immediate.

The previous result does not use any hyperbolicity or smoothness conditions of f

and q. Therefore, it can be applied for non-smooth two dimensional manifolds. On the

other hand, under the hypothesis of the theorem, we can not guarantee, for instance,
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(a) ∂C1, ∂C3 6= W s(q, f) ∪ {p2, p4},
∂C2, ∂C4 6= Wu(q, f) ∪ {p1, p3}

(b) ∂C1, ∂C3 6= W s(q, f) ∪ {p2, p4},
∂C2 = ∂C4 = Wu(q, f) ∪ {p1, p3}

(c) ∂C1 = ∂C3 = W s(q, f) ∪ {p2, p4},
∂C2, ∂C4 6= Wu(q, f) ∪ {p1, p3}

(d) ∂C1 = ∂C3 = W s(q, f) ∪ {p2, p4},
∂C2 = ∂C4 = Wu(q, f) ∪ {p1, p3}

Figure 4: W s(q, f) ∪ W u(q, f) ∪ {p1, p2, p3, p4} partitions D into four invariant

components.

that ∂C1 = ∂C3 = W s(q, f) ∪ {p2, p4}; see Figure 4(a)–(b). For case (d) in Figure 4,

W s(q, f)∪{p2, p4} is a separatrix arc partitioning D into two connected components C1

and C3, and W u(q, f)∪{p1, p3} is also a separatrix arc partitioning D into two connected

components C2 and C4.

3. Carrying Simplex vs Theorem 2.1

The motivation of the abstract results of the previous section is to study discrete-time

systems that describe the interaction of three competitive species. Specifically, we study

T : Rk
+ 7→ Rk

+ of the type

T (x) = (T1(x), · · · , Tk(x)) = (x1F1(x), · · · , xkFk(x)), (4)

where Rk
+ is the usual nonnegative cone in Rk, and Fi(x) > 0 for any x ∈ Rk

+,

i = 1, · · · , k. We link Theorem 2.1 with (4) via the carrying simplex, i.e. a codimension-

one invariant manifold that determines completely the dynamical behavior of most
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competitive systems. In more detail, we say that T admits a carrying simplex, denoted

by Σ, if there is a subset of Rk
+ \ {0} so that

(C1) Σ is compact, invariant and unordered;

(C2) Σ is homeomorphic via radial projection to the (k − 1)-dimensional standard

probability simplex Sk−1 = {x ∈ Rk
+ :
∑

i xi = 1};
(C3) for any x ∈ Rk

+ \ {0}, there is some z ∈ Σ such that lim
n→∞

|T n(x)− T n(z)| = 0;

(C4) T (Σ) = Σ, and T : Σ 7→ Σ is a homeomorphism.

The key advantage of the existence of a carrying simplex is that the dimension of the

system is reduced. Consequently, we can apply, for instance, results of planar maps in

3D systems. We denote the interior of Σ, i.e. Σ ∩ IntRk
+ by IntΣ, and the boundary of

Σ, i.e. Σ ∩ ∂Rk
+ by ∂Σ.

Theorem 3.1. Let T = (x1F1(x), x2F2(x), x3F3(x)) : R3
+ 7→ R3

+ be a C1-map satisfying:

A1) ∂Fi(x)/∂xj < 0 holds for any x ∈ R3
+ and i, j = 1, 2, 3;

A2) T |H+
{i}

: H+
{i} 7→ H+

{i} has a fixed point v{i} = vie{i} with vi > 0, i = 1, 2, 3, where

T |H+
{i}

denotes the restriction of T on H+
{i} (the ith positive coordinate axis), and

e{i} is the unit vector pointing in the ith direction;

A3) ∀x ∈ [0, v] \ {0}, Fi(x) +
∑

j∈κ(x) xj
∂Fi(x)
∂xj

> 0 holds for any i ∈ κ(x) (or

Fi(x) +
∑

j∈κ(x) xi
∂Fi(x)
∂xj

> 0 holds for any i ∈ κ(x)), where κ(x) = {j : xj > 0}
is the support of x, v =

∑
v{i} = (v1, v2, v3) and the closed order interval

[0, v] = {x ∈ R3
+ : 0 ≤ xi ≤ vi, i = 1, 2, 3}.

If T has a unique fixed point q ∈ IntR3
+ so that the eigenvalues of the Jacobian matrix

at q are λ1, λ2, λ3 with 0 < λ1 ≤ λ2 < 1 < λ3, then the omega limit set of any orbit of

T is a connected set contained in Fix(T ); moreover, if T has only finitely many fixed

points, then any nontrivial orbit of T tends to some nontrivial fixed point.

Proof. First, conditions A1)−A3) guarantee the existence of a carrying simplex Σ by

[16, Theorem 3.1]. For convenience, we denote by T |Σ the restriction of T to the carrying

simplex. Now we show that index(T |Σ; q) = −1. Since 1 is not an eigenvalue of the

Jacobian matrix of T at q, id − T is a diffeomorphism in a neighbourhood of q. This

implies that there is ε0 > 0 so that the sphere Sε ⊂ R3 which is centered at q with radius

0 < ε < ε0 satisfies that any closed and simple curve γ ⊂ Sε surrounding q, γ − T (γ)

is also a closed and simple curve surrounding the origin. Moreover, the local unstable

manifold of q intersects Sε at exactly two points. On the other hand, we know that

the carrying simplex is a two dimensional invariant manifold (generally a non-smooth

manifold) that attracts all non-trivial orbits of the system. By this remark, it is clear

that, on the carrying simplex, q is neither an attractor nor a repeller. In addition, since

the unstable manifold of q is uniquely defined, we can conclude that it is contained in

the carrying simplex. In particular, the local unstable manifold of q is contained in the

carrying simplex. Now, we have all the ingredients to conclude that index(T |Σ; q) = −1.
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To check this property, we apply the linkage between the degree of a planar map and the

winding number. Given Sε a small sphere centered at q, Σ ∩ Sε is a Jordan curve γε in

the carrying simplex. By the previous discussion, βε = γε−TΣ(γε) is a simple and closed

curve surrounding 0. Therefore, the winding number of βε is 1 or−1. We now discard the

winding number 1. Denote by Ri(γε) and Re(γε) the interior and the exterior domains

limited by γε in the carrying simplex respectively. Since the local unstable manifold

of q is contained in the carrying simplex, we deduce that W u
loc(q) ∩ γε = {r1,ε, r2,ε} for

all 0 < ε < ε0. Thus, T (r1,ε), T (r2,ε) ∈ Re(γε). On the other hand, the points r1,ε

and r2,ε split the curve γε into two arcs, α1,ε and α2,ε. In these two arcs, there exist

Figure 5: r1,ε and r2,ε split the curve γε into two arcs, α1,ε and α2,ε.

points s1,ε ∈ α1,ε and s2,ε ∈ α2,ε so that T (s1,ε), T (s2,ε) ∈ Ri(γε) for all 0 < ε < ε0. By

contradictions, if such points do not exist for all 0 < ε < ε0, T (γε) ⊂ Re(γε) ∪ γε for all

0 < ε < ε0. Therefore, q would be a local repeller, a contradiction. From the existence

of these four points, it is clear that the winding number is −1; see Figure 6. Finally,

Figure 6: The winding number is −1.

we observe that T : Σ 7→ Σ is an orientation preserving homeomorphism; see [14]. The

results follow from properties C2)−C4) of Σ and Theorem 2.1 immediately.

Remark 3.2. It is clear that from the proof of Theorem 3.1, one also has index(T |−1
Σ ; q) =

−1 under the assumptions of Theorem 3.1. In particular, if the map T in Theorem 3.1

has a unique fixed point q ∈ IntR3
+ with index(T ; q) = −1 and 1 is not an eigenvalue of

DT (q), then DT (q) has real eigenvalues λ1, λ2, λ3 with 0 < λ1 ≤ λ2 < 1 < λ3 (see the

proof of Theorem 3.1 in [16]), and hence the conclusion of Theorem 3.1 holds.
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Moreover, it follows from [21] that the “Poincaré-Hopf-like” index formula (3) holds

for the map T which satisfies the conditions A1)–A3) in Theorem 3.1, and has only

finitely many fixed points whose eigenvalues do not equal one. Specifically∑
θ∈Fv

index(T ; θ) + 2
∑
θ∈Fs

index(T ; θ) + 4
∑
θ∈Fp

index(T ; θ) = 1, (5)

where Fv (Fs, Fp) denotes the set of all nontrivial axial (planar, positive) fixed points.

The condition of index(T ; q) = −1 with q a positive fixed point of T is often difficult

to verify directly. Formula (5) simplifies this task since the indices of the fixed points

in the boundary are easily computable.

We emphasize that for such maps, uniqueness of fixed point in IntR3
+ and∑

θ∈Fv

index(T ; θ) + 2
∑
θ∈Fs

index(T ; θ) = 5 (6)

imply trivial dynamics. Observe that (6) only involves the local behavior of the fixed

points of T on the boundary of R3
+.

4. Applications to population models

In this section we apply the previous results in some classical models that include the

Leslie-Gower models, the Atkinson-Allen systems, and the Ricker maps. As emphasized,

we solve some open problems suggested in the literature [16, 21, 22, 23], i.e. we show

that these systems have trivial dynamics when they possess a unique positive fixed point

with index −1.

4.1. Leslie-Gower model

Consider the Leslie-Gower model

T : Rk
+ 7→ Rk

+, Ti(x) =
cixi

1 +
∑k

j=1aijxj
, ci > 1, aij > 0, i, j = 1, · · · , k. (7)

Denote by

CLG(k) := {T ∈ X (Rk
+) : Ti(x) =

cixi

1 +
∑k

j=1aijxj
, ci > 1, aij > 0, i, j = 1, · · · , k},

where X (Rk
+) is the set of maps taking Rk

+ into itself. It was shown in [16] that each

map T ∈ CLG(k) admits a carrying simplex, say Σ.

Consider k = 3. Two maps T, T̂ ∈ CLG(3) are called equivalent relative to ∂Σ if

there exists a permutation π of {1, 2, 3} such that T has an axial fixed point s{i} (resp.

a planar fixed point v{k}) if and only if T̂ has an axial fixed point ŝ{π(i)} (resp. a planar

fixed point v̂{π(k)}), and further s{i} (resp. v{k}) has the same hyperbolicity and local

dynamics as ŝ{π(i)} (resp. v̂{π(k)}). A map T ∈ CLG(3) is said to be stable relative to ∂Σ

if all the fixed points on ∂Σ are hyperbolic. We understand that an equivalence class is

stable if each mapping in it is stable relative to ∂Σ; see [16] for more details.
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Note that this equivalence relation only depends on the dynamics of the fixed points

on the boundary of R3
+, and by the index formula (6), one can obtain the trivial dynamics

immediately in some equivalence classes. More precisely, according to [16], there are a

total of 33 stable equivalence classes in CLG(3). Moreover, in these classes, T has a

unique hyperbolic positive fixed point q with index −1 if and only if T belongs to classes

19− 25 (the precise conditions on the parameters of these classes are given in Table 1).

For systems (7), Theorem 3.1 reads as follows:

Theorem 4.1. Every nontrivial orbit of any map from classes 19 − 25 in CLG(3)

converges to some fixed point on Σ.

Proof. Together with the properties of the carrying simplex Σ, the result follows from

Theorem 3.1 and Remark 3.2 immediately.

Next we provide a further analysis for systems in these classes. According to [16],

a map T ∈ CLG(3) is in the stable class 19, if there exists a permutation π of {1, 2, 3}
after which parameters of T satisfy that

(1) α12 > 1, α13 > 1, α21 < 1, α23 < 1, α31 < 1, α32 < 1;

(2) 1 + a12β23 + a13β32 − c1 < 0,

where αij =
cjaii

aji(ci−1)+aii
, βij =

(ci−1)ajj−(cj−1)aij
aiiajj−aijaji . In class 19, Fix(T |Σ) =

{s{1}, s{2}, s{3}, v{1}, q}, where s{2}, s{3} are hyperbolic local attractors and s{1}, v{1} are

hyperbolic local repellers on ∂Σ, and q has index −1.

By using Theorem 4.1, we can derive the whole dynamics on Σ for class 19 in

CLG(3).

Theorem 4.2. For the stable class 19 in CLG(3),

(i) W s(q, T |Σ) ∪ {s{1}, v{1}} partitions Σ into two connected components A1 and A2,

where A1 (resp. A2) is the basin of attraction of s{2} (resp. s{3}) restricted to Σ;

(ii) W u(q, T |Σ) ∪ {s{2}, s{3}} partitions Σ into two connected components B1 and B2,

where B1 (resp. B2) is the basin of repulsion of s{1} (resp. v{1}) restricted to Σ;

(iii) W s(q, T |Σ) ∪ W u(q, T |Σ) ∪ {s{1}, s{2}, s{3}, v{1}} partitions Σ into four invariant

components.

Proof. It follows from the proof of Theorem 3.1 that index(T |Σ; q) = −1. Note that

Fix(T |Σ) ∩ ∂Σ = {s{1}, s{2}, s{3}, v{1}}, of which s{2}, s{3} are local attractors and

s{1}, v{1} are local repellers for T |Σ. Therefore, the conclusions of Theorem 2.4 hold

for T |Σ : Σ 7→ Σ. Now the conclusions (i)–(iii) are immediate.

We can argue in the same manner with the rest of classes.

Theorem 4.3. For classes 20− 25 in CLG(3), each map has two local attractors and

repellers on ∂Σ, and the stable (resp. unstable) manifold W s(q, T |Σ) (resp. W u(q, T |Σ))

together with the two repellers (resp. attractors) partitions Σ into two connected

components. Furthermore, W s(q, T |Σ) and W u(q, T |Σ) together with the two attractors

and repellers partition Σ into four invariant components.
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(a) class 20 (b) class 21 (c) class 22

(d) class 23 (e) class 24 (f) class 25

Figure 7: The dynamics on Σ for classes 20 − 25 in CLG(3). Redrawn from [16]. The

fixed point notation is as in Figure 1.

Proof. According to [16], the dynamics (partial) on Σ for classes 20− 25 is as shown in

Figure 7.

We first show the conclusions for class 20. By the dynamics shown in Figure 7(a), the

fixed point s{3} is a saddle whose one branch of the stable manifold and one branch of

unstable manifold are contained in ∂Σ, i.e., ̂s{3}s{1} (resp. ̂s{3}v{1}) in Figure 7(a)

is the branch of unstable (resp. stable) manifold contained in ∂Σ, where ̂s{3}s{1}
(resp. ̂s{3}v{1}) is the open arc on ∂Σ joining s{1} and s{3} (resp. v{1} and s{3});

s{1}, s{2} are two local attractors, and v{1}, v{3} are two local repellers for T |Σ. Then by

similar arguments in Theorem 2.4, we have IntΣ = W s(q, T |Σ) ∪ (C1 ∪ C2) ∩ IntΣ, and

IntΣ = W u(q, T |Σ) ∪ (C3 ∪ C4) ∩ IntΣ, where C1 (resp. C2) is the basin of attraction

of s{1} (resp. s{2}) and C3 (resp. C4) is the basin of repulsion of v{1} (resp. v{3}).

Moreover, W s(q, T |Σ)∪W u(q, T |Σ)∪{s{1}, s{2}, v{1}, v{3}} partitions Σ into four invariant

components.

The conclusions for classes 21–25 can be obtained similarly as the analysis of class 20.

The parameter conditions for each of classes 19 − 25 are listed in Table 1. Our

results have a topological flavour and do not involve hyperbolicity conditions. Since the

unstable manifold of q for classes 19− 25 is uniquely defined which is contained in the

carrying simplex, we know that W u(q, T |Σ) is a simple curve. But we emphasize that

Theorems 4.2 and 4.3 does not guarantee that W s(q, T |Σ) is a simple curve.
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Table 1: Stable equivalence classes 19− 25 in CLG(3), where

αij =
cjaii

aji(ci−1)+aii
, βij =

(ci−1)ajj−(cj−1)aij
aiiajj−aijaji

for i, j = 1, 2, 3 and i 6= j, and Σ with the corresponding conditions in each class is given

by a representative element in that class, i.e. there exists a permutation π of {1, 2, 3}
after which parameters of the map satisfy the corresponding inequalities in that class.

The parameter conditions are obtained from [16]. Each map in these classes has trivial

dynamics.

Class The Corresponding Parameter Conditions

19
(i) α12 > 1, α13 > 1, α21 < 1, α23 < 1, α31 < 1, α32 < 1

(ii) 1 + a12β23 + a13β32 − c1 < 0

20

(i) α12 < 1, α13 < 1, α21 < 1, α23 < 1, α31 > 1, α32 < 1

(ii) 1 + a12β23 + a13β32 − c1 < 0

(iii) 1 + a31β12 + a32β21 − c3 < 0

21

(i) α12 < 1, α13 < 1, α21 < 1, α23 > 1, α31 < 1, α32 > 1

(ii) 1 + a12β23 + a13β32 − c1 > 0

(iii) 1 + a21β13 + a23β31 − c2 < 0

(iv) 1 + a31β12 + a32β21 − c3 < 0

22

(i) α12 > 1, α13 > 1, α21 < 1, α23 < 1, α31 > 1, α32 < 1

(ii) 1 + a12β23 + a13β32 − c1 < 0

(iii) 1 + a21β13 + a23β31 − c2 > 0

23
(i) α12 > 1, α13 > 1, α21 > 1, α23 > 1, α31 < 1, α32 < 1

(ii) 1 + a31β12 + a32β21 − c3 > 0

24

(i) α12 > 1, α13 > 1, α21 > 1, α23 > 1, α31 < 1, α32 > 1

(ii) 1 + a12β23 + a13β32 − c1 > 0

(iii) 1 + a31β12 + a32β21 − c3 > 0

25

(i) α12 > 1, α13 > 1, α21 > 1, α23 < 1, α31 > 1, α32 < 1

(ii) 1 + a12β23 + a13β32 − c1 < 0

(iii) 1 + a21β13 + a23β31 − c2 > 0

(iv) 1 + a31β12 + a32β21 − c3 > 0
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4.2. Atkinson-Allen system

Consider the generalized Atkinson-Allen model T : Rk
+ 7→ Rk

+ given by

Ti(x) =
(1 + ri)(1− ci)xi
1 +

∑k
j=1 aijxj

+ cixi, 0 < ci < 1, aij, ri > 0, i, j = 1, · · · , k. (8)

When ri = 1 and ci = c, the model (8) reduces to the standard Atkinson-Allen model

[21]

Ti(x) =
2(1− c)xi

1 +
∑k

j=1 aijxj
+ cxi, 0 < c < 1, aij > 0, i, j = 1, . . . , k. (9)

Let K = {1, . . . , k}. Denote by

CGAA(k) := {T ∈ X (Rk+) : Ti(x) =
(1 + ri)(1− ci)xi

1 +
∑k

j=1 aijxj
+ cixi, 0 < ci < 1, aij , ri > 0, i, j ∈ K}

the Atkinson-Allen type competitive map set on Rk
+. It is shown in [22] that each

T ∈ CGAA(k) admits a carrying simplex. For CGAA(3), Gyllenberg et al. [22] defined

a similar equivalence relation as CLG(3), named equivalent relative to ∂Σ. They showed

that there are a total of 33 stable equivalence classes in CGAA(3). Moreover, in these

classes, T has a unique hyperbolic positive fixed point with index −1 if and only if T

belongs to classes 19− 25, and see Table 2 for the precise parameter conditions on each

of these classes.

For systems (8), Theorem 3.1 reads as follows:

Theorem 4.4. Every nontrivial orbit of any map from classes 19 − 25 in CGAA(3)

converges to some fixed point on Σ.

Note that, systems (8) in each of classes 19 − 25 for CGAA(3) have the similar

partial dynamics shown in Figure 1 and Figure 7 as those systems in CLG(3); see [22].

So, the following results on trivial dynamics for CGAA(3) can be obtained immediately

just as the analysis for CLG(3) by using Theorems 2.4 and 4.4.

Theorem 4.5. The conclusions of Theorems 4.2 and 4.3 hold for classes 19 − 25 in

CGAA(3).
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Table 2: Stable equivalence classes 19− 25 in CGAA(3), where

γij := rj − aji riaii , βij =
riajj−rjaij
aiiajj−aijaji

for i, j = 1, 2, 3 and i 6= j, and Σ with the corresponding conditions in each class is given

by a representative element in that class, i.e. there exists a permutation π of {1, 2, 3}
after which parameters of the map satisfy the corresponding inequalities in that class.

The parameter conditions are obtained from [22]. Each map in these classes has trivial

dynamics.

Class The Corresponding Parameter Conditions

19
(i) γ12 > 0, γ13 > 0, γ21 < 0, γ23 < 0, γ31 < 0, γ32 < 0

(ii) a12β23 + a13β32 − r1 < 0

20

(i) γ12 < 0, γ13 < 0, γ21 < 0, γ23 < 0, γ31 > 0, γ32 < 0

(ii) a12β23 + a13β32 − r1 < 0

(iii) a31β12 + a32β21 − r3 < 0

21

(i) γ12 < 0, γ13 < 0, γ21 < 0, γ23 > 0, γ31 < 0, γ32 > 0

(ii) a12β23 + a13β32 − r1 > 0

(iii) a21β13 + a23β31 − r2 < 0

(iv) a31β12 + a32β21 − r3 < 0

22

(i) γ12 > 0, γ13 > 0, γ21 < 0, γ23 < 0, γ31 > 0, γ32 < 0

(ii) a12β23 + a13β32 − r1 < 0

(iii) a21β13 + a23β31 − r2 > 0

23
(i) γ12 > 0, γ13 > 0, γ21 > 0, γ23 > 0, γ31 < 0, γ32 < 0

(ii) a31β12 + a32β21 − r3 > 0

24

(i) γ12 > 0, γ13 > 0, γ21 > 0, γ23 > 0, γ31 < 0, γ32 > 0

(ii) a12β23 + a13β32 − r1 > 0

(iii) a31β12 + a32β21 − r3 > 0

25

(i) γ12 > 0, γ13 > 0, γ21 > 0, γ23 < 0, γ31 > 0, γ32 < 0

(ii) a12β23 + a13β32 − r1 < 0

(iii) a21β13 + a23β31 − r2 > 0

(iv) a31β12 + a32β21 − r3 > 0
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Remark 4.6. Since the standard Atkinson-Allen model (9) is a special case of the

generalized Atkinson-Allen model (8), the conclusions of Theorems 4.4 and 4.5 hold

naturally for classes 19− 25 of 3D standard Atkinson-Allen models (9) in [21], i.e. the

classes 19− 25 of 3D standard Atkinson-Allen models have trivial dynamics.

4.3. Ricker map

Consider the Ricker map

T : Rk
+ 7→ Rk

+, Ti(x) = xi exp(ci(1−
k∑
j=1

aijxj)), ci, aij > 0, i, j = 1, · · · , k.(10)

It is shown in [23] that the Ricker map (10) admits a carrying simplex if the parameters

satisfy

ci < aii/
k∑
j=1

aij, or ci < 1/(
k∑
j=1

aij
ajj

), i = 1, · · · , k. (11)

Denote by

CRC(k) := {T ∈ X (Rk
+) : Ti(x) = xi exp(ci(1−

k∑
j=1

aijxj)), ci, aij > 0, (11) holds}

the subset of the Ricker type competitive map set on Rk
+ such that each one admits a

carrying simplex.

For CRC(3), a similar equivalence relation as CLG(3) and CAA(3), i.e. equivalent

relative to ∂Σ, was also defined by Gyllenberg et al. [23]. They showed that there are

a total of 33 stable equivalence classes in CRC(3). Moreover, in these classes, T has a

unique hyperbolic positive fixed point with index −1 if and only if T belongs to classes

19−25, and the precise parameter conditions on each of these classes are listed in Table

3.

It is easy to check that for each map in CRC(3), it satisfies conditions A1)−A3) in

Theorem 3.1. For systems (10), Theorem 3.1 reads as follows:

Theorem 4.7. Every nontrivial orbit of any map from classes 19 − 25 in CRC(3)

converges to some fixed point on Σ.

Note also that, systems (10) in each of classes 19− 25 for CRC(3) have the similar

partial dynamics shown in Figure 1 and Figure 7 as those systems in CLG(3); see

[23]. So, the following results on trivial dynamics for CRC(3) can also be obtained

immediately just as the analysis for CLG(3) by using Theorems 2.4 and 4.7.

Theorem 4.8. The conclusions in Theorems 4.2 and 4.3 hold for classes 19 − 25 in

CRC(3).
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Table 3: Stable equivalence classes 19− 25 in CRC(3), where

αij := aii − aji, βij =
ajj−aij

aiiajj−aijaji
for i, j = 1, 2, 3 and i 6= j. The Σ with corresponding parameters in each class is given

by a representative element in that class, i.e. there exists a permutation π of {1, 2, 3}
after which parameters of the map satisfy the corresponding inequalities in that class

(in addition to the parameter conditions listed for each class, the parameters also satisfy

the common additional condition (11)). The parameter conditions are obtained from

[23]. Each map in these classes has trivial dynamics.

Class The Corresponding Parameter Conditions

19
(i) α12 > 0, α13 > 0, α21 < 0, α23 < 0, α31 < 0, α32 < 0

(ii) a12β23 + a13β32 < 1

20

(i) α12 < 0, α13 < 0, α21 < 0, α23 < 0, α31 > 0, α32 < 0

(ii) a12β23 + a13β32 < 1

(iii) a31β12 + a32β21 < 1

21

(i) α12 < 0, α13 < 0, α21 < 0, α23 > 0, α31 < 0, α32 > 0

(ii) a12β23 + a13β32 > 1

(iii) a21β13 + a23β31 < 1

(iv) a31β12 + a32β21 < 1

22

(i) α12 > 0, α13 > 0, α21 < 0, α23 < 0, α31 > 0, α32 < 0

(ii) a12β23 + a13β32 < 1

(iii) a21β13 + a23β31 > 1

23
(i) α12 > 0, α13 > 0, α21 > 0, α23 > 0, α31 < 0, α32 < 0

(ii) a31β12 + a32β21 > 1

24

(i) α12 > 0, α13 > 0, α21 > 0, α23 > 0, α31 < 0, α32 > 0

(ii) a12β23 + a13β32 > 1

(iii) a31β12 + a32β21 > 1

25

(i) α12 > 0, α13 > 0, α21 > 0, α23 < 0, α31 > 0, α32 < 0

(ii) a12β23 + a13β32 < 1

(iii) a21β13 + a23β31 > 1

(iv) a31β12 + a32β21 > 1
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5. Conclusions

This paper shows that an orientation preserving homeomorphism f from a topological

disk D onto itself with a unique fixed point of index −1 in IntD has trivial dynamics,

i.e., every orbit converges to some fixed point (Theorem 2.1), and the whole dynamics on

the disk can be described further (Theorem 2.4). The result on the trivial dynamics is

extended to the 3D discrete-time Kolmogorov systems on R3
+ induced by (2) admitting

a carrying simplex (Theorem 3.1). Moreover, due to the “Poincaré-Hopf-like” index

formula (3), the dynamical behavior can be sometimes determined completely by the

number of fixed points on the boundary and the local behavior around them when there

is a unique positive fixed point (Remark 3.2). The results are applied to the Leslie-Gower

models, the Atkinson-Allen models, and the Ricker models. Specifically, these models

(3D) do have trivial dynamics when they admit a unique interior fixed point with index

−1, and hence the open problems on class 19–25 for these systems in [16, 21, 22, 23] are

solved.
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