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Abstract 

 

Modern environments are full of information, and   place high demands on the attention control 

mechanisms that allow the selection of information from one (focused attention) or multiple 

(divided attention) sources, react to changes in a given situation (stimulus-driven attention), and 

allocate effort according to demands (task-positive and task-negative activity). We aimed to reveal 

how attention deficit hyperactivity disorder (ADHD) affects the brain functions associated with 

these attention control processes in constantly demanding tasks. Sixteen adults with ADHD and 17 

controls performed adaptive visual and auditory discrimination tasks during functional magnetic 

resonance imaging (fMRI). Overlapping brain activity in frontoparietal saliency and default-mode 

networks, as well as in the somato-motor, cerebellar, and striatal areas were observed in all 

participants. In the ADHD participants, we observed exclusive activity enhancement in the brain 

areas typically considered to be primarily involved in other attention control functions: During 

auditory-focused attention, we observed higher activation in the sensory cortical areas of irrelevant 

modality and the default-mode network (DMN). DMN activity also increased during divided 

attention in the ADHD group, in turn decreasing during a simple button-press task. Adding 

irrelevant stimulation resulted in enhanced activity in the salience network. Finally, the irrelevant 

distractors that capture attention in a stimulus-driven manner activated dorsal attention networks 

and the cerebellum. Our findings suggest that attention control deficits involve the activation of 

irrelevant sensory modality, problems in regulating the level of attention on demand, and may 

encumber top-down processing  in cases of irrelevant information. 
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1. Introduction 

 

Human attention control systems have evolved to ensure rapid reaction to sudden environmental 

changes and to help us focus on our goals and adapt them to different circumstances (Patel et al. 

2015). The skills that support attention control have probably never been as important as they are in 

today’s modern technology society, which is filled with potentially relevant information as well as 

distractors (Kovach 2010). Attention control allows us, on the one hand, to suppress irrelevant 

information and avoid triggering attention in a stimulus-driven manner; and on the other hand, to 

selectively focus our attention on one task at a time or divide our attention between multiple tasks 

simultaneously. Attentional control plays an increasing role in our hectic, everyday lives. This can 

severely impact the quality of life for individuals with attentional control deficits, such as the 5% of 

the population worldwide with attention deficit hyperactivity disorder (ADHD, Polanczyk et al. 

2007). 

 

1.1. Brain networks involved in ADHD 

The control of attention, which is extensively studied in healthy humans, involves widespread 

networks in cerebro-cortical and subcortical brain structures (Petersen & Posner 2012, Duncan 

2013). In recent years, it has been established that the pathophysiology of ADHD involves large-

scale changes that cover most brain areas in the attention control networks (Castellanos & Proal 

2012, Cao et al. 2014, Rubia et al. 2014). More specifically, several reviews and meta-analyses now 

agree that ADHD is associated with aberrant functioning of the dorsal (superior parietal 

lobule/intraparietal sulcus, SPL/IPS; frontal eye field, FEF) and ventral (temporoparietal 

junction/inferior frontal gyrus, TPJ/IFG) attention systems, the salience network (medial frontal 

cortex, MFC; anterior cingulate cortex, ACC; IFG, and anterior insula), the default-mode network 

(posterior cingulate cortex/ventromedial prefrontal cortex, PCC/VMPFC), the sensory-motor 

cortical areas, and the striatum and cerebellum (Dickstein et al. 2006, Cortese et al. 2012, 



  

 

 

Castellanos & Proal 2012, Cao et al. 2014, Rubia et al. 2014). However, because the majority of 

recent brain imaging studies investigating the functioning of these networks in ADHD have utilized 

the resting-state approach, evidence of how the aberrant activity in these networks is linked to 

specific attention control deficits remains scarce. 

 

1.2. Core functions of attention control  Focused attention or sustained attention that refer to 

selectively maintaining the focus of attention on particular stimulus features is one of the key 

attention control functions (e.g., Mackworth 1968, Salmi et al. 2007). As attention is regulated by 

both the goal-directed or ‘top-down’, and stimulus-driven or ‘bottom-up’ function (Posner 1980, 

Salmi et al. 2009, Alho et al. 2015), focusing attention typically requires suppressing the processing 

of irrelevant information (Sarter et al. 2001, Salmi et al. 2009, Alho et al. 2015) such as transient 

ambient noises that may capture attention, or more sustained background noises that require higher 

selectivity during the primary focus task. Attention may also be divided among multiple targets to 

some extent (e.g., Spelke et al. 1976; Moisala et al. 2015, Salo et al. 2017), for instance when 

simultaneously driving a car and speaking on the phone.  

 

A large extent of our attentional control relates to processing auditory and visual information. 

Although slightly different concepts have traditionally been used in the fields of auditory and visual 

attention research, auditory and visual attention have many similarities. In both modalities, attention 

influences sensory processing at a relatively early stage, already before awareness of the stimulus 

(Kastner et al. 2006, Rinne et al. 2008), and there is a considerable overlap between the higher-level 

attention control systems in the two modalities (Shomstein and Yantis 2006, Salmi et al. 2007, 

Salmi et al. 2009). Evidence spanning from neuronal pathways (Braga et al. 2017) to functional 

brain imaging (Salmi et al. 2007) suggests that the auditory system could be more sensitive to 

irrelevant information than the visual system, which in turn influence processing in a bottom-up 

manner (in the auditory system, bottom-up attention is often termed involuntary attention). In the 



  

 

 

visual system, bottom-up effects are typically examined in the context of exogenous orienting of 

attention, where an exogenous cue may facilitate the attention shift to the target location (Posner 

1980). 

 

Although the roles of auditory and visual attention have not been examined in detail in ADHD 

research, each of the core attention control functions mentioned above are directly related to 

ADHD. Adults with ADHD have trouble maintaining sustained attention, are distracted by 

background noises, and have problems dividing attention among multiple tasks. This can manifest 

as typical inattention symptoms, such as lack of focus, absent-mindedness, and disorganized task 

structuring, which can hamper everyday work and academic tasks (see Barkley 1997, see also 

Gawrilow 2011). Developing sensitive experimental measures that capture these daily life 

symptoms has, however, turned out to be challenging, and it is still largely unclear which specific 

cognitive brain functions are affected when individuals with ADHD perform tasks requiring these 

subfunctions of attention control. 

 

1.3. Functional characteristics of attention control networks  

Controlled experiments on healthy humans suggest that sensory cortical areas and ventral attention 

networks mediate functions that can involuntarily capture our attention in a stimulus-driven manner 

in both visual (Serences et al. 2005, Serences et al. 2007, see also Corbetta et al. 2002) and auditory 

(Salmi et al. 2009, Alho et al. 2015) modalities, as well as cross-modally (Yang et al. 2014, Mayer 

et al. 2016). However, dividing attention under top-down control recruits the dorsal attention 

network (Johnson & Zatorre 2006, Moisala et al. 2015; Salo et al. 2015, Salo et al. 2017), which 

also overlaps with the two modalities (Shomstein & Yantis 2006, Salmi et al. 2007). Selectively 

focusing attention on a particular task content also activates the dorsal and ventral attention 

networks (e.g., Salmi et al. 2007, Serences et al. 2007), but not as prominently as conditions in 

which the focus of attention changes (e.g., Salmi et al. 2007, Salmi et al. 2009, Alho et al. 2015). 



  

 

 

Activity in the posterior cerebellum (e.g., Salmi et al. 2007, Salmi et al. 2010, Stoodley 2012) is 

often observed together with activity in the cerebro-cortical attention control networks described 

above. Functional coupling of the cerebral and cerebellar areas of the attention control networks is 

based on prominent anatomical connections, and is proposed to help optimize the related cognitive, 

motor, or sensory functions (see Middleton & Strick 2000 for a review).  

 

All complex situations involve constant dynamic interaction and competition between multiple 

attentional processes. Brain activation associated with different attention control functions has also 

been observed in largely overlapping networks (e.g., Serences et al. 2007, Salmi et al. 2009, Yang 

et al. 2014, Alho et al. 2015, Xuan et al. 2016). Hence, understanding the attention processes 

associated with observed brain activity requires simultaneous measurement of multiple core 

attention control functions and detailed cross-validation of several alternative hypotheses. Recent 

advances in brain imaging methods have enabled the investigation of multiple attention control 

processes and the relative roles of these networks within the same experiment (e.g., Salmela et al. 

2016, Salo et al. 2017). This has opened up new opportunities to also study the deficits of attention 

control functions that manifest in widespread brain networks. 

 

1.4. Research question and hypotheses 

For the present study, we developed an experimental paradigm that allowed us to investigate the 

roles of focused, divided and stimulus-driven attention, as well as the effects of unimodal and 

bimodal visual and auditory inputs within the same experiment (Figure 1, see Salmela et al. 2016 

and Salo et al. 2017). Our participants performed the auditory and visual discrimination tasks at a 

discrimination threshold of about 70%, i.e. at their individual performance limits. Our aim was to 

determine how adult ADHD affects the brain networks involved in multiple attention control 

functions. The included contrasts were selected on the basis of our previous studies (Salmela et al. 

2016 and Salo et al. 2017) which validated this paradigm among healthy participants. Previous 



  

 

 

ADHD studies have studied focused and stimulus-driven attention separately, and the neuronal 

correlates of divided attention have remained unclear. Our goal was, by measuring all these 

functions in the same study, to pursue a detailed functional characterization of the related attention 

deficits. 

 

Based on previous studies on ADHD (for a meta-analysis, see Cortese et al. 2012), we expected 

ADHD participants to show altered activity in the dorsal and ventral attention systems, default-

mode network, sensory-cortices, and subcortical areas during our demanding tasks. We tested two 

alternative hypotheses, aiming to resolve what happens when a specific attention function is called 

for: (1) Performing approximately equally demanding tasks may lead to group differences in task-

relevant brain networks, and (2) Demands for a particular attention control function may reflect on 

other brain networks, and thus show enhanced activity, reflecting compensation by supporting 

attention networks or indicating difficulties in engaging in task-relevant functions. In the 

modulation of task-relevant functions, we expected to see effects of focused attention in sensory 

areas, possibly also in the dorsal attention system (e.g., Salmi et al. 2007, Serences et al. 2007). 

Group differences between the ADHD and control participants during focused attention tasks have 

previously been observed in the superior parietal cortex (e.g., Booth et al. 2005) and dorsolateral 

prefrontal cortex (Cubillo et al. 2011, Karch et al. 2014). Group differences in divided attention and 

stimulus-driven attention tasks, in turn, might be observed in the dorsal and ventral attention 

systems (cf. Corbetta & Shulman 2002, see also Johnson & Zatorre 2006, Moisala et al. 2015, Salo 

et al. 2015, Salo et al. 2017), respectively. Several studies of ADHD participants have reported 

activation changes, especially in the ventral attention system involved in stimulus-driven attention 

and response inhibition (see Cortese et al. 2012 for a meta-analysis). Compensatory activity could 

be observed in the opposite networks, in top-down systems for example, during the suppression of 

irrelevant information. Higher activity in the default-mode networks during task-relevant processing 

could be considered a potential index of difficulties in engaging attention (see Cortese et al. 2012). 



  

 

 

Previous studies focusing on one task at a time and typically not controlling for individual 

differences in task demands have failed to differentiate between task-relevant and supporting brain 

functions. 

 

2. Results 

 

2.1. Behavioral results 

As shown in Figure 2 (see also Supplementary Table 2), the reaction times (RTs) of the auditory 

and visual tasks differed (main effect of Target Modality, F(1,17) = 47.34, p < 0.0001). This 

modality difference was mainly caused by the visual targets having shorter RTs than the auditory 

targets in the focused attention tasks. The RTs were higher in the focused attention condition than in 

the simple button press task condition, and higher still in the divided attention condition (main 

effect of Condition, F(2,17) = 185.4, p < 0.0001). Moreover, distractors caused higher RTs than 

those in the trials with no distractor (main effect of Distractor F(2,17) = 62.93 p < 0.0001, ε 0.81). 

We observed significant interactions in Modality × Condition (F(2,17) = 8.92, p < 0.01), Modality × 

Distractor (F(2,17) = 16.9, p< 0.0001), Modality × Condition × Distractor (F(2,17) =  3.51, p < 

0.05). There were no significant differences between the RTs of the ADHD participants and those 

of the neurotypical participants.  

 

The mean auditory discrimination thresholds (see also Supplementary Table 2) of the ADHD group 

were 7.7% of the octaves (SEM 2.8) for the auditory focused attention tasks and 8.5% of the 

octaves (SEM 1.4) for the divided attention tasks. The mean visual discrimination thresholds were 

12.3° of visual angle (SEM 3.9) for the visual focused attention tasks, and 22.7° (SEM 5.1) for the 

divided attention tasks (see also Supplementary Table 2). In the neurotypical group, the 

discrimination thresholds (DTs) were 6.8% (SEM 2) for the auditory focused attention tasks, 13.1% 

(SEM 2.2) for the auditory divided attention tasks. For the visual tasks, the DTs were 7.4° (SEM 2) 



  

 

 

for focused attention, and 17.8° (SEM 4.4) for divided attention in the neurotypical group. The DTs 

were affected by the condition (F(2,11) = 21.57 p < 0.0001, ε 0.858). That is, in the divided 

attention condition, the DTs were higher than in the unimodal or bimodal focused attention 

conditions. The DTs of the ADHD and neurotypical participants did not differ. 

 

The hit rates (HRs) (see also Supplementary Table 2) were affected by Condition (F(2,17) = 15.5 

p < 0.0001). In both groups, this was mostly due to lower HRs in the divided attention conditions 

than in the focused attention. Unlike the RTs, the HRs did not show consistent distractor effects 

across different conditions. However, especially among the ADHD participants, the HRs tended to 

be lower for the auditory distractor trials, leading to a Modality × Group interaction (F(2,17) = 5,67 

p < 0.05). Condition × Distractor (F(2,17) = 6.37 p < 0.01) and Modality × Distractor interactions 

(F(2,17) = 4.31 p < 0.05) were also significant. These interactions were related to varying distractor 

effects in individual conditions. However, the patterns of distractor effects across the three 

conditions and two groups were rather complex. It should be noted that in several conditions, 

occurrence of distractors tended to also be associated with higher rather than lower HRs (e.g., 

auditory distractors during visual focused attention in the neurotypical group). 

 

2.2. Activity in attention control networks across all participants

Compared with the simple button press task condition, all discrimination conditions showed larger 

activation in widespread attention networks, including the dorsal (SPL/IPS, FEF) and ventral 

(MFG/IFG, TPJ) frontoparietal systems, the pre-supplementary motor area (preSMA)/ACC, dorsal 

striatum, and posterior cerebellum across all participants (Figure 3a). We also observed activity 

across all conditions in the auditory and periauditory cortices (mainly in the superior temporal 

gyrus, STG), and lateral visual cortex (in the vicinity of V5). Whole brain regional analysis of the 

single conditions suggested that almost all these areas were activated during auditory and visual 

focused attention and during divided attention, and that the activity in several areas was further 



  

 

 

enhanced when distractors occurred (Supplementary Figure 1). Compared with auditory focused 

attention, divided attention showed higher activity in widespread areas in the posterior parietal 

cortex, including the SPL/IPS (Supplementary Figure 1). Visual target trials with visual distractors 

were followed by activity that was clearly less distributed in the attention networks than in the 

visual target trials without distractors. No such effect was observed for auditory distractors. Yet 

even these tasks were associated with enhanced activity in the attention network areas outside the 

prefrontal cortex. As expected, in comparison with unimodal auditory and visual conditions, 

auditory and visual focused attention conditions with bimodal stimulation showed stimulus-

dependent activations in the visual and auditory cortices, respectively, due to activity elicited by the 

stimuli of the unattended modality. Auditory stimulus-dependent activations were prominent in 

both groups, visual stimulus-dependent activations only reached the statistical threshold in the 

neurotypical control group. 

 

2.3. ADHD-related task-specific changes in attention control networks 

Comparisons between the whole brain regional brain activity of the ADHD and neurotypical 

participants revealed task-specific adaptations of the attention control networks (Figures 4 and 5, 

Supplementary Figure 2). Except for the simple button press test vs. rest comparison, we only show 

the comparisons in which the ADHD participants showed higher activity, as the opposite contrasts 

failed to reveal any areas in which brain activity was higher among the neurotypical participants. 

Among the ADHD participants, the repetitive stream of irrelevant auditory stimuli in the visual 

focused attention task, which enhanced the demands for selective attention, resulted in higher 

activity in the SMA/ACC than that in the visual unimodal task (Figure 4a). Irrelevant visual stimuli 

during the auditory focused attention task showed no group differences. When the visual focused 

attention task was compared with the simple button press condition, the ADHD participants showed 

higher activity than the neurotypical participants in the cuneus/precuneus and PCC (Figure 4b). 

During the auditory focused attention task with bimodal stimulation, the attention effects spread to 



  

 

 

the medial and lateral visual cortices among the ADHD participants (Figure 4c). Direct comparison 

between auditory and visual focused attention tasks did not, however, reveal significant group 

differences.   

 

During the divided attention task, we observed group differences in widespread networks including 

the main areas of the default mode network (PCC/SPL, MPFC, and superior areas of the lateral 

occipital cortex), spreading to frontoparietal attention networks (Figure 4d). Further analysis of the 

role of task modality in divided attention suggested that, in comparison to auditory focused 

attention with bimodal stimulation, divided attention in the ADHD group showed higher activity in 

the right superior and middle temporal cortex, right ventrolateral prefrontal cortex, right striatum, 

and both right and left thalamus (Supplementary Figure 2a). Comparison of divided attention and 

visual focused attention (with bimodal stimulation) contrast did not reveal significant group 

differences. In the simple button press condition, activity in largely overlapping default-mode 

network areas was observed in the opposite contrast (neurotypical > ADHD) between the two 

groups (Figure 4e).  

 

Distractors showed higher activity in the SPL/IPS among the ADHD participants than among the 

neurotypical participants (Figure 5a). A specific analysis of the auditory distractors suggested group 

differences in more widely distributed areas, including, in addition to the parietal and cerebellar 

areas, also the medial prefrontal and cingulate cortex, bilateral visual cortices, and premotor/motor 

areas (Figure 5b). Visual distractors analyzed separately showed higher activity in the posterior 

cerebellum in ADHD participants (Figure 5c). Although the differential activations reached 

significance in the group comparisons of auditory and visual distractors, we found no modality-

specific distractor effects. The specific analyses of distractors during the divided attention tasks 

suggested higher activity in the ADHD group in terms of default mode network (DMN), the right 

superior and middle temporal cortex, right ventrolateral and dorsolateral prefrontal cortex, right 

striatum, deep cerebellar nuclei, and both left and right thalamus (Supplementary Figure 2b). 



  

 

 

 

3. Discussion 

 

The present study was conducted to determine the neuronal underpinnings of multiple distinct 

attention control deficits among ADHD participants. The present experimental tasks required 

focusing and dividing attention in the presence of novel distracting stimuli in unimodal and bimodal 

blocks. The different attentional demands due to these manipulations were reflected by the RTs 

(Figure 2). Our adaptive design produced a relatively similar performance across the groups. In the 

reported behavioral analyses, we only found Modality × Group interaction, suggesting that ADHD 

participants found the auditory tasks more difficult than the visual tasks. Thus, attentional demands 

were constantly high, allowing reliable comparisons between the task conditions mostly unaffected 

by the performance differences among the participants. Overall, the task-related activations covered 

the key areas of the large-scale attention networks (Figure 3, see also Supplementary Figure 1). 

 

Previous studies of adults with ADHD, which have typically not used adaptive tasks, often report 

hypoactivations among ADHD participants (for a meta-analysis, see Cortese et al. 2012). Our study 

with its adaptive design, in turn, exclusively revealed hyperactivity during attention control tasks 

performed under constantly high attentional demands (Figures 4 and 5). The striking observation 

was that difficulties managing situations that required attention control among individuals with 

ADHD appear to be related, not to the primary functions typically associated with these brain areas, 

but to the compensatory enhancement of activity in other brain systems (Figures 4 and 5). Based on 

the group differences in the main attention modes, that is, focused, divided and stimulus-driven 

attention, we propose three brain mechanisms that may cause a lack of focus on a given task when 

attention control demands are high: 1)  Enhanced activity in the visual cortical areas during auditory 

focused attention 2) enhanced activity of the voluntary attention control network when irrelevant 

distractors (SPL/IPS and cerebellum) or irrelevant multimodal input (SMA/ACC) are presented, and 

3) problems in regulating the level of attentional arousal on demand. The latter proposed 



  

 

 

mechanism is also supported by our result that during the simple button press task, our control 

participants showed higher activity in the DMN. That is, during a highly demanding task increased 

DMN activity may reflect difficulties in engaging attention for the task, and in an easy and non-

demanding task, lower DMN activity may reflect too much effort allocated to the task. 

 

3.1. Impairment in selectively focusing attention on relevant stimulation 

Both the unimodal/bimodal focused attention and divided attention tasks showed prominent 

activations across all participants, in addition to the higher-level attention control networks in the 

auditory and visual cortices discussed later (see Supplementary Figure 1c, 1d and 1e). These 

sensory cortical effects are likely to reflect enhancement of the sensory processing by attention, as 

numerous auditory (e.g., Petkov et al. 2004) and visual (e.g., Kastner et al. 1998) studies have 

observed. Whereas prior studies examining load-dependent responses of ADHD participants have 

mainly reported activation differences in brain areas primarily involved in the task (Booth et al. 

2005, Cubillo et al. 2011, Karch et al. 2014), we observed differences in areas not primarily 

involved in the task (Figure 4b,c). During the auditory focused attention tasks, we found increased 

visual cortical activity, that is, in task-irrelevant sensory modality, among the ADHD participants. 

Studies of neurotypical participants have also sometimes reported spreading of activity across 

modalities (see Cate et al. 2009), especially when the auditory and visual stimuli are presented in 

synchrony (e.g., Busse et al. 2005, Degerman et al. 2007). Our findings further suggest that this 

could be one of the attentional mechanisms that is altered in ADHD.  

 

In the visual focused attention task, we observed no enhanced activation in the irrelevant auditory 

modality, but instead the ADHD participants showed higher activation in PCC and cuneus than the 

controls. Although direct comparison between auditory and visual focused attention did not reveal 

group differences, different activation patterns in these two conditions may reflect some differences 

between the two modalities. Enhanced visual activity during auditory attention could either reflect 

increased suppression of irrelevant information or the spreading of attention to the irrelevant 



  

 

 

modality (Busse et al. 2005, Degerman et al. 2007, Cate et al. 2009). DMN activity during the 

visual attention tasks could in turn reflect difficulties in engaging attention for the task. Due to the 

substantial differences between auditory and visual modalities (stimulus properties and sensory 

coding, organization of the sensory pathways, higher-level attention systems), it is difficult to 

reliably interpret where the possible modality differences in the present results stem from. Some 

evidence exists that auditory attention could be more sensitive to bottom-up influences than visual 

attention (see, e.g., Braga et al. 2017, Salmi et al. 2007). In the present study, we observed enhanced 

bottom-up intrusion during auditory focused attention among the ADHD participants, although 

slightly surprisingly, this occurred in the visual system. Even though this effect apparently relates to 

differences between the bottom-up processing of the two modalities, it remains unclear why cross-

modal bottom-up driven intrusion of visual stimuli during auditory attention occurred. Perhaps top-

down control of auditory attention was not able to efficiently suppress visual bottom-up input. 

Nevertheless, our results suggest that enhanced cross-modal distraction during auditory attention in 

the ADHD group relates to altered bimodal processing specifically in ADHD. More evidence of the 

modality-related bottom-up effects in ADHD is clearly needed. 

 

Previous studies have demonstrated age differences in the influence of bimodal information on 

behavioral performance: Whereas in adults, coherent multisensory stimulation may improve 

performance (Bisch et al. 2016), in children even irrelevant noise may help in performing the task 

(Söderlund et al. 2007). As our participants performed the tasks at threshold, our study did not 

reveal any behavioral correlates of the irrelevant sensory stimulation. It does, however, suggest a 

possible neural mechanism for this phenomenon. Our results indicate that irrelevant information 

activates cross-modal pathways at a ‘lower threshold’. In line with previous findings, our results 

suggest that auditory and visual stimulus environments should be considered together when 

planning support for ADHD individuals.  

 



  

 

 

3.2. Enhanced voluntary attention control network activity when irrelevant information is 

presented 

Frontoparietal networks are involved in voluntary (goal-directed) and involuntary (stimulus-driven)  

directing of attention to specific auditory (Shomstein & Yantis 2006,  Salmi et al. 2007, Salmi et al. 

2009, Alho et al. 2015) and visual (Vandenberghe et al. 2001, Yantis et al. 2002) sensory input, 

when switching between auditory and visual attention (Shomstein & Yantis 2004, Yang et al. 

2014), and when dividing attention between auditory and visual tasks (Johnson & Zatorre 2006, 

Moisala et al. 2015, Salo et al. 2015, Salo et al. 2017). In addition, in these core attention networks, 

which consistently show altered brain activity in individuals with ADHD (see Cortese et al. 2012), 

the effects of higher attentional demands are not observed in the specific areas that are primarily 

required in a given situation. Instead, these attention deficits modulate activity in specific areas that 

are more closely involved in other attention control functions or that reflect difficulties in engaging 

attention control networks (see more details of these DMN activations below). We mainly observed 

altered processing of task-irrelevant distractors in the SPL/IPS and posterior cerebellum (Figure 5). 

The well-established role of these areas in voluntary top-down controlled attention (Corbetta & 

Shulman 2002) suggests that the modulation of SPL/IPS and posterior cerebellar function in ADHD 

participants is related to the compensation of the performance of other cognitive control functions. 

More specifically, enhanced SPL/IPS activity associated with stimulus-driven attention is likely to 

reflect extra effort in maintaining the focus of attention on a target, or in directing attention back to 

the task immediately after distraction (Salmi et al. 2009, Serences et al. 2007, Alho et al. 2015). The 

posterior cerebellum plays a key role in attentional anticipation (e.g., Allen et al. 1997) as well as in 

controlling the responses, especially when the demands are high (Salmi et al. 2010). In keeping with 

these findings, dysfunctions of the cerebello-thalamo-prefrontal circuits cause problems in 

inhibition, response control, and executive functions in individuals with ADHD (e.g., Berquin et al. 

1998, see Stoodley 2016 for a review). The present study showed that modulated cerebellar activity 

during stimulus-driven attention may reflect related support functions, even though it should be 



  

 

 

noted that we had no overt behavioral data that would allow us to conclude which specific 

compensatory processes are involved.  

 

Auditory and visual distractors were associated with activations in different brain areas. More 

specifically, we observed activations associated with auditory distractors in widespread areas, 

whereas visual distractors only elicited significant activations in the posterior cerebellum. Even 

though we observed no statistically significant difference in the direct contrast between these two 

conditions, it is possible that the differential activation patterns were again due to the auditory 

system being more sensitive to bottom-up influences than the visual system. Increased sensitivity to 

bottom-up processing in the auditory system has already been observed in anatomical projections 

(Braga et al. 2017), as well as in brain activity (see Salmi et al. 2007). Moreover, comparison 

between divided attention and auditory focused attention showed significant group differences, 

whereas that between divided attention and visual attention did not. As the behavioral results 

suggested that focusing attention may protect against distraction, it appears that the higher 

activations in the focused auditory attention condition among the ADHD patients than among the 

controls could be due to ADHD patients’ better ability to concentrate during focused attention than 

during divided attention. This is also in line with our results that suggest higher activity in these 

DMN and lateral prefrontal areas during divided attention than during focused attention. 

 

We observed higher SMA/ACC activity among the ADHD participants when irrelevant auditory 

stimuli were presented during the visual focused attention task. Although the SMA/ACC was one of 

the areas activated across all conditions, in ADHD its function appeared to be specifically altered 

during the processing of irrelevant information. As part of the salience network, the SMA/ACC has 

been implicated in switching between the DMN and the task-positive network (Bressler & Menon 

2010, Uddin et al. 2015). This area can also be defined as the ‘executive system’, one of the most 

commonly observed attention control areas, the disruption of which often leads to inhibition 



  

 

 

problems (Petersen & Posner 2012). Furthermore, this area plays a key role in attentional lapses 

(Weissman et al. 2006), which may well happen when irrelevant information is presented.  

 

3.3. Problems in regulating the level of attentional arousal on demand 

Altered DMN activity, which occurs both during task performance and while the participants are at 

rest, is currently one of the most widely reported indices of ADHD-related brain function (for a 

review, see Castellanos & Proal 2012). Although evidence exists that DMN activity at rest is 

associated with ADHD symptoms (e.g., Cocchi et al. 2012) and mind wandering (e.g., Kajimura et 

al. 2016), the task-related attention control functions associated with atypical DMN activity in 

ADHD are not known in detail.  

 

In the divided attention tasks compared to simple button press task, ADHD participants showed 

more DMN activity in PCC and VMPFC than the controls. In addition, the visual focused attention 

tasks elicited stronger DMN activity among the ADHD participants. The DMN activity in both of 

these conditions could reflect difficulty recruiting attention when the division of attention is 

required, even though it would be useful in such as situation. That is, as the DMN should be 

observed when focus of attention is lacking, we interpreted this activity as failing to regulate the 

level of attention on demand. 

 

Activity in the PCC and VMPFC has been associated with absent-mindedness, problems in 

sustaining attention (e.g., Leech & Sharp 2014), and keeping attention away from the outside world 

during internally driven default mode operations (see Gilbert et al. 2012). Furthermore, in 

agreement with our findings on divided attention, patients with lesions in VMPFC have consistently 

been reported as having problems in multitasking (for a review, see Burgess 2000). Divided 

attention could be qualitatively different from focused or stimulus-driven attention, meaning that in 

addition to core attention control functions, it also involves higher-level functions such as working 



  

 

 

memory. Therefore, one alternative interpretation of this activity is that it relates to enhanced 

demands, not in basic attention control function, but in higher-level cognitive function. In addition 

to these functions, it has been proposed that the PCC and VMPFC are involved in extremely diverse 

functions, ranging from social cognition (Schillbach et al. 2008) and controlling memory by 

responding to choices under uncertainty (Barron et al. 2016) to imagination (Agnati et al. 2013). As 

a simple mechanism, regulating the level of attention on demand may well also play a role in these 

more elaborated higher-level functions.  

 

3.4. Conclusion 

The findings of the present study strengthen the current knowledge regarding the role of the 

frontoparietal networks, default mode network, salience network, and cerebellum in the 

pathophysiology of ADHD. More specifically, we provide novel information on the context of these 

multifunctional regions when meeting typical everyday cognitive challenges by determining the 

relative contributions of these regions to focusing and sustaining attention on one stimulus stream, 

attending to multiple streams simultaneously, and in the ability to avoid distractors capturing 

attention in a stimulus-driven manner during a difficult task. The mechanisms of divided attention 

among ADHD participants had previously been largely unclear. According to the present findings, 

we propose three brain mechanisms that may cause a lack of focus on a given task when attention 

control demands are high: 1) Higher activation in the visual cortical areas during auditory attention 

2) enhanced voluntary attention control network activity when irrelevant information is present, and 

3) problems in regulating the level of attentional arousal on demand.  

 

4. Material and methods  

 

4.1 Participants 

Sixteen volunteer ADHD patients (seven females, mean±SD age 38±9 years, age range 26–55 



  

 

 

years) and 17 neurotypical controls (seven females, mean±SD age 38±8 years, age range 25–49 

years) participated in our study. The majority of the ADHD (13) and control (10) participants were 

recruited on the basis of a previous project, Adult Dyslexia and Attention Deficit Disorder in 

Finland (DyADD, see Laasonen et al. 2009). Since we were unable to recruit a sufficient number of 

participants from the DyADD sample, SL recruited three additional ADHD participants from a 

private clinic in Helsinki. Additional neurotypical participants were recruited from the student e-

mail list at the University of Helsinki. All the participants were right-handed, had normal or 

corrected to normal vision, no major hearing deficits, and Finnish was their native language. The 

participants in the neurotypical group were paid 15 €/h (total approximately 45 €). All participants 

gave written informed consent prior to participation. The study was approved by the Ethics 

Committee for Gynecology and Obstetrics, Pediatrics and Psychiatry of the Helsinki University 

Hospital. 

 

ADHD was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorder, 

Fourth Edition (DSM-IV; American Psychiatric Association, 1994). For diagnostics, we used the 

Conners’ Adult ADHD Diagnostic Interview for DSM-IV (Epstein et al. 2001). The patients had 

either only inattention (ADHD-PI, 314.00) or inattention and hyperactivity (ADHD-CT, 314.01). 

None of the participants had psychiatric or neurological disorders except for four ADHD 

participants who had symptoms of dyslexia. None of the participants used psychoactive medication 

during the experiment. Screening for depression symptoms was conducted using the DEPression 

Scale (DEPS, Salokangas et al. 1995), and for alcohol usage using the WHO Alcohol Use Disorder 

Identification Test (AUDIT-III). In addition, all participants filled questionnaires on attention and 

executive function deficits (ASRS, APQ, BRIEF), and participated in short neuropsychological 

testing (WAIS-III, matrix reasoning and vocabulary) in addition to prior extensive testing (see 

Supplementary Table 1). No significant group differences were observed in terms of DEPS 

(mean±SD, ADHD: 6.8±6.2, NT: 3.3±3.1) or AUDIT-III (ADHD: 4.9±2.8, NT: 3.9±1.8).  



  

 

 

 

4.2. Experimental design 

In all tasks, except the visual unimodal task, sine wave tones were presented at an intensity of 80 dB 

SPL for 300 ms, including 10 ms of linear onsets and offsets. The participants’ auditory task was to 

indicate whether the pitch of the tone was higher or lower than the pitch of the previous tone. As we 

used the adaptive 2-1 staircase method, the change in pitch decreased after two consecutive correct 

responses and increased after an incorrect response. Tone frequency varied between 600 and 1800 

Hz according to the participants’ responses in the auditory focused attention task and divided 

attention task. The pitch change between consecutive trials was limited to a maximum of 0.5 

octaves. Additional distractor sounds, that is, novel complex synthetic sounds (e.g., clicks and 

ringtones) were presented simultaneously with the sine wave tones in 1/6 of the trials, to 

involuntarily trigger attention in a stimulus-driven manner. Each distractor sound was presented 

only once to maximize distractibility and reduce adaptation (see Escera et al. 2000). The maximum 

intensity of the distractor sounds was 80 dB SPL, and they were low- and high-pass filtered, with 

cut-offs at 7000 Hz and 200 Hz, respectively. In addition, the distractor sounds were notch-filtered 

at 1000 Hz (filter width two octaves) to avoid acoustic masking of target tone frequencies. The 

presentation of distractor sounds was randomized; they did not occur at the beginning of the block 

(among the two first stimuli) and were never a subsequent pair. 

 

All the bimodal tasks presented the visual stimuli in synchrony with the tones. Visual stimuli were 

grayscale sine wave gratings (see Figure 1). Each high-contrast grating was shown for 300 ms in a 

spatial Gaussian envelope (diameter 3°). The spatial frequency of grating was 2 c/° and the phase 

was randomly set in each trial. The participants’ visual task was to indicate whether the orientation 

of the grating was rotated clock-wise or counter-clock-wise in relation to the orientation of the 

previous grating. We used an adaptive 2-1 staircase method, and thus the amount of orientation 

change decreased after two consecutive correct responses and increased after an incorrect response. 



  

 

 

The grating orientation was varied according to the task performance in the visual focused attention 

task and divided attention task. We limited the maximum change between the consecutive trials to 

90°. As in the tone sequences, novel distractors were presented simultaneously with gratings in 1/6 

of the trials (only one distractor could occur at a time). The visual distractors were colored textures 

(size 16 x 24°, see Figure 1). The root mean squared contrast of the textures was 0.3. To avoid 

spatial masking and to keep gratings identical across conditions, a circular area (diameter 6°) was 

cut out of the center of the distractor textures. Each visual distractor occurred only once during the 

experiment. The tones and gratings were presented a constant onset-to-onset intervals of 1.8 s. 

Stimuli were created, and we controlled their timing using Presentation® software 

(Neurobehavioral Systems, Berkeley, CA, USA, www.neurobs.com). 

 

In the unimodal auditory/visual and bimodal selective focused attention conditions, the participants 

performed either tone discrimination or grating discrimination tasks (see Figure 1). In the divided 

attention condition, they performed both tone and grating discrimination tasks simultaneously, 

knowing that on each trial the stimulus was changed in only one modality. The focused attention 

conditions also contained sham trials in which the stimulus also changed in the non-attended 

modality. These trials were discarded from the analysis in order to keep the bimodal focused 

attention conditions similar to those of the divided attention condition in which the stimuli varied in 

both modalities. In addition, we gave participants a simple button press task condition in which they 

had to press a button whenever the tone-grating pair occurred. In total, there were six different 

experimental conditions: 1) An auditory unimodal focused attention condition, 2) an auditory 

bimodal focused attention condition, 3) a visual unimodal focused attention condition, 4) a visual 

bimodal focused attention condition, 5) a divided attention condition (bimodal), and 6) a simple 

button press task condition (bimodal). Moreover, each bimodal condition contained six different 

types of trials: 1) An auditory target without a distractor, 2) an auditory target with an auditory 

distractor, 3) an auditory target with a visual distractor, 4) a visual target without a distractor, 5) a 

visual target with an auditory distractor, and 6) a visual target with a visual distractor. The auditory 

http://www.neurobs.com/


  

 

 

and visual unimodal conditions only had targets with no distractor and targets with an intramodal 

distractor. In the simple button press task condition, all tone-grating pairs were targets that had to be 

responded to with the same button press when they occurred either without a distractor, with an 

auditory distractor or with a visual distractor. In each contrast related to the attention effects, similar 

stimuli were presented (see, however, Supplementary Figure 1a–b for stimulus-dependent 

activations). That is, only bimodal conditions were included for examining the effects of focused 

attention. We also used similar experimental variables in our earlier studies, confirming the 

efficiency of the design in fMRI data analysis (Salmela et al. 2016, Salo et al. 2017). 

 

In the bimodal conditions, each task consisted of 60 trials occurring in a random order (see also 

Figure 1): 40 trials without distractors, 10 trials with an auditory distractor, and 10 trials with a 

visual distractor. Each bimodal task consisted of 20 tones and 20 gratings with no distractor and 5 

intramodal and 5 intermodal distractors. In the unimodal conditions, only intramodal distractors 

were presented, but the amount of distractors was the same. Thus, they consisted of 20 tones or 

gratings and 10 intramodal distractors. The specific tasks were performed in different blocks, and 

the order of blocks was randomized within each run. The participants performed three runs, except 

for two ADHD participants, who performed only two runs, and one neurotypical participant, who 

performed only one run. Each task was presented once during one run. Between task conditions, 

there was a four-second resting period and in the middle of the run a 40-second resting period 

during which the participants were instructed to fixate on a fixation cross. For further details of the 

experimental design, see Salmela et al. (2016). 

 

4.3. MRI acquisition 

We collected fMRI data using a Siemens MAGNETOM Skyra 3 T scanner (Siemens Healthcare, 

Erlangen, Germany) with a 30-channel head coil. We measured three functional runs using a 

gradient-echo echo planar imaging sequence (TR 1.9 s, voxel matrix 64 × 64, slice thickness 3.0 



  

 

 

mm, in-plane resolution 3.1 mm × 3.1 mm × 3.0 mm). Each run in the functional measurements 

consisted of 360 volumes. The first four volumes were discarded to stabilize magnetization. A 

structural MR image with a T1-weighted MPRAGE sequence (1 mm slice thickness) was acquired 

before the third functional run for registration purposes. The timing of the scanning was random in 

relation to the presentation of the stimulus. 

 

4.4. Analysis of fMRI data 

The fMRI data were analyzed using FSL tools (Smith et al. 2010). We performed the general linear 

model data-analysis using fMRI Expert Analysis Tool software (FEAT, v6.00), Functional 

Magnetic Resonance Imaging of the Brain Centre (FMRIB) software library (FSL, release 5.0.9). 

Motion correction was performed using FMRIB’s Linear Image Registration Tool (MCFLIRT). 

DVARS (D referring to temporal derivative of timecourses, VARS referring to root mean square 

variance over voxels, see Power et al. 2010) were regressed from the data to avoid the involvement 

of motion during scanning on statistical testing. We also confirmed that there were no group 

differences in relative or absolute movements. We used the Brain Extraction Tool (BET) for T1 as 

well as functional images to isolate the brain tissue from the non-brain tissue. The functional data 

were high-pass filtered using a 100-second cutoff. The linear registration of the functional image 

via the anatomical image to standard space (MNI152 template, Montreal Neurological Institute) 

was performed using FMRIB’s Linear Image Registration Tool (FLIRT). The registration of the 

functional image to the anatomical image was performed using six rigid body transformations. In 

the linear transformation from anatomical to functional image, we used 12 degrees of freedom. We 

preformed spatial smoothing separately on each volume of the data by setting a 10 mm Gaussian 

kernel to the signal. We selected a relatively large smoothing kernel to account for the individual 

variance of the functional loci in widespread attention networks. FILM (FMRIB's Improved Linear 

Model) was used in the first level analysis. We defined the explanatory variables on the basis of the 

stimulus onsets and durations. Double gamma function was used in the convolution of the 



  

 

 

hemodynamic response function (HRF). We used the same high-pass filter for the model as we did 

for the time series data. 

 

We analyzed the fMRI data using FSL tools (Smith et al. 2010). A standard general linear model 

(GLM) analysis (FEAT) was run using 22 task regressors, and nuisance regressors for instructions 

(1) and motion (6).  We used FLAME (FMRIB's Local Analysis of Mixed Effects) in the fMRI 

group analysis. Cluster-based thresholding (Z > 3.0 p < 0.05 for the across-groups effects and Z > 

2.0 p > 0.05 for the group comparisons) was used to account for multiple comparisons. This 

threshold was considered reasonably high for the group comparisons, considering that our 

experimental control was extremely stringent in relation to previous brain imaging studies of 

ADHD. This correction method has shown to be sensitive in finding the true signal in large scale 

activation clusters (Woo et al. 2014). The reliability of FLAME was tested by Eklund et al. (2016) 

and this specific method provided reliable statistical inferences in all analyses concerning event-

related designs. In addition, we used DVARS as a covariate in the model.  

 

4.5. Analysis of behavioral data 

The effect of Target Modality (auditory, visual) × Condition (simple button press task, focused 

attention, divided attention) × Distractor (no distractor, auditory distractor, visual distractor) × 

Group (neurotypical, ADHD) on the behavioral data was tested using analysis of variance 

(ANOVA), with Group as fixed factor and Modality, Condition, and Distractor as random-effect 

factors. A separate ANOVA was conducted for reaction times (RTs), discrimination thresholds 

(DTs), and hit rates (HRs), and unimodal vs. focused attention tasks. When the group variances 

were not equal, we used Greenhouse-Geisser correction as indicated by correction factor ε, given 

together with the p value. However, even in these cases, the original degrees of freedom were 

reported for the F value. For each participant, the average of the reversal points of the staircase 

series in a given condition was used as the DT. For DTs, the Distractor factor, and for HRs the 



  

 

 

simple button press task condition were excluded from the ANOVAs since they provided no data on 

discrimination accuracy. We calculated reaction times for correct trials. 
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8. Figure legends 

 

Figure 1. Experimental setup. a) The participants were presented with synchronous streams of 

tones with varying pitches, gratings with a varying orientation, and a constant onset-to-onset 

interval of 1.8 seconds. In 1/6 of the trials, an auditory novel distractor (spectrally complex novel 

sounds) and in the 1/6 of trials, a visual novel distractor (complex colored novel textures) concurred 

together with the tone-grating pair. b) The participants performed a discrimination task in which 

they were instructed to indicate the direction to which the stimulus changed in relation to the 

previous stimulus (rotation to the left or right, left and right buttons; pitch up or down, top and 

bottom buttons). During the focused attention tasks they selectively attended to either visual or 

auditory input and during the divided attention tasks they performed auditory and visual tasks 

simultaneously. Novel distractors that captured attention in a stimulus-driven manner were 

presented in each condition. c) In each bimodal block, we presented 20 sounds and gratings with no 

distractor (ND), five intramodal distractors (IMDs) and five cross-modal distractors (CMDs). 

During unimodal conditions, only IMDs were presented. Tasks were presented in runs in which 

each task was presented once. Each participant had a total of three runs. 



  

 

 

 

Figure 2. Reaction times (RTs) for targets with and without irrelevant distractors in the simple 

button press task, and during the unimodal and bimodal focused attention tasks, and bimodal 

divided attention tasks. Task performance in auditory conditions is presented at the top and in visual 

conditions at the bottom. In both modalities, RTs were increased from the simple button press task 

to the unimodal and bimodal focused attention tasks, then further to the bimodal divided attention 

tasks. In each condition, the RTs were higher for distractors, indicating that they indeed captured 

attention in a stimulus-driven manner. Error bars indicate the mean standard error. 

 

Figure 3. Brain activity across all attention control conditions among the ADHD and neurotypical 

participants was observed in the dorsal and ventral frontoparietal networks, and auditory and visual 

areas (Z > 4.0, corrected p < 0.01). In addition to these surface-rendered cerebro-cortical areas, 

activity was also observed in the posterior cerebellum and the dorsal striatum. Frontal eye 

field/middle frontal gyrus, FEF/MFG; intraparietal sulcus, IPS; motor cortex, MC; superior parietal 

lobule, SPL; inferior frontal gyrus, IFG; auditory cortex, AC; supplementary motor area/anterior 

cingulate cortex, SMA/ACC; visual area 5, V5.  

 

Figure 4. Contrasts showing significant group differences in bimodal vs. unimodal focused 

attention, auditory focused attention, visual focused attention, divided attention, and the simple 

button-press task (Z > 2.0, corrected p < 0.05). In other contrasts, excluding the button press task, 

brain activity was higher among the ADHD participants than among the neurotypical participants. 

Supplementary motor area/anterior cingulate cortex, SMA/ACC; motor cortex, MC; default mode 

network, DMN; visual cortex, VC. 

 

Figure 5. Group differences (ADHD > neurotypical, NT) in processing irrelevant distractor stimuli 

triggering stimulus-driven attention in audition and vision or across the two modalities (Z > 2.0, 

corrected p < 0.05). Brain renderings on the middle left and bottom are from the cerebellum 



  

 

 

(sideview). Intraparietal sulcus, IPS; motor cortex, MC; superior parietal lobule, SPL; visual cortex, 

VC; cerebellum, Cb.  

 

Supplementary Figure 1. Activity in the visual bimodal > unimodal focused attention, visual and 

auditory focused attention, divided attention, and the simple button press task in all participants (Z 

> 3.0, corrected p < 0.05). Contrast between the auditory focused attention task with audiovisual 

stimulation and the auditory focused attention task with auditory stimulation only was conducted in 

the neurotypical (NT) group, as no significant activity was observed in this comparison across all 

participants. All comparisons in this figure were made in the rest condition. 

 

Supplementary Figure 2. a) The post-hoc analysis for the differences between auditory and visual 

focused attention and divided attention conditions showed higher activity in the divided attention 

condition than in the auditory focused attention conditions among the ADHD participants. b) The 

post-hoc analysis of the distractor effects, specifically in the divided attention conditions, suggested 

higher activity among the individuals with ADHD in widespread areas covering the default mode 

network, dorsolateral and ventrolateral prefrontal, temporal areas in the right hemisphere in 

particular, and also in subcortical structures such as the striatum and thalamus (Z > 2.0, corrected p 

< 0.05). 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  



  



  



  



  

 

 

 

Highlights 

 

We reveal brain functions reflecting altered attention control processes in ADHD 

ADHD participants showed enhanced compensatory activity in networks not related to task 

Attention effects were observed in the irrelevant sensory modality in ADHD participants 

Allocation of task-positive and task-negative networks did not occur on demand 

Top-down network was activated when irrelevant information was present 

 

 


