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ABSTRACT

Familial clustering in hematological malignancies is a well-recognized
phenomenon, and patients with germline predisposition are diagnosed with
increasing frequency. Many genes and inherited syndromes have been
identified as predisposing factors to acute myeloid leukemia (AML) and other
myeloid disorders. Nevertheless, individuals with hereditary predisposition to
hematological malignancy still continue to be underdiagnosed, and in some
cases of familial myeloid diseases, the germline cause is unknown.
Identification of inherited, disease-predisposing mutations is important for the
screening of family members and other individuals at higher risk of
developing a myeloid malignancy.

The first  aim of this study was to discover the germline mutations in genes
associated with AML pathogenesis and DNA repair in a consecutive,
unselected series of 80 Finnish adult AML patients. We identified 34 variants
of uncertain significance (VUS) or mutations in 16 genes in 42/68 (62%)
patients with exomes available. Two variants in the genes DDX41 and SBDS
have previously been reported in myeloid malignancies, but most of the
identified gene alterations were found in DNA repair genes. The fraction of
potentially pathogenic mutations in the patient series was 9%. Sixty percent
of the study patients had a first or second-degree relative with a malignancy,
and the VUS or mutation carriers more often had a positive family history of
malignancies compared to non-carriers. This study implicates that germline
defects possibly associated with AML can also be identified in older cases
without  a  known family  history  of  cancer.  The  results  also  suggest  a  novel
candidate gene, CHEK1, in AML predisposition.

The second aim of this study was to identify novel candidate predisposition
genes to a myeloproliferative neoplasm named polycythemia vera (PV) by
conducting an exome sequencing analysis of three individuals in a Finnish
family with four diagnosed PV patients. Three variants that may predispose to
PV in this family and were shared by all the patients were identified in the
genes ZXDC, ATN1, and LRRC3. Of these, ZXDC appeared the most
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interesting candidate since it encodes a transcription factor that regulates gene
transcription in myeloid cell differentiation. The variants were screened in
eight other patients in six families with PV clustering, but those patients did
not carry the variants.

The  third  aim  of  this  study  was  to  investigate  an  X-chromosome-linked
telomere  biology  disorder  (TBD)  in  females  with  a  heterozygous  germline
DKC1 mutation. TBDs predispose to cancer, including hematological
malignancies. We studied three female mutation carrier siblings with
dyskeratosis congenita (DC)-like manifestations; usually, X-chromosome
inactivation (XCI) silences the defective X-chromosome in females,
protecting them from symptoms. Droplet digital PCR was utilized in
examining the XCI status and mutant allele expression in different tissue
samples. The results showed expression of both alleles in blood in two out of
three symptomatic females. Further, only two of the females showed
shortened telomere length, suggesting that the relationship between telomere
length and the severity of symptoms is not straightforward in mutation
carrier females.
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INTRODUCTION

Molecular biology research has always been crucial in hematology. Leukemia
studies have had a remarkable role in advancing understanding of cancer
biology and providing new innovative treatment options. Leukemia differs
from other types of cancer in many ways, which makes it an attractive target
for research. Firstly, the tissue is easily accessible. Secondly, leukemia has a
relatively simple set of genetic aberrations and karyotype compared to many
other cancer types; however, the molecular basis has only recently become
clearer. The development of massively parallel next-generation sequencing
(NGS) technologies has revolutionized cancer genomics research and
enhanced the generation of targeted therapies and precision medicine.

Acute myeloid leukemia (AML) is the most common leukemia type in
adults. Despite most cases being sporadic, families with AML and other
myeloid malignancies have been documented for decades.1 Many genes and
inherited syndromes are known to associate with predisposition to myeloid
disorders. NGS technologies have facilitated the identification of genetic
mutations, and individuals with germline predisposition to hematological
myeloid malignancies are recognized at an accelerating pace. Thus, the World
Health Organization (WHO) included familial myeloid malignancies in its
leukemia classification scheme in the year 2016.2 However, inherited
predisposition to hematological malignancies is still underdiagnosed in a
subset of cases, and in some familial myeloid neoplasia patients the germline
cause is not known.

The aim of this study was to identify germline alterations possibly
predisposing to myeloid malignancies, especially AML and a
myeloproliferative neoplasm named polycythemia vera (PV). In addition,
telomere biology disorders (TBD) are known to predispose to myeloid
malignancies due to bone marrow defects; one of the aims was to
characterize an inherited X-linked TBD in female DKC1 mutation carriers.
The main methods used were exome sequencing, in which biobank samples
were utilized, and PCR-based methods.
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REVIEW OF THE LITERATURE

1 Hematopoiesis in adults

Human hematopoiesis is a complex process producing up to one trillion
new, mature blood cells every day in a healthy individual. The volume of
whole blood is approximately five liters, consisting of the liquid component
called plasma and circulating cells. Blood cells can be divided into three
major groups. Red blood cells (erythrocytes) provide oxygen and carbon
dioxide transport; platelets (thrombocytes) form blood clots and heal
wounds; and white blood cells (leukocytes) protect the body against
invading pathogens and other infections. Hematopoiesis takes place in the
soft fatty tissue called bone marrow (BM).3 BM is located in the medullary
cavity of vascularized, innervated bone and contains many different
hematopoietic and non-hematopoietic cell types.4 In adults, the
hematopoietically active marrow is localized in the shoulder and pelvic
girdles, sternum, ribs, vertebrae, and lower skull. All blood cells originate
from pluripotent self-renewing hematopoietic stem cells (HSCs), which
undergo an asymmetric cell division resulting in an identical daughter cell
and a multipotent progenitor cell (MPP). MPPs further commit to myeloid
lineage differentiation (common myeloid progenitor, CMP) or lymphoid
lineage differentiation (common lymphoid progenitor, CLP). CMPs give
rise to cells of the myeloid lineage including granulocytes, macrophages,
erythrocytes, and platelets whereas CLPs differentiate into long-lived cells
of adaptive immunity (T- and B-cells) or cells of innate immunity (natural
killer cells, NK)3 (Figure  1). Cell production is rapidly responsive to
external or internal changes such as infections or anemia, and the lifetime
of mature cell types ranges from hours to years.5

Hematopoiesis has classically been described as a cellular hierarchy with
HSCs residing at the apex of the pyramid.6 As hematopoiesis proceeds, the
cells gradually lose their differentiation potential and finally become



14

committed to a single cell lineage; at each developmental stage the genes
associated with the particular pathway remain expressed or upregulated,
whereas the genes specifying the other lineages are silenced.7

Hematopoietic cytokines, hormones, and other factors regulate many steps
of hematopoietic cell production and function. These factors can be lineage-
specific or regulate cells in multiple lineages.8 Certain cytokines also prevent
the cells from undergoing exhaustion, which is crucial for blood system
homeostasis, or trigger DNA repair mechanisms in response to DNA
damage.9,10 Several transcription factors (TF) are essential in the early
regulation of hematopoietic cell fate decisions as well.11 Overall, a great
number of signaling pathways interact with each other in a well-organized
manner in hematopoiesis.

Figure 1. Simplified view of adult hematopoiesis. HSC, hematopoietic stem cell; MPP,
multipotent progenitor; CLP, common lymphoid progenitor; CMP, common myeloid
progenitor; GMP, granulocyte/macrophage progenitor; MEP, megakaryocyte/erythroid
progenitor.
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1.1 Bone marrow niche

HSCs proliferate and differentiate into mature cells in the extravascular
spaces between marrow sinuses in BM. Special local BM
microenvironments, termed niches, are composed of different types of cells
and molecules (interleukins, interferons, chemokines, and tumor necrosis
factors) that regulate HSC function and behavior in both homeostasis and
pathological conditions.4,9 Distinct hematopoietic progenitors and HSCs
have distinct niches in the bone marrow, and adhesion receptors play a key
role in the localization and release of maturing cells from these niches.4 In
response to hematopoietic stress the niche can shift to extra-medullary
sites.4

A BM niche is highly vascularized due to the vast production of
hematopoietic cells. Perivascular stromal cells, including different
mesenchymal cells12-14 and CXCL12 (stromal-derived factor-1, SDF-1)
abundant reticular (CAR) cells15 act  as key components in the HSC niche
by expressing  high  levels  of  major  niche  factors.  The  arteries  in  the  BM-
penetrating bone canal branch into smaller arterioles, which further transit
to venous sinusoids through which mature blood cells leave the BM into
systemic circulation.16 Sinusoids  compose  a  complex  network  in  the  BM
cavity, and sinusoidal endothelial cells support HSC proliferation.17 Mature
blood cell types such as macrophages and megakaryocytes residing in the
BM and adipocytes also contribute to HSC quiescence or proliferation by
cytokine secretion.18-20 Osteoblasts in the endosteum, the interface of the
bone and marrow, secrete cytokines and growth factors that maintain the
stem cell and progenitor population pool in BM. They also mediate the
migration  of  HSCs.21 Furthermore, the sympathetic nervous system
participates in the regulation of HSC function as well.22

HSCs are not randomly distributed in the BM. The level of oxygen
modulates cell activity and function; hypoxic response in regulating the
quiescence of HSCs is of great importance and is thought to protect long-
term HSCs from DNA damage with only a few of them entering the DNA
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synthesis and proliferation phase of the cell cycle.23,24 In addition, quiescent
HSCs with a low level of reactive oxygen species (ROS) are localized near
less permeable arterioles, whereas the more permeable sinusoids promote
stem cell activation and are the site for leukocyte trafficking.25 The
mechanisms by which niche cells regulate HSCs are thus complex and
diverse, and abnormalities in the BM microenvironment or disruption of the
niche regulation may initiate or collaborate in the development of
hematologic malignancies.4

1.1.1 Production of myeloid and red blood cells

Myelopoiesis is the production of innate immune cells that develop from a
common myeloid progenitor in the BM. CMPs are considered to undergo
restriction into granulocyte/macrophage progenitors (GMPs) and
megakaryocyte/erythroid progenitors (MEPs) that gradually differentiate
into the mature cells lineages of granulocytes and monocytes/macrophages,
and platelets and red blood cells, respectively.26 Myelopoiesis is tightly
regulated. For example, the TFs encoded by the genes GATA1, GATA2,
SPI1 (PU.1), CEBPA, and RUNX1 drive the differentiation and commitment
of myeloid specific cell types at specific stages of maturation.27-31

Additionally, myelopoietic cytokines including stem cell factor (SCF),
FMS-like tyrosine kinase 3 ligand (FLT3-L), granulocyte-macrophage
colony-stimulating factor (GM-CSF), and interleukins (IL)-3 and IL-6, are
important in the maintenance and self-renewal of hematopoietic stem and
progenitor cells (HSPC), and in the different steps of myeloid cell
maturation.32

Three types of granulocytes with different roles in the immune system are
present in humans: neutrophils, basophils, and eosinophils. Granulocytes
synthesize proteins and store them in cytoplasmic granules, which are used
in e.g. microbial killing.33-35 Early precursor cells develop into myeloblasts,
and further into promyelocytes.34 These cells continue along the maturation
process, and the mature granulocytes reside in the blood for an average of
10 hours before leaving the circulation and heading to sites of inflammation.
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Pathogen-digesting macrophages are derived from monocytes that have
entered the tissues for maturation process after circulating in the
bloodstream for one day.36 The  most  abundant  cell  type  in  the  blood  is
erythrocytes. They deliver hemoglobin-bound oxygen to body tissues via
the circulatory system and carry some of the waste product, carbon dioxide,
back from the tissues. Similar to other blood lineage cell production, the
production of red blood cells (erythropoiesis) is also tightly regulated. An
MEP undergoes a series of divisions and maturation steps, finally resulting
in erythroblasts. They lose their nucleus and become reticulocytes that leave
the BM to circulation. Reticulocytes lose their ribosomes and mitochondria
and finally mature into red blood cells.36 A hormonal regulator called
erythropoietin (EPO), which is primarily produced in the kidneys, controls
the production of erythrocytes. Another principal TF in erythropoiesis is
GATA1, which together with EPO influences the function and development
of early progenitor to late erythroblasts.27 Tissue oxygenation affects the
number of red blood cells produced, which is regulated by hypoxia-
inducible factors (HIF), HIF-1 and HIF-2.37 Platelets (thrombocytes), which
originate from the same progenitor cells as erythrocytes, are small cell
fragments derived from megakaryocytes and play a crucial role in blood
clotting. Thrombopoietin (TPO) hormone, produced in the liver, affects
platelet production. EPO and TPO are examples of endocrine signaling,
meaning that the molecules circulate in the blood and can have an effect far
from the production site, whereas many cytokines are produced and
presented locally in the BM (autocrine or paracrine signaling).

1.1.2 Lymphopoiesis

Lymphopoiesis produces the infection-fighting B and T-lymphocytes, NK
cells, and a proportion of dendritic cells. Lymphocytes make up the majority
of lymphoid tissue, which is found in e.g. lymph nodes, the spleen, and the
thymus gland. B-lymphocytes function in humoral, adaptive immunity by
protecting the body against invaders with specific antibodies, whereas T-
lymphocytes serve in cell-mediated, cytotoxic adaptive immunity; they
attack infected cells and tumors and help in the regulation of the immune
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system. NK cells function in cell-mediated cytotoxic innate immunity.38

Like myelopoiesis, lymphopoiesis is also tightly regulated by cytokines and
other factors. The Ikaros gene family of TFs and PU.1 act in parallel in
controlling the transition of HSCs into CLPs,38,39 which have the potential
to differentiate into any of the lymphoid lineages.38,40,41 B and T-cells also
form subsets of memory cells that maintain the ability to rapidly reactivate
upon restimulation with the same antigens.42

1.3 Dysregulation of hematopoiesis

Hematopoiesis is normally regulated through cytokines that bind to their
receptors in the cell membrane, which results in activation of intracellular
signaling cascades. Three important signal transduction pathways with key
roles in cell proliferation and differentiation include the Janus kinase/signal
transducer and activator of transcription (JAK-STAT), phosphatidylinositol
3-kinase/protein kinase B/mammalian target of rapamycin
(PI3K/AKT/mTOR), and mitogen activated protein kinase (MAPK)
pathways.43-45 Mutations can alter these signaling events remarkably.
Activating mutations in genes encoding receptor tyrosine kinases can cause
constant proliferation of the target cells. In addition, deletions in tumor
suppressor genes may result in inability to maintain homeostasis. Thus,
dysregulation of hematopoiesis can lead to hematopoietic deficiency,
immunodeficiency or hematological cancer.

Somatic mutations in genes associated with myeloid malignancies in HSCs
and clonal hematopoiesis are often seen at low frequency in aging healthy
individuals (age-related clonal hematopoiesis); a stem cell has gained a
growth advantage leading to clonal expansion of the cells.46 Sometimes the
clone will progress to a premalignant state to meet the diagnostic criteria of
clonal hematopoiesis of indeterminate potential (CHIP), which is diagnosed
when a somatic mutation with a mutant allele fraction of at least 2% is present
in the peripheral blood without any evidence of hematological
malignancies.46,47 CHIP is associated with an increased risk of developing
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hematologic malignancies such as the “preleukemia” known as
myelodysplastic syndrome (MDS) or a blood cancer.47,48 Up  to  10%  of
individuals over the age of 65 years show recurrent somatic mutations
associated with myeloid malignancies, and two of the most recurrently
mutated genes encode the epigenetic regulators DNMT3A and TET2.49-51

The presence of these initial mutations in the premalignant landscape can be
detected years before a potential AML diagnosis, which suggests a period of
latency preceding AML.52,53 Although the risk of acquiring clonal expansion
increases during aging, most individuals will never develop MDS or AML;
the acquisition of additional somatic mutations is needed for malignant
transition.47

Only a  small  proportion  of  the  alterations  in  HSCs  are  pathogenic  driver
mutations.54 Pathogenic mutations affect the stem cells’ ability to
differentiate into mature cells and lead to their transformation into
preleukemic cells. These preleukemic cells are further transformed into
leukemic cells when additional mutations occur.55-57 Leukemia stem cells
(LSC) are known to share several characteristics with normal HSCs,58 albeit
they can create niches that disrupt the normal HSC behavior in the
microenvironment to favor their own expansion.59-61

Little is known about the impact of other cellular components in BM niches
on leukemic transformation. However, morphological and functional
changes have been reported in BM stromal cells in patients with MDS,
AML, and primary myelofibrosis (PMF).62 For example, genetic alterations
in osteogenic cells in the endosteal compartment may lead to MDS, and
further to secondary leukemia.63 Alterations of the microenvironment can
promote myeloproliferative neoplasms (MPN) as well. The progression of
PMF, which is one of the MPNs, is thought to remodel the BM niche in a
way that leads to the impairment of normal hematopoiesis and favoring LSC
function.62 Distinct signals in these niches might also affect malignant
transformation in many ways.9,64 The BM microenvironment is hypoxic in
myeloid malignancies; the level of oxygen modulates cell activity and
function.65
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2 Hereditary predisposition to cancer

Pathogenic germline mutations in cancer genes, especially in tumor
suppressors capable of preventing tumorigenesis, cause predisposition to
malignancies.66 More than 100 genes have been identified that predispose to
cancer, and about 5-10% of cancers have a heritable component; the majority
of them are inherited in an autosomal dominant manner with varying
penetrance.66,67 This means that hereditary diseases are not always expressed
in the same way in every individual carrying the same mutation. Patients with
a germline mutation in a cancer gene have a highly or moderately increased
risk of developing cancer. Two independent mutations are required for tumor
development according to Knudson’s “two-hit” model: in the hereditary form,
the first mutation is inherited in the germline, and the second event occurs
somatically.68 Thus,  individuals  with  a  germline  mutation  often  develop
cancer at a younger age since only one additional somatic mutation is required
for tumorigenesis. They also often develop multiple tumors during their
lifetime. Also, loss of just one copy of a tumor suppressor gene is occasionally
enough to provide a growth advantage to a cell.

2.1 Cancer genes and mutations

A malignant tumor originates from a single cell and evolves through clonal
expansion.69 The acquisition of somatic mutations in the cell provides a
growth advantage, which further drives the tumor progression. DNA damage
and errors can arise during DNA replication or be caused by external
mutagens. If not repaired, the mutations will be present in all the cell’s
offspring.70 More than 200 genes have been recognized as drivers in common
cancers; however, one single mutated gene is not yet enough to cause cancer.71

Cancer genes can be classified into oncogenes and tumor suppressors.72,73

Dominantly acting oncogenes encode factors that control cell proliferation or
apoptosis, and in cancer they are activated via gain-of-function (GoF)
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mutations, which leads to constitutive activation of the gene. In contrast,
recessively acting tumor suppressor genes are repressed via loss-of-function
(LoF) mutations.72,73 Both alleles need to be inactivated for a tumor suppressor
to contribute to tumor development. The most common mechanism for the
inactivation  of  a  wild  type  allele  of  a  tumor  suppressor  gene  is  loss  of
heterozygosity (LOH) due to chromosomal deletion, uniparental disomy or
mitotic recombination.74 Some tumor suppressors may display
haploinsufficiency (loss of one copy of the gene drives tumorigenesis). Tumor
suppressor genes can be further classified into subgroups based on their
functions. Caretakers act in maintaining genomic stability and gatekeepers
affect cellular proliferation and prevent tumor growth.72,73 In addition, a third
group of tumor suppressor genes called landscapers helps in creating
microenvironments that control cell growth and promote tissue homeostasis
by regulating e.g. cellular adhesion markers and growth factors.75

Cancer genetics is research of two genomes: germline and cancer (somatic)
mutations (Figure  2).  By  comparing  the  DNA  in  cancer  cells  with  that  in
normal cells, the genetic changes in the cancer cells can be identified. In
general, cancer cells have more genetic changes than normal ones. As the
cancerous tumor continues to grow, additional changes will occur, meaning
that cancer cells may have different mutations within the same tumor.71 The
genetic information from the tumor genome can further have an impact on the
therapy selected for treatment. Tumor sequencing can, however, also reveal
the presence of inherited mutations. A number of known germline and tumor-
mutated cancer genes overlap: almost 50 of the genes with known somatic
driver mutations in cancer are also included within the group of more than 100
cancer predisposition genes.66 The identification of these cancer
predisposition genes and mutations, too, has a huge impact on clinical
diagnosis, treatment, and possible prevention of cancer.
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Figure 2. Germline mutations are hereditary and present in every cell of the body, since
they occur in the sex cells or gametes that participate in fertilization. In contrast, somatic
mutations result from changes in DNA of somatic cells of the body and are only transferred
to daughter cells that form after cell division.

2.2 Hereditary cancer syndromes

Germline mutations cause hereditary predisposition to cancer.66,67 The
majority of these inherited mutations are LoF mutations in tumor suppressor
genes that often predispose to specific tumor types, even though many of the
tumor suppressor genes function in almost every single cell of the body. One
of the best-recognized cancer predisposition syndromes is Li-Fraumeni
syndrome, which is due to germline LoF mutations in an important tumor
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suppressor gene TP53.76 It encodes the protein p53, which functions in e.g.
DNA damage repair, maintaining genomic stability, and cell-cycle arrest.
Penetrance in Li-Fraumeni syndrome is almost complete, and the patients
have an extremely high lifetime cumulative risk of developing multiple
malignancies. The most frequent cancer types in patients with Li-Fraumeni
syndrome include sarcomas, breast cancer, brain tumors, and acute
leukemias.77 Another well-known cancer predisposition syndrome is Lynch
syndrome, driven by mutations in DNA mismatch repair genes including
MSH2, MLH1, MSH6, and PMS2, with risk of especially early colorectal
cancer development.78 In  addition,  e.g.  PTEN  hamartoma  tumor  syndrome
with germline mutations in the tumor suppressor PTEN is one of the cancer
predisposition syndromes.79 Despite the rarity of these syndromes, they are
clinically relevant in directing cancer prevention options.

3 Myeloid malignancies

Myeloid malignancies are clonal hematopoietic disorders resulting from
genetic and epigenetic alterations that disturb normal processes in HSPCs.80

HSPCs accumulate mutations throughout life. Most of these somatic
mutations are passengers, meaning that they have no contribution to clonal
expansion.81,82 Instead, pathogenic mutations in genes encoding signaling
pathway proteins, TFs, epigenetic regulators, tumor suppressors, and
components of the spliceosome lead to excessive proliferation, abnormal self-
renewal, and differentiation defects in the HSPCs.80 Functional and genetic
changes contributing to the development of myeloid malignancies have been
noted  in  BM  niche  cells  as  well.83 Myeloid malignancies comprise mainly
chronic stages such as MPNs and MDS, and acute (AML) stages. The World
Health Organization (WHO) system classifies myeloid malignancies into
these major categories based on peripheral blood (PB) counts and smear
analysis, BM morphology, karyotype, and genetic tests.2
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3.1 Genetic predisposition to myeloid malignancies

Familial clustering of hematological malignancies (HM) has been reported
for decades.1 Usually the first member of the family has already developed
an HM, and testing of additional family members identifies the same
mutation but they are not yet diagnosed with cancer.84 Pathogenic germline
mutations have been described in myeloid malignancies in several genes, of
which RUNX1 was the first in 1999.85 Since then, multiple genes have been
identified to associate with predisposition to MDS/AML. Germline
mutations in e.g. ANKRD26, CEBPA, GATA2, ETV6, TP53, BRCA1/2,
DDX41, ELANE, SAMD9, SAMD9L, and SRP72, in addition to certain
inherited BMF syndromes, are frequently found in hereditary HM
patients.84,86,87 The affected proteins are involved in multiple functions
including transcription, telomere maintenance, DNA repair, RNA
processing, and inflammation.86

As individuals with germline predisposition to myeloid HMs are diagnosed
at an increasing frequency, WHO included familial hematological myeloid
malignancies in its leukemia classification scheme in the year 2016.2

Familial myeloid disorders are classified into distinct subtypes (Table 1).84

Table 1. Classification of myeloid neoplasms with germline predisposition (WHO 2016).
Myeloid neoplasms with germline predisposition without a preexisting disorder or organ
dysfunction
     AML with germline CEBPA mutation
     Myeloid neoplasms with germline DDX41 mutation
Myeloid neoplasms with germline predisposition and preexisting platelet disorder
     Myeloid neoplasms with germline RUNX1 mutation
     Myeloid neoplasms with germline ANKRD26 mutation
     Myeloid neoplasms with germline ETV6 mutation
Myeloid neoplasms with germline predisposition and other organ dysfunction
     Myeloid neoplasms with germline GATA2 mutation
     Myeloid neoplasms associated with BM failure syndromes
     Myeloid neoplasms associated with telomere biology disorders
     Juvenile myelomonocytic leukemia associated with neurofibromatosis, Noonan syndrome or

Noonan syndrome-like disorders
     Myeloid neoplasms associated with Down syndrome

*Adapted from publications 2,84.
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3.2 Myeloproliferative neoplasms

MPNs are clonal, chronic HSC disorders with abnormal hematopoietic
proliferation and an increased tendency toward leukemic transformation. The
somatic initial mutation in HSCs results in the excessive production of one or
more types of terminally differentiated myeloid lineage cells due to the
hypersensitivity for cytokine regulation and the absence of feedback
regulation by mature cells.88,89 MPNs are divided into subcategories: chronic
myeloid leukemia (CML), which is characterized by the BCR-ABL oncogene
fusion (Philadelphia chromosome, Ph-positive), and Ph-negative disorders
named polycythemia vera (PV), essential thrombocythemia (ET), primary
myelofibrosis (PMF), and prefibrotic PMF.2 Of  Ph-negative  MPNs,  PV  is
primarily  associated  with  a  high  number  of  red  blood  cells,  whereas  ET
patients have high platelet counts. Patients with PMF usually have high counts
of granulocytes, BM failure resulting from reticulin or collagen fibrosis, and
extramedullary hematopoiesis in the spleen and liver.90 Prefibrotic
myelofibrosis, characterized by granulocytic and megakaryocytic
proliferation and lack of fibrosis in the BM, represents an early phase of
myelofibrosis.91 These cellular defects can cause health problems such as
thrombosis, blood clotting and weakness. An overlap among the Ph-negative
diseases exists in terms of pathophysiological and molecular features, but
diagnostic accuracy is prognostically relevant due to the higher tendency of
leukemic transformation of certain MPNs.2 The risk of leukemia development
is highest in PMF with an incidence of 10% to 20% during the first decade,
and lowest in ET with an incidence of less than 1% in the first 10 years.92,93

The tendency of leukemic transformation in PV patients is approximately 2%
in the first  10 years of the disease and 8% at 20 years.94 Transitions among
these diseases are also observed occasionally.83 Prior to leukemic
transformation, MPNs often progress to BM fibrosis, which can present with
very severe symptoms even at the preleukemic stage.95 However,  many
patients with MPNs have a normal life span if the disease is properly treated
and controlled. Treatment in PV and ET is primarily directed at the prevention
of thrombohemorrhagic complications and to relieve the symptoms, but no
current drug therapy is curative. Some PMF patients receive stem cell
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transplants and have the possibility of being cured.96 The overall incidence of
MPNs in Finland is approximately 6 in 100,000 individuals (Finnish Cancer
Registry, Figure 3).

3.2.1 MPN pathogenesis

MPNs share mutations that abnormally activate the cytokine receptor/Janus
Kinase 2 (JAK2) pathway and their downstream effectors, STATs.97 JAK2,
calreticulin (CALR), and the myeloproliferative leukemia virus gene (MPL)
are the most recurrently mutated genes in MPN patients: a somatic driver
mutation in one of the three genes is present in the majority of cases.90 JAK2
is a kinase that binds to myeloid receptors such as erythropoietin receptor
(EPO-R), MPL receptor, which affects platelet production (also named
thrombopoietin receptor, TPO-R), and G-CSF receptor, affecting granulocyte
production. Thus, JAK2 plays a major activating role in myeloid signaling.98

An acquired mutation JAK2 V617F, which causes constitutive activation of
the JAK2 kinase and leads to abnormal signaling, is the major alteration in all
three Ph-negative MPNs.99-102 It is present in ~98% of PV patients and about
50% of ET and PMF patients.103-105 However, although JAK2 mutations seem
to be the phenotypic drivers in many MPN cases, clonality and other mutations
apparently precedes the acquisition of the JAK2 V617F mutation.106,107

Somatic mutations in CALR exon 9 are found in 20-35% of ET and PMF
cases.108,109 Furthermore, MPL mutants are found approximately in 3-4% of
ET  and  6-7%  of  PMF  cases.110-113 These mutants are restricted to MPL
activation, which explains why they are found only in ET and PMF, and not
in PV.97 Overall, pathogenic driver mutations are identified in about 90% of
the ET and PMF cases – the rest of the patients do not express any of the three
mutations and are referred to as being “triple-negative”.114 Other recurrently
mutated genes in MPNs include the same epigenetic regulators as frequently
mutated in other myeloid clonal disorders: TET2, DNMT3A, ASXL1, and other
genes participating in hematopoietic signaling pathways.115,116 In addition,
mutations and somatic loss of heterozygosity in TP53 is strongly associated
with leukemic transformation.98 When diagnosed with an MPN following the
WHO diagnostic criteria,2 most patients are older than 60 years of age, and
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survival depends on the severity of the disease. The most severe disease-
related complications are thrombosis, stroke, and hemorrhage. Due to
potential complications, the life expectancy is slightly reduced when
compared to the general population; e.g. thrombosis occurs more frequently
in younger PV patients compared to older individuals with the disease.117

Polycythemia vera

PV belongs to the group of MPNs and is characterized by excessive
production of mature erythrocytes. The major diagnostic criteria for PV
include high hemoglobin, high hematocrit or increased red cell mass, BM
morphology showing hypercellularity, and the presence of a JAK2 mutation.2

The symptoms include pruritus, fatigue, and splenomegaly. The risk of
thrombosis and progression to secondary AML (sAML), as in other MPNs, is
also increased.118 Traditionally, low-risk patients are treated with aspirin and
phlebotomy; high-risk patients receive cytoreductive therapy. Current drug
therapy is not curative or capable of preventing disease progression.96

Clonal origin of PV has been acknowledged for decades.54 Most PV patients
have gained the somatic JAK2 V617F mutation in exon 14. However, this
particular mutation does not initiate PV. Instead it arises as a secondary
genetic event.119 In the rare JAK2 V617F-negative PV (~2% of patients),
somatic GoF mutations in exon 12 have been found.120,121 These mutations are
not associated with ET or PMF.122 In approximately 50% of PV patients the
JAK2 locus on chromosome 9p is affected by LOH.123

3.2.2 Genetic predisposition to MPNs

The mutations in JAK2, CALR, and MPL probably are not causative
mutations but mainly drive the disease phenotype – a preexisting germline
factor likely predisposes to a clonal MPN.105 Familial  clustering of MPNs
is well recognized; about 7% of cases involve germline predisposition.90

Familial MPN has been described with dominant-autosomal
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transmission,124,125 and a shared susceptibility factor among the family
members likely exists.116 Certain SNVs and germline alterations increase the
probability of developing an MPN. For example, a common JAK2 haplotype
46/1, or ‘GGCC’ haplotype (rs10974944), is associated with an increased risk
of an in cis JAK2-activating mutation.126-129 The G allele at rs10974944
increases an individual’s risk of developing an MPN 2.8-fold (population
attributable risk 46%).127 Other  variants,  including  a TERT SNV
(rs2736100_C) and several common genetic polymorphisms in e.g. the
MECOM, HBS1L-MYB, SH2B2, ATM, and CHEK2 genes, also associate with
myeloid hematopoiesis activation or predispose to JAK2 V617F-positive
MPNs.130-132 Furthermore, germline mutations in JAK2133 and MPL134 have
been described in triple-negative ET and PMF, and RBBP6 has been
suggested as a candidate gene for MPN susceptibility.135 Duplication of
ATG2B and GSKIP also predisposes to MPN development.136 In addition to
the JAK2 46/1 haplotype and other aforementioned MPN-predisposing
factors, certain germline JAK2 mutations are predicted to possibly precede the
acquisition of the JAK2 V617F mutation in familial PV.137-140

3.3 Myelodysplastic syndromes

MDS are a heterogeneous group of clonal BM diseases arising from the
expansion of mutated HSCs.141 An MDS is characterized by ineffective
hematopoiesis and clonal karyotypic abnormalities, manifested by the
presence of peripheral blood cytopenias, dysplastic cellular morphology, and
increased risk of developing AML.2,48 Most MDS cases are sporadic, and the
median age at the diagnosis is older than 70 years. The incidence of MDS is
about 2 in 100,000 individuals in Finland (Finnish Cancer Registry, Figure
3). MDS is treated with immunomodulatory agents and hypomethylating
therapy, but all patients will eventually lose their response to therapy. The
overall survival is poor, and the only potentially curative treatment option is
HSC transplantation.142
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3.3.1 MDS pathogenesis

Genetic defects such as chromosomal aberrations (translocations, inversions,
and deletions) and copy-number alterations are frequent in MDS. These
abnormalities provide prognostic value;143 acquired HSC cytogenetic
aberrations are one of the major risk factors. The most common abnormality
in adults is deletion of chromosome 5q, followed by the loss of chromosome
7. The disorder has been associated with recurrent somatic mutations in more
than 50 different genes encoding proteins of diverse functions.48 These
mutations are not, however, limited to individuals with MDS or other myeloid
neoplasms; they can also be detected in healthy people with normal blood
counts. Nevertheless, the presence of these mutations increases the risk of
developing  an  MDS  as  well  as  leading  to  higher  mortality.49-51,144 Somatic
mutations in SF3B1, TET2, DNMT3A, and ASXL1 are the most commonly
described abnormalities in MDS cases.142,145,146 MDS  is  defined  as
preleukemia since it frequently progresses to sAML: about 20-30% of MDS
patients develop AML.147,148 Hematopoiesis-disrupting mutations in nine
specific genes, including four spliceosome genes, occur more frequently in
MDS than de novo AML (mutated in 60-70% and 5-10% cases,
respectively).148,149

3.3.2 Genetic predisposition to MDS

Despite most cases being sporadic, predisposition to MDS can be
hereditary.150 One of the best-characterized MDS predisposition syndromes is
familial platelet disorder with an autosomal dominant inheritance pattern
caused by heterozygous germline RUNX1 mutations.85 A number of inherited
BMF syndromes also predispose to both MDS and AML. These include e.g.
dyskeratosis congenita, which is a disorder of telomere maintenance (30% risk
of MDS/AML), and many other syndromes such as Diamond-Blackfan
anemia (20% risk), Fanconi anemia (40% risk), severe congenital neutropenia
(20-40% risk), Schwachman-Diamond syndrome (10-35% risk), and Li-
Fraumeni syndrome (5-7% risk).148,151-153 In addition, individuals with e.g. a
germline GATA2 mutation have a significantly increased risk of developing
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MDS/AML, and the MDS phase in these patients is often characterized as
chronic myelomonocytic leukemia.154 Additionally, SAMD9 and SAMD9L
mutations predispose to MDS/AML.155,156

3.4 Acute myeloid leukemia

AML is one of the most aggressive hematological malignancies and also the
most common malignant myeloid disorder in adults, affecting almost 200
individuals in Finland annually (Finnish Cancer Registry, Figure  3). The
prevalence increases with age; the median age for AML patients at the time of
diagnosis is about 70 years. AML is characterized by infiltration of the BM
and blood by clonal, proliferative and abnormal hematopoietic progenitor cells
(blasts) that fail to differentiate into mature myeloid cells. In addition to the
block in differentiation, the progenitor cells acquire resistance for apoptosis
and an increased proliferation rate.157,158 They compete for BM niche
occupancy with normal cells and disrupt hematopoiesis.159 The replacement
of normal blood cells with leukemic blasts causes cytopenias, frequent
infections, bleeding, and BM failure. AML can lead to death in a few weeks
if not treated.160,161 Leukemic cells can also escape from BM to the blood and
further infiltrate other organs such as the lungs or the central nervous
system.161 Risk factors for developing AML are e.g. exposure to ionizing
radiation, cytotoxic chemotherapy (usually treated for a solid cancer; therapy-
related AML), and benzene.158

AML is diagnosed when at least 20% of the cells in the BM or PB are defined
as immature blasts of myeloid origin based on morphological examination.2

AML cases were classically divided into different subtypes (M0-M7)
according to the FAB system, based on the differentiation stage of leukemic
cells, which was used for over two decades from the year 1976 to 2001.162-164

In the year 2002, it was replaced by the WHO classification, updated in 2008
and 2016, which takes into account cytogenetic alterations and mutations and
provides better prognostic value.2,165,166
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The prognosis for adult patients is associated with genetic aberrations. The
risk classification of the European LeukemiaNet (ELN), which is based on
WHO classification, divides AML cases into three cytogenetic risk groups
according to the karyotype: favorable, intermediate, and adverse.167 The
standard treatment of intensive induction chemotherapy aims at complete
remission, and if achieved, the patients of intermediate or adverse risk should
receive allogeneic HSC transplantation.157 Increased knowledge on the
genetic background of AML has led to the development of new therapeutic
options. Various novel agents (e.g. IDH- and FLT3-inhibitors) have proved
promising and showed improvement in terms of overall remission and
survival.168-170 Despite advances in therapeutic development, AML remains
challenging to treat because of its heterogeneity; only 30-40% of patients
younger than 60 years of age survive more than 5 years. In older patients, the
median overall survival is often less than one year, since they are usually unfit
for intensive chemotherapy and thus are treated with lower-intensity
treatment.170,171 Prognosis for relapsed patients is poor.

Figure 3. New myeloid disease cases in Finland in years 2012-2016. a) MPN, b) MDS, and
c) AML cases. Finnish Cancer Registry, https://tilastot/syoparekisteri.fi/syovat, data from
2018-09-11, version 2019-02-12-002.

3.4.1 AML pathogenesis

AML represents a genetically heterogeneous disease. The patients are
estimated to harbor fewer mutations than most individuals with other cancer
types – usually a few, or only one or two additional mutations are needed for
the clone to become malignant. The complexity and number of genetic
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aberrations, however, tend to increase during the disease evolution. Most
mutations identified in LSCs are random events that had occurred before
acquiring the leukemia-initiating mutation.82 Recurrent abnormalities in de
novo AML include e.g. fusion gene forming translocations or inversions
(PML-RARA, RUNX1-RUNXT1, MLL1, MYH11-CBFB) and FLT3 internal
tandem duplication, which have been recognized for decades and are used as
diagnostic and prognostic markers (FAB sybtypes).172 Overall, the driver
mutations can be different for distinct AML subtypes.82 Both targeted and
genome wide sequencing within the last decade have revealed several
diagnostically and prognostically informative mutations in AML, and the
understanding of the genomic landscape has massively improved.173,174 Genes
associated with DNA methylation (DNMT3A, IDH1/2, TET2), transcription
regulation and signaling activation (ASXL1, RUNX1, CEBPA, FLT3,
N/KRAS), and nucleophosmin (NPM1) are recurrently mutated:81,175-177 about
two-thirds of patients have acquired mutations in genes affecting signaling
pathways, whereas mutations within epigenetic modifiers are identified in less
than half of patients.178 RNA splicing factors are mutated in about 10% of the
cases.178 The co-occurrence of mutations can have an impact on overall
survival.149. Intriguingly, AML with normal cytogenetics comprise almost
half of all cases.179,180

3.4.2 Genetic predisposition to AML

Many leukemia predisposition genes are known, and certain monogenic
inherited disorders or BMF syndromes have an increased tendency towards
AML transformation.84 Inherited germline mutations in e.g. GATA2, RUNX1,
or CEBPA predispose to AML development.28,181,182 These transcription
factors are important for myeloid proliferation and differentiation. For
example, a heterozygous mutation in GATA2 confers a 70% risk of developing
MDS/AML,  and  the  progression  to  AML is  associated  with  cytopenias  and
other somatic mutations.154,183 Germline mutation in RUNX1 causes familial
platelet  disorder  with  a  risk  of  about  40%  of  developing  AML.85 Familial
AML with a germline CEBPA mutation has nearly complete penetrance for
AML development through autosomal dominant inheritance.182,184 Telomere
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biology disorders due to a mutation in e.g. TERC or TERT, or ribosomopathies
with defects in ribosome biogenesis and function are also categorized as
MDS/AML predisposition syndromes185,186 (Table 1). Individuals with sAML
often have worse prognosis, and their event-free survival is much lower than
that of de novo AML patients (4.2 months vs. 15.7 months, respectively).187

In addition to the aforementioned disorders, myeloid leukemia predisposition
disorders can be due to germline mutations in genes including ANKRD26,
DDX41, ELANE, SAMD9, SAMD9L, and SRP72.155,156,188-190

3.5 Hereditary bone marrow failure syndromes

Inherited bone marrow failure syndromes are a heterogeneous group of
disorders characterized by BMF, cancer predisposition, and a variety of
congenital anomalies. BMF is due to insufficient production of one or more
major hematopoietic lineages, which leads to cytopenias. One cause for the
development of BMF syndromes is mutations in telomere biology genes that
lead to defects in the telomere complex. These diseases, including
dyskeratosis congenita (DC), are called telomere biology disorders (TBD).191

Additionally, mutations in ribosomal genes can cause BMF syndromes such
as Diamond-Blackfan anemia (DBA), Shwachman-Diamond syndrome
(SDS), and cartilage hypoplasia, which are thus called ribosomopathies.
Mutations in ribosomal proteins and in proteins functioning in ribosomal
RNA processing cause impaired ribosome assembly and function, leading
to distinct clinical phenotypes, most often BMF.186

One of the best-recognized AML-predisposing syndromes is Fanconi
anemia, an autosomal and X-linked recessive disorder. Due to
hypersensitivity to DNA-cross-linking agents and thus a huge number of
chromosomal abnormalities, it also predisposes to solid tumors and
developmental anomalies.192 Another relatively well-known MDS/AML-
predisposing syndrome is a multi-organ protean disorder called GATA2
deficiency, which is due to heterozygous germline mutations in GATA2. The
mutations are transmitted with autosomal dominant inheritance, causing loss
of function of the mutated allele that leads to haploinsufficiency; one normal
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allele is not sufficient to produce the wild type phenotype.193 The disease has
a broad phenotype including multi-lineage cytopenias, immunodeficiency
with susceptibility to human papillomavirus and nontuberculous
mycobacteria, vascular and lymphatic dysfunction, and pulmonary alveolar
proteinosis (PAP). Clinical symptoms, age, and clinical severity vary
markedly.194 Some patients may develop life-threatening infections or
leukemia at younger age, whereas some remain asymptomatic for several
years or decades.194,195 However, almost all patients suffer from peripheral
blood  monocyte,  B,  and  NK  cell  cytopenias,196-198 and  the  majority  will
develop myeloid malignancy.194 Other inherited BMF syndromes such as
severe congenital neutropenia and thrombocytopenia also increase AML
risk, though the age of onset is later.199

3.5.1 Dyskeratosis congenita – a BMF syndrome with leukemia
predisposition

Dyskeratosis congenita (DC) is an inherited BMF and cancer predisposition
syndrome caused by germline mutations in telomere biology genes. The
mutations cause exceedingly short telomeres, which especially affects
rapidly renewing tissues such as epithelial and blood cells.191 Classically,
patients present with the mucocutaneous triad of abnormal skin
pigmentation, nail dystrophy, and oral premalignant leukoplakia. They are
predisposed to cancer, especially hematologic malignancies and squamous
cell carcinomas of the head and neck. The risk of developing MDS/AML is
significantly high.200 The severity of symptoms varies between patients and
even between individuals with the same mutation. The leading cause of
death  and  premature  morbidity  of  DC  patients  is  most  commonly  BMF
because of the reduction in mature blood cells and opportunistic
infections.201 BMF affects 80-90% of DC cases by the age of 30 years, and
the only curative treatment for BMF is allogeneic HSC transplant.202 The
incidence of DC is only 1 in 1,000,000 individuals.201

DC is genetically heterogeneous and can follow an X-linked recessive,
autosomal dominant, or autosomal recessive inheritance pattern. Germline
mutations in more than ten telomere biology genes are recognized, which
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lead to shortened telomere lengths (TL) in patients.203 Abnormal shortened
telomeres lead to enhanced aging of cells, but in some situations can also
help the cells to become malignant.204 The genetic basis is undetectable in
about one third of DC cases.201

The  X-linked  form  of  DC  is  caused  by  mutations  in  the  X-chromosomal
gene DKC1, which are the most frequent mutations appearing in almost one
third of patients.205 Females with a mutation on the X-chromosome are often
considered as asymptomatic mutation carriers due to X-chromosome
inactivation (XCI), by which one of the two X-chromosomes, usually the
defective one, is silenced to balance the expression dosage between females
and males. Normally, XCI skews as women age, which causes unequal
distribution of the alleles; skewing approaches 20% of those who are in their
thirties and 40% of those over 60 years of age.206 XCI can be incomplete in
humans, meaning that some genes are expressed from both the active and
the inactive X-chromosomes.205 Female DKC1 mutations carriers do not
usually develop DC-like symptoms due to skewed XCI.

4 Modern molecular techniques in genomic research

Nucleic acid (DNA or RNA) sequencing is a method for deciphering the exact
order of nucleotides in a given molecule. Sequencing of the first human
genome took $3 billion and thirteen years, and was completed in 2003.207 The
Human Genome Project was completed with Sanger sequencing, which is also
called first-generation sequencing. The method was developed in 1975 and
was used as the gold standard for sequencing for about 25 years.208 The
demand for faster and cheaper sequencing has increased since, leading to the
development of massively parallel, next-generation sequencing (NGS)
methods. NGS platforms provide the possibility to quickly sequence millions
of DNA fragments from a single sample.209 The increasing use of massively
parallel NGS technology in the past decade has facilitated the finding of
mutations in both research and clinical settings. The molecular basis of
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leukemia is much better known than any other form of cancer, primarily
because of the availability of malignant cells. Leukemia also has a relatively
simple genome and karyotype compared to many other cancer types, and it
does not form solid tumors. The continuation of major advances in discovering
new mechanisms of tumorigenesis and new potential therapeutic targets has
been made in the era of NGS. It has enabled the rapid discovery of, for
example, recognizable heritable HM syndromes, and has deepened the
understanding of molecular mechanisms underlying these malignancies.

4.1 Next-generation sequencing

The creation of NGS platforms has enabled affordable and fast sequencing in
research and clinical laboratories. An entire human genome, which comprises
three billion bases and more than 20,000 coding genes, can currently be
sequenced within one day. Each base in the genome is sequenced multiple
times, which provides high depth in the sequencing data. Thus, NGS can
capture a broader range of mutations and does not depend on the pre-
knowledge of the genetic region, unlike Sanger sequencing.210 The three main
NGS applications include whole-genome sequencing, exome sequencing, and
targeted panel sequencing.

Exome sequencing can reveal the mutational events occurring in gene-coding
regions, which comprise about 1% of the genome, hence making it more cost-
effective and affordable than sequencing the whole genome.209 Optimally,
NGS can provide the correct diagnosis for patients by identifying the disease-
causing mutations.211 Targeted sequencing of specific genes or genomic
regions can be utilized in cases when the suspected disease or condition is
identified and the most likely causal genes are known.212 Gene panels can help
in making a rapid diagnosis and therapeutic decisions in many genetic
disorders.213 RNA-sequencing  (RNA-seq)  technology,  NGS  of  RNA,  has
improved in recent years, and gene expression studies using RNA-seq have
replaced most microarray studies. Furthermore, single cell RNA-sequencing
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(scRNA-seq) is one of the newest NGS methods, providing the possibility to
identify the transcriptome in one single cell.214

NGS platforms have enabled the production of an enormous amount of data
and information from cancer genomes. The Cancer Genome Atlas (TCGA)
project started in 2006 with the goal of identifying genetic mutations
responsible for cancer by using large-scale sequencing. The Pan-Cancer Atlas
was published in 2018, covering 10,000 tumors from 33 types of cancer.215

Overall, the development of the NGS era has revolutionized cancer
heterogeneity research and enhanced the generation of precision medicine and
targeted therapies.

4.2 Genomics in leukemia research

The understanding of cancer biology has massively evolved during the last
decades largely due to blood cancer research, which has provided many
important insights and new treatment options. Identification of the first
specific chromosomal abnormality consistently associated with a certain
cancer type, the ‘Philadelphia chromosome’ in CML, was a major
breakthrough. Recognition of the chromosomal translocation and fusion gene
BCR-ABL1 underlying the Ph-chromosome216 by improved methods led to the
development of therapeutic targeting via kinase-inhibitors. The first
recombinant fusion genes were sequenced in blood cancers as well.217

AML is not a disease caused by hundreds of mutations, but only a few.82 The
genomes and karyotypes of leukemia and lymphoma are relatively simple
compared to many other cancer types. The first sequencing, copy number, and
genome-wide expression analyses were all done in acute leukemia samples.218-

220 Clonal evolution and the complexity of cancer has become clearer as high-
throughput single-cell genetic methods have improved, and leukemia has had
a key role in the phylogeny and branching studies. Precursor clones and their
genetic lesions were first deciphered for acute leukemia.217 The theory of stem
cells as cellular drivers of cancer and as key targets for therapy was endorsed
in leukemia research, and the genetic and functional diversity in the stem cells
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of individual patients was detected in acute leukemia.221-223 These studies led
the ‘cancer stem cell’ concept and changed the way we view cellular
epigenetic plasticity within a genetically homogeneous clone.217 In addition,
many other remarkable discoveries such as stem cell transplants and
combination chemotherapy have come from leukemia trials.217

Conventional cytogenetics was the standard diagnostic tool for a long time.
Fluorescence in situ hybridization (FISH) and microarray-based techniques
were utilized as well, but they only allow the identification of large
chromosomal abnormalities. Since the improvement of NGS technologies,
candidate gene sequencing and direct sequencing have enabled the discovery
of many mutations in AML patients. Whole-exome or genome sequencing
provides more insights into the origin and evolution of AML mutations.224 The
first remarkable whole exome studies covering myeloid malignancies revealed
many recurrent pathogenic mutations81,225-227 and led the way to further studies
and findings. For example, the major mutations affecting patients with MDS,
whose disease evolves from MDS to sAML, and those with de novo AML, are
fairly clear.148 The  availability  of  NGS  platforms  has  also  enabled
individualized diagnostic evaluations and tailored treatment strategies.84

Besides NGS, other technologies have been developed. For example, droplet
digital PCR (dd-PCR) technology provides ultrahigh sensitivity and very high
precision; it can detect a mutated allele frequency as small as 0.001%.228 This
methodology is useful in, for example, the early detection of leukemia relapse
and for monitoring minimal residual disease.229,230 Overall, leukemia research
has revolutionized the understanding of cancer genetics.
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AIMS OF THE STUDY

This thesis concentrates on malignancies of the bone marrow, especially the
germline genetics of acute myeloid leukemia, a myeloproliferative neoplasm
named polycythemia vera, and a leukemia-predisposing inherited telomere
biology disorder dyskeratosis congenita. PV patients have an increased risk of
transforming to AML. Most DC patients develop bone marrow failure, which
also remarkably predisposes to AML. The specific aims were:

1. To analyze predisposing mutations to acute myeloid leukemia in genes
previously implicated in AML or solid cancer predisposition, and to
evaluate the patients’ clinical phenotypes and family history with
respect to the germline variant analysis.

2. To identify novel polycythemia vera candidate predisposition genes
and variants in a family with four PV patients.

3. To characterize the molecular and clinical details of X-chromosomal
DKC1 female mutation carriers with DC-like symptoms in a family
with three affected males.
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MATERIALS AND METHODS

1 Study subjects

Studies I and II concerned germline exome variant analysis of Finnish AML
and PV patients, respectively. Skin biopsies from AML patients, and formalin-
fixed paraffin embedded (FFPE) blocks, buccal swab samples, or peripheral
blood (PB) were collected from PV patients. For Study III, PB and oral tissue
samples (buccal mucosa, tongue tissue) were obtained from X-chromosomal
DKC1 mutation carrier females. All new diagnoses are registered in the
national hematological registry (Finnish Hematology Registry, FHR). The
studies were approved by the Helsinki University Hospital (HUH) Ethics
Committees (#408/13/03/03/2009, #239/13/03/00/2010,
#303/13/03/01/2011, and #206/13/03/03/2016) in compliance with the
Declaration of Helsinki. All study participants who were alive at the time of
the study gave written informed consent.

1.1 Acute myeloid leukemia patients (I)

The study material consisted of a consecutive series of primary and secondary
AML patients diagnosed in the HUH region in the years 2015-2016. Written
informed consent was obtained from 80/84 patients. Sixty out of the 80 AML
patient samples (skin and BM) were originally collected for germline filtering
of somatic exome sequencing analysis in conjunction with an AML diagnosis
at  the  Institute  for  Molecular  Medicine  Finland  (FIMM).  Additional  exome
data was produced from eight patients for this study at the Functional
Genomics  Unit  (FuGu).  The  skin  and  BM  samples  for  sequencing  were
obtained from the Finnish Hematology Registry and Clinical Biobank
(FHRB). As twelve AML patient samples were not available in FHRB, exome
sequencing was not feasible in these patients. Clinical data (family history,
immune deficiencies other than hematological diseases, cytopenias, and
detailed laboratory characteristics) was extracted from FHR and patient
records.
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1.2 Polycythemia vera patients (II)

The primary study material consisted of a Finnish family with four diagnosed
PV patients in two generations. Buccal swabs and PB were available from the
index  patient  (1.1),  who was  diagnosed  with  PV at  the  age  of  36,  and  with
myelofibrosis at the age of 47 years. Only FFPE blocks were available from
the three other family members with PV (1.2, 1.9, 1.10). The father (1.2) of
the index case was diagnosed with PV at the age of 48; the aunt (1.9) was
diagnosed with PV and acute leukemia at the age of 91; and the uncle (1.10)
was diagnosed with PV at the age of 83. Germline DNA was available from
one of two lymphoma patients (1.19) of the family, who was diagnosed with
nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). The other
lymphoma patient (1.6) was diagnosed with differentiated diffuse
lymphocytic lymphoma at the age of 89. The daughter of the index patient was
31 years old and healthy at the time of the study. The second sample set
consisted of six other Finnish families with two first-degree relative PV cases
in five families, and two more distant relatives in the sixth family. FFPE
blocks were available from eight of these patients. Samples were derived after
signed informed consent was obtained or after authorization from the National
Supervisory Authority for Welfare and Health.

1.3 Dyskeratosis congenita study subjects (III)

Two brothers were identified with a novel X-chromosomal DKC1 mutation
c.1218_1219insCAG, p.(Asp406_Ser407insGln) in a Finnish family,
resulting in shortened telomeres and manifestation of DC. Three female
siblings, the mother, and two aunts (aunts 1 and 2) of the brothers, suffered
from DC-related symptoms. They all had had early hair graying. In addition,
both aunts had anemias, skin hyperpigmentation, and nail dysplasia. Clinical
and laboratory status regarding mucocutaneous manifestations, teeth,
complete blood counts, telomere lengths, liver, lungs, and so on, were
examined. PB and tissue samples from the tongue and buccal mucosa were
collected for research laboratory analyses for all the three females and one of
the two diseased brothers. Aunt 1 was 59 years of age; aunt 2 was 56; and the
mother of the brothers was 52 years of age at the time of examination.
Informed consent was obtained from all study participants.
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1.4 Population controls (I-III)

In Study I, variants were filtered against The Exome Aggregation Consortium
(ExAC) dataset of 60,706 unrelated individuals,231 setting the MAF below
0.01 in the total population. The Sequencing Initiative Suomi (SISu) database
(University of Helsinki, Finland, URL: http://sisuproject.fi [SISu v4.1,
(5/2017 accessed)]) was utilized for examining the variant frequency in Finns.
The population controls used in Study II were an in-house control set of 542
Finns (93 whole-genome sequenced individuals from the 1000 Genomes
Project, 402 whole-genome sequenced individuals from Kuusamo, Finland
(SISu), and 47 uterine leiomyoma normal controls). ExAC Finnish population
data231 was further utilized for variant filtration, setting the MAF below 0.001.
In Study III, the relative telomere length of the peripheral blood leukocyte
samples from DC patients was compared to 143 normal controls.

2 Sample processing

2.1 DNA and RNA extraction (I-III)

Genomic DNA from skin biopsies was extracted with the DNeasy Blood and
Tissue kit according to the manufacturer’s protocol (Qiagen) (I).

DNA  was  extracted  from  FFPE  blocks  with  a  standard  phenol-chloroform
method or with the NucleoSpin DNA FFPE XS kit (Macherey-Nagel), and
from the buccal swab sample with the QIAmp DNA Mini kit (Qiagen). DNA
from the blood sample was extracted with the standard non-enzymatic TKM
buffer-proteinase K method (II) or with the Nucleospin DNA Blood XL kit
(Macherey-Nagel) (III). DNA for telomere length analysis (III) was extracted
from PB white cells with standard protocols as previously described232,233.

RNA  was  extracted  from  whole  blood  samples  with  the  NucleoSpin  RNA
Blood kit (Macherey-Nagel), and reverse-transcribed into complementary
DNA (cDNA) with Promega M-MLV Reverse Transcriptase (Thermo
Scientific) according to the manufacturers’ protocols (II, III). Oral tissues
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(buccal mucosa and tongue) were stored in RNAlater solution (Invitrogen,
Thermo Fisher Scientific) until RNA extraction. RNA from oral tissues and
EBV-transformed lymphocyte cells was extracted using the NucleoSpin RNA
set for Nucleozol kit (Macherey-Nagel).

3 Cell lines

3.1 EBV-transformation and culture of lymphocytes (III)

PB from patients was collected in EDTA tubes. Peripheral blood mononuclear
cells (PBMCs) were extracted with Ficoll density gradient centrifugation
(Histopaque 1077; MP Biomedicals). The cells were infected with Epstein-
Barr  virus  (EBV)  for  immortalization  and  Sandimmun  (Novartis,  50μg/ml)
was added as an immunosuppressant. Suspended cells were cultured in RPMI
1640 (Lonza) with 20% heat-inactivated fetal bovine serum (FBS), 5%
Glutamax (Gibco), and 5% antibiotics (penicillin and streptomycin) in 37°C,
5% CO2.

3.2 Commercial cell lines (III)

SET-2 essential thrombocythemia cell line (DSMZ, ACC 608) was used as a
control in the ddPCR experiments. SET-2 cells were cultured under the same
conditions as the EBV-transformed patient-derived lymphocytes.

4 Next generation sequencing (NGS)

4.1 Exome sequencing (I, II)

In Study I, the exome data were produced at FIMM or FuGu, and in Study II
at Karolinska Institutet, Stockholm, Sweden. Genomic DNA libraries were
prepared at FIMM as described earlier234 and in FuGu with the KAPA Hyper
Prep kit (Roche). In Study II, the libraries were prepared at Karolinska
Institutet  using  the  NEBNext  DNA  Library  Prep  Reagent  Set  for  Illumina
(New  England  Biolabs  Ltd.),  and  exonic  regions  were  enriched  using  the
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Agilent  Sure  SelectXT  Human  All  Exon  V4+UTRs  50Mb  kit  (Agilent
Technologies). Paired-end short read sequencing at Karolinska Institutet was
performed on the HiSeq 2000 (Illumina) sequencer. Exomes produced at
FIMM were captured using the Nimblegen SeqCap EZ v2 (Roche
NimbleGen), Agilent SureSelect v5 Exome or Agilent SureSelect XT Clinical
Research Exome (Agilent) capture kits and were sequenced using the HiSeq
1500 or 2500 instruments (Illumina). Exomes produced at FuGu were
captured with MedExome kit (Roche) and sequencing was conducted using a
HiSeq sequencer (Illumina).

4.2 Whole-genome sequencing (II)

The DNA library preparation for whole-genome sequencing was performed
with the KAPA Hyper Prep Kit (KAPA Biosystems) and paired-end short read
sequencing was accomplished with a HiSeq 4000 (Illumina) at Karolinska
Insitutet.

4.3 Variant calling (I, II)

After sequencing, the processed and filtered reads were aligned to the human
reference genome GRCh37. Paired reads were used for variant calling with
SAMtools mpileup v0.1.19 (http://htslib.org/) or Genome Analysis Toolkit
(GATK) HaplotypeCaller (https://software.broadinstitute.org/gatk/
documentation/tooldocs/current/org_broadinstitute_gatk_tools_walkers_hapl
otypecaller_HaplotypeCaller.php). The variants in the exome and genome
sequencing data were visually analyzed with an analysis and visualization tool
developed in-house called BasePlayer.235 Requirements for calling a variant
were a minimum coverage of four reads and the mutated allele present in at
least 20% of the reads. Of the intronic variants, only those located at splice
sites (+/- 1-2 nucleotides from exon boundaries) were included in the initial
variant lists.

4.4 Gene panels (I, III)

In study I, thirty-four genes were screened for AML germline exon mutations
with BasePlayer.235 Panel A represented known leukemia predisposing
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genes236,  and  Panel  B  included  genes  implicated  in  DNA  repair  and  solid
tumor predisposition (Figure 4).

Figure 4. Gene panels
representing known
leukemia predisposing
genes (Panel A), and
genes implicated in DNA
repair (Panel B) used in
Study I.

In study III, a clinically validated in-house NGS gene panel was utilized to
detect somatic variants in genes typically seen in myeloid neoplasms for
deciphering the potential development of clonal hematopoiesis in two females
suffering from anemia. The panel includes exons and exon-intron boundaries
and mutational hotspots of the genes presented in Supplementary Table 1.

5 Sanger sequencing validation (I-III)

Direct Sanger sequencing was utilized for germline variant validation and
screening. DNA and cDNA samples were amplified with polymerase chain
reaction (PCR) using standard protocols. The PCR products were purified
with A’SAP (ArcticZymes) enzymes. The ABI BigDye Terminator 3.1 Cycle
sequencing kit (Applied Biosystems) was used in the sequencing, and
capillary electrophoresis was performed on an ABI3730xl DNA Analyzer
(Applied Biosystems) at FIMM. Sequence histograms were analyzed with
FinchTV (Geospiza).

6 Telomere length analysis (III)

DNA extracted  from PB white  cells  was  analyzed  by  the  quantitative  PCR
method as previously described.232,233 Relative telomere length (RTL) for the
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brothers was measured previously.237 Each DNA sample was analyzed in
triplicate in separate telomere (T) and single copy gene (S) reactions using an
ABI 7900HT instrument (Applied Biosystems). T/S values were calculated as
2 Ct, where Ct = CtT-CtS. The RTL value was generated by dividing the T/S
value  of  the  sample  with  the  T/S  value  of  DNA  from  a  reference  cell  line
(CCRF-CEM).  The  RTL  value  of  each  sample  was  plotted  against  the
individual’s age and compared to 143 normal controls (age 0-83 years).

7 Droplet digital PCR (III)

The probes were designed to detect the DKC1 mutated allele expression
(c.1218_1219insCAG; FAM fluorescence signal) and the wild type (WT;
HEX fluorescence signal) reference. Amplifications were performed in a 20
μl reaction containing 10 μl of 2X ddPCR Super Mix for probes (No dUTP,
Bio-Rad Laboratories), which consisted of 1 μl of each target and reference
amplification primer/probe mix (final concentration 900 nmol primers/250
nmol probe, respectively), 2 μl of cDNA template (40 ng of initial RNA), and
6 μl of sterile distilled water. Droplets were generated using the Automatic
Droplet Generator QX200 (Bio-Rad Laboratories). The PCR amplification
cycles were as follows: 1 cycle of 95°C (2°C/s ramp) for 10 min, 40 cycles of
94°C (2°C/s ramp) for 30 sec and 55°C (2°C/s ramp) for 1 min, followed by 1
cycle of 98°C (2°C/s ramp) for 10 min. The samples were held at 4°C until
further processing. Amplified droplets were read with a QX200 droplet reader
(Bio-Rad Laboratories). QuantaSoft Analysis Pro software v.1.0.596 (Bio-
Rad  Laboratories)  was  used  for  data  visualization  and  wells  with  less  than
8000 droplets were not examined. SET-2 cell line was used as a mutant-
negative control and the cDNA of Study III index case’s brother was used as
a mutant-positive control.

8 Online databases and in silico variant prediction tools (I, II)

In Studies I and II, total and Finnish population data in ExAC231 were utilized
for MAF inspection, respectively. In Study I, MAF in the Finnish population
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was checked in the SISu database. The effects of variants in Study I were
evaluated according to the ACMG/AMP guidelines238 with several online in
silico prediction tools, PolyPhen-2,239 SIFT,240 and ClinVar:241  pathogenic or
conflicting missense variants, nonsense variants, small deletions, and splice-
site variants were included in the analysis. Pathogenicity of the variants was
also predicted with Intervar (http://wintervar.wglab.org/), the Rare Exome
Variant Ensemble Learner (REVEL),242 and the Human Gene Mutation
Database (HGMD).243 In Study II,  the effect  of variants was predicted with
PolyPhen-2 and SIFT.

9 Statistical analyses (I, III)

In  Study  I,  statistical  analyses  were  performed  using  the  R  environment
(http://www.r-project.org/). Statistical differences in the mean age of the
variant carriers and non-carriers was determined with Student’s t test. Fisher’s
exact test was utilized for the calculation of Odds Ratio (OR) and 95%
confidence intervals for positive family history of malignancies of  variant
carriers vs. non-carriers. A P-value of <0.05 was considered statistically
significant. In Study III, the QuantaSoft Analysis Pro software was utilized
for calculating the positive and negative droplets for each fluorophore
(mutant-positive and negative, respectively), fitting the positive droplets to a
Poisson distribution, and determining the original concentration in copies/μL
of input sample. The 95% confidence intervals were used.
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RESULTS

1 Identification of germline alterations in AML patients (I)

1.1 Variants of unknown significance

Germline exome sequencing was conducted in 68/80 Finnish AML patients
(85%). The study flow is presented in Figure  5.  Gene  panels  A  and  B
consisted  of  34  genes  implicated  in  AML  (A),  and  DNA  repair  and  solid
tumors (B). A systematic analysis of the germline exomes revealed 34 rare
single-nucleotide variants and short insertions or deletions (indels) in panel
genes predicted to be functionally adverse in silico in 42/68 (62%) of the
patients (Table 2). The variants identified in the study were detected mostly
in the genes from panel B, representing DNA repair genes. Variants of
unknown significance (VUS) were found in the 16 following genes: ATM,
BLM, BRCA1, CHEK1, CHEK2, DDX41, FANCA, FANCE, GATA2, MLH1,
PALB2, PMS2, RTEL1, SAMD9L, SBDS, and WRN (Figure 5).

1.2 Germline variants with adverse or potentially pathogenic function

The  frequency  of  likely  pathogenic  germline  variants  in  our  series  is  9%
(95% Jeffreys credible interval 4–17%). Two of the 34 variants (6%) were
previously reported as AML-predisposing mutations: a start-lost mutation
c.3G>A (p.Met1Ile)244 in DDX41, and a homozygous splice-site mutation
(c.238 + 2T>C)245 in SBDS. The start-lost mutation in DDX41 is categorized
as a risk factor for AML. The patient with the DDX41 mutation was 64 years
old and did not have any family history of cancer. The splice-site mutation in
SBDS is considered to be a risk factor as well. The SBDS mutation carrier was
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a 70-year-old male diagnosed with MDS one year prior to AML but had no
history of known symptoms linked to SDS, which usually develops due to
SBDS mutations. He carried monosomy 7 in his BM cells.

Figure 5. Flowchart describing the AML study and analysis, and the number of patients
carrying variants in 16 genes. An asterisk denotes a heterozygous and homozygous case.
Adapted and reproduced with permission from Wartiovaara-Kautto et al., Leukemia, 2018.
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Table  2. Variants detected in gene panels A and B in the germline exomes of 68 AML patients.
Previously reported risk factors in SBDS (c.258+2T>C) and DDX41 (p.Met1Ile start lost) are colored
with light red. Novel candidate variants in CHEK1, SAMD9L, and DDX41 VUS are colored with grey.
Homozygosity is marked with an asterisk. Genome assembly GRCh37.
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We identified a VUS in SAMD9L, c.3649T>C (p.Phe1217Leu). The allele
frequency in Finns is 0.00048 and it is even rarer in other populations. The
variant carrier suffered from acute promyelocytic leukemia (APL). He had a
positive family history of malignancies and also carries variants in the
CHEK1, PMS2, and FANCA genes. The CHEK1 variant c.77A>G
(p.Asn26Ser) in his germline is of unknown significance, and the allele
frequency in Finns is 0.00976. Two patients were identified to carry
c.236G>A (p.Trp79Ter/UTR) in CHEK1, which leads to a termination codon
depending on the transcript. In addition, one patient had a previously
unreported rare variant in an AML-associated gene DDX41, c.95T>G
(p.Asp32Ala/Asp50Ala), with varying prediction depending on the transcript
as well. The sequencing chromatograms of the four variants are depicted in
Figure 6.

Figure 6. Sequencing chromatograms of germline variants of unknown significance in
CHEK1, SAMD9L, and DDX41. a) CHEK1 c.77A>G (p.Asn26Ser), b) CHEK1 c.236G>A
(p.Trp79Ter/UTR), c) SAMD9L c.3649T>C (p.Phe1217Leu), and d) DDX41 c.95T>G
(p.Asp32Ala/Asp50Ala).
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1.3 Clinical and family history examination in conjunction with
germline exome sequencing

Full clinical history and detailed information on disease characteristics were
obtained from all patients. A self-reported family history of malignancies was
collected from 62/80 (78%) patients. Thirty-seven out of the 62 patients (60%)
had  a  first-  or  second-degree  family  member  with  a  malignancy,  of  which
eight (13%) had a hematological malignancy. The variant carriers more often
had a positive family history of malignancies compared with non-carriers
(OR=3.2, 95% CI [1.2, 8.5], P=0.01). The difference between the mean age
of 63 years in variant carriers vs. 59 years in non-carriers was not statistically
significant (Student’s t = -1.08, P=0.3). Eight of the patients with exomes
available for analysis had a solid tumor malignancy prior to AML, and all
of them carried germline variants. Only some of these patients had received
chemotherapy or radiation therapy. Two-thirds of the patients with a
previous history of solid cancer or hematological malignancy and germline
variants were deceased by the time of analysis.

2 Exome sequencing analysis of familial PV (II)

2.1 Germline variants in ZXDC, ATN1, and LRRC3

Germline exome sequencing was performed for three PV patients (1.1, 1.2,
1.9) in a Finnish family with four patients diagnosed with PV (Figure 7). The
exome analysis detected 12 shared variants with MAF < 0.001 in the Finnish
population (ExAC), which were predicted to be damaging in silico (Table 3).
The  variants  detected  in  the  Finnish  controls  (N=542) were removed
(MAF < 0.2%, 95% CI [0, 0.05%]). The 12 variants (11 missense and one
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splice site variants) included in the analysis were further validated in a fourth
affected family member (1.10) by Sanger sequencing. From these variants
predicted as damaging, 1.10 carried three rare SNVs: c.1254C>G
(p.Phe418Leu) in ZXDC; c.1931C>G (p.Pro644Arg) in ATN1; and
rs148872771, c.701G>A (p.Arg234Gln) in LRRC3 (Figure 8). One of the two
lymphoma patients in the family (1.19) was identified to carry the variant in
LRRC3. The three variants were checked in the germlines of eight PV patients
from six other Finnish families, but the variants were not observed. In addition
to the possibly damaging variants, a rare SNP rs144332650, c.2912C>G
(p.Ala971Gly) predicted as benign in an X-chromosomal gene BCORL1 was
identified in all four PV patients in the family. PV patients in six other families
did not carry this variant.

Figure 7. Pedigree of the Finnish family with four polycythemia vera patients and two
patients with lymphoma. Family members with exomes available are marked with an asterisk
and the individual used for validation with a small black square. Two asterisks denote both
exome (germline) and whole genome (peripheral blood DNA) data available. Reproduced
with permission from Hirvonen et al., Hum Genomics, 2017.
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Table 3. Identified germline variants shared in PV patients of the family. The three variants
shared by all four PV patients are colored with grey. Adapted and reproduced with permission
from Hirvonen et al., Hum Genomics, 2017. Genome assembly GRCh37.

Figure 8. Sequencing chromatograms of novel PV predisposition variants a) ZXDC
c.1254C>G (p.Phe418Leu), b) ATN1 c.1931C>G (p.Pro644Arg), and c) LRRC3 c.701G>A
(p.Arg234Gln).
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2.2 Screening of frequent germline alterations in PV patients

A predisposition allele in JAK2, rs10974944, was identified in all the PV
patients in the family. Patients 1.1, 1.2, and 1.10 were homozygous for the risk
variant in their germline (GG genotype), whereas 1.9 was heterozygous (CG).
All eight PV patients from the six other families also carried the SNP: two of
them were heterozygous, and six were homozygous. An MPN-predisposing
variant in TERT, rs2736100, was also checked, revealing homozygosity in all
the PV patients in the studied family (CC genotype). Other MPN-predisposing
mutations such as duplication of ATG2B and GSKIP or mutations in RBBP6
were not identified.

2.3 Detection of somatic variants and LOH

Peripheral blood genomic DNA of the index case was sequenced. The most
frequent somatic mutation in PV, JAK2V617F, was identified in the index
patient’s blood sample, showing LOH, which was also studied in the 12
damaging gene variants detected by exome sequencing. Only the germline
variants c.582A>G (p.Ile194Met) in SLC24A2  and c.3929C>T
(p.Ala1310Val) in CSMD1 showed  clear  LOH  in  the  index  case’s  blood
sample. The index case carried two missense variants predicted as possibly
damaging, c.680C>T (p.Thr227Met) in FLT3 and c.5162 T>G
(p.Leu1721Trp) in TET2, which are known MPN-associated genes. In
addition, we identified the possibly damaging missense variants c.3263C>T
(p.Ser1088Phe) and c.1235C>T (p.Ala412Val) in FANCA. Sanger sequencing
of the cDNA of the index case identified the expression of the X-chromosomal
BCORL1 variant.
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3 Female carriers of germline X-chromosomal DKC1 insertion
(III)

3.1 Mutant allele burden and XCI in female DKC1 mutation carriers

A family with two diseased brothers with an insertion c.1218_1219insCAG in
the X-chromosomal gene DKC1 and three females (mother and aunts 1 and 2)
with DC-like symptoms was investigated. By sequencing DNA from
peripheral blood, we confirmed all females to be heterozygous DKC1
mutation carriers (Figure 9). DKC1 gene expression levels and distribution of
mutated and wild type alleles were studied with ddPCR in blood, buccal
mucosa, tongue, and EBV-transformed lymphocytes to study X-inactivation
in different tissues.

Figure 9. Sequencing chromatograms of
aunt 1 showing the heterozygous DKC1
mutation (DNA). The result was same in all
three females. The mutated allele was
expressed at the RNA/cDNA level (aunt 1,
buccal mucosa). Adapted and reproduced
with permission from Hirvonen et al.,
Leukemia, 2019.
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The allele burden varied depending on the individual and tissue (Figure 10):
the mutant allele burden in blood was 0% in the mother, 45% in aunt 1, and
5% in aunt 2. This could not be seen with Sanger sequencing in all the samples
(not  shown).  In  buccal  mucosa  samples,  the  fractions  were  37%,  45%,  and
7%, respectively. Additionally, tongue samples showed varying amounts of
mutant DKC1 allele expression: 14% in the mother, 28% in aunt 1, and 8% in
aunt 2. The EBV-transformed lymphocytes showed extremely high
overall DKC1 expression (>98% WT DKC1, not shown).

Figure 10. ddPCR analysis showed varying expression of mutant (blue) and wild type (green)
DKC1 expression in different tissues of the a) mother, b) aunt1, and c) aunt 2. Concentration
is presented as copies of input cDNA per μL. Adapted and reproduced with permission from
Hirvonen et al., Leukemia, 2019.

3.2 Telomere length and clinical features of the females

Telomere lengths were measured using a quantitative PCR-based method
that showed shortened telomeres in two out of the three females (the mother
and aunt 1) compared to age-matched controls. The telomeres in the two
brothers were previously shown to be very short (<5th percentile). Aunt 2
had normal telomere lengths (Figure 11).
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Figure 11. Relationship between age and relative telomere lengths (RTL) of blood cells
in DC males and DKC1 mutation carrier females. Both males and two of the females
(mother and aunt 1) had shortened telomere lengths. Adapted and reproduced with
permission from Hirvonen et al., Leukemia, 2019.

The clinical and laboratory status regarding the wide spectrum of potential DC
symptoms was examined (Figure 12). Mucocutaneous and dental problems as
well as hair, skin, and nail abnormalities are potential signs of DC. Aunt 1 had
suffered from aggressive periodontitis and due to this had lost all her teeth by
the age of 52 years. The mother and aunt 2 had no dental diseases reported
that associate with DC. In addition, none of the studied females presented with
oral mucosal abnormalities. Aunt 1 with shortened telomeres showed nail
problems, skin pigmentation, and hair abnormalities compatible with DC. She
had onset of premature graying of the hair already in her teenage years. Aunt
2  also  showed abnormalities  compatible  with  DC:  her  nails  were  abnormal
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and she had mild skin hyperpigmentation and hyperkeratosis. She had
premature graying of the hair at 30 years of age. The mother of the brothers
also had onset of premature graying of the hair in her teenage years. She had
shortened telomeres in blood cells but did not show classical DC-associated
skin abnormalities.

DC also affects the cells forming in the bone marrow. Both aunts suffered
from anemia. Bone marrow examination was performed for aunt 2, showing
decreased cellularity without signs of dysplasia or an excess of blasts. To
decipher the potential development of clonal hematopoiesis in the two aunts,
an in-house NGS panel was analyzed on their peripheral blood to detect
somatic variants in genes involved in myeloid neoplasms. No pathogenic
mutations were detected.

Figure 12. Pedigree and clinical features of c.1218_1219insCAG mutation carrier females.
Circles with dots denote mutation carrier females and dark squares represent males with DC.
The index case is marked with an arrow, and the ages at the time of examination are shown.
Adapted and reproduced with permission from Hirvonen et al., Leukemia, 2019.
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DISCUSSION

Most cancer types show familial aggregation,246,247 which together with early
age of onset, multiple primary cancers, and specific non-malignant
manifestations represent clinical signs of hereditary cancer syndromes.248 Up
to 10% of cancers show familial inheritance,67 and  while  this  is  a  small
fraction of the overall cancer burden, the molecular genetic findings in these
cases have changed family counseling and management of the disease; these
findings have also shed light on the regulatory pathways playing important
roles in sporadic tumor development.248 Some  of  the  known  germline  and
tumor mutated cancer genes overlap: a fraction of somatically mutated cancer
genes confer susceptibility to cancer if mutated in the germline, and a number
of the germline mutated cancer genes can contribute to cancer development
when mutations occur in the tumor.66 This has also been detected in myeloid
malignancies with either germline or somatic mutations in e.g. RUNX1 and
GATA2: the genes are recurrently mutated in AML as secondary events, but if
mutated in the germline, they remarkably predispose to myeloid malignancies.
Hematological malignancies with inherited predisposition have been
recognized for decades,1 but the molecular basis has only recently become
clearer. Individuals with germline predisposition to hematological
malignancies are diagnosed at an accelerating pace. However, individuals
with hereditary HM still continue to be underdiagnosed, and in a number of
familial myeloid neoplasia cases, the germline cause is unknown. In this
thesis, we studied the germline alterations that potentially predispose to
myeloid malignancies. We aimed to analyze germline mutations in AML in
an unselected series of patients; identify novel candidate susceptibility genes
for familial PV, which also predisposes to AML; and characterize X-linked
DC in mutation carrier females at potential risk for a myeloid malignancy.
Telomere biology disorders are known to predispose to hematological
disorders due to bone marrow defects.
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1 Germline alterations in AML patients

Germline predisposition to myeloid malignancies has long been recognized in
children, and inherited forms of leukemia were long thought of as solely
pediatric diseases. Today, familial clustering of AML is well recognized, and
many individuals with a predisposing genetic alteration can develop MDS or
AML later in adulthood. Several inherited BMF syndromes and gene
mutations have been associated with MDS and AML, including GATA2,28

CEBPA,182 RUNX1,85 and DDX41 mutations.249 Furthermore, germline
mutations in myeloid malignancies have also been identified in genes
classically implicated in solid tumor predisposition genes such as DNA
repair genes.250,251 For example, Fanconi anemia, a rare primarily autosomal
recessive cancer-prone syndrome, is due to mutations in several different
genes that encode proteins interacting in a DNA repair pathway known as
the  FA  pathway.  It  comprises  19  FA  proteins  and  many  other  associated
proteins.252,253 The FA pathway intersects with other repair processes and
operates in repairing interstrand crosslink lesions in DNA.254 In patients
with biallelic mutations in FA complex genes, DNA damage is not repaired
efficiently, resulting in chromosomal aberrations and uncontrolled cell
growth or inability to make new DNA molecules. In particular, quickly
dividing cells, such as BM cells, are affected. As a consequence, the
individuals develop AML, MDS, aplastic anemia, and solid tumors, which
are major complications identified in patients.252,254 Up to ninety percent of
FA patients present with BMF.255 Thus, the role of DNA repair pathways is
major in genome maintenance and cancer development, including in AML.

The frequency of predisposing variants is unknown in an unselected,
consecutive series of unrelated AML patients. Hence, we screened the
germline variations in 34 leukemia and solid tumor predisposing genes in a
consecutive series of AML patients. Thirty-four rare SNVs and short insertion
or deletion variants with predicted functionally adverse consequences were
detected in 42/68 (62%) germline exomes in 16 genes, of which most are
associated with DNA repair. Only two of the variants were previously reported
as AML-predisposing mutations: DDX41 (p.Met1Ile; start lost);244 and SBDS
(c.258+2T>C).245 The start lost mutation in DDX41 was identified in a 64-
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year-old  patient  with  no  family  history  of  cancer,  which  was  intriguing.
Another patient (57y), with a positive family history of cancer, was identified
to carry a previously unreported rare variant p.Asp32Ala/Asp50Ala
depending on the transcript, with conflicting functional prediction. DDX41
mutations usually result in myeloid neoplasia in older adults.249 The SBDS
mutation was identified in a 70-year-old male with MDS one year prior to
diagnosis with AML. Biallelic mutations in SBDS are associated with a
multiorgan disorder called Shwachman–Diamond syndrome (SDS). Patients
with SDS typically present with increased risk of BM dysfunction, MDS,
and acute leukemias, but also with pancreatic insufficiency and short
stature.245 A subset of individuals lack syndromic features, and thus, the
syndrome may be underdiagnosed,256 which was also reflected in our AML
series: the patient carried the characteristic monosomy 7 in his BM cells,
but did not show any known symptoms linked to SDS.

Overall, the frequency of mutations in DNA repair genes increases due to
chemotherapy or radiation therapy, which predisposes to secondary cancers.
The incidence of these therapy-related and secondary cancers is increasing,
since the treatment and survival rates are better after the preceding
malignancy.257 All eight patients in our study with a solid tumor prior to AML
carried germline variants, which were mostly identified in the DNA repair
genes (Panel B). Only five of these patients had had chemotherapy or
radiation therapy, which suggests the possibility of a second, not secondary,
cancer. By the time of analysis, about two-thirds of the patients with a
previous solid cancer or HM and with germline variants detected were
deceased, which may suggest that therapy-related AML and AML with
preceding MDS or MPN can develop with high risk, but the possible
contribution of germline alterations should not be ignored. Further studies
in other, more extensive patient series are warranted to accurately compare
the clustering of germline variants in secondary and second cancers with
high-risk somatic gene changes and primary AML.

1.1 Variants of uncertain significance

Current guidelines for the interpretation of sequence variants recommended
by the American College of Medical Genetics and Genomics and the
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Association for Molecular Pathology (ACMG/AMP) provide a useful
standard for differentiation of mutations and less significant variants in
human diseases.238 They recommend the use of standard terminology:
pathogenic, likely pathogenic, uncertain significance, likely benign, and
benign.238 Sometimes, however, a novel variant of unknown significance
becomes suspicious and calls for reclassification as a likely pathogenic
mutation, particularly when a patient’s personal or family history raises
suspicions of inherited predisposition to a disorder.258

In our study, we identified a rare variant in SAMD9L, predicted to be a variant
of uncertain significance (p.Phe1217Leu) located in the C-terminal region of
the gene in a patient diagnosed with APL. SAMD9L acts as a myeloid tumor
suppressor, but the general function and effect on hematopoiesis is not well
known.259 Germline mutations in tumor suppressors are known to predispose
to cancer because only one additional mutational event is required for
tumorigenesis,68 or through e.g. loss of heterozygosity or uniparental disomy.
Mutations particularly in the C-terminal region of SAMD9L have only recently
been associated with the development of MDS together with preceding
cytopenia, immunodeficiency, and neurological symptoms,155,260,261 and the
connection between heterozygous germline missense mutations and familial
form of MDS has been shown.261 SAMD9L is  conserved  and  shares  62%
sequence identity with the SAMD9 gene, which is a myeloid tumor suppressor
as well.262 Both genes are located in the region of chromosome 7 that is
commonly lost in myeloid malignancies. The development of chromosome 7
deletion consistently removes the allele with the mutated SAMD9/SAMD9L,
which is termed “adaption by aneuploidy”; HSPCs that eliminate SAMD9 or
SAMD9L GoF mutations gain a competitive advantage.155,156 Most of the
previously reported patients with a SAMD9L mutation carried somatic
chromosome 7 abnormalities. The patient with the SAMD9L VUS  in  our
study, however, lacked somatic changes in chromosome 7. The role of this
rare variant in the causality of APL thus remains unknown. Intriguingly, the
patient has a family history of malignancies, and in addition to the SAMD9L
variant,  also  carries  VUS  in  the  DNA  repair  genes CHEK1, FANCA, and
PMS2.
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1.2 CHEK1– novel candidate for AML predisposition

Defective DNA repair is one of the hallmarks of cancer.263 DNA repair
genes are often mutated in malignant tumors and are the genetic events most
commonly involved in hereditary cancers. It is possible that the prevalence
of germline mutations in different cancer types is higher than previously
estimated, and the clinical implications of many DNA repair genes still
remain unknown.264 These genes are also mentioned in the latest WHO
classification concerning myeloid malignancies, which refers to the great
importance of screening DNA repair germline mutations in addition to
somatic defects.2

Three patients in our study were identified to carry a rare VUS in the DNA
repair gene CHEK1: one patient with a missense variant p.Asn26Ser; and
two patients with p.Trp79Ter/UTR, leading to a termination codon depending
on the transcript. One patient with the early termination codon mutation was
relatively young at the time of diagnosis (55y), and also had family history of
breast cancer. However, the other patient with the same variant had no family
history of malignancies and was closer to the median age of approximately 70
years at the time of AML diagnosis (66y). The third patient with a missense
variant had a positive family history of malignancies, and was only 28 years
old when diagnosed with APL. None of these three patients had had previous
malignancies or chemotherapy, which would have implicated the
development of therapy-related AML or secondary cancer.

The highly conserved gene CHEK1 on chromosome 11 encodes a
serine/threonine kinase CHK1, which is a key component in the DNA
damage response. CHK1 regulates cell cycle checkpoints and prevents cells
with DNA damage from entering mitosis, but also contributes to cell
proliferation and survival.265 Thus, targeted therapy to CHK1 and its related
signaling have become an area of great interest in oncology. CHK1 also
provides a prognostic indicator of survival and a promising therapeutic
target in AML; high expression of CHEK1 in AML cells predicts reduced
overall, event-free, and relapse-free survival.266,267 CHEK1 mutations are rare
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in cancer, as cells with defective CHK1 are eliminated during
tumorigenesis. CHK1 also seems to favor cell proliferation.265 Nevertheless,
LoF mutations have been reported in some cancer types.268 Earlier studies
suggest that CHEK1 haploinsufficiency may promote cancer, particularly if
other mutations are present in relevant genes.265 In our study, the patient
with CHEK1 variant p.Asn26Ser carried also other VUS in the genes
SAMD9L, FANCA, and PMS2. In conclusion, although we did not detect
any shared clinical features for the three CHEK1 mutation carrier patients
in addition to AML diagnosis, we would like to suggest CHEK1 as a novel
candidate gene for AML susceptibility.

2 Candidate predisposition genes for familial PV

Familial clustering of PV is occasionally observed. A preexisting germline
predisposition factor is thought to exist; however, high-penetrance
predisposition genes to PV have not been clearly defined to date. PV arises
from a somatic mutation in JAK2 in HSC, which results in hyper-activated
signaling and massively increased production of mature erythrocytes. These
JAK2 mutations are not founder mutations, but mainly drive the PV
phenotype.105 Identification of potential predisposing gene alterations is
important for families with PV susceptibility. PV can occasionally transform
into other, more severe, myeloid malignancies.

Most studies have only identified candidate variants and haplotypes in familial
MPN  cases.  The  most  significant  finding  so  far  has  been  the JAK2 46/1
haplotype, which favors the acquisition of the most frequent mutation JAK2
V617F in MPNs.126-129 The  exact  reason  for  this  is  not  known,  but  it  is
hypothesized that the inherited haplotype may be genetically unstable, thus
acquiring the somatic in cis V617F mutation faster or that the V617F clone
gains a selective advantage for the 46/1 haplotype and not the wild type
haplotype.126-128 Additional variants in other genes have been found, most
notably in TERT,130,131 but these still do not fully explain the family clustering
of PV and other MPNs.



66

We utilized exome sequencing to study the predisposition to PV in a Finnish
family with four diagnosed PV patients. This is a rather exceptional family, as
PV is very rare and most cases are sporadic. The index case was younger (36
years of age) than PV patients typically are at the time of diagnosis, which is
common in familial PV cases. She progressed to myelofibrosis eleven years
after PV diagnosis. Our study is the first report on Finnish familial PV cases.
We identified three novel candidate variants with adverse functional
predictions in ZXDC (p.Phe418Leu), ATN1 (p.Pro644Arg), and LRRC3
(p.Arg234Gln) shared by all four patients. Of these three, the transcription
factor ZXDC appears the most relevant candidate. It regulates the
transcription of genes involved in differentiation and inflammatory response
in a myeloid cell, especially in monocytes.269 It cannot, however, be
considered as a lineage-determining TF. ATN1 is a nuclear transcriptional
corepressor, mainly associated with neurogenerative diseases,270 and the
LRRC3 variant was identified also in one lymphoma patient of the family,
indicating that it probably is not responsible for PV predisposition exclusively.
We further screened the three SNVs from eight other patients in six families
with PV clustering, but they did not carry these variants. The risk haplotype
46/1 was identified in every PV patient in the study; nine of them (75%) were
homozygous, and three (25%) were heterozygous. The G allele increases the
risk of developing an MPN 2.8-fold and strongly associates with the V617F
mutation, which is detected in almost every PV case.126-129 However, PV is a
very rare disease, and the JAK2 haplotype is detected in more than one fourth
of the population, suggesting that it cannot be the only cause for the disease
development.  All  the  patients  in  our  study  were JAK2 V617F mutation-
positive, as expected.

To conclude, the identification of new hereditary gene variants and mutations
may lead to screening of family members and other individuals at high risk of
developing PV or other myeloid malignancies. Both diseased and
asymptomatic family members should be interviewed about the family history
to improve in making diagnoses. The rare variants identified in our exome
study may predispose to PV development in the studied family, although they
were not identified in other patients; the whole genes were not screened but
only  the  specific  SNV  locations.  All  in  all,  exome  sequencing  provides  an
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excellent tool for the sequence analysis of gene-coding regions of the genome,
although, for example, copy number alterations, larger genomic
rearrangements or aberrations in non-coding regions cannot be identified
solely in exome data. In addition, it is not known if a germline mutation
leading to cytokine dysregulation in the BM microenvironment has an impact
on the PV development, though it is known that many pro-inflammatory
cytokines are dysregulated in MPN patients and drive the clonal
evolution.271-274 More studies are warranted to gain better insights into
familial clustering of PV and other MPNs.

3 Females with germline mutation in X-chromosomal telomere gene

Patients with dyskeratosis congenita are at risk of developing cancer,
especially hematological malignancies and squamous cell carcinomas of the
head and neck. The risk for MDS is remarkably high – over 500-fold
compared to healthy population.275 This is most importantly due to bone
marrow failure and defects in telomere maintenance and function, which
results in exceedingly short telomeres.191 DC  is  one  of  the  most  severe
telomere biology disorders, typically presenting in childhood as BMF. The
most frequently mutated gene is the dyskerin-encoding DKC1 in X-
chromosome. Dyskerin functions in stabilizing the telomerase RNA, thus
maintaining its activity.276,277 Hence, with X-linked recessive pattern of
inheritance it mostly affects males. Females are assumed to be protected from
the disease by X-inactivation. Skewed XCI has been thought to function
especially well in hematopoietic tissues in females.278 To date, only few
reports on female DKC1 pathogenic mutation carriers exist.278-281 Here, we
studied three symptomatic sisters with a novel heterozygous germline
DKC1 insertion of three nucleotides. They showed characteristic DC-like
symptoms  such  as  early  greying  of  the  hair,  nail  dysplasia,  and  skin
hyperpigmentation. The same mutation was identified in two brothers in the
family, who were diagnosed with DC and had short telomeres.237
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3.1 Mutant DKC1 allele expression and telomere length

In order to investigate the XCI status and mutant allele expression in the
females, we compared the DKC1 mutant and wild type allele expression
levels in different tissues by utilizing droplet digital PCR. The mutant
DKC1 allele expression varied especially in the blood: the mother of the
brothers showed 0% expression of the mutant allele, whereas one of the two
aunts (aunt 1) showed up to 45% expression. The expression does not fully
correlate with the telomere length analysis; the mother had shortened
telomeres in her blood cells but no expression of the mutated allele.
However, it has been shown that there is not a strict relationship between
TL and severity of symptoms at the individual level.282 Families with
individuals displaying variable symptoms and telomere lengths despite
carrying the same mutations have been reported.233,283 Aunt 2 in our study
had normal telomere lengths but showed 5% mutant allele expression in her
blood cells. Despite X-linked inheritance, two out of three females in our
study had shortened telomere lengths, which refers to a TBD. Furthermore,
we detected both mutant and wild type DKC1 expression  in  blood  in  two
females, who were both diagnosed with marginal macrocytic anemia,
suggesting that skewed XCI does not necessarily protect females from
hematological symptoms. Germline mosaicism and epigenetics, in addition
to XCI, have been suggested to contribute to DC-like phenotypes in female
DKC1 mutation carriers.278,281 Even though we detected both alleles to be
present in all the tissue types and having their unique distribution patterns,
it is likely that signals come from different cells expressing either mutant or
wild type DKC1 alleles, not both. Whether the allele distribution pattern
arises by coincidence or is a controlled phenomenon remains unknown.

The clinical and molecular examination of one family can significantly
increase our knowledge on rare disease features. Our study strengthens the
finding that telomere lengths can vary between individuals with the same
mutation  in  the  same family,  and  does  not  strictly  correlate  with  DC-like
symptoms. In this study, we expanded the clinical spectrum of DKC1-linked
TBD in women and revealed the molecular roots of the patients’ symptoms.
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Long-term follow-up of the females carrying mutations in telomere biology
genes is important. The health problems in females, too, may be severe.
Thus, early recognition of all patients with DC or other TBD is essential.

4 Leukemia germline research and diagnostics now and in the
future

Transferring NGS methods and germline analysis from the research
laboratory to the clinical setting can be challenging. One of the main goals
is to successfully transmit genetic discoveries into therapeutic interventions.
Whole-exome sequencing is the most inclusive approach in cancer genome
research; however it has some major limitations. For example, it
“eliminates” more than 98% of the genome, which brings certain risks to
the analysis via the inability to screen anything other than the coding
regions. Due to this, the best approach for the optimization of genome
analysis has to be considered. Furthermore, the detection of variants is
relatively straightforward, whereas the interpretation of variants and their
consequences still remains challenging. Variants of unknown significance
can be difficult to analyze due to a lack of knowledge and evidence for both
the scientific community and clinicians, which patients can sometimes find
shocking. Occasionally, a somatic mutation is accidentally considered to be
a germline mutation or vice versa. Artificial intelligence (AI) may help in
prediction and decision making, and by early detection, potentially
minimize disease severity.284 Collecting high-quality sample material and
clinically annotated data in e.g. biobanks secures the possibility of using
even larger data sets in future research.

The identification and knowledge of germline variants and mutations in
patients with AML or leukemia-predisposing diseases or syndromes has
both advantages and challenges (Table 4). Reduced or incomplete
penetrance in individuals with a germline mutation may explain why
inherited diseases are in some cases transferred through unaffected parents
and thus are not recognized, but also why clinically healthy family members
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can carry potentially pathogenic variants without clinical symptoms.285 In
addition to the patients themselves, the knowledge about the germline
variants can affect the family members and may lead to increased anxiety
and stress. Despite this, mutation carriers should be encouraged to obtain
genetic counseling. Leukemia unfortunately cannot be prevented despite the
advances in therapy development, which even further increases the anxiety
in these families with a clustering of myeloid malignancies. However, the
incorporation of both somatic and germline information into patient care is
important in the era of precision medicine and tailored treatment strategies
– especially when considering an HSC transplant donor.
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Table 4. Advantages and challenges in germline diagnostics of hematological
malignancies.

GERMLINE
DIAGNOSTICS IN
HEMATOLOGICAL
MALIGNANCIES

NGS
techniques

Patient Family &
other
individuals
with same
germline
mutation

Therapy
strategies

ADVANTAGES Identification
of new
predisposition
genes,
mutations, and
syndromes

Relatively fast

Increasing
knowledge

Finding a
reason for the
disease

Precision
medicine,
individualized
therapy

Early detection
of malignancy

Follow-up

Genetic
counseling and
risk assessment

Increasing
knowledge

Precision
medicine,
tailored
treatments

Development
of new therapy
options

CHALLENGES Interpretation
of the variants

Lack of
knowledge

Errors

Transition of
genetic
discoveries to
therapeutics

Anxiety and
other
psychosocial
issues

Not necessarily
present with
suspicious
family history
or symptoms

Risks

Anxiety and
other
psychosocial
issues

Penetrance
cannot
necessarily be
predicted

Risks

Leukemia
cannot be
prevented –
little advances
in therapy
development
due to disease
heterogeneity
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CONCLUDING REMARKS

Germline predisposition to myeloid malignancies is well known, but there are
still clinical challenges in the recognition of familial leukemia and other
hematological malignancies. Patients may be unaware of their predisposition
and be asymptomatic mutation carriers. On the other hand, the other mutation
carriers in the family may already manifest symptoms in their younger years.
Thus, wide variation in age of onset, disease latency and outcome, and variable
penetrance of germline mutations can complicate the recognition of familial
aggregation. Understanding the recognized syndromes is critical for clinicians
to have a high index of suspicion and to have knowledge about how to manage
patients with germline mutations.

Targeted sequencing methods are routinely used in leukemia diagnostics;
however, in germline screening they are still rarely used in the clinic. The
identification of predisposing genes and mutations is important for families
with susceptibility for hematological malignancies. Knowledge about
specific predisposing alterations enables the screening of other individuals
at higher risk as well, which may affect, for example, the selection of
transplant donors or therapy options. NGS technologies, such as whole-
exome sequencing, enable the identification of sequence variants, although
larger structural variants, non-coding mutations, and copy number
alterations are difficult or impossible to detect with exome sequencing. In
addition, variants of uncertain significance may complicate genetic
counseling and management.

The active gathering of family history is important for detecting inherited
predisposition to malignancies. Germline exome analysis in conjunction
with somatic exome sequencing may be justifiable. Inherited germline
variants potentially associated with e.g. AML may also be identified in older
cases without known family history. Also, clinical and molecular
examination of only one family can significantly increase our knowledge
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on rare disease features, and follow-up of both the symptomatic and
asymptomatic individuals with a predisposing germline variant is essential
despite the possible anxiety in the patient and their family members.
Therefore, clinicians are encouraged to integrate interpreted germline data
into patient care, and the complexity of genetic information requires active
collaboration between researchers, hematologists, and counseling units.
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 Supplementary Table 1. Myeloid gene panel (III).
Gene (exons and exon-intron
boundaries covered)
ASXL1 ASXL transcriptional regulator 1
BCOR BCL6 corepressor
CDKN2A cyclin-dependent kinase inhibitor 2A
CEBPA CCAAT enhancer binding protein alpha
CREBBP CREB binding protein
CUX1 Cut like homeobox 1
DNMT3A DNA (cytosine-5)-methyltransferase 3A
EP300 E1A binding protein P300
ETV6 ETS variant 6
EZH2 Enhancer of zeste 2
GATA2 GATA-binding factor 2
KDM6A Lysine demethylase 6A
NF1 Neurofibromin 1
PHF6 PHD finger protein 6
RAD21 RAD21 cohesin complex component
SETD2 SET domain containing 2
STAG2 Stromal antigen 2
TET2 Tet methylcytosine dioxygenase 2
TP53 Tumor protein 53
ZRSR2 Zinc finger CCCH-type, RNA binding motif and
Gene (mutational hotspots covered)
BRAF B-Raf proto-oncogene, serine/threonine kinase
CALR Calreticulin
CBL Cbl proto-oncogene
CSF3R Colony stimulating factor 3 receptor
FLT3 Fms related tyrosine kinase 3
GATA1 GATA binding protein 1
IDH1 Isocitrate dehydrogenase (NADP(+)) 1, cytosolic
IDH2 Isocitrate dehydrogenase (NADP(+)) 2,
JAK2 Janus kinase 2
KIT KIT proto-oncogene receptor tyrosine kinase
KRAS KRAS proto-oncogene, GTPase
MPL MPL proto-oncogene, thrombopoietin receptor
NPM1 Nucleophosmin 1
PDGFRA Platelet derived growth factor receptor alpha
PTPN11 Protein tyrosine phosphatase, non-receptor type 11
RUNX1 Runt related transcription factor 1
SETBP1 SET binding protein 1
SF3B1 Splicing factor 3b subunit 1
SMC1A Structural maintenance of chromosomes 1A
SMC3 Structural maintenance of chromosomes 3
SRSF2 Serine and arginine rich splicing factor 2
U2AF1 U2 small nuclear RNA auxiliary factor 1
WT1 Wilms tumor 1
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