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AABSTRACT

The fungus Heterobasidion parviporum Niemelä & Korhonen is a member of the species complex

Heterobasidion annosum (Fr.) Bref. sensu lato (s.l.) which is considered as the most economically

important and destructive disease agent of conifers. The main host of H. parviporum is Norway

spruce (Picea abies), and the primary infection is mediated by aerial sexual spores (basidiospores)

landing on fresh stump surfaces or tree injuries. The secondary infection is mediated by vegetative

spread of the fungus via root contacts formed between neighboring trees. H. parviporum also

reproduces asexually by forming conidiospores, which germinate and grow into mycelia. Like its

sibling species, H. parviporum features a dual and flexible lifestyle (saprotrophy and necrotrophy).

Due to the unavailability of a reference genome, the study of the molecular pathology of H.

parviporum has heavily relied on parallel studies on its sibling species H. irregulare.

The rapid development of next-generation sequencing (NGS) techniques has revolutionized the

scalability, reliability, and resolution of sequencing in life sciences. The first aim of this study was

to provide a reference genome for H. parviporum by application of whole-genome sequencing.

By characterization of 15 H. parviporum isolates of variable phenotypic traits (vegetative mycelial

growth, sporulation, necrotrophic pathogenicity, and saprotrophic wood decay), we selected the

most virulent isolate (isolate 96026) as the reference, which presented us a genome assembly of

37.76 Mb, hosting 10,502 protein-coding genes. To identify genomic variations potentially

accountable for the higher virulence of the reference isolate, the remaining 14 isolates were also

sequenced. Comparative genomic analysis uncovered not only the remarkable intraspecific level

of polymorphism (13.9 single nucleotide polymorphisms [SNPs]/Kb) with marked bias in CpG to

TpG mutation, but also two genomic regions exclusive to the reference isolate. Annotation of the

two regions revealed the presence of encoded proteins such as secreted proteins, cytochrome

P450, and major facilitator superfamily (MFS) general substrate transporter, suggestive of their

potential implication in the virulence of H. parviporum reference isolate. To propose candidate

virulence factors for functional characterizations, secreted protein-coding genes under genome-

wide selection pressure or possessing featured variants (e.g., nonsynonymous SNPs) were

explored, and examples were listed.

Having access to the H. parviporum reference genome, we then targeted small-secreted proteins

(SSPs) in H. parviporum isolate 96026 to provide promising SSP candidate(s) with functional

evidence in terms of promoting disease development. The preliminary selection of SSPs was

guided by their ability to trigger cell death in Nicotiana benthamiana. A particular SSP (HpSSP35.8)
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capable of inducing rapid cell death on N. benthamiana leaves together with high levels of in

planta expression during the pre-symptomatic phase of host infection was chosen for further

study. Defense-related genes including chitinase PR4, transcription factor WRKY12, and ethylene

response factor ERF1 were significantly upregulated in both N. benthamiana infiltrated by

HpSSP35.8 and host seedlings infected by H. parviporum. Collectively, all evidence suggests this

SSP as a potentially important virulence candidate, presumably, in the early stage of pathogenic

interaction with the host.

To further understand the dual lifestyle and asexual development of H. parviporum isolate 96026,

we collected samples from its saprotrophic (SAP) and necrotrophic growth (NECT) in mature host

trees under field conditions as well as from its conidiospores (SPORE) and derived mycelia (MYCEL)

in axenic culture. RNA-seq and whole-genome bisulfite sequencing of the collected samples

enabled transcriptome and methylome profiling in the four conditions. RNA-seq revealed the

enrichment of highly expressed genes encoding carbohydrate-active enzymes in both SAP and

NECT stages. Signaling- and transcriptional factor-related genes specially induced in SAP might be

potentially associated with lifestyle transition from SAP to NECT. A number of significantly

upregulated genes involved in primary cellular activities including energy production were

documented throughout asexual developmental stages. Bisulfite sequencing demonstrated the

clear preference of DNA cytosine methylation in CpG dinucleotide and in transposable element

(TE)-rich regions in H. parviporum genome. Together with the negative correlation of TE

expression with TE methylation levels, our data substantiated the long-believed function of DNA

methylation in fungal genome defense against TEs. A small group of genes with differential

methylation and expression levels in SAP and NECT, relative to MYCEL, opened the avenue of DNA

methylation as a transcriptional regulatory mechanism for H. parviporum different lifestyle

strategies.

By taking advantage of NGS, our study provided the reference genome and first methylome of the

economically important fungus H. parviporum. Candidate virulence factors based on in silico and

web-lab evidence were highlighted. Follow-up research into the molecular mechanisms of

Heterobasidion pathogenesis could be greatly facilitated by the availability of the genome,

transcriptome, methylome, and secretome data.
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11. INTRODUCTION

1.1 Conifer fungal pathogen Heterobasidion annosum species complex

The fungal species complex Heterobasidion annosum (Fr.) Bref. sensu lato (s.l.) (Basidiomycota;

Agaricomycotina) is one of the most devastating forest pathogens, causing root and stem rot to

conifers in the northern hemisphere (Asiegbu et al., 2005). This fungal species complex comprises

three distinct Eurasian species (H. annosum sensu stricto [s.s.], Heterobasidion abietinum Niemelä

& Korhonen, and Heterobasidion parviporum Niemelä & Korhonen) and two North American

species (Heterobasidion irregulare Garbel. & Otrosina and Heterobasidion occidentale Otrosina &

Garbel.) (Niemelä and Korhonen, 1998, Otrosina and Garbelotto, 2010).

These five species display distinct yet partially overlapping host preferences. The main hosts of H.

annosum s.s. are different species of pines (Pinus spp.)  with  an  af nity  for  Scots  pine  (Pinus

sylvestris L.) in northern Europe. Yet, other gymnosperms, such as Picea spp. and broad-leaved

trees have also been found colonized (Garbelotto and Gonthier, 2013). The preferred host for H.

parviporum is Norway spruce (Picea abies [L.] Karst.), whereas H. abietinum preferentially infects

silver r (Abies alba Mill.) and other species of the genus Abies (Garbelotto and Gonthier, 2013).

The North American species H. irregulare is associated with pines, junipers (Juniperus spp.), and

incense cedar (Calocedrus decurrens), whilst H. occidentale has a broader host range including

species of Abies, Picea, Tsuga, and Pseudotsuga (Garbelotto and Gonthier, 2013).

H. annosum s.l. produces both asexual and sexual spores known as conidiospores and

basidiospores, respectively. Nevertheless, the airborne basidiospores constitute the primary

infective source (Redfern and Stenlid, 1998). When the spores land on exposed stump surfaces

and wounds on the stems or roots generated during thinning or logging operations, basidiospores

germinate and initiate the infection. The established infection could then spread to adjacent

stumps and healthy trees by the vegetative growth of mycelia through root-to-root contacts or

grafts (secondary infection) (Asiegbu et al., 2005, Stenlid and Redfern, 1998). Fungal mycelia can

persist in infected root debris and stumps for decades, readily providing the woody inoculum for

intergenerational secondary infection (Asiegbu et al., 2005).

The success of fungal colonization and rate of spread are influenced by abiotic factors such as

temperature, substrate pH, and wood moisture content. H. annosum s.l. grows optimally at the

temperature of 22-28 °C and at pH of 4-5.7 (Korhonen and Stenlid, 1998). Stump sapwood is

wetter than heartwood. Thus, the sapwood of spruce stumps is favored for colonization in dry
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environments, whereas in regions with high precipitation and poorly drained soils, the heartwood

is preferable (Redfern, 1993). The preference of fungal growth in heartwood of Norway spruce

trees could be attributed to the absence of metabolic active cells to activate host defense

response in heartwood, contrary to living sapwood (Garbelotto and Gonthier, 2013). In addition,

wood density could be another influential factor in fungal growth. In a 19-year-old Norway spruce

infected by H. parviporum, wood density negatively correlated to weight loss (Rodriguez et al.,

2013). The vitality of host species and other competing wood-inhabiting fungi, such as Phlebiopsis

gigantea and Armillaria spp. could also affect the survival and spread of H. annosum s.l. (Redfern

and Stenlid, 1998).

11.2 Lifestyles in Heterobasidion species complex

H. annosum s.l. lives on woody substrates with limited capability to grow through soil (Korhonen

and Stenlid, 1998). It grows saprotrophically in the dead cells of the wood but swiftly adopts

necrotrophic lifestyle upon encountering living cells of stems and roots of host trees (Garbelotto

and Gonthier, 2013). This flexible dual lifestyles makes H. annosum s.l. a valuable fungal species

to be used as a model for studying the role of genomics, transcriptomics, and even DNA

methylation in determining lifestyles changes relevant to tree pathosystems.

1.2.1 Necrotrophic interactions with host trees

When interacting with living host trees, H. annosum s.l. is confronted with the needs to penetrate

the plant cell wall, to assimilate nutrients, and to modulate plant innate immunity. To access the

nutrients from the host, H. annosum s.l. secretes a multitude of extracellular enzymes such as

cellulases, mannanases, cellobiose dehydrogenases, polygalacturonases, pectin lyases, pectin

esterases, and laccases to degrade the host plant polysaccharides and lignified tissues for carbon

sources necessary for propagation inside host cells (Asiegbu et al., 1998). Fungal pathogens also

deliver a myriad of small-secreted proteins (SSPs) termed as effectors that enable pathogenic

invasion by manipulating their host cellular program including plant defense (Girard et al., 2013,

McCotter et al., 2016). In H. irregulare, one SSP candidate that could cause rapid, strong, and

consistent cell death in Nicotiana benthamiana and activate N. benthamiana defense-related

genes was identified recently (Raffaello and Asiegbu, 2017). Another H. annosum s.s. SSP, having

sequence similarity to cerato-platanin from Ceratocystis platani, was also found to cause cell

death and upregulation of defense-related genes in N. tabacum (Chen et al., 2015). This SSP could

additionally retard root growth of Scots pine seedlings (Chen et al., 2015). Nonetheless, the

mechanism of the action of these SSPs remains to be addressed.
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More proteins and biological processes of relevance to pathogenesis have been revealed by

studying the changes in transcriptional profiles during host infection. In H. irregulare mycelial

infection of Scots pine roots, genes encoding a mitochondrial carrier protein and a NADH-

ubiquinone oxidoreductase implicated in mitochondrial energy production, a glutaredoxin-

encoding gene putatively involved in DNA replication and cell division, and a gene coding for a

cytochrome P450 potentially functional in detoxification of plant-derived compounds were

upregulated (Karlsson et al., 2003). The same cytochrome P450 was later found highly induced

after 20 days of H. parviporum growth in the bark tissue of a 10-year old Norway spruce tree

(Karlsson et al., 2008), which further underlined the importance of this gene to H. annosum s.l.

pathogenicity. In the mature Norway spruce naturally colonized by H. parviporum, genes engaged

in cell cycle, DNA processing, and detoxification were similarly induced in addition to genes acting

in protein synthesis, transport, and signal transduction, and of unknown functions (Yakovlev et

al., 2008). The majority of significantly induced genes when the bark tissue of mature Norway

spruce tree was inoculated with H. annosum s.s. were reported to encode metabolic machinery

for sustaining fungal growth, such as the three delta-12 fatty acid desaturases which produce

fungal cell membrane components (Lunden et al., 2015). By contrast, the pine bark tissue infected

with H. irregulare led to a shift in gene expression towards production of pectinolytic enzymes

and secondary metabolite, and stress tolerance, with fewer genes involved in lignocellulose

degradation and nutrient transportation relative to colonizing on woods (Olson et al., 2012).

Production of spores and development of germ tubes into infective hyphae are prerequisites for

the successful establishment of infection. Highly expressed genes during the development of H.

parviporum conidiospores (germ tube emergence, polarized apical, and lateral growth) fall into

most of the aforementioned functional categories with enriched genes of metabolic functions

(e.g., phosphoglucomutase for glucose metabolism) and genes associated with protein synthesis

(e.g., ribosomal proteins), indicating the increased cellular and metabolic activities required for

conidiospore germination and hyphal development (Abu et al., 2004, Li et al., 2006).

Apart from the gene transcriptional profile that provides the snapshot of molecular activities

occurring at a particular stage of the fungal infection process, the genome of an organism, per se,

could readily provide additional information that might explain the observed varied phenotypes.

Prior to the release of the complete genome of H. irregulare isolate TC-32-1 in 2012 by Olson et

al., an AFLP marker-based genetic linkage map was constructed based on 102 progeny isolates

derived from the compatible mating between H. irregulare isolate TC-32-1 and H. occidentale

isolate TC-122-12 (Lind et al., 2005). The resulting linkage map enabled the localization of genomic
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regions with possible linkage to the variation of several phenotypic traits such as growth rate

(Olson, 2006), virulence (Lind et al., 2007), and interaction with the saprotrophic fungus

Phlebiopsis gigantea (Samils et al., 2008). An improved version of the linkage map based on the

alignment of first-generation map to the parental genomes (Lind et al., 2012) greatly facilitated

and refined the assembly process of the H. irregulare genome (Olson et al., 2012). Through re-

mapping of the virulence data from an earlier study (Lind et al., 2007) to the second-generation

linkage map, three quantitative trait locus (QTL) regions potentially important for pathogenic

interaction with Norway spruce and Scots pine were pinpointed on two chromosomes of the H.

irregulare genome (Olson et al., 2012). The identified virulence QTL regions were characterized

by a higher density of transposable elements (TEs) and of orphan genes (i.e., having no homology

to genes from other reported fungal species), which indicated that these regions may undergo

higher evolutionary rate. Additionally, microarray gene expression profiles during necrotrophic

growth in Scots pine cambium led to the identification of three strong candidate virulence genes

that were significantly upregulated and situated within the virulence QTL regions. These genes

encode a sugar transporter, a flavin-containing Baeyer-Villiger monooxygenase putatively needed

for phytotoxin synthesis, and a protein without homology to known proteins (Olson et al., 2012).

More virulence genes were further proposed in a genome-wide association study (GWAS) by

Dalman et al. (2013). By sequencing 23 haploid H. annosum s.s. isolates, 12 single nucleotide

polymorphism (SNPs) distributed on 7 genomic regions were found significantly associated with

fungal growth in Norway spruce and Scots pines. Genes located within those genomic regions

included both novel and known candidate virulence genes from other fungal pathogens, such as

quinone oxidoreductase similar to genes encoding host-selective toxins in Pyrenophora tritici-

repentis, flavin-containing monooxygenases metabolizing xenobiotic compounds, calcineurin

involved in calcium-dependent signal transduction in eukaryotes, and SWI5 transcription factor

affecting virulence in Candida albicans (Dalman et al., 2013). Interestingly, two of the identified

regions were found close to or overlapping with the previously mentioned virulence QTL regions,

implying that the generic virulence factors might be present at least among species of H.

irregulare, H. occidentale, and H. annosum s.s. (Lind et al., 2007, Dalman et al., 2013).

Heterobasidion species were reported capable of producing at least ten different secondary

metabolites, such as the phytotoxins fomannosin (Kepler et al., 1967) and fomannoxin (Hirotani

et al., 1977). Both compounds have been detected in axenic cultures and in the course of plant

colonization (Lind et al., 2014, Olson et al., 2012). The application of fomannosin and fomannoxin

to pine seedlings and Sitka spruce seedlings, respectively, caused browning of needles (Bassett et
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al., 1967, Heslin et al., 1983). In H. irregulare genome, three putative terpene cyclases (TCs) and

one dimethylallyltryptophan synthase (DMATS) were identified which might be required for

biosynthesis of fomannosin and fomannoxin, respectively (Olson et al., 2012). Notably, H.

irregulare genome also hosts genes coding for other natural products, including 3 polyketide

synthases (PKSs), 13 nonribosomal peptide synthetase-like (NRPS-like) enzymes, and several

tailoring enzymes for post-backbone assembly modification, implying the potential of this species

for synthesizing a wider range of secondary metabolites (Olson et al., 2012).

In addition to nuclear genetic factors, Olson and Stenlid (2001) reported the possible association

of fungal virulence of H. annosum s.l. to mitochondrial genome. Using the artificially created

interspecific hybrid isolates between H. occidentale and H. irregulare, they found a significant

correlation between the virulence of the hybrids and their acquired mitochondrial type. The

hybrid isolates displayed strong resemblance in virulence to their progenitors from which they

inherited mitochondria. This suggested that mitochondrial genome (likely the exchangeable parts

of the genome such as intronic genes, plasmid-derived genes, and non-conserved open reading

frames) or certain nuclear-mitochondrial combinations might contribute to fungal virulence

(Olson and Stenlid, 2001, Garbelotto and Gonthier, 2013, Garbelotto et al., 2007, Himmelstrand

et al., 2014). This could be further supported by the upregulation of genes related to

mitochondrial functions during infection of Scots pine roots (Karlsson et al., 2003).

11.2.2 Saprotrophic wood degradation

H. annosum s.l. is the most common wood decayer of conifers (Garbelotto and Gonthier, 2013).

As a white-rot fungus, Heterobasidion species are capable of degrading all major constituents of

plant cell wall, including the aromatic heteropolymer lignin and the plant polysaccharides

cellulose, hemicellulose, and pectin (Lind et al., 2014, Rytioja et al., 2014). Accordantly, H.

irregulare genome harbors genes encoding a broad range of plant cell wall degrading enzymes

including oxidoreductases and carbohydrate-active enzymes (CAZymes) (Olson et al., 2012).

CAZymes are classified into families of glycoside hydrolases (GHs), carbohydrate esterases (CEs),

polysaccharide lyases (PLs), glycosyltransferases (GTs), carbohydrate-binding modules (CBMs),

and enzymes with auxiliary activities (AAs) that enhance the activities of GHs, PLs and CEs

(Carbohydrate Active Enzymes database http://www.cazy.org/). H. irregulare is equipped with

comparable number of GHs, PLs, and CEs as also observed in the model white-rot fungal species

Phanerochaete chrysosporium (Olson et al., 2012). Detailed inspection of H. irregulare CAZyme

families revealed the presence of typical cellulose degrading gene families (CBM1, GH5, GH6, GH7,

and AA9) characteristic of white-rot fungi (Floudas et al., 2012, Riley et al., 2014). H. irregulare
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also has enriched gene families targeting hemicellulose (xyloglucan) and its side chains (GH12,

GH27, GH29, and GH74), and pectin and its side chains (GH28, GH43, GH78, GH88, GH105, PL1,

PL4, CE8, and CE12) (Olson et al., 2012, Rytioja et al., 2014).

In contrast to brown-rot fungi, a distinctive feature of white-rot fungi is the ability to modify and

depolymerize lignin, which confers rigidity to the plant cell wall and provides protection of

cellulose and hemicellulose from microbial attack and mechanical stress (Floudas et al., 2012,

Eastwood et al., 2011). Lignin degradation is mediated with oxidative processes involving a panel

of enzymes, such as class II heme-containing peroxidases (lignin peroxidase [LiP], manganese

peroxidase [MnP], and versatile peroxidase [VP]), multicopper oxidases (MCO laccases [AA1_1]),

glucose-methanol-choline (GMC) oxidoreductases (AA3), and glyoxal oxidase (AA5) (Hildén and

Mäkelä, 2018). Compared to typical white rotters, the ligninolytic enzymatic repertoire of H.

irregulare was predicted to consist of a slightly contracted number of class II peroxidases (6 short

type MnP without the presence of LiP), but an expanded number of MCO laccases (16 laccase

sensu stricto), and a spectrum of other oxidoreductases such as 35 GMC oxidoreductases and 5

glyoxal oxidases (Yakovlev et al., 2013).

Transcriptomic analysis of H. irregulare growing on pine sapwood shavings underlined the

importance of cellulose degrading gene families (particularly CBM1, GH5, GH6, and AA9) and the

preferential utilization of simple sugar sucrose (Olson et al., 2012, Garbelotto and Gonthier, 2013).

When H. annosum s.s. was cultivated on separate pine wood compartments (bark, sapwood, and

heartwood), more genes but less CAZyme-coding genes were specifically induced in sapwood

than in heartwood and bark. This was putatively attributed to the higher content of more

accessible and utilizable carbon sources in sapwood (Terziev et al., 1997, Raffaello et al., 2014).

Correspondingly, sugar transporters or other proteins facilitating transport of nutrients (e.g.,

members of the major facilitator superfamily) were concomitantly induced (Olson et al., 2012,

Raffaello et al., 2014). Members of CAZyme families displayed both general induction in all wood

compartments and selective expression in heartwood (particularly AA9), suggesting the fine-

tuned regulation of CAZyme families in response to the varied chemical composition of different

wood compartments (Raffaello et al., 2014).

Additionally, induction of genes (MnPs, MCOs) relevant for oxidative lignin depolymerization was

recorded when Heterobasidion species was grown on pine sapwood shavings (Olson et al., 2012).

A similar observation was documented with the growth of the fungus on diverse pine wood

materials (bark, sapwood, and heartwood) (Raffaello et al., 2014). Both MnPs and MCO were also

reported to be highly expressed in reaction zone and in the heartwood of Norway spruce,
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indicating their roles in detoxification and delignification (Nagy et al., 2012, Yakovlev et al., 2013).

Other oxidases, such as glyoxal oxidases and aryl-alcohol oxidases, generating the extracellular

hydrogen peroxide (H2O2) required in oxidative lignin breakdown were similarly induced (Olson et

al., 2012, Yakovlev et al., 2013).

11.3 Control and management strategies for Heterobasidion species complex

Stump Infection via germination of airborne basidiospores (primary infection) and the

subsequent spread to surrounding trees by root to root contacts (secondary infection) presented

a rationale to control the disease in infested sites by removing the infected stumps. Nonetheless,

stump removal needs to be carried out thoroughly to minimize the remnants of fungal inocula on

woody debris on the site for successive rotation, thereby, rendering this measure time-consuming

and expensive (Korhonen et al., 1998, Garbelotto and Gonthier, 2013).

Other preventative control strategies, based on limiting spore deposition and germination, are

currently the most commonly implemented as they are effective and sustainable in practical

forestry (Garbelotto and Gonthier, 2013). Thinning and logging operations create fresh stumps

and scars, favoring the spread of Heterobasidion species. Therefore, thinning and logging in the

wintertime when the risk of spore infection is very low are generally recommended (Korhonen et

al., 1998).

In addition, stump protection after logging by immediate treatment with chemical or biological

control agents on the stump surfaces has proved sufficiently effective and is widely practiced

(Garbelotto and Gonthier, 2013). Amongst a large number of chemicals that have been tested as

stump protectants over the past decades, urea and borates have demonstrated to be the most

consistently effective against Heterobasidion infection and economically favorable (Pratt et al.,

1998). Urea hydrolysis by ureases from living host tissues results in a substantial elevation of pH

and ammonia content. The raised pH (>7) inhibits Heterobasidion spore germination and growth,

and the ammonium ions might favor the growth of more tolerant competing fungi (Johansson et

al., 2002). Borates were found to rapidly penetrate into stump tissues. The fungicidal mechanism

of borates could be due to their effects on general fungal metabolism, resulting from the

interaction of borate anion with fungal compounds containing polyhydric alcohol, and

coenzymes NAD+ and  NADP+ (Lloyd, 1998). However, concerns about the application of both

stump-treatment substances have been raised since the consequential damages to ground-

vegetation species and changes in soil properties have been reported (Westlund and Nohrstedt,

2000). Biological control agents, on the contrary, are generally biodegradable, free of artificial
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pesticides, and hence more preferable over chemical control (Holdenrieder and Greig, 1998).

Currently, spore suspensions of the saprotrophic fungus Phlebiopsis gigantea (Fr.) Jülich is used

as a biocontrol agent against Heterobasidion species due to the competitive edge of this fungus

in colonization of fresh stumps, decaying wood, and interference of antagonistic hyphae

(Holdenrieder and Greig, 1998). Moreover, no apparent negative effect of P. gigantea on ground

vegetation has been recorded (Westlund and Nohrstedt, 2000).

Lastly, disease control could be achieved by combining the above mentioned strategies with other

silvicultural approaches, such as changing tree species composition to incorporate more resistant

deciduous trees and to avoid monocultures of susceptible trees, widening spacing among planted

trees to eliminate the chances of root contagion, and reducing the rotation time in stands heavily

infested by H. annosum s.l. (Korhonen et al., 1998, Lygis et al., 2004a, Lygis et al., 2004b).

11.4 Epigenetics in fungi

An epigenetic trait is defined as a stably heritable phenotype resulting from changes in a

chromosome without alterations in DNA sequence (Berger et al., 2009). Epigenetic processes

include DNA methylation, chromatin remodeling by histone modifications, and non-coding RNA

induced DNA silencing (Gomez-Diaz et al., 2012). Epigenetic modifications mediate gene

transcriptional potentials and provide versatile, relatively fast and reversible phenotypic

variations, which appear to be particularly essential to the host-pathogen interaction for adaptive

advantage (Gomez-Diaz et al., 2012, Kasuga and Gijzen, 2013).

The methylation of DNA cytosine base is an important epigenetic modification in eukaryotes,

implicated in various vital biological processes such as X chromosome inactivation, genomic

imprinting, and silencing of retrovirus and repetitive elements for genomic stability (Jones, 2012).

The distribution of methyl marks across eukaryotic genomes is not uniform, with demarcation of

genomic regions of heavy methylation and regions that are not methylated. The methylation

pattern also varies dramatically in different eukaryotic organisms (Jones, 2012, Baubec and

Schubeler, 2014). In vertebrates, DNA methylation occurs throughout the entire genome, with

the exception of specific genomic elements such as CpG islands (CGIs), active promoters, and

enhancers (Baubec and Schubeler, 2014, Schubeler, 2015, Zhong, 2016). By contrast, most of the

studied plants and invertebrates display mosaic but distinct DNA methylation pattern (Schubeler,

2015). Plants have DNA methylation in their TEs and gene bodies, whereas invertebrates show

preference for genic methylation (Zemach and Zilberman, 2010, Su et al., 2011, Zhong, 2016). In

addition, despite the prevalence of DNA methylation in many species, it is curiously absent in



18

some model organisms such as Schizosaccharomyces pombe, Saccharomyces cerevisiae, and

Caenorhabditis elegans, implying the more complicated mode of actions and divergent functions

that DNA methylation may have in diverse species (Capuano et al., 2014, Schubeler, 2015).

Compared to the higher eukaryotic counterparts, DNA methylation in fungi was originally

considered as a genome defense mechanism against deleterious TEs proliferation due to its

exclusive occurrence in transcriptionally silent, repetitive DNA sequences (Zemach et al., 2010,

Zemach and Zilberman, 2010). Emerging studies in various fungal species have unraveled

significantly varying numbers of methylated cytosines, ranging from a barely detectable level in

the pathogen Aspergillus flavus (Liu et al., 2012) to a relatively high proportion in the black truffle

Tuber melanosporum (36.9-39.6%) (Montanini et al., 2014). More importantly, DNA methylation

has also been uncovered in and around structural genes in some species, thereby proposing the

presence of additional functions in fungi. For example, considerable variations in the distribution

of methylated genomic cytosines were observed in different developmental stages of the

pathogenic species Magnaporthe oryzae (mycelia, conidia, and appressoria) (Jeon et al., 2015),

Metarhizium robertsii (mycelia and conidia) (Li et al., 2017), and Cordyceps militaris (mycelia and

fruiting body) (Wang et al., 2015). It was suggested that DNA methylation undergoes global

reprogramming throughout the life cycles, putatively contributing to fungal development. In the

human pathogen Candida albicans, DNA methylation was found to primarily target and regulate

the transcriptional activities of genes associated with dimorphic transition between yeast and

hyphal forms, switching between white and opaque cells, and iron metabolism, which might be

cued by nutrition and host interaction (Mishra et al., 2011). In the medicinal fungus Ganoderma

sinense, 5 transcription factors (TFs) and 36 transporters located in secondary metabolism gene

clusters were predominantly methylated and transcriptionally silenced, indicating that DNA

methylation may be involved in the modulation and transport of secondary metabolites (Zhu et

al., 2015). Moreover, DNA methylation also appeared associated with phenotypic changes in

sectorization in the chestnut blight fungus Cryphonectria parasitica, and the cell wall integrity

signal transduction pathway was demonstrated to be important for maintaining DNA methylation

in this fungus (So et al., 2018).
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22. OBJECTIVES

H. parviporum, the most severe causal agent of root and stem rot in Norway spruce, greatly

benefits from the coupling of saprotrophic and necrotrophic lifestyles. Due to the absence of a

reference genome and the lack of an efficient transformation system, the molecular mechanisms

underlying the pathogenesis and lifestyle changes of H. parviporum remain less understood.

Therefore, by employing the latest “Omics” techniques, the objectives of this study are as outlined

below:

1. To provide the first H. parviporum reference genome (I).

2. To propose several candidate virulence genes, based on comparative genomic analysis and

transcriptomic profiles, for further functional characterization (I, III),

3. To functionally analyze a subset of genes encoding small-secreted proteins with cell death

inducing effects on Nicotiana benthamiana and showing significantly activated expression level

during host infection (II).

4. To understand the regulatory roles of DNA methylation in H. parviporum fungal genome and in

its lifestyle strategies and asexual development, through integration of the corresponding

transcriptomic profiles (III).
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33. MATERIALS AND METHODS

The materials and methods used in this study are summarized in Table 1 and Table 2. Detailed

description can be found in the original publications.

Table 1. Biological materials used in this study.
Organism Information Publication

Heterobasidion parviporum Isolate 96026, homokaryotic I, II, III

Heterobasidion parviporum Isolate 03020, homokaryotic I

Heterobasidion parviporum Isolate 04121, homokaryotic I

Heterobasidion parviporum Isolate 93242, homokaryotic I

Heterobasidion parviporum Isolate 04051, homokaryotic I

Heterobasidion parviporum Isolate 99055, homokaryotic I

Heterobasidion parviporum Isolate 91271, homokaryotic I

Heterobasidion parviporum Isolate 99058, homokaryotic I

Heterobasidion parviporum Isolate 01039, homokaryotic I

Heterobasidion parviporum Isolate 96160, homokaryotic I

Heterobasidion parviporum Isolate 92150, homokaryotic I

Heterobasidion parviporum Isolate 99067, homokaryotic I

Heterobasidion parviporum Isolate 94174, homokaryotic I

Heterobasidion parviporum Isolate 98038, homokaryotic I

Heterobasidion parviporum Isolate 03014, homokaryotic I

Agrobacterium tumefaciens GV3101 II

Escherichia coli TOP10F II

Picea abies Seedlings, 14-17 days old I, II

Picea abies Clones, 6 years old I

Picea abies Mature, 20-30 years old III

Nicotiana benthamiana Two months old II
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Table 2. Methods used in this study.
Method Publication

Fungal cultivation I, II, III

Fungal growth rate and sporulation assay I

Pathogenicity screening and wood decay test I

Statistical analysis I, II, III

gDNA extraction I, III

RNA extraction I, II, III

Whole genome sequencing with a hybrid strategy (PacBio and Illumina Hiseq) I

De novo genome assembly, gene prediction, annotation, secretome prediction I

TEs and SSRs identification I

Whole genome alignment I

Variants calling, annotation and nucleotide polymorphism analysis I

RNA-seq I, III

De novo transcript assembly I

Differential gene expression analysis III

Whole genome bisulfite sequencing III

Genome-wide bisulfite sequencing data analysis III

Identification of differentially methylated loci III

Phylogenetic analysis III

Field work III

Primer design, cDNA synthesis, qPCR and data analysis II

Gene cloning II

Chlorophyll fluorescence imaging II

Agrobacterium-mediated transient expression II



22

44. RESULTS AND DISCUSSION

4.1 Intraspecific comparative genomics of H. parviporum isolates and identification of its
virulence factors (I)

In this study, several phenotypic traits (vegetative mycelial growth, sporulation, necrotrophic

pathogenicity, and saprotrophic wood decay) important for Heterobasidion species fitness were

characterized among 15 H. parviporum homokaryotic isolates originating from diverse geographic

locations across Finland. The correlations of the pathogenic trait with the other traits plus the

latitude and longitude of fungal sampling origins were analyzed. Furthermore, the most virulent

isolate was deeply sequenced with a hybrid sequencing strategy and presented as the first

reference genome of H. parviporum. The rest of the 14 isolates were re-sequenced and compared

with the reference isolate. Genomic variations putatively associated with pathogenesis were

explored, and candidate virulence factors were consequently proposed.

4.1.1 Phenotypic characterizations of H. parviporum homokaryotic isolates

The necrotrophic pathogenicity was reflected by the mortality rate of Norway spruce seedlings

infected with H. parviporum mycelia for 15 and 25 days. Significant variations in the mortality rate

of seedlings infected by H. parviporum isolates were observed. Among the isolates, S15 and S12

were the most and least virulent, respectively. The drastic difference in virulence between S15

and S12 isolates was further validated by the observed lesion length in xylem and phloem of six-

year-old Norway spruce clones (I, Figure 2c).

Differences in vegetative mycelial growth rate, sporulation, and saprotrophic wood decay among

all isolates were also recorded. With the exception of a moderate correlation (r = 0.54, P < 0.05)

between wood decay capacity and mortality rate of seedlings at 15 days post-inoculation (dpi),

no significant pairwise correlations between the assessed traits were identified. The lack of

correlation between sporulation/vegetative growth and virulence/wood decay could be possibly

due to inherent genetic make-up of each isolate or to their responses to the varied growth

conditions. The former two traits were measured on axenic solid agar culture, whereas the latter

two traits were assayed in the presence of either living seedlings or wood blocks that do not

provide readily available nutrients for the fungal isolates. For example, isolate S15 appeared more

aggressive in colonizing seedlings and decomposing woody materials than isolate S12 despite its

slower growth on axenic culture (I, Figure 2ab, Additional file 4: Figure S2b). As similarly

concluded by James (1982), our results caution about the simple reliance on cultural
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characteristics, such as asexual sporulation and vegetative growth rate, to adequately estimate

the virulence of H. parviporum isolates.

All the studied phenotypic traits together with longitude and latitude of fungal sampling sites

were analyzed collectively using the mortality rate of 15 dpi and 25 dpi as the response variables.

Latitude, wood decay capacity, and an interaction between these two features were shown to

be significant parameters in determining the variation in mortality rate caused by the tested

fungal isolates. This indicated that latitude-dependent environmental factors (e.g., temperature

and soil type) and the flexible dual trophic strategies could jointly influence the virulence of this

root pathogen.

44.1.2 Genome of H. parviporum isolate 96026

PacBio subreads and Illumina reads of a mate-paired and a pair-ended libraries were assembled

de novo.  The resulting genome of H. parviporum 96026 (also known as S15 in this study) was

37.76 Mb, distributed in 287 scaffolds. H. parviporum 96026 genome is slightly larger than that

of H. irregulare (33.6 Mb), and its sequencing reads covered 66.24% of H. irregulare genome. TEs

occupied 20.29% of the genome assembly, with Gypsy-like LTR retrotransposons being the most

frequent elements (13.36% genome coverage). This was consistent with what was presented by

Muszewska et al. (2011) that fungi generally have Ty3/Gypsy LTR retrotransposons as the highest-

copy TEs. A notable dominance of tri- and hexanucleotide type simple sequence repeats (SSRs)

were found inside the gene coding sequences, indicative of selection against possible lethal

frameshift mutations (Metzgar et al., 2000). Trinucleotides were also clearly dominant in the

upstream of coding sequences, suggesting the involvement of SSRs in gene transcriptional

regulation, for instance by altering the repeat length of SSRs to modulate protein-protein

interaction between TFs or to change the number of nuclear protein binding sites (Gemayel et al.,

2010, Gonthier et al., 2015, Wagner and Lynch, 2008).

A total of 10,502 protein-coding genes were predicted with putatively 759 genes encoding

secreted proteins. The secretome of H. parviporum includes 238 CAZymes (e.g., targeting both

plant and fungal cell walls), 30 peroxidases (e.g., catalases and thioredoxins for scavenging

reactive oxygen species), and 75 peptidase/peptidase inhibitors (e.g., aspartic and serine

peptidases). In particular, secreted cytochrome P450, aspartic peptidases (A1A), subtilisin-like

serine peptidases (S8A), thioredoxins (Trx), ascorbate peroxidases (APx), class II peroxidases,

chitinases (GH18), chitin deacetylase (CE4), and almost all secreted CAZymes involved in cellulose

and lignin degradations shared homology to entries annotated as “reduced virulence”, “loss of
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pathogenicity”, or “effector_(plant_avirulence_determinant)” in the Pathogen-host interaction

database (PHI-base), highlighting the potential roles of these proteins in H. parviporum virulence

and pathogenesis.

44.1.3 Intraspecific comparative genomics of H. parviporum homokaryotic isolates

Sequence reads of the 14 re-sequenced H. parviporum homokaryotic isolates were de novo

assembled prior to the whole genome alignment to the reference or directly mapped to the

reference genome. More than 91% of the genomic sequences of all isolates (except for isolate S6

with more fragmented assembly) could be aligned to the reference genome with an average of at

least 96% nucleotide identity (I, Table 3), demonstrating the overall high genomic similarity of

these isolates when compared with the reference isolate (I, Additional file 14: Figure S5).

Conversely, an average of 139,488 SNPs and 33,643 insertions/deletions (InDels) per isolate were

identified in 639,222 non-redundant polymorphic sites. The SNP density was 3.7/Kb when each

isolate was compared to the reference (inter-individual level). This is much lower than that when

the SNPs of all isolates were considered collectively (13.9/Kb, intraspecific level), reflecting a

substantial level of polymorphisms. Our SNP density was higher than that of an intraspecific

comparison  study  of  three H. irregulare isolates (4 SNPs/Kb), but lower than that of the

interspecific comparison between H. irregulare and H. annosum s.s isolates (20 SNPs/Kb) (Sillo et

al., 2015). The higher level of intraspecific polymorphism in H. parviporum could be due to the

diverse geographic origins of the isolates in this study. In contrast, H. irregulare isolates originated

from Castelfusano Pinewood Urban Park, Rome (Sillo et al., 2015).

Furthermore, a biased mutation of CpG to TpG was noted among all transition and transversion

mutations. This could be attributed to the methylation of cytosine, which showed a strong

preference in CpG dinucleotide context (see section 4.3.1 in this dissertation), followed by

spontaneous deamination of methylcytosine, resulting in the CpG-to-TpG mutation (Nabel et al.,

2012). Alternatively, elevated C-to-T transition mutation rates were also reported as a

consequence of repeated-induced point mutation (RIP) (Faugeron, 2000), which has been

experimentally validated in several Ascomycota species such as Neurospora crassa (Selker, 1990),

Podospora anserina (Graia et al., 2001), and Leptosphaeria maculans (Idnurm and Howlett, 2003).

By introducing mutations on different cytosines of duplicated DNA sequences or TEs, RIP could

discourage ectopic recombination and inactivate TEs (Faugeron, 2000). There is variation in the

preferred nucleotide context in TEs for RIP C-to-T mutations to occur. Ascomycota species Botrytis

cinerea, Sclerotinia sclerotiorum, and Magnaporthe oryzae were shown to have mutational biases
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at two different dinucleotides (CpA and CpT), whereas L. maculans exhibited a strong preference

for CpA dinucleotide only (Amselem et al., 2015). These four species had at least one gene coding

for a protein of the RID family required for RIP (Amselem et al., 2015). In Basidiomycota,

Microbotryum violaceum, Melampsora larici-populina, and Puccinia graminis displayed low (10-

20%) to intermediate frequency (~40%) of C-to-T mutation bias only in CpG dinucleotide in their

TE copies with the presence of only one gene encoding Masc2. This raises the question on

whether RIP operates in Basidiomycota or does so by targeting CpG dinucleotide (Amselem et al.,

2015). Apart from the similar mutation bias in CpG dinucleotide, H. parviporum was  found to

contain two orthologs of Masc2 (see section 4.3.1 in this dissertation). Further analysis of C-to-T

mutation in TEs of H. parviporum could shed more light on the underlying mechanism for this

mutational bias.

Additionally, selection of candidate virulence factors could also benefit from the application of

comparative genomic and population genetic approaches. Such selection could be based on the

observed DNA polymorphism in H. parviporum and the realization that fungal virulence

candidates often undergo positive selection (Rech et al., 2014). Tajima’s D statistic  is  the most

commonly used allele frequency spectrum-based method to detect selection footprints in

genomic regions at intraspecific level (Tajima, 1989, Vitti et al., 2013). A negative D value suggests

a surplus of rare alleles relative to expectation, and may be indicative of positive selection (Vitti

et al., 2013). Therefore, genome-wide distribution of Tajima’s D value was assessed in a 5-kb non-

overlapping sliding window manner. Genes located within windows of negative D value less than

5th percentile were extracted and deemed to be subject to positive selection. The secreted

protein coding genes situated therein could be important candidate virulence factors (I, Table 4).

Admittedly, genomic evidence for natural selection is only suggestive and awaits functional

evidence to validate the selection.

As significant phenotypic variations, particularly in terms of virulence, were observed, it is

presumed that gene number and associated polymorphisms among isolates could account for the

varied virulence. The reads mapping strategy was utilized to evaluate the gene number variations

among all isolates. Based on the mapping coverage breadth and depth, genes were classified into

core genes shared by all isolates (9619 genes), deleted genes shared by a subset of isolates (863

genes), duplicated genes (208 genes), genes exclusive to the reference isolate (20 genes), and

novel genes absent in the reference isolate (116-190 genes in the 14 isolates). Highly conserved

(1457 genes) and divergent (1456 genes) core genes were further defined and separated by the

number and annotations of detected variants (SNPs and InDels).
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The reference-specific genes were mainly (16 out of 20 genes) localized on two genomic regions

(7 genes on scaffold38 and 9 genes on scaffold51). The absence of the two regions in other

isolates was further confirmed by whole genome alignment of the 14 re-sequenced isolates to

the reference genome (I, Additional file 14: Figure S7). Five out of the seven reference-specific

genes on scaffold38, such as the genes encoding a cytochrome P450 and a MFS general substrate

transporter, had PHI-base database hits with either “reduced virulence” or “loss of pathogenicity”

annotations, while the reference-specific region on scaffold51 contained two secreted proteins

with one of them considered as likely effector candidate (187 amino acids, 20 cysteines) (I, Table

7). This result suggests the potential contributions of these two genomic regions to the high

virulence of the reference isolate.

Numerous gene ontology (GO) terms regarding essential biological processes, such as ribosome

biogenesis, fatty acid biosynthesis, and regulation of translation, were significantly

overrepresented in the conserved core genes (I, Additional file 20: Table S11). By contrast, no

significantly enriched GO terms could be identified in the divergent core gene and deleted gene

sets, implying the occurrences of genetic variations in genes of miscellaneous functions.

Nonetheless, genes associated with oxidation-reduction process and encoding TF-related

domains were relatively more abundant in both gene sets. Particularly, GO terms of oxidation-

reduction process and heme-binding were enriched in the divergent secreted protein coding

genes, a similar result of which was also found in the comparison of H. annosum s.s.  to H.

irregulare (Sillo et al., 2015). The divergent secreted oxidoreductases include the ligninolytic

enzyme multicopper oxidases (5 out of 12 genes), manganese peroxidase (2 out of 5 genes), and

members of cytochrome P450 superfamily (9 out of 30 genes). P450s are heme-containing

monooxygenases, implicated in versatile metabolisms and reactions. In fungi, P450s play crucial

roles in the biosynthesis of secondary metabolites and biodegradation of xenobiotic compounds

(Chen et al., 2014). The ubiquity and diverse functions of P450s were documented mainly arisen

from gene duplication events and the subsequent mutations that diverge the redundant genes

into new family (Sezutsu et al., 2013, Mgbeahuruike et al., 2017). The wide range of sequence

polymorphism of P450s enables their substrate promiscuity in response to changing and

increasing metabolic needs (Sezutsu et al., 2013). Gene loss is also a common P450 evolutionary

event, and may account for the drastically low number of P450s in yeasts from Saccharomycotina

(Chen et al., 2014). As expected, cytochrome P450-coding genes were also present in H.

parviporum deleted, duplicated, and novel gene sets (lost from the reference isolate). One

secreted P450 (evm.scaffold10.169) was absent in the less aggressive isolates (S3, S2, S4, S10 and

S12), and one secreted P450 (evm.scaffold6.188) was putatively duplicated in isolates of both
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weak (S4) and intermediate virulence (S1, S8). Hence, specific classification and function

assignments of P450 are needed to consider their association to H. parviporum virulence variation.

Although gene copy number variations (deletion and duplication) were observed in the 15 isolates

of H. parviporum, except for the reference-specific genes, isolates having more gene copies do

not appear to be more virulent (e.g., isolate S6 having the highest number of gene copies being

less virulent) and vice versa (e.g., virulent isolate S7 having the most deletions). However, we

noticed the remarkable prevalence of genes encoding TF-related domains, such as zinc finger of

C2H2 type and NF-X1-type, in all our classified gene sets (divergent, deletion, duplication and

novel genes). TFs are key determinants of cellular functionalities by modulating gene expression.

Additionally, TFs are highly evolvable, thus, contributing to phenotypic evolution (Shelest, 2008,

Wagner and Lynch, 2008). C2H2 zinc finger, as the largest group of DNA-binding TFs in eukaryotes,

was previously reported to have undergone lineage-specific gene duplications and gene losses

(Seetharam and Stuart, 2013). Our results further evidenced the evolutionary plasticity and

diversity of TFs. Due to the functional redundancy in many gene families, we postulate that H.

parviporum virulence variation is mostly based on variation in the robustness of the involved

regulatory network during infection rather than the changes in the number of protein-coding

genes.
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44.2 Functional study of a small secreted protein in H. parviporum (HpSSP) (II)

In this study, four small-secreted proteins (SSPs) were selected from H. parviporum 96026

reference genome, with one of them chosen for further study based on the observed induced cell

death effects on N. benthamiana and the expression level during infection of host seedlings. The

expression of several defense-related genes in both N. benthamiana and Norway spruce seedlings

in response to the infiltration of selected SSP and infection with H. parviporum, respectively, was

further explored.

4.2.1 Selection of HpSSPs by transient expression in N. benthamiana and expression level during

infection of host seedlings

The four predicted H. parviporum SSPs (HpSSPs) were singled out on the basis of their high level

of protein sequence similarities (> 86%) to four of the eight H. irregulare SSP candidates that have

been previously shown capable of inducing chlorosis and cell death in N. benthamiana (Raffaello

and Asiegbu, 2017). These four HpSSPs had no predicted domains and were named as

HpSSP6.141 (269 amino acids), HpSSP27.89 (271 amino acids), HpSSP35.8 (177 amino acids), and

HpSSP43.64 (230 amino acids) according to their location on scaffolds, and the arrangement of

genes in individual scaffolds. The transient expression assay of the four HpSSPs in N. benthamiana

leaves infiltrated by the mediation of Agrobacterium tumefaciens showed that HpSSP35.8 could

induce strong plant cell death with completely compromised leaf tissues at 4 days post infiltration

(dpi) (II, Figure 1a). HpSSP6.141 and HpSSP27.89 were not able to induce any evident cell death.

HpSSP43.64 caused a certain level of cell death, characterized by discoloration and thinning of

the infiltrated area (II, Figure 1a), similar to the symptoms caused by its homolog in H. irregulare

within the same incubation time.

Consistently, the gene encoding HpSSP35.8 was highly expressed relative to ungerminated

conidiospores (around 30 fold higher) within the infected roots of Norway spruce seedlings at 2

dpi (II, Figure 1b). No significant inductions were observed for the genes encoding HpSSP6.141

and HpSSP27.89. The expression of HpSSP43.64-coding gene had 2 to 3 folds increase at 2 to 3

dpi (II, Figure 1b). Consequently, HpSSP35.8 was selected for more detailed studies.

The infection of host seedlings was repeated with increased number of replicates (5 replicates) in

a time course experiment (sampling every 12 hours for four days post-inoculation) in order to

assess the expression of HpSSP35.8-coding gene in a time-dependent manner. The visual

symptoms on seedling roots challenged with H. parviporum hyphae were monitored closely
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during the course of infection. The appearance of browning in infected roots was observed at 2

dpi and the browning was drastically intensified at 3 dpi (II, Figure 3a). The gene encoding

HpSSP35.8 was shown to be induced at 24 hours post-inoculation (hpi), and attained the highest

expression at 36 hpi, followed by a dramatic reduction at the onset of necrosis browning (II, Figure

3b).

HpSSP35.8 displayed 93% sequence similarity to its H. irregulare homolog (HaSSP30), sharing the

same signal peptide sequence and cysteine residue sites (II, Figure 2c). Moreover, HpSSP35.8 was

conserved in all H. parviporum homokaryotic isolates investigated in the first study, with only

three SNPs (two synonymous SNPs) identified among two isolates (isolates S1 and S3). The high

degree of conservation at both inter- and intra-specific levels, the capacity to induce strong and

consistent necrotic cell death in N. benthamiana, and the substantial induction during the host

infection make HpSSP35.8 an important virulence candidate in the early stage of host-pathogen

interaction.

44.2.2 The effect of HpSSP35.8 on photosynthesis in N. benthamiana by chlorophyll fluorescence

imaging

The damaging effects of HpSSP35.8 on N. benthamiana leaves were also assessed by chlorophyll

fluorescence imaging (CFI). CFI is a sensitive and non-destructive method to monitor and quantify

changes in plants photosynthesis (Guidi and Degl'Innocenti, 2011, Murchie and Lawson, 2013).

CFI has been widely used in the studies of plant-pathogen interactions for pre-symptomatic

diagnosis of infection and in the investigation of pathogen-induced perturbations in host

metabolism (Rolfe and Scholes, 2010). It is known that the light energy absorbed by chlorophyll

molecules is dissipated in three ways: driving photosynthesis (photochemistry), being remitted as

light (fluorescence), and being remitted as heat (non-photochemistry) (Murchie and Lawson,

2013). These three processes compete with each other. Thus, the yield of chlorophyll fluorescence

provides valuable information on heat dissipation and on the efficiency of photochemistry,

ultimately the photosynthetic productivity (Guidi and Degl'Innocenti, 2011, Murchie and Lawson,

2013).

In this study, three common fluorescence measurement parameters were calculated. These

parameters were the maximum quantum yield (QYmax) indicating the maximum photochemical

efficiency of photosystem II (PSII), operating efficiency of PSII photochemistry (ØPSII) representing

the proportion of absorbed light energy being used in linear electron transport (photosynthesis),

and non-photochemical quenching of fluorescence (NPQ) linearly related to heat dissipation
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(Murchie and Lawson, 2013). The HpSSP35.8-infiltrated leaves showed continual decrease of

QYmax compared with that of the empty vector-infiltrated control leaves. The QYmax discrepancy

between these two treatments could be noted as early as 9 hpi and further enlarged as the

infection progressed (II, Figure 4a).  The  differences  of  both  ØPSII and NPQ between the two

treatments were observed at even earlier time points. The ØPSII of HpSSP35.8-infiltrated leaves

was lower than that of the control at 3 hpi, whereas the NPQ of HpSSP35.8-infiltrated leaves

exhibited higher value than that of the control from 3.75 hpi until 13 hpi (II, Figure 4a). As the

infection progressed, both ØPSII and NPQ of HpSSP35.8-infiltrated leaves were reduced markedly

(II, Figure 4a). The observed decrease in QYmax and ØPSII, and the initial increase in NPQ followed

by its rapid decline are typical host responses described in many other plant-pathogen

interactions (Rolfe and Scholes, 2010). Therefore, the different responses of these parameters at

early time point make CFI a sensitive tool for screening SSP candidates, including those unable to

induce visible symptoms. The rapid decline of these three parameters at later infection stage

suggested that the infiltrated HpSSP35.8 might have caused damage to photosynthetic apparatus,

thereby influencing the photosynthetic activity.

44.2.3 HpSSP35.8 triggers defense response during the infection of non-host N. benthamiana leaves

The defense response in the non-host N. benthamiana leaves  infiltrated  by  HpSSP35.8  over  a

three-day time course was investigated using 12 selected marker genes, namely, HINI and

HSR203J for hypersensitive response (HR) cell death, ethylene response factor (ERF1a), WRKY12,

PR3, and PR4a for jasmonic acid (JA)/ethylene (ET)-dependent pathway, Non-expressor of

pathogenesis-related gene 1 (NPR1), PR1a, PR2, and PR5 for salicylic acid (SA)-dependent

pathway, and two other PR genes (endochitinase B and protease inhibitor) (van Loon et al., 2006,

Pieterse et al., 2012, Kim et al., 2014, Eulgem et al., 2000, Singh et al., 2002, Pontier et al., 1999).

The two HR marker genes showed significant induction at 1 dpi compared to the control with

subsequent decrease to a level comparable to the control at 3 dpi (II, Figure 5 a,b). The activation

of both HR markers together with the appearance of visible cell death at 36 hpi (II, Figure 4b)

indicated that HpSSP35.8 might at least trigger a form of programmed cell death at the site of

infiltration in N. benthamiana.

The chitinase genes PR4a and endochitinase B were significantly induced at 2 dpi, whereas the

two TF-coding genes ERF1a and WRKY12 exhibited upregulation at 1 dpi (II, Figure 5 c-f). It has

been established that SA-dependent responses are typically effective against biotrophic

pathogens, whilst JA/ET-dependent responses are generally associated with resistance to
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necrotrophic pathogens (Pieterse et al., 2012). The PR4a is one of the JA/ET-inducible genes (van

Loon et al., 2006). The gene ERF1a was demonstrated to positively regulate the expression of a

basic chitinase (b-CHI) gene and the JA marker gene PDF1.2 in response to the necrotrophic

fungus B. cinerea infection in Arabidopsis (Berrocal-Lobo et al., 2002). Overexpression of the gene

WRKY12 was reported to mitigate disease symptoms and to increase the expression of PR4 and

PDF1 in Chinese cabbage (Brassica rapa) infected by the necrotrophic bacterium Pectobacterium

carotovorum ssp. carotovorum (Kim et al., 2014). Consistently, the sequential expression of ERF1a,

WRKY12, and PR4a in N. benthamiana in our study suggested the activation of JA/ET-mediated

defense responses upon the transient expression of HpSSP35.8 by the necrotrophic pathogen H.

parviporum. Furthermore, the SA-response genes were not significantly upregulated during the

experimental time course except for the gene NPR1 which was significantly induced at 1 dpi (II,

Figure 5 h,i,j,l). NPR1 is a crucial regulatory protein, acting as a transcriptional coactivator of many

defense-related genes in SA-mediated pathway (Pieterse et al., 2012). Cytosolic NPR1 was shown

to play a role in the SA-mediated suppression of JA pathway (Spoel et al., 2003). However, the

function of NRP1 is not restricted to SA-dependent responses. In N. attenuata, NPR1 was

proposed to suppress SA production, which minimized the SA-JA antagonistic effects, thereby

eliciting JA-mediated defense against herbivore attack (Rayapuram and Baldwin, 2007). Hence,

the functional picture of NPR1 is complex, and in N. benthamiana, it might also help fine-tune the

defense responses against HpSSP35.8 in a yet unknown manner, one of which could be by

restraining SA production to retain the JA-dependent response.

44.2.4 H. parviporum triggers the up-regulation of defense-related genes in host seedlings

Similarly, we also examined the defense response in the roots of the host Norway spruce

seedlings subjected to H. parviporum infection during the 1-9 dpi period. We used five markers

associated with JA/ET-mediated pathway (i.e., PR4, ERF1a, ERF1b, WRKY12 and Lipoxygenase 1

[LOX1]) and three markers involved in SA-mediated pathway (i.e., LURP1, PR1 and Phenylalanine

ammonia lyase 1 [PAL1]) (van Loon et al., 2006, Arnerup et al., 2011, Pieterse et al., 2012, Arnerup

et al., 2013).

The chitinase gene PR4 showed strong and robust upregulation as early as 36 hpi, and the TFs-

coding genes WRKY12, ERFa, and ERFb reached peak expression at 24 hpi, 72hpi, and 84 hpi,

respectively (II, Figure 6 a-d). The LOX1 gene, involved in the regulation of JA production, showed

induction at 36 hpi followed by its rapid downregulation compared to the control (II, Figure 6 h).

These data collectively reflected the involvement of JA-mediated pathway in the defense

response of Norway spruce against the necrotroph H. parviporum. On the other hand, the gene



32

LURP1, which was considered as the regulon of the SA marker gene PR1 in Arabidopsis (van Loon

et  al.,  2006,  Knoth  and  Eulgem,  2008),  was  co-expressed  as PR1 (II,  Figure  6  e,f). These data

presumably indicated the accumulation of SA in the infected seedlings, which was further

reflected by the expression of the gene PAL implicated in SA production (II, Figure 6 g). The

parallel induction of SA- and JA/ET-mediated pathways has previously been reported in the bark

tissue of Norway spruce in response to H. parviporum inoculation and wounding, and no obvious

antagonism between these two defense signalling pathways against H. parviporum could  be

pinpointed (Arnerup et al., 2011, Arnerup et al., 2013). Our data further reinforced this notion,

and could form a basis for future efforts in the mechanistic understanding of host defenses in the

H. parviporum-Norway spruce pathosystem.
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44.3 DNA methylome and transcriptomic profiles in the lifestyle strategies and asexual

development of H. parviporum (III)

In this study, the transcriptomic profiles of the dual lifestyles of H. parviporum reference isolate

96026 and its lifestyle transition were investigated. To do so, H. parviporum 96026 pre-colonized

sawdust was used as inoculum to infect 20-30 years old Norway spruce trees under the field

condition. Hyphae recovered from the sawdust and from surrounding invaded necrotic stem

tissues represented the fungal saprotrophic (SAP) and necrotrophic growth (NECT), respectively.

The asexual lifecycle stages of H. parviporum 96026 conidiospores (SPORE) and derived mycelia

(MYCEL) grown in axenic culture were also subjected to RNA-seq. Also, DNA cytosine methylation

patterns in these four conditions (SAP, NECT, SPORE, and MYCEL) were obtained by whole-genome

bisulfite sequencing (BS-seq). Transcriptomic and methylome profiles from these different

conditions were described and compared. The resulting transcriptomic and methylome variations

associated with different lifestyle strategies and fungal developmental stages were highlighted.

4.3.1 Genome-wide DNA methylation pattern and DNA methyltransferases

Whole-genome BS-seq was applied on the genomic DNA of H. parviporum 96026  from  four

conditions with three biological replicates per condition. Methylation could be measured and

compared among samples by methylation density (reflecting methylation broadness) and

methylation level (denoting methylation deepness) (Su et al., 2011). Methylation density reflects

the proportion of methylated cytosine (mC) sites among all cytosine sites in a given DNA segment.

Methylation level represents the fraction of methylated reads covering a cytosine site over all

reads covering the same site. A global methylation level (i.e., total C sites divided by total cytosine

sites in all reads) of 3.3% to 5.2% was found among the 12 samples, with higher global methylation

levels in CpG nucleotide context (6.7-9.3%) than in non-CpG context (CHG and CHH, 2.0-3.7%) (III,

Supplementary Table S1). The pronounced preference of methylation in CpG sites was also shown

by both its higher methylation density (mCpG/total genomic CpG) (III, Figure 2b) and average

methylation level (III, Figure 3).

The mC sites were not evenly distributed across the H. parviporum genome, but clustered

generally in TE-rich and gene-poor regions in all conditions (III, Figure 4). TEs also demonstrated

remarkably higher methylation level in comparison to other genomic features (exons, introns,

gene transcribed regions, and 1.5 kb up- and 1.0 kb downstream of transcribed regions)

particularly in CpG context (III, Figure 2c). The mC sites were also identified in gene transcribed

regions, and a sharp increase in methylation level was observed in their flanking regions (III,
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Figure 2d). This pattern was analogous to other fungal species, such as M. oryzae (Jeon et al.,

2015), C. militaris (Wang et al., 2015), and C. parasitica (So et al., 2018).

Principal component analysis (PCA) of the methylation level of all mC sites clustered SPORE and

MYCEL together, with SAP and NECT being grouped individually (III, Supplementary Figure S1a).

Compared with SPORE (11.60-13.68%) and MYCEL (11.02-13.32%), the number of mC sites was

lower in SAP (9.79-10.23%) and NECT (6.61-7.64%) samples. However, the number of mC sites in

NECT might be slightly underestimated due to the smaller number of genomic cytosines covered

by BS-seq reads, (III, Table 1). Yet, it is also likely that DNA methylation of H. parviporum had

undergone substantial changes with the transition to different lifestyles.

In H. parviporum 96026 reference genome, three genes (evm.scaffold1.83, evm.scaffold1.1154,

and evm.scaffold4.208) encoding putative DNA (C-5)-methyltransferases (DNMTs) were

identified with the evidence of RNA transcripts. The predicted signature domains enabled the

division of these genes into two groups, followed by separated phylogenetic analysis. The DNMTs

encoded by evm.scaffold1.83 and evm.scaffold4.208 clustered with Mas2 of Ascobolus immersus,

Dnmt1a and Dnmt1b from the Basidiomycota species Coprinopsis cinerea and Laccaria bicolor.

Conversely, the DNMT encoded by evm.scaffold1.1154 shared the same clade with Dnmt2 of C.

cinerea and L. bicolor (III, Supplementary Figure S5a,b). The two putative DNMTs from Dnmt1

family appeared differentially regulated, with evm.scaffold1.83 being slightly more active in

MYCEL and SPORE samples, and evm.scaffold4.208 in NECT and SAP samples. The DNMT from

Dnmt2 family, however, remained constitutively expressed in all conditions (III, Supplementary

Figure S5c). It is worth mentioning that one gene (evm.scaffold16.93) was also found to contain

the DNA methylase domain as well as the SNF2_N domain and Helicase_C domain, which enables

the assignment of this gene to Rad8 subfamily with yet unknown function (Huang et al., 2016).

44.3.2 Transcriptomic profiles associated with lifestyle strategies and fungal development

Reads from RNA-seq conducted on H. parviporum 96026 from the four conditions were mapped

onto the reference genome and quantified on the gene level. Contrary to what has been revealed

by the PCA of the methylome, PCA of the transcriptome grouped NECT and SAP together,

separated from both MYCEL and SPORE groups. The dramatically smaller number of differentially

expressed genes (469 genes) in NECT vs SAP compared to NECT vs MYCEL (3663 genes) or NECT

vs SPORE (5565 genes) further corroborated the similar transcriptomic profiles of NECT and SAP

samples. Therefore, we extracted those genes significantly upregulated in both NECT and SAP

samples compared with both MYCEL and SPORE samples, and named these genes as in planta-



35

expressed genes (896 genes). Highly induced genes in a specific condition compared with all the

other remaining conditions were considered as condition-specific genes. The number of NECT-,

SAP- and SPORE-specific genes was 56, 108, and 1321, respectively.

The significantly enriched GO terms and KEGG pathways in the condition-specific and in planta-

expressed genes were summarized in Table 3.  Germination of spores marks the breakdown of

dormancy, which normally associates with the coordinated activation of a series of metabolisms

upon sensing appropriate nutrient conditions. H. parviporum conidiospores could readily form

germ tube after 18-hour incubation in culture media (Li et al., 2006). The significantly

overrepresented GO terms and KEGG pathways together with other main KEGG pathways

(pathways involving at least 8 genes; such as Ribosome, Biosynthesis of amino acids, and Protein

processing in endoplasmic reticulum) in SPORE-specific genes collectively suggested that the

major biological processes, including nucleotide synthesis, transcription, translation, protein

processing and degradation, and metabolism of an array of small molecules and secondary

metabolites were intensively occurring in preparation for germ tube emergence, which were

possibly driven by the energy produced by oxidative phosphorylation. The increased primary

cellular activities and energy demand during H. parviporum conidial germination were generally

congruent with other filamentous fungi such as F. oxysporum (Sharma et al., 2016), A. fumigatus,

A. niger, and A. oryzae (Hagiwara et al., 2016).

Table 3. Significantly enriched GO terms and KEGG pathways of selected gene sets (III, Table 2).
IDs Annotation Type1 p-value Tested genes
GO:0044281 Small molecule metabolic process BP 4.7E-05 SPORE-specific
GO:0019748 Secondary metabolic process BP 0.0014 SPORE-specific
GO:0006457 Protein folding BP 0.0093 SPORE-specific
GO:0008135 Translation factor activity, RNA binding MF 0.0038 SPORE-specific
Kegg:hir00190 Oxidative phosphorylation - 1.3E-04 SPORE-specific
Kegg:hir03040 Spliceosome - 9.0E-04 SPORE-specific
Kegg:hir03020 RNA polymerase - 0.0018 SPORE-specific
Kegg:hir00240 Pyrimidine metabolism - 0.0046 SPORE-specific
Kegg:hir00230 Purine metabolism - 0.0063 SPORE-specific
GO:0003700 DNA binding transcription factor activity MF 3.0E-04 SAP-specific
GO:0005975 Carbohydrate metabolic process BP 7.4E-06 NECT-specific
GO:0016798 Hydrolase activity, acting on glycosyl bonds MF 1.0E-05 NECT-specific
GO:0005975 Carbohydrate metabolic process BP 1.6E-12 In planta-expressed
GO:0055085 Transmembrane transport BP 0.0081 In planta-expressed
GO:0016798 Hydrolase activity, acting on glycosyl bonds MF 5.1E-06 In planta-expressed
GO:0022891 Substrate-specific transmembrane

transporter activity
MF 0.0010 In planta-expressed

GO:0043167 Ion binding MF 0.0079 In planta-expressed
GO:0006259 DNA metabolic process BP 9.2E-09 Amenable genes

1The GO categories, BP: biological process; MF: molecular function.
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SAP-specific gene list was dominated by genes implicated in transcriptional regulation and signal

transduction. The former process could be exemplified by the genes encoding putative TF-related

DNA binding domains (e.g., Zn(2)-C6 fungal type DNA binding domain and Zinc finger C2H2 type)

(Shelest, 2008) and genes sharing high similarity to the subunits Set1 and Ash2 of yeast

Set1/COMPASS complex specialized in histone H3 lysine 4 methylation (H3K4me) for active

transcription (Krogan et al., 2002, Shilatifard, 2012, Freitag, 2017). The latter process could be

illustrated by genes encoding kinase-like proteins, tyrosine- and serine/threonine-specific

phosphatases mediating phosphorylation/dephosphorylation cycles (Brautigan, 2013), and genes

coding for guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP)

activating/inactivating GTPases of Rho family (Chhatriwala et al., 2007, Harris, 2011). Rho GTPases

were previously reviewed to be deployed for morphogenetic events, such as formation of septum

and polarized hyphal growth in the Basidiomycota U. maydis and C. neoformans (Harris, 2011).

One protein that might be assigned to septation in H. parviporum was also found to be highly

induced and to contain the Usd1 (Up-regulated during septation protein 1) domain, which was

originally reported as the highest-fold upregulated protein during the onset of septation in fission

yeast (Bicho et al., 2010). Furthermore, genes associated with stress tolerance in A. nidulans also

appeared in our SAP-specific list, such as an Arrestin-related gene putatively involved in ambient

pH signaling pathway in response to elevated pH (Herranz et al., 2005) and a gene encoding one

subunit of COP9 signalosome complex mediating transcriptional and metabolic reactions in

response to oxidative stress and cell wall rearrangement (Nahlik et al., 2010). Not surprisingly,

genes encoding transporters (one ammonium and one sugar transporter), proteases (one

secreted aspartyl protease and one metallopeptidase), and guanine deaminase (hydrolyzing

guanine to xanthine and ammonia) were highly induced and might be relevant nutrient

acquisition. Taken together, it is postulated that H. parviporum in sawdust inoculum has triggered

massive developmental reprogramming (e.g., morphogenesis) associated with nutrient deficiency

and stress resistance by vigorous employment of complex signaling and regulatory networks,

features that could be of relevance for lifestyle transition.

By contrast, genes involved in carbohydrate metabolic process were found enriched in the NECT-

specific gene list. In total, 15 out of 56 genes encoded putative CAZymes, among which 12 genes

have predicted signal peptide. These CAZymes were predicted mainly to degrade plant cell wall

polysaccharide complex, including three cellulose-active genes (two GH12:cellulases and one

AA9:lytic polysaccharide monooxygenase), two hemicellulose-active genes (one GH10: -1,4-

Endoxylanase and one GH115: -glucuronidase), six pectin-active genes (one PL1:pectin/pectate

lyase, one PL4:rhamnogalacturonan lyase, one GH28:polygalacturonase, one GH105:unsaturated
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rhamnogalacturonyl hydrolase, and two GH43:endoarabinanase and galactan 1,3- -

galactosidase), and two genes (AA1:laccases) for lignin modification. Similarly, genes associated

with nutrient assimilation such as two sugar transporters and one hydroxyisourate hydrolase

(involved in purine catabolism) were also present in the NECT-specific list. Genes encoding a

secreted cytochrome P450, a glutathione S-transferase, and three transporters from MFS family

might be upregulated for detoxification of xenobiotic substrates or toxic plant metabolites.

Additionally, the possible involvement of mitochondrial functions in H. annosum s.l. necrotrophic

phase was also demonstrated in our study by the two genes related to NADH dehydrogenase,

presumably for mitochondrial energy production. More intriguingly, three genes encoding

secreted hypothetic proteins and one gene having 97% similarity to a nonribosomal peptide

synthetase-like gene of H. irregulare TC 32-1 might contribute to fungal pathogenesis.

In planta-expressed genes were upregulated in both SAP and NECT conditions compared with

MYCEL and SPORE. The dramatically larger size of this gene set (896 genes) compared to the

individual SAP- (108 genes) and NECT-specific (56 genes) gene sets implied that H. parviporum,

following dissemination from sawdust to surrounding living tree tissues, might tend to elicit

mostly overlapping physiological responses and biochemical processes. These processes affect H.

parviporum pathogenesis at multiple aspects and include plant penetration (e.g., plant cell wall

degrading CAZymes), nutrient acquisition and transportation (e.g., proteases, sugar and amino

acid transporters), stress tolerance and detoxification (e.g., cytochrome P450s, glutathione-S-

transferases, and MFS general substrate transporters), fungal cell wall reorganization and

biogenesis (e.g., hydrophobins and fungal cell wall degrading CAZymes), signaling and

transcriptional regulation (e.g., kinases, phosphatases, and TFs), and expression of other virulence

factors (e.g., secreted hypothetic proteins).

44.3.3 Associations of TE expression with DNA methylation

As epigenetic silencing has been widely perceived to control TEs proliferation across different

eukaryotic organisms, and mC sites were found prevalent in H. parviporum TEs, we then inspected

the association of expression of predicted TEs with their methylation status. In H. parviporum

96026 genome, long terminal repeat (LTR) retrotransposon was the most dominant categorized

class, covering 14.68% of the genome with Gypsy-like LTR retrotransposon being the most

frequent superfamily (13.36% genome coverage). As expected, the majority of TEs including

Gypsy-like LTR retrotransposons were transcriptionally inactive, yet methylated in all four

conditions (III, Figure 6b,d).  The  TE  expression  level  was  negatively  correlated  with  TE  CpG

methylation levels in the four conditions (Rho = -0.72 to -0.73, p < 0.001) (III, Supplementary
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Figure S3b). The negative trend was also present in each TE (sub)class (except for the “Other” LTR

retrotransposons that were all unexpressed with average methylation level of 87.4%-97.1%) (III,

Supplementary Figure S3a).

Furthermore, a group of genes (23 genes) containing TE-related domains, such as reverse

transcriptase domain, integrase catalytic core domain, and ribonuclease H-like domain were

found to be extensively methylated (CpG methylation level  75%) and barely expressed (TPM 

1) (called amenable genes in this study, see section 4.3.4). This further supports their effects on

repressing TEs and the maintenance of genome stability exerted by DNA methylation in H.

parviporum.

44.3.4 Associations of gene expression with DNA methylation

We also examined the associations of gene expression level with the DNA methylation level of

the gene transcribed regions and upstream regions till 1.5 kb. Genes were classified into a silent

group (1st group) and the lowest 25% to the highest 25% of expressed groups (2nd to 5th groups)

in the four conditions. The silent group showed remarkably higher methylation levels (gene body:

60.9%-64.1%; gene upstream: 51.1%-56.0%) than the expressed groups, while the most highly

expressed group (5th group) presented the lowest methylation levels (gene body: 0.45%-0.57%;

gene upstream: 1.10%-1.44%) (III, Figure 7c,d). Therefore, it is likely that DNA methylation may

play a repressive role in the expression of that small group of genes. Consequently, the

distribution of methylation levels of the silent gene group was checked. The majority of silent

genes were either extensively methylated (methylation level  75%) or barely methylated

(methylation level  5%) (III, Figure 7e,f). Therefore, these heavily methylated (methylation level

 75%) and non- or lowly expressed genes (TPM  1) were defined as amenable genes and

extracted for further inspection.

A total of 79 amenable genes have predicted InterPro domains with 58 genes extensively

methylated in both their transcribed and upstream of transcribed regions. Aside from TE-related

genes mentioned in section 4.3.4, genes containing helicase domains (11 genes), particularly

DEAD/DEAH box helicase domain, and zinc finger of C2H2-type domain (6 genes) were relatively

more abundant and basically silent in four conditions. DEAD-box proteins constitute the largest

family of RNA helicases. They possess multiple properties such as RNA binding and unwinding,

ATPase activity, and promoting RNA folding, thereby, being involved in various processes of RNA

metabolism such as ribosome biogenesis, pre-mRNA splicing, and transcriptional regulation

(Sarkar and Ghosh, 2016, Jarmoskaite and Russell, 2011). C2H2 zinc finger is the largest group of
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DNA-binding TFs in eukaryotes (Seetharam and Stuart, 2013). Therefore, the silence of these

genes found in our study suggested they are redundant or non-functional, and that DNA

methylation could either be the cause or the consequence of their silence.

To further uncover the potential of DNA methylation in regulation of gene expression in response

to different conditions, the differentially methylated cytosine sites (DMS) in comparisons of NECT

vs MYCEL, SAP vs MYCEL, and SPORE vs MYCEL were identified. Genes harboring at least six DMS

in either their transcribed regions or upstream till 1.5 kb of transcribed regions were designated

as DMS-associated genes. Expression levels of the resulting DMS-associated genes in the

individual comparisons were then explored, based on which, three methylation patterns were

generalized. DMS-associated genes fulfilling methylation pattern I (18 genes) and pattern II (5

genes) were significantly upregulated in NECT and SAP when compared with MYCEL. Genes of

methylation pattern I included 13 amenable genes and were heavily methylated in all four

conditions with slightly lower methylation levels in NECT and SAP (III, Figure 8a). It is speculated

that the expression of such genes, particularly those amenable genes (e.g., genes encoding a GMC

oxidoreductase, an ATPase, and a secreted serine protease S53), might be silenced by DNA

methylation in H. parviporum mycelia growing on artificial plates (MYCEL) and somewhat de-

repressed upon switching to saprotrophic or necrotrophic growth (NECT and SAP) as required.

Genes belonging to methylation II (e.g., gene coding for a cytochrome P450) were slightly more

methylated in NECT and SAP, yet having generally very low methylation levels (< 10%) (III, Figure

8b). As it is unclear if certain threshold needs to be reached for DNA methylation to be efficient,

the role of DNA methylation in the expression of this group of genes remains obscure. The third

methylation pattern was presented by downregulated genes in NECT and SAP when compared

with MYCEL. Their lower transcript abundances in NECT and SAP coincided with the higher

methylation levels in these conditions (III, Figure 8c). However, unlike genes of methylation

pattern I, this group of genes (e.g., genes encoding a DNA-directed RNA polymerase and an acetyl-

CoA synthetase-like protein) were expressed constitutively in all conditions, which might be

attributed to their low to intermediate methylation level (< 75%) that fluctuated in the four

conditions. Moreover, genes encoding WD40 repeat-containing domain, Ankyrin repeat-

containing domain, and F-box domain were found to possess methylation pattern I and III,

implying their proneness to be affected by DNA methylation. As these domains are known to act

as sites for protein-protein interactions (Xu and Min, 2011, Jonkers and Rep, 2009, Voronin and

Kiseleva, 2008), it is likely that their methylation might enable more efficient regulation of

biological processes by mediating the interplay among different proteins.
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Notably, our classified condition-specific genes had very low or undetectable methylation levels.

Additionally, we could not find clear evidence that could link any DMS-associated, differentially

expressed genes to germination of conidiospores (SPORE vs MYCEL) or to transition of

saprotrophic growth in sawdust to necrotrophic growth (NECT vs SAP), which undoubtedly needs

further investigation.



41

55. CONCLUSIONS AND FUTURE PERSPECTIVES

In conclusion, we used a hybrid sequencing strategy to present the first reference genome of a H.

parviporum isolate, which displayed the highest virulence among all 15 studied isolates. The

remaining 14 H. parviporum isolates were also sequenced. Intraspecific comparative genomic

analysis revealed a remarkable level of polymorphism with a notable bias in CpG to TpG mutations

and helped to identify candidate virulence genes for future functional studies. Read mapping

coverage analysis identified two genomic regions exclusively present in the reference isolate and

putatively contributing to its virulence. Genes enriched for copy number variations (duplication

and deletion) and nucleotide polymorphisms were found to be associated with oxidation-

reduction processes and transcription factors, and could be exemplified by the cytochrome P450-

coding genes and C2H2 zinc finger domain-containing genes, respectively. It is highly likely that

many layers rather than a single molecule determine H. parviporum virulence, and expression of

many genes might collectively influence the ultimate manifestation of its virulence. Indeed,

transcriptomic data yielded from mature host trees infected by H. parviporum sawdust inoculum

under the field conditions underlined several well-known functional categories that appeared

crucial for H. parviporum necrotrophic interaction with its host. These include genes encoding

proteins relevant for plant cell wall degradation (e.g., CAZymes), nutrient acquisition (e.g.,

proteases and sugar transporters), and stress tolerance and detoxification (e.g., cytochrome

P450s). The lists of highly induced secreted hypothetic proteins could present novel aspects in

assisting H. parviporum pathogenic activity, and definitely merits further study. The growing list

of candidate genes urges the need for the development of an efficient DNA transformation system

or alternate system to provide direct evidence of their implication in H. parviporum pathogenesis.

With the annotated H. parviporum genome, SSPs were selected based on their ability to induce

necrotic cell death in N. benthamiana leaves and their transcriptional dynamics over the course

of infection on host Norway spruce seedlings. One SSP (HpSSP35.8) caused strong, fast, and

consistent cell death in N. benthamiana, accompanied by diminished photosynthetic activity and

activation of several defense-related genes involved in JA/ET-dependent pathway and

hypersensitive response. Additionally, the HpSSP35.8-coding gene showed significant

upregulation in the early stage of infection on host seedlings, which displayed concomitant

induction of defense-related genes in SA- and JA/ET-mediated pathways. This SSP constitutes the

first example of H. parviporum virulence candidate, whose transient expression triggered rapid

plant cell death and defense responses in N. benthamiana, and might be important for the initial

stage of host disease development. However, its mechanism of action is still unclear, and the lack
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of any predicted domain makes inferences about its function challenging. Future efforts could be

focused on producing its recombinant protein for direct evaluation of its effects on seedling roots

and identifying the receptors in both N. benthamiana and Norway spruce interacting with this

particular SSP, which could help elucidate its molecular function.

Our generation of the reference genome of H. parviporum has paved the way to undertake the

first DNA methylation study in this species adopting distinct lifestyles and undergoing different

asexual stages. The presence of DNA cytosine methylation, and their obvious preference for CpG

dinucleotide context and TE-rich regions were demonstrated by whole-genome bisulfite

sequencing. Negative correlation of TE expression with TE methylation levels, regardless of the

studied conditions, is in line with the consensus of DNA methylations as repressive marks for TE

activities. Combined analysis of gene expression and methylation levels resulted in the

identification of small groups of genes (e.g., genes encoding a GMC oxidoreductase and a DNA-

directed RNA polymerase) that might be amenable to DNA transcriptional regulation during

saprotrophic and necrotrophic growth relative to mycelial growth in axenic culture. It seems that

DNA methylation played negligible roles in the conidiospore germination and transition from

saprotrophic growth to necrotrophic growth in the present study. However, no absolute

conclusion can be drawn until the identified DNA methyltransferase-coding genes are disrupted

and the corresponding transcriptional and methylation levels are re-profiled, which again

necessitates the needs for a feasible gene inactivation approach in this forest pathogen.

Alternatively, treatment of samples under conditions of interest with the suitable concentration

of the demethylating agent 5-azacytidine followed by RNA-seq and BS-seq could be explored.

Overall, there is no doubt that with ever-improving methodological advances, better mechanistic

understanding of pathogenesis and lifestyle changes in Heterobasidion-conifer pathosystem will

be achieved.
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