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ABSTRACT 

Salmonella spp., Yersinia enterocolitica, Toxoplasma gondii and Trichinella 

spp. are the most relevant biological hazards in the context of meat 

inspection of pigs in the European Union (EU). These zoonotic pathogens 

show no clinical symptoms or gross pathological lesions in pigs, and thus are 

not detectable with current meat inspection procedures, except Trichinella 

spp. by laboratory analysis. In this study, we analysed the serological 

prevalence of these pathogens in Finnish fattening pigs and evaluated 

serological monitoring as a control method.  

In total, we studied 1353 meat juice samples and 1793 serum samples of 

fattening pigs using commercial ELISA kits. The seroprevalence of 

pathogenic Yersinia spp. was the highest of the studied pathogens, and 

Yersinia antibodies were detected in 57% and 66% of the meat juice and 

serum samples at the end of the fattening period, respectively. The 

seroprevalences of Salmonella spp. and T. gondii were low. Salmonella 

antibodies were detected in 3% of the meat juice samples and in 18% of the 

serum samples at the end of fattening. T. gondii antibodies were detected in 

3% of meat juice samples and 1% of serum samples. Trichinella spp. 

antibodies were not detected. The seroprevalences at the end of the fattening 

or at slaughter were not associated with post-mortem findings of the current 

batch, which was expected. This indicates that we need new tools to control 

these public health hazards in pork. 

Meat juice serology at slaughter was feasible and easy to perform. We 

observed huge differences between farms considering Salmonella spp., 

Yersinia spp. and T. gondii seroprevalences. This shows that farm-level 

serological data could be used as part of the food chain information (FCI) for 

risk-based decisions to improve food safety. Risk-based decisions include 

slaughtering arrangements, additional carcass processing, targeted sampling 

at the slaughterhouse and improved biosecurity measures at the farm. 

However, risk mitigation targets and procedures must be carefully adjusted 

for each pathogen. With targeted serological monitoring of T. gondii we 

could effectively target control measures and diminish the pathogen in pork. 

Serological monitoring of pathogenic Yersinia spp. could be the first step in 

the huge challenge of Y. enterocolitica in pigs, allowing for the possibility of 

slaughtering pigs from high-risk farms at the end of the day. Serological 

monitoring of Salmonella spp. would be beneficial, but would only have a 

limited positive impact on food safety, because the current situation is 

already excellent. Serosurveillance of Trichinella spp. would become 

meaningful, if current testing is to be diminished. 

In addition to food safety issues, FCI could be useful for visual-only 

inspection, which should be the most common inspection method. We 

analysed authentic FCIs and meat inspection findings of 85 slaughter batches 
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of fattening pigs. In addition, we analysed on-farm health status indicators, 

assessed by a veterinarian, and the meat inspection findings of another 57 

slaughter batches. The partial carcass condemnation rate of the current batch 

was best predicted by the partial carcass condemnation rate of the pigs from 

the same farm within one year. Constant coughing and tail biting at a farm 

were associated with partial carcass condemnations. On-farm health 

indicators (such as the healed tail biting rate at the end of fattening and 

constant coughing during fattening) together with previous meat inspection 

results could be used as part of the FCI to make decisions regarding the meat 

inspection procedure: visual-only or additional inspections. However, 

farmers must be properly advised to carefully report this information. 
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1 INTRODUCTION 

Meat inspection has been conducted in Europe for over a century. It has been 

the corner stone of food control preventing the transmission of meat-borne 

pathogens. During this century, the aims of meat inspection have broadened 

from public health into four major objectives: public health, animal health, 

animal welfare and organoleptic meat quality. However, the meat inspection 

protocol considering food safety issues has remained quite unchangeable 

over these years, despite the dramatic change in significance of various 

pathogens.   

To incorporate a more risk-based approach, the European Union (EU) 

shifted the official post-mortem meat inspection of pigs to visual meat 

inspection in 2014 (European Commission, 2014). Routine palpations and 

incisions were omitted from inspection procedures, because the risk of 

microbiological cross-contamination was assessed to be higher than the risk 

of missing potential food safety hazards. However, this modernization of 

meat inspection did not enhance the detection of the current most relevant 

meat-borne zoonoses.   

 Salmonella spp., Yersinia enterocolitica, Trichinella spp. and 

Toxoplasma gondii are currently the most important biological hazards in 

the context of pig meat inspection (EFSA, 2011). These are zoonotic 

pathogens causing human infections frequently related to pork consumption 

(Fosse et al., 2008). However, these pathogens show no gross lesions in pigs 

and are not detectable within the current meat inspection of pigs. Meat 

inspection should therefore be developed to a more risk-based approach 

focusing on preventing the most relevant public health hazards occurring 

today.  

The European Food Safety Authority (EFSA) stated that a comprehensive 

pork carcass safety assurance system ‘from the farm to the fork’ is needed to 

ensure the effective control of the main hazards (EFSA, 2011). Food chain 

information (FCI) should be the link between farms and slaughterhouses to 

provide information related to food safety. However, current information is 

limited, as monitoring programmes in Finland cover only Salmonella spp. 

and the routine analysis of Trichinella spp., which is expected to lessen 

(European Commission, 2015). 

Besides the protection of human health, the aim of food control is also to 

protect consumer interests in relation to food (European Parliament and 

Council, 2002). Thus, during meat inspection, the meat is also condemned if 

it indicates any patho-physiological changes or anomalies in consistency or 

in organoleptic quality. Healthy pigs are the prerequisite for visual-only meat 

inspection. The official veterinarian (OV) should be able to recognize 

beforehand the slaughter batches of pigs expressing high frequencies of 

lesions, which need additional inspections and are unsuitable for visual-only 
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meat inspection. FCI is the intended tool for this purpose, in addition to food 

safety and animal health issues. 

The aim of this doctoral thesis was to study the prerequisites of risk-based 

pig meat inspection in Finland. The scope of this thesis is food control and 

public health issues, concentrating on biological hazards. Specific aims were 

to investigate the seroprevalence of Salmonella spp., pathogenic Yersinia 

spp., T. gondii and Trichinella spp. in pigs, to evaluate the feasibility of 

serological monitoring in the context of risk-based meat inspection ‘from the 

farm to the fork’, to assess the usability of the current FCI as part of the risk-

based and visual meat inspection, and to evaluate means for improving it.  
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2 REVIEW OF THE LITERATURE 

2.1 RISK-BASED MEAT INSPECTION OF PIGS 

‘Risk’ is a function of the probability of an adverse health effect and the 

severity of that effect, consequential to a hazard (European Parliament and 

Council, 2002). A high protection level of human health is one of the main 

objectives of food control (European Parliament and Council, 2002). In order 

to achieve this goal, food law and food control should be based on risk 

analysis consisting of risk assessment, risk management and risk 

communication (European Parliament and Council, 2002).  

The systematic meat inspection procedure in Europe was developed in the 

19th century based on a book by von Ostertag (1892). The primary objective 

was ‘to protect man against the dangers which threaten him from eating 

meat’ and the procedure was highly risk-based, considering risks relevant at 

that time (von Ostertag, 1904). However, the protocol has remained nearly 

unaltered until today, despite the risks having changed over the decades. 

Most of the significant zoonoses detected in traditional meat inspection have 

never been detected in Finnish pigs (eg. Brucella suis, Taenia solium), and 

Finland is currently officially free from Mycobacterium bovis (Finnish Food 

Safety Authority Evira, 2017a). After 2004, Trichinella spp. has been 

detected in Finland in only one pig in 2010 (Finnish Food Safety Authority 

Evira, 2017b). 

The current meat inspection of pigs in the EU comprises of FCI, ante-

mortem inspection, post-mortem inspection and inspections regarding 

animal welfare, animal by-products and laboratory testing (European 

Parliament and Council, 2004b). Ante- and post-mortem inspections are 

usually visual only. Post-mortem inspection can be enhanced by palpation 

and incisions when needed. In current meat inspection protocol, only 

conditions showing observable anomalies in animals or carcasses are 

detected. Trichinella spp. infection is the exception. It was formerly routinely 

checked for through laboratory analyses of each pig carcass at slaughter, but 

due to changes in legislation routine analysis is expected to become less 

frequent (European Commission, 2015). 

EFSA (2011) conducted a qualitative risk assessment on the foodborne 

hazards in the context of pig meat inspection. Based on this assessment, 

Salmonella spp., Y. enterocolitica, Trichinella spp. and T. gondii were 

identified as the most relevant biological hazards in the context of pig meat 

inspection (EFSA, 2011). However, none of these pathogens show any gross 

lesions in pigs and are undetectable within the current pig meat inspection. 

To meet the objectives of the European Food Law, meat inspection should 

be developed towards a more risk-based approach, focused on preventing the 

most relevant public health hazards occurring today. These hazards enter the 
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pork production chain mostly during the preharvest phase of production. 

Therefore, based on the risk analysis, the focus in risk-based meat inspection 

should be shifted from traditional meat inspection at the slaughterhouse to 

comprising the whole food chain from the farm until the carcass leaves the 

slaughterhouse (EFSA, 2011).  

2.2 VISUAL-ONLY MEAT INSPECTION OF PIGS 

The official post-mortem meat inspection of pigs shifted to visual-only meat 

inspection in the EU in 2014 (European Commission, 2014). This means that 

routine palpations and incisions are omitted from post-mortem inspection 

procedures. The change in legislation was performed based on the risk 

assessment made by EFSA (2011), where the risk of microbial cross-

contamination was estimated to be higher than the risk of not detecting 

conditions targeted by these techniques. EFSA (2011) stated that incisions 

and palpations should only be conducted on pigs that are suspected of having 

conditions detectable with these techniques.      

The OV decides whether any additional post-mortem inspection 

procedures are needed based on the FCI, ante-mortem inspection, post-

mortem inspection or any other data regarding the animal that indicate a 

possible risk to public health, animal health or animal welfare (European 

Commission, 2014). Palpations and incisions can be conducted to fully 

inspect abnormal carcasses and offal, to achieve preliminary diagnoses and 

to decide on condemnations and possible laboratory analyses.  

Studies conducted in the UK, Denmark and Australia (Mousing et al., 

1997; Hamilton et al., 2002; A. Hill et al., 2013; Pacheco et al., 2013) show 

that visual meat inspection does not significantly reduce the detection of 

foodborne hazards in pig meat inspection.  

The change made to visual meat inspection procedures through 

legislation was argued with the reduced risk of Salmonella and Y. 

enterocolitica cross-contamination (EFSA, 2011; European Commission, 

2014). Discussion concerning this has surfaced, and a risk assessment in the 

UK concluded that no clear evidence points to visual-only meat inspection 

reducing the microbiological cross-contamination of carcasses (A. Hill et al., 

2013). A. Hill et al. (2013) based their opinion mostly on the study by 

Hamilton et al. (2002), which compared the cross-contamination of 

carcasses with Salmonella spp. and Yersinia spp. However, Hamilton et al. 

(2002) also concluded that cross-contamination of carcasses may potentially 

occur when incising normal lymph nodes. This has also been shown by 

Pointon et al. (2000) and Nesbakken et al. (2003). Recently, in their 

quantitative microbiological risk assessment, Costa et al. (2017) concluded 

that an incision of the lymph nodes can be an important source of carcass 

contamination by Salmonella spp. In addition, a lower contamination level 
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with Enterobacteriaceae has been found after visual-only inspection than 

after traditional inspection (Tongue et al., 2013).  

The visual-only meat inspection procedure is also expected to save time 

and resources, which could enable reallocation of resources to more risk-

based procedures (Mousing et al., 1997). Visual-only meat inspection is 

assessed to lead to small decreases in the occupational exposure of meat 

inspectors to Streptococcus suis when a heart incision is omitted (A. Hill et 

al., 2013). 

Most condemnations are not public health issues (EFSA, 2011). The meat 

is also to be declared unfit for human consumption if it indicates any patho-

physiological changes or anomalies in consistency or in organoleptic quality 

(European Parliament and Council, 2004b). EFSA (2011) suggested that a 

meat quality assurance system by the food business operator could ensure 

the elimination of these abnormalities. However, this change in regulations 

has not been issued, and condemnations also due to merely aesthetic and 

meat quality issues are the responsibility of official meat inspection in the EU 

(European Parliament and Council, 2004b). 

Moreover, the objectives of current meat inspection include animal health 

and animal welfare questions. Meat inspection is considered a key 

component in the surveillance of pig health and welfare (EFSA, 2011). Visual-

only meat inspection has been shown to detect lesions related to these 

aspects comparably or even more sensitively than traditional meat inspection 

(Pacheco et al., 2013; Ghidini et al., 2018). However, animal health and 

welfare aspects are beyond the scope of this thesis, and thus are not further 

discussed.  

The main deficiency in visual-only meat inspection, as in traditional meat 

inspection, is that only conditions associated with gross lesions are detected, 

while the most important pork-borne public health hazards are neglected 

(EFSA, 2011). Therefore, visual-only meat inspection is a specific change 

towards risk-based meat inspection, but insufficient on its own. 

In Finland, visual-only meat inspection is implemented by Finnish Food 

Safety Authority Evira according to EU legislation (Finnish Food Safety 

Authority Evira, 2015). However, in practice visual-only meat inspection is 

only partly implemented in Finland and the EU, due to third country 

requirements concerning exports from slaughterhouses (Alban et al., 2018; 

personal communication, Marjatta Rahkio, Head of the Meat Inspection 

Unit, Finnish Food Safety Authority Evira). As this challenge is similar for all 

EU countries, full implementation would require EU trade policy.  

Healthy pigs are the prerequisite for visual-only meat inspection. The 

benefits of visual-only meat inspection are lost if most of the pigs in a batch 

require additional inspections. Pig batches with high lesion frequencies 

should be slaughtered separately, as they need a slower line speed and 

adequate human resources at the trimming line. FCI is intended as the tool 

for providing information from the farm to the slaughterhouse, and could be 
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used to make decisions regarding the meat inspection procedure: visual-only 

or additional inspections. 

2.3 FOOD CHAIN INFORMATION 

According to EU regulations (European Parliament and Council, 2004a), 

adequate FCI must be presented to the slaughterhouse operator and to the 

OV no less than 24 h before the arrival of the animals to the slaughterhouse. 

The FCI must cover at least:  

a) the status of the holding of provenance or the regional animal 

health status; 

b) the animals' health status; 

c) veterinary medicinal products or other treatments administered 

to the animals within a relevant period and with a withdrawal 

period greater than zero, together with their dates of 

administration and withdrawal periods; 

d) the occurrence of diseases that may affect the safety of meat; 

e) the results, if they are relevant to the protection of public health, 

of any analysis carried out on samples taken from the animals or 

other samples taken to diagnose diseases that may affect the 

safety of meat, including samples taken in the framework of the 

monitoring and control of zoonoses and residues; 

f) relevant reports about previous ante- and post-mortem 

inspections of animals from the same holding of provenance 

including, in particular, reports from the official veterinarian; 

g) production data, when this might indicate the presence of disease; 

and 

h) the name and address of the private veterinarian normally 

attending the holding of provenance.  

(European Parliament and Council, 2004a) 

In addition, the national legislation specifies the relevant time periods 

during which the medications, diseases, analysis results, meat inspection 

reports and production data are to be declared (Ministry of Agriculture and 

Forestry, 2011). 

In Finland, the FCI forms used by large slaughterhouses are usually 

electronic and generally contain the following information:  

a) any relevant health status data regarding the farm or the animals in 

question (for example salmonellosis, trichinellosis, erysipelas, anthrax 

etc.) 

b) any restrictions on the farm imposed by the authorities, 

c) whether the farm is officially recognized to apply controlled housing 

conditions 
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d) any drug residues or unauthorized substances detected in animals or 

at the farm during the last year, 

e) any pigs in the slaughter batch that have been treated with veterinary 

medicinal products that have a withdrawal period within 30 days prior 

to slaughter, 

f) certain symptoms and signs detected in the slaughter batch (e.g. lame 

pigs, pigs with poor appetites, dirty pigs, abscesses/lumps, bitten tails, 

any changes in production parameters three months prior to 

slaughter) 

g) anything else relevant considering slaughter or food safety, 

h) contact information for the veterinary practitioner handling the farm. 

 

The FCI does not routinely include reports about previous ante- and post-

mortem inspections, as pigs originating from a certain farm are typically 

continuously slaughtered by the same slaughterhouse operator due to 

contracts, and thus historical information is available at the slaughterhouse. 

Finnish Food Safety Authority Evira also provides a template form in word-

format (available in Finnish https://www.evira.fi/globalassets/tietoa-

evirasta/lomakkeet-ja-

ohjeet/elintarvikkeet/alkutuotanto/658928_alkutuotannon_toimijan_ilmoi

tus_liite_1_200617.doc, accessed in 2018-05-11), and it is used mostly in 

small-scale slaughterhouses. 

According to EU regulations, the FCI should be two-way and feedback of 

relevant information to the farm should be provided (European Commission, 

2005). This is specified in Finnish national legislation (Anon., 2006; 

Ministry of Agriculture and Forestry, 2012; 2014). In Finland, the OV 

provides a written meat inspection decision considering condemnations, and 

the slaughterhouse operator must deliver the information to the farm (Anon., 

2006; Ministry of Agriculture and Forestry, 2014). In addition, the 

occurrence of pericarditis, pleuritis, pneumonia, ascariasis, arthritis, abscess 

and tail biting in fattening pigs at slaughter must be monitored by the 

slaughterhouse, and reported to the farm for each batch and for farm-specific 

half-year averages (Ministry of Agriculture and Forestry, 2012). In Finland, 

this feedback information is normally provided electronically to the farm, via 

the Sikava (Stakeholders health and welfare register for pig herds in Finland) 

interface.  

The purpose of FCI is to provide information related to food safety from 

the farm to the slaughterhouse. This information was intended to be used as 

an integral part of the inspection procedures (European Commission, 2005). 

However, because no regular monitoring programmes currently exist for the 

most relevant zoonoses during the pre-harvest phase in most European 

countries (including Finland), information considering food safety is limited 

in the FCI. In practice, information is available only if there is a known 

outbreak on a farm (e.g. Salmonella spp.) or previous findings have been 

made during meat inspection (Trichinella spp.). No information concerning 

https://www.evira.fi/globalassets/tietoa-evirasta/lomakkeet-ja-ohjeet/elintarvikkeet/alkutuotanto/658928_alkutuotannon_toimijan_ilmoitus_liite_1_200617.doc
https://www.evira.fi/globalassets/tietoa-evirasta/lomakkeet-ja-ohjeet/elintarvikkeet/alkutuotanto/658928_alkutuotannon_toimijan_ilmoitus_liite_1_200617.doc
https://www.evira.fi/globalassets/tietoa-evirasta/lomakkeet-ja-ohjeet/elintarvikkeet/alkutuotanto/658928_alkutuotannon_toimijan_ilmoitus_liite_1_200617.doc
https://www.evira.fi/globalassets/tietoa-evirasta/lomakkeet-ja-ohjeet/elintarvikkeet/alkutuotanto/658928_alkutuotannon_toimijan_ilmoitus_liite_1_200617.doc


 

21 

Y. enterocolitica and T. gondii is available from farms to slaughterhouses, 

neither in Finland nor in most other EU countries. 

As part of the comprehensive pork carcass safety system, EFSA (2011) 

recommended that herd status considering Salmonella spp., Y. 

enterocolitica, T. gondii and Trichinella spp. should be systematically 

monitored via sampling. Consequently, this information, included in FCI, 

would enable risk differentiation of pig batches in relation to hazards (EFSA, 

2011).  However, EFSA further recommended research on the use of FCI for 

risk categorization and on hazard testing, and stressed the need for 

refinements reflecting differences between regions (EFSA, 2011).  

The FCI was also intended to assist slaughterhouse operators in 

organizing slaughter operations (European Commission, 2005). The FCI 

could facilitate visual meat inspection, if the slaughter batches of pigs with 

high lesion frequencies could be recognized beforehand with reliable FCI 

reporting. Identifying which batches of slaughter pigs are suitable for visual 

meat inspection and which are more likely to need additional inspections is 

necessary beforehand, to ensure an efficient visual meat inspection process. 

Thus, suspicious batches can be slaughtered separately with slower line 

speed and adequate human resources at the trimming line and inspection. 

Suspect batches may be recognized during ante-mortem inspection, but 

changing the slaughter order at this stage of the process is usually laborious 

and impractical. 

2.4 SALMONELLA SPP. IN PORK PRODUCTION 

Salmonellae are gram-negative bacteria belonging to the genus 

Enterobacteriacae. All of the most relevant salmonellae belong to species S. 

enterica subsp. enterica, which consists of more than 1500 serovars 

(Grimont and Weill, 2007). Salmonella spp. are widespread and infect a wide 

range of hosts and can survive prolonged periods in the environment 

(Waldner et al., 2012).  

Salmonella infections in humans may induce gastroenteritis and fever, 

and occasionally complications occur such as bacteremia and reactive 

arthritis (Cohen et al., 1987). Pigs/pork are the second most common 

infection source to humans, after egg layers/eggs (Mughini-Gras et al., 2014).  

Salmonellosis is the second most common zoonosis in Europe, directly 

after campylobacteriosis (EFSA and ECDC, 2018). In total, 91 662 confirmed 

human cases were reported in the EU in 2017 (EFSA and ECDC, 2018). EFSA 

has estimated that approximately 10–20% of human Salmonella infections 

in the EU may be attributable to the pig reservoir (EFSA, 2010). In Finland, 

1535 human cases were reported in 2017 and most (76%) of these were 

travel-related (EFSA and ECDC, 2018). Of the domestic human cases, 14% 

are estimated to be due to domestic pork (Finnish Food Safety Authority 

Evira, 2018).  
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Pigs carrying Salmonella spp. are typically asymptomatic, but they may 

shed the bacteria in their faeces and carry it in their tonsils and lymph nodes 

for up to 28 weeks (Wood et al., 1989). Pigs can acquire the infection from 

other pigs (piglets, replacement animals) at the farms, from the feed or the 

environment (e.g. pens, birds, rodents, bedding, visitors, staff) or during 

transport and lairage (Berends et al., 1996). Carrier pigs introduce 

Salmonella to the slaughterhouse, where it may contaminate the carcass and 

the slaughterhouse facilities during the slaughter process and cross-

contaminate other carcasses (Morgan et al., 1987). Control measures during 

the pre-harvest production phase reduce the pathogens in fattening pigs and 

reduce the risk of transmitting them into the food chain. Salmonella spp. can 

be inactivated by heating the meat thoroughly to 70 °C (Murphy et al., 2004).  

Salmonella spp. prevalence in pigs is very low in Finland, Sweden and 

Norway compared to other European countries (EFSA and ECDC, 2018). The 

Finnish Salmonella Control Programme for pigs includes monitoring at 

slaughterhouses, where the quantity of Salmonella culture-positive lymph 

node samples at slaughter has been <0.1% and no Salmonella spp. have been 

found in carcass swabs or pork during the 2010s (Anon., 2017; 

https://www.ruokavirasto.fi/globalassets/teemat/zoonoosikeskus/zoonoosit

/bakteerien-aiheuttamat-

taudit/salmovalvontaohj_siat2016paivheinakuu2017.pdf, visited January 13, 

2019). The Finnish Salmonella Control Programme includes an eradication 

strategy and positive finding results in epidemiological investigations and 

official restrictions (Ministry of Agriculture and Forestry, 2013; Ministry of 

Agriculture and Forestry, 2014). Similar Salmonella control programmes 

with eradication strategies exist in Sweden and Norway (Heier et al., 2017). 

Denmark and Germany run Salmonella control programmes with reduction 

strategies based on meat juice serology (Alban et al., 2012; QS Qualität und 

Sicherheit GmbH, 2018). 

2.5 PATHOGENIC YERSINIA ENTEROCOLITICA IN 
PORK PRODUCTION 

Yersiniae are gram-negative bacteria belonging to the genus 

Enterobacteriacae. There are three human pathogenic Yersinia species: Y. 

pestis, Y. pseudotuberculosis and Y. enterocolitica. Y. enterocolitica is 

ubiquitous in pork production, while Y. pseudotuberculosis is isolated more 

seldom (Laukkanen-Ninios et al., 2014). Y. pestis is not currently found in 

Europe (Raoult et al., 2013).   

Y. enterocolitica and Y. pseudotuberculosis cause enteral yersiniosis in 

humans (Drummond et al., 2012). Typical symptoms are gastrointestinal, but 

long-term sequelae, such as reactive arthritis and erythema nodosum, also 

occur (Drummond et al., 2012). 

https://www.ruokavirasto.fi/globalassets/teemat/zoonoosikeskus/zoonoosit/bakteerien-aiheuttamat-taudit/salmovalvontaohj_siat2016paivheinakuu2017.pdf
https://www.ruokavirasto.fi/globalassets/teemat/zoonoosikeskus/zoonoosit/bakteerien-aiheuttamat-taudit/salmovalvontaohj_siat2016paivheinakuu2017.pdf
https://www.ruokavirasto.fi/globalassets/teemat/zoonoosikeskus/zoonoosit/bakteerien-aiheuttamat-taudit/salmovalvontaohj_siat2016paivheinakuu2017.pdf
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Yersiniosis is the third most commonly reported zoonosis in Europe, 

directly after campylobacteriosis and salmonellosis (EFSA and ECDC, 2018). 

In total, 6823 confirmed human cases were reported in the EU in 2017 

(EFSA and ECDC, 2018). In Finland, 423 human cases were reported in 

2017, and Finland has the highest country-specific notification rate for 

yersiniosis in Europe (EFSA and ECDC, 2018). In 2017, 39% of the human 

cases reported in Finland were travel-associated (EFSA and ECDC, 2018), 

and Y. enterocolitica was the causative agent in over 95%. Pigs are a major 

reservoir of human pathogenic Y. enterocolitica strains (Fredriksson-

Ahomaa et al., 2001; Laukkanen-Ninios et al., 2014). 

Y. enterocolitica and Y. pseudotuberculosis have been isolated from 52% 

and 4% of slaughter pigs´ tonsils in Finland, respectively (Niskanen et al., 

2002; Korte et al., 2004). Pigs are usually asymptomatic carriers of Y. 

enterocolitica, and they typically shed the bacteria in their faeces for a few 

weeks and carry them in their tonsils for several months after infection 

(Nielsen et al., 1996). Contamination sources at farms remain unclear 

(Laukkanen-Ninios et al., 2014). Virtanen et al. (2012) showed that piglets 

transport Y. enterocolitica to the fattening unit, where it spreads effectively 

during fattening.  In addition to pig-to-pig contacts and the purchase of new 

pigs, pigs can acquire the infection from floors or other structures of a 

contaminated pen (Fukushima et al., 1983; Laukkanen-Ninios et al., 2014; 

Virtanen et al., 2014). Y. enterocolitica of bioserotype 4/O:3 is most 

frequently isolated in pigs, but it is only infrequently isolated from the 

outdoor farm environment or pests (Laukkanen-Ninios et al., 2014). 

However, wild animals and outdoor environments can introduce other 

pathogenic bioserotypes to pigs (Laukkanen-Ninios et al., 2014).  

The pigs introduce Y. enterocolitica to the slaughterhouse, where it 

frequently contaminates carcasses, pluck sets, and the slaughterhouse 

equipment and facilities during the slaughter process (Fredriksson-Ahomaa 

et al., 2000; Laukkanen et al., 2009). Lowering the occurrence of the 

pathogen in fattening pigs would reduce the risk of transmitting it into the 

food chain. However, no surveillance or control programmes are in place for 

Y. enterocolitica in pigs. Controlling Y. enterocolitica requires the possibility 

of buying piglets from Y. enterocolitica-negative farms (Skjerve et al., 1998; 

Virtanen et al., 2012; Vilar et al., 2013; Laukkanen-Ninios et al., 2014), and 

good farming practices as such are not effective in preventing contamination 

(Laukkanen-Ninios et al., 2014). Currently, strict slaughter hygiene and 

bagging of the rectum are the most important measures for preventing the 

contamination of pork (Laukkanen-Ninios et al., 2014). In addition, 

removing the unsplit head from the carcass with the tonsils and tongue intact 

would be beneficial (Christensen and Luthje, 1994). Y. enterocolitica can be 

inactivated by heating the meat thoroughly to 70 °C, lower temperatures (60 

°C) are effective if the temperature is upheld for several minutes (D60 value 

1.7 min) (Shenoy and Murano, 1996). 
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2.6 TOXOPLASMA GONDII IN PORK PRODUCTION 

T. gondii is an intracellular, protozoan parasite. T. gondii, the only species in 

the genus, worldwide infects virtually all warm-blooded animals (including 

humans) as intermediate hosts, while felines (family Felidae) serve as 

definite hosts (Tenter et al., 2000).  

A T. gondii infection can be acquired through multiple ways: congenitally, 

by ingesting tissues cysts or oocysts, or through the horizontal transmission 

of tachyzoites. Cats shed a large number of oocysts in their faeces after the 

primary infection, and thus contaminate the environment (soil, water, plants, 

feed) (Frenkel et al., 1970; Tenter et al., 2000). Sporulated, infectious oocysts 

survive for a prolonged time in the environment and are resistant to diverse 

conditions (Tenter et al., 2000). When the intermediate host ingests the 

sporulated oocyst, it results in tissue cysts forming within the muscles, 

central nervous system and eyes, and in the visceral organs to a lesser extent 

(Tenter et al., 2000). When another host eats the tissues (e.g. meat), the 

infection is transmitted when tissue cysts are ingested. In definite hosts, the 

infection results in sexual reproduction of the parasite and shedding of 

oocysts in the faeces, while in intermediate hosts this results in asexual 

reproduction and the forming of tissue cysts (Tenter et al., 2000). This 

means that humans, as intermediate hosts, can acquire the infection by 

eating meat containing infective tissue cysts, or by ingesting sporulated 

oocysts from an environment contaminated with cat faeces (e.g. garden, 

vegetables, litter box, water).     

Toxoplasmosis in women during pregnancy may lead to miscarriage or 

congenital toxoplasmosis in the offspring, leading to neurological 

impairment, learning difficulties, ocular disorders with impaired vision or 

even neonatal death (Koppe et al., 1986; Romand et al., 2004; EFSA, 2007; 

Berrébi et al., 2010).  Immunocompromised persons may also develop severe 

consequences from the infection (Mele et al., 2002; EFSA, 2007). In healthy 

humans, toxoplasmosis is generally considered asymptomatic or a mild 

disease; however, it has been linked to several behavioural changes, 

psychological disorders and ocular diseases (Bosch-Driessen et al., 2002; 

Holland, 2003; Flegr, 2007; Yolken et al., 2009; Flegr, 2013).  

Toxoplasmosis is the most reported parasitic zoonosis in humans in the 

EU, despite being under-detected (EFSA, 2007). Only congenital 

toxoplasmosis is reported to the European Centre for Disease Prevention and 

Control (ECDC). In total, 40 congenital toxoplasmosis cases were reported in 

the EU and none in Finland in 2017 (EFSA and ECDC, 2018). In total, 

approximately 20-40 toxoplasmosis cases are annually reported in Finland 

(National Infectious Diseases Register). In the study by Koskiniemi et al. 

(1992), 20% of the pregnant women were seropositive for T. gondii in 

Finland, while globally up to one third of the human population is estimated 

to be infected (Tenter et al., 2000). In the Netherlands, T. gondii infections 

(congenital and postnatal) are estimated to cause the highest disease burden 
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amongst all food pathogens (Havelaar et al., 2012). Consumption of raw or 

undercooked meat has been consistently identified as a risk factor for 

toxoplasmosis, but the type of meat varies between countries (Cook et al., 

2000; EFSA, 2007). In Europe, pork has generally been considered a major 

source, whilst studies in Norway and France show lamb a stronger risk factor 

(Kapperud et al., 1996; Baril et al., 1999; Tenter et al., 2000; EFSA, 2007)   

Pigs serve as an intermediate host to T. gondii and can thus contract the 

infection postnatally by ingesting sporulated oocysts or tissue cysts, or more 

rarely congenitally. Cat faeces or rodents are the most probable infection 

sources to indoor pigs (Kijlstra et al., 2008; Dubey, 2009). Seroprevalences 

in fattening pigs in other European countries have varied between 0% to 

45%, and the highest seroprevalences are detected in pigs with access to the 

outdoors (Kijlstra et al., 2004; Klun et al., 2006; van der Giessen et al., 2007; 

Dubey, 2009; Villari et al., 2009; Deksne and Kirjusina, 2013; Wallander et 

al., 2016; Limon et al., 2017). Seroprevalences of intensively farmed pigs 

have been low in Europe (van der Giessen et al., 2007; Deksne and Kirjusina, 

2013). A previous study on Finnish pigs was conducted over 30 years ago, 

and the seroprevalence was 2.5% (Hirvelä-Koski, 1992). Pigs are typically 

asymptomatic carriers and severe toxoplasmosis in pigs is considered rare 

(Dubey, 2009). 

Pigs infected with T. gondii during fattening harbour tissue cysts in their 

muscles and the cysts remain infective until the age of slaughter (Dubey et 

al., 1984). Tissue cysts remain infective in refrigerated carcasses (Dubey et 

al., 1990). Consequently, the only way to lower the occurrence in fresh pork is 

to lower the occurrence of the pathogen in fattening pigs. However, no 

surveillance or control programmes exist for T. gondii, except voluntary 

monitoring conducted by private meat companies in the Netherlands and 

Germany (Oorburg et al., 2017). Tissue cysts can be killed by heating the 

meat thoroughly to 67 °C (Dubey et al., 1990). However, it is generally 

recommended to cook pork to 70 °C. Most tissue cysts are killed at freezing 

below -12 °C; however, some cysts may be resistant to freezing (Kotula et al., 

1991; Tenter et al., 2000).  

2.7 TRICHINELLA SPP. IN PORK PRODUCTION 

Trichinella spp. are nematode parasites that globally infect virtually all 

warm-blooded animals (including humans) and also reptiles (Pozio and 

Zarlenga, 2005; Pozio, 2007; Korhonen et al., 2016). Trichinella spp. are 

divided into encapsulated and non-encapsulated clades. The encapsulated 

clade is comprised of T. spiralis, T. nativa, T. britovi, T. murrelli, T. nelsoni, 

T. patagoniensis and three additional taxonomically undefined genotypes 

Trichinella T6, T8 and T9 (Pozio and Zarlenga, 2005; Korhonen et al., 2016). 

The non-encapsulated clade comprises three species: T. pseudospiralis, T. 
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papuae, T.  zimbabwensis (Pozio and Zarlenga, 2005; Korhonen et al., 

2016).       

Trichinella spp. infection is acquired by ingesting raw or undercooked 

meat containing Trichinella spp. larvae (Gottstein et al., 2009). These larvae 

mature into adult worms and reproduce in the intestines, and newborn 

larvae disseminate throughout the host and settle down in the striated 

muscles (Gottstein et al., 2009).     

The main symptoms in human trichinellosis are gastrointestinal 

symptoms during the first intestinal phase, followed by fever, myalgia, 

myocarditis, encephalitis and facial oedemas during the muscular phase 

(Gottstein et al., 2009).  

In 2017, 224 human trichinellosis cases were reported in the EU and none 

in Finland (EFSA and ECDC, 2018). The last human trichinellosis case in 

Finland was in the 1970s, and it was acquired from bear meat (The Zoonosis 

Centre team, 2012). Traditionally, trichinellosis has been associated with 

pork, but nowadays human infections in many countries commonly result 

from other undercooked meats (Dupouy-Camet, 2000; Gottstein et al., 2009; 

Rostami et al., 2017).  

In the EU, Trichinella spp. infections were not detected in over 71 million 

fattening pigs kept under controlled housing conditions and tested in 2017 

(EFSA and ECDC, 2018). In total, 224 infected fattening pigs were found 

among the pigs kept under non-controlled housing conditions (over 121 

million pigs tested) (EFSA and ECDC, 2018). Most of the positive pigs were 

found in Romania (EFSA and ECDC, 2018).   

Since 2004, over 25 million pigs have been tested in Finland using the 

digestion method, and only one positive pig was detected in 2010 (Finnish 

Food Safety Authority Evira, 

https://www.evira.fi/elaimet/zoonoosikeskus/zoonoosit/loisten-

aiheuttamat-taudit/trikinelloosi/, accessed in 8 July, 2018). However, the 

parasite is abundant in wildlife in Finland (Airas et al., 2010; The Zoonosis 

Centre team, 2012). The predominant Trichinella species in Finnish wildlife 

is T. nativa, which has low infectivity in pigs, but T. spiralis and T. britovi 

are also commonly found in wild animals in Finland (Kapel and Gamble, 

2000; Airas et al., 2010; Oksanen et al., 2018). Recently, the prevalence of T. 

spiralis among wildlife in Finland has reduced significantly in the absence of 

spill-over from the domestic cycle, while the prevalence of T. britovi 

remained stable (Oksanen et al., 2018). 

Pigs may contract the infection from contaminated feed (e.g. offal, scraps) 

or from eating infected rodents (through predation or accidentally mixed in 

feed) (Oivanen et al., 2002; Franssen et al., 2017). Pigs infected with 

Trichinella spp. during fattening harbour the larvae in their muscles and the 

larvae remain infective until the age of slaughter. Tissue larvae remain 

infective in refrigerated carcasses (Malakauskas and Kapel, 2003). All pigs 

(and other animals considered a risk) are tested for Trichinella spp. during 

meat inspection, except pigs raised in officially recognized controlled housing 
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conditions (European Commission, 2015). Controlled housing conditions 

include requirements related to feed safety, rodent control, building 

requirements and management practices to prevent the risk of infection 

(European Commission, 2015). Pigs from controlled housing in the EU 

represent an extremely low risk for humans and no human trichinellosis 

cases in the EU are associated with pork products originating from controlled 

housing systems (Franssen et al., 2018). However, pigs from non-controlled 

housing system pose a higher risk, and without Trichinella testing during 

meat inspection, the estimated number of human trichinellosis cases from 

pigs from non-controlled housing systems would annually be over 59 000 in 

the EU (Franssen et al., 2018). 

Tissue larvae can be killed by heating the meat thoroughly to 60 °C 

(Kotula et al., 1983; Gamble et al., 2000), however, pork meant for consumer 

preparation is generally recommended to cook until 70–71 °C (Gamble et al., 

2000). T. spiralis and T. pseudospiralis are killed by freezing the meat at -18 

°C for one week. However certain species, such as T. nativa, are resistant to 

normal freezing temperatures (Malakauskas and Kapel, 2003). Processors 

and consumers are recommended to freeze pork meat at risk for T. spiralis to 

-15 °C for three to four weeks, depending on the size of the cuts (Gamble et 

al., 2000).  

2.8 SEROLOGICAL MONITORING 

The presence of antibodies against a specific pathogen can be detected using 

an enzyme-linked immunosorbent assay (ELISA). The analysis is performed 

using a microtiter plate coated with specific antigen from the pathogen of 

interest. The diluted sample (serum, plasma, meat juice) is pipeted to the 

microtiter test plate and, during sample incubation, the specific antibodies 

bind to the antigen fixed on the plate. Unbound material is removed by 

rinsing. A conjugate is pipeted to the microtiter test plate, and the conjugate 

detects the antibodies bound to the antigen. Unbound conjugate is removed 

by rinsing. Substrate is added to initiate a colorimetric reaction. The 

conjugate catalyzes a colour development. The optical density (OD) is 

measured in a spectrophotometer. The OD values correlate with the 

concentration of specific antibodies in the sample. Usually IgG-conjugate is 

used, and it detects IgG antibodies. The conjugate can be a multi-species 

conjugate (horseradish peroxidase), which can be used with many species, or 

a pig-specific peroxidase-labelled anti-pig antibody conjugate. ELISA 

methods can be semi-automated. ELISA tests are cost-effective, fast and 

convenient diagnostic tools for large-scale screening purposes. (Nielsen et al., 

1995; Nielsen et al., 1996, Manufacturers´ instructions) 

Antibody levels are lower in meat juice compared to serum, and to 

compensate this, a lower dilution factor is used for meat juice samples 
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(Nielsen et al., 1998; Meemken and Blaha, 2011; Forbes et al., 2012; 

Wallander, Frossling, Vagsholm, Burrells et al., 2015). 

The presence of antibodies to a specific pathogen indicates that the 

animal has been exposed to the pathogen at some stage of life, although the 

seropositive animal may no longer carry or shed viable pathogen cells 

(Nielsen et al., 1995; Nielsen et al., 1996). Antibodies typically remain until 

the age of slaughter (Gamble et al., 1983; Nielsen et al., 1995; Nesbakken et 

al., 2006; Basso et al., 2017), but an immune response cannot be measured 

immediately after infection. At least 12 days are required for Yersinia and 

seven days for Salmonella antibodies to rise after infection (Nielsen et al., 

1995; Nielsen et al., 1996). Sometimes the animal´s immune system is unable 

to produce a measurable immune reaction, although they are carrying the 

pathogen. Hence serological methods are unsuitable for individual carcass 

testing for purposes of assuring food safety.  

These physiological phenomena described in the previous paragraph may 

also explain the results from several studies comparing serological methods 

and bacteriological methods and for the lack in correlation between 

serological and microbiological results in the detection of pig salmonellosis at 

the individual level (Nollet et al., 2005; Farzan et al., 2007; Mainar-Jaime et 

al., 2008; Vico et al., 2010; Methner et al., 2011). 

Serological methods have been considered useful tools for population-

level and herd-level surveillance programmes in several studies (Nesbakken 

et al., 2003; Gamble et al., 2004; Gamble et al., 2005; Nowak et al., 2007; 

Alban et al., 2012; Basso et al., 2013; Meemken et al., 2014). Recent studies 

by Casanova-Higes et al. (2017) and Mainar-Jaime et al. (2018) found a 

significant relationship between within-farm Salmonella serology and 

Salmonella shedding at slaughter. Nesbakken et al. (2003) showed an 

association between Yersinia serology and occurrence in tonsils. Serological 

testing of T. gondii has been conducted in practice in the Netherlands with 

good experiences (Oorburg et al., 2017). Serological monitoring systems for 

Salmonella antibodies in meat juice have been proven effective for 

identifying high-risk herds for Salmonella in Denmark, Germany and Ireland 

(Safefood, 2010; Merle et al., 2011; Alban et al., 2012; QS Qualität und 

Sicherheit GmbH, 2018). Serological testing of Salmonella in blood samples 

has been used in Belgium and the Netherlands (Hanssen, 2011; Méroc et al., 

2012). However, Belgium stopped its serological monitoring programme for 

Salmonella in 2015 (Mainar-Jaime et al., 2018). Also, the UK has tested meat 

juice samples for Salmonella, but discontinued the programme in 2012 

(https://www.pigprogress.net/Health-Diseases/Health/2012/6/UK-New-

direction-for-Zoonoses-National-Control-Programme-ZNCP-PP008961W/, 

accessed on 4th August 2018). In the UK, this decision was made to make way 

for on-farm Salmonella risk assessment. To be effective, a surveillance 

programme needs to be accompanied with proper interventions. National 

surveillance was continued in Belgium, but on-farm risk-categorization was 

https://www.pigprogress.net/Health-Diseases/Health/2012/6/UK-New-direction-for-Zoonoses-National-Control-Programme-ZNCP-PP008961W/
https://www.pigprogress.net/Health-Diseases/Health/2012/6/UK-New-direction-for-Zoonoses-National-Control-Programme-ZNCP-PP008961W/
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discontinued (http://www.arsia.be/?page_id=3801&lang=de, accessed on 

4th August 2018).   

EFSA (2011) stated that incoming pig batches should be risk-ranked 

based on the herds’ status of Salmonella spp., Y. enterocolitica, T. gondii and 

Trichinella spp., and suggested that this ranking could be based on historical 

serological testing of meat juice.  

http://www.arsia.be/?page_id=3801&lang=de
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3 AIMS OF THE STUDY 

The main objective of this work was to study the prerequisites of risk-based 

meat inspection of pigs in Finland in the context of food control and public 

health issues, concentrating on biological hazards ‘from the farm to the fork’. 

The objective was to investigate current hazard testing, the usability of FCI as 

part of risk-based and visual meat inspection and to reveal the possible needs 

for refinements reflecting differences between Finland and the EU.  

 

Specific aims of the studies were: 

 

1. To assess the seroprevalence of Salmonella spp., pathogenic 

Yersinia spp., T. gondii and Trichinella spp. in fattening pigs in 

Finland and to evaluate the feasibility of serological monitoring at 

the slaughterhouse and the usability of the results as part of the 

FCI (I) 

 

2. To assess the usability of the current FCI and to evaluate the 

possibility of risk-ranking incoming slaughter batches according to 

previous meat inspection data and current FCI statements for the 

needs of visual and risk-based meat inspection (II) 

 
3. To investigate the serological Salmonella spp., pathogenic 

Yersinia sp. and T. gondii status in pigs during the fattening 

period, to investigate factors predicting condemnations at 

slaughter and to evaluate the contribution of this data to risk-

based meat inspection (III) 

 
4. To compare commercially available ELISA kits for detecting T. 

gondii antibodies in the meat juice of naturally infected fattening 

pigs (IV). 
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Meat samples of ca. 10 g of muscle from the diaphragm of fattening pigs were 
collected by the OVs and official auxiliaries randomly at the slaughter line in 
two large slaughterhouses in Finland. Meat samples were placed in plastic 
bags, and frozen to below -18 °C. Samples were transported to a laboratory, 
where they were thawed and mechanically squeezed to obtain meat juice 
(Figure 1). Meat juice was stored at -70 °C until testing and thawed before 
analysis, then frozen again for possible reanalysis.  
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In total, 1353 meat samples from fattening pigs originating from 259 

conventional farms were collected between November 2012 and April 2013 

(Table 1). Farms were allocated according to farm types: 36% were large 

fattening farms (≥1000 pig places), 33% were small fattening farms (<1000 

pig places) and 31% were farrow-to-finish farms. On average, five (range 3–

15) pigs were sampled per farm. The sampling represents the current 

situation in Finland, as these two slaughterhouses receive animals 

throughout Finland and slaughter approximately 75% of the fattening pigs in 

Finland. 

Sample size is adequate for evaluating seroprevalences of Salmonella, 

Yersinia and Toxoplasma, as the seroprevalences were pre-estimated to be 

1%, 60% and 3%, respectively, for sample-size estimation (Naing et al., 

2006). Regarding Trichinella, the aim was to indicate that the 

seroprevalence was below 1%, as it was assumed to be nearly 0%. 

Samples used for study II 
Study II included samples (n=431) from one of the slaughterhouses from 

study I (Table 1). This slaughterhouse slaughters approximately 30% of the 

fattening pigs in Finland.  

Samples used for study IV 
To compare the ELISA tests for the detection of Toxoplasma antibodies in 

study IV, 90 samples were selected from study I (Table 1). All the 43 T. 

gondii-seropositive samples from study I were included. In addition, 27 

samples just below positive with a percentage of positive (PP) -ratio between 

0.10 and 0.14 (10–14%) were selected. Finally, 20 random samples (SPSS 

Random selection) with a PP below 0.10 (10%) were included. 

4.1.2 COLLECTING BLOOD SAMPLES FROM PIGS AT THE FARMS 
FOR SEROLOGICAL ANALYSIS 

In total, 1793 blood samples were collected from 1140 pigs in 57 fattening 

farms in southern Finland during 2012–2014 (Table 1). Farms were allocated 

according to farm types: 39% were large fattening farms (≥1000 pig places), 

21% were small fattening farms (<1000 pig places) and 40% were farrow-to-

finish farms. 

The farms were selected for the needs of another study investigating 

chronic pleurisy in fattening farms, and participation was based on the 

willingness of individual farmers. Only farms producing at least 1000 

fattening pigs per year were included in the study. If a farm had several 

compartments, only one compartment per farm was included in our study. 
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An average of 20 pigs were randomly selected from various parts of the 

compartment. Pigs were captured with a snout snare, ear-tagged and blood 

samples were collected from the jugular vein. Samples were stored at 4 °C for 

up to 24 hours and then centrifuged in the laboratory at 3000 rpm for 10 

minutes. Sera was separated and stored frozen at -18 °C until analysis.  

Individual pigs from 34 farms were sampled twice. The first sampling 

(Sampling A) occurred during the first fattening week (median six days, 

range 0–11 days after arrival to the fattening unit). The second sampling 

(Sampling B) of the same pigs occurred at the end of the fattening period 

(median 11 weeks, range 7–15 weeks after arrival at the fattening unit). In 

addition, individual pigs from 23 farms were sampled only at the end of the 

fattening period (only Sampling B, median 10 weeks, range 6–14 weeks after 

arrival at the fattening unit). In total, 653 individual pigs were sampled twice 

(Samples A and B) and 487 pigs once (463 pigs only sample B and 24 pigs 

only sample A). 

For sample size estimation, the seroprevalences of Yersinia spp., T. gondii 

and Salmonella spp. were assumed to be 57%, 3% and 3%, respectively, at 

the end of fattening, based on results from study I. Consequently, the sample 

size (1116 fattening pigs at the end of fattening and 653 fattening pigs 

sampled twice) was adequate to estimate the seroprevalences of Salmonella 

spp. and T. gondii with 1–1.5% precision and the seroprevalence of Yersinia 

spp. with 3–4% precision with 95% confidence (Naing et al., 2006). Within 

each farm, the sample size of 20 fattening pigs enabled us to estimate the 

within-farm seroprevalence of Salmonella spp. and T. gondii with 95% 

confidence and 8% precision and Yersinia spp. with 95% confidence and 22% 

precision (Naing et al., 2006). 

The experiments were approved by the National Animal Experiment 

Board in Finland. 
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Table 1 Samples collected during studies I to IV. 

Samples Study Sampling 

Time 

Sampling place No. of 

animals 

No. of 

farms 

Farm type 

Meat juice I 2012–

2013 

Slaughterhouses A 

and B 

492 93 Large FFa 

    436 86 Small FFb 

    425 80 FFFc 

 II 2012–

2013 

Slaughterhouse A 431 80  

 IV 2012–

2013 

Slaughterhouses A 

and B 

90 58  

Blood III 2012–

2014 

Farms 1–57 441 22 Large FFa 

    240 12 Small FFb, d 

    459 23 FFFc. d 

Meat 

inspection 

data 

II 2012–

2013 

Slaughterhouse A 8954 80  

 III 2012–

2014 

Slaughterhouses A–C 25552 57  

aLarge FF = large fattening farm, ≥1000 pig places 
bSmall FF = small fattening farm, <1000 pig places 
cFFF = farrow-to-finish farm 
d Only farms slaughtering at least 1000 pigs/year were included 

4.2 SEROLOGICAL ANALYSIS 

4.2.1 SEROLOGICAL ANALYSIS OF MEAT JUICE SAMPLES (I, II) 
The meat juice samples were analysed using commercial ELISA tests suitable 

for pig meat juice samples (Table 2). From each sample for each analysis, 10 

μl of meat juice was diluted to 1:10, and analysed and interpreted following 

the manufacturers’ instructions. The reactions were read using a 

spectrophotometer (Multiskan Ascent V1.24, Thermo Electron Corporation, 

Waltham, MA, USA) at 450 nm. 

The Salmonella antibodies were analysed using the SALMOTYPE Pig 

Screen test (Labor Diagnostik GmbH, Leipzig, Germany) with a cut-off 

optical density (OD) value of 20%. Antibodies to O-antigens 1, 4, 5, 6, 7 and 

12 were detected. According to the manufacturer, the sensitivity and 

specificity of the test are 98.5% and 99.8%, respectively.  

The Yersinia antibodies were analysed using the PIGTYPE® YOPSCREEN 

test (Labor Diagnostik) with a cut-off OD value of 30%. The antigens used in 
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the test are Yersinia outer proteins (Yops), which are expressed only by 

pathogenic Yersinia strains carrying the virulence plasmid. According to the 

manufacturer, the sensitivity and specificity of the test are near to 100%. 

The T. gondii antibodies were analysed using the Prio-CHECK® 

Toxoplasma Ab Porcine test (Prionics AG, Schlieren-Zurich, Switzerland) 

with a cut-off PP value of 0.15 (15%). (PP = a percentage of positivity = OD 

Sample/OD positive control *100 %). Sensitivity and specificity of the test 

have been demonstrated to be 98.9% and 92.7%, respectively (Basso et al., 

2013). 

The Trichinella antibodies were analysed using the PIGTYPE® Trichinella 

Ab Test (Labor Diagnostik) with a cut-off OD value of 30%. The sensitivity of 

the test was 98.9% and the specificity was 95.4%, and nearly 100% specificity 

is achievable by confirming positive results with the Western blot 

analysis(Frey et al., 2009; Knoop et al., 2011). 

4.2.2 SEROLOGICAL ANALYSIS OF BLOOD SAMPLES (III) 
The sera were analysed using commercial ELISA tests (Table 2) to test for 

antibodies to salmonellae (Pigtype® Salmonella Ab, Qiagen, Leipzig, 

Germany), Yersinia spp. (Pigtype® Yersinia Ab, Qiagen, Leipzig, Germany) 

and T. gondii (Pigtype® Toxoplasma Ab, Qiagen, Leipzig, Germany). The 

tests were performed, and the results were calculated and interpreted 

following the manufacturer’s instructions. Samples with a sample/positive 

(S/P)-ratio ≥30% were considered positive. OD% values for Salmonella spp. 

were calculated according to the following equation: OD% =
S/P x 100%

2
. We 

considered samples with an OD ≥15% positive for Salmonella spp. According 

to the manufacturer, the sensitivity and specificity of the kits used are nearly 

100%. 

4.2.3 SEROLOGICAL ANALYSIS OF MEAT JUICE SAMPLES FOR 
TOXOPLASMA ANTIBODIES (IV) 

Samples were analysed parallel with four commercial ELISA tests (tests I–

IV) and a commercial modified agglutination test (MAT). Samples were 

analysed in 2016. 

All the tested ELISA kits (Table 2) are intended for meat juice analysis. 

The analyses were performed according to the manufacturers´ instructions. 

Negative and positive controls supplied by the manufacturer were included 

on each ELISA plate. Duplicate meat juice samples were tested. OD was 

measured at 450 nm after 15 min in a spectrophotometer (Multiskan Ascent 

V1.24, ThermoElectron Corporation, Waltham, MA, USA).  The S/P-ratio 

was calculated. S/P-ratio = 

 
𝑆ample OD−mean OD of the negative control

Mean OD of the positive control – mean OD of the negative control
  . 
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Test I was Priocheck® Toxoplasma Ab Porcine (Prionics). Antigens in the 

test were whole tachyzoites, which are pig-specific using a peroxidase-

labelled Anti-pig IgG antibody. The cut-off value recommended by the 

manufacturer was S/P-ratio 0.20.  

Test II was Pigtype® Toxoplasma Ab (Qiagen, Leipliz, Germany). Antigens 

in the test were whole tachyzoites. The test is a multi-species test, using a 

multi-species horseradish peroxidase to detect IgG antibodies. The cut-off 

value recommended by the manufacturer was S/P-ratio 0.30.  

Test III was ID Screen® Toxoplasmosis Indirect Multi-species (IDvet, 

Grabels, France). Antigens in the test were P30 proteins of the tachyzoites’ 

surface. A multi-species horseradish peroxidase is used in the test to detect 

IgG antibodies. The cut-off value recommended by the manufacturer was 

S/P-ratio 0.50 and values between 0.40–0.50 were considered weakly 

positive according to the manufacturer.  

Test IV was the Toxoplasma gondii Antibody Test Kit (SafePath 

Laboratories, Carlsbad, CA, USA). Antigens in the test were whole 

tachyzoites. A pig-specific peroxidase-labelled Anti-pig IgG antibody was 

used in the test. The cut-off value recommended by the manufacturer was 

OD ≥0.30.  

Test V was a commercial MAT, ToxoScreen DA® test kit (Biomerieux, 

France). The test was performed according to the manufacturer´s 

instructions. All samples were analysed in two dilutions: 1:40 representing 

the cut-off value, and 1:4000 to avoid false-negative results. The higher 

dilution is used to prevent false-negative results, which may result if high 

quantities of IgG antibodies inhibit antigen cross-linking. The borderline 

positive results were interpreted as positive to compensate the lower 

antibody levels in meat juice samples compared to serum samples. The test is 

originally validated to serum samples. 

 
Table 2 Elisa kits used for the detection of Salmonella, Yersinia, Toxoplasma and Trichinella 
antibodies in studies I to IV. 

Elisa kit Salmonella Yersinia Toxoplasma Trichinella 

Pigtype® Salmonella Ab, Qiagen I, II, III    

Pigtype® Yersinia Ab, Qiagen  I, II, III   

Pigtype® Toxoplasma Ab, Qiagen   III, IV  

Prio-CHECK®Toxoplasma Ab, 

Prionics 

  I, II, IV  

ID Screen®Toxoplasmosis, IDvet   IV  

Toxoplasma antibody test, SafePath   IV  

Pigtype® Trichinella Ab, Qiagen     I, II, III 
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4.3 DATA COLLECTION 

4.3.1 FARM-LEVEL DATA, FOOD CHAIN INFORMATION AND MEAT 
INSPECTION RESULTS (I & II) 

Study I 
The slaughterhouses provided information considering farm types for all the 

259 conventional farms included in study I. Farms were allocated into large 

fattening farms (≥1000 pig places), small fattening farms (<1000 pig places) 

and farrow-to-finish farms (Table 1). In addition, the exact number of pig 

places at the farms was obtained from 177/179 fattening farms studied. 

Study II 
For study II, meat inspection results and FCI covering 85 slaughter batches 

from 80 farms were obtained from one of the slaughterhouses (Table 1). The 

median size of these 85 slaughter batches was 87 pigs/batch (range 20–271) 

and they were comprised of a total 8954 fattening pigs.  

The meat inspection data covered the meat inspection results of the 

current batch and the data covering all the slaughter batches sent from the 

same farm during the previous year. In total, this meat inspection data 

covered more than 280 000 pigs, which is over 13% of all fattening pigs 

slaughtered in Finland annually in 2012 and 2013 

(http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/). At the time of slaughter, 

meat inspection was performed in accordance with the traditional procedure, 

including palpations and incisions.  

FCI was provided by the respective pig producers using the FCI form used 

by Finnish large slaughterhouses described in chapter 2.3. The mortality rate 

for each slaughter batch during the last three months was obtained from 

Sikava (Stakeholders’ health and welfare register for pigs in Finland).  

All collected data are described in detail with their respective results in  

Table 16. 

4.3.2 PIG HEALTH AND MEAT INSPECTION RESULTS (III) 
During the farm visits (4.1.2), the veterinarian collected data concerning the 

health of the pigs (Table 3). Health status was evaluated by observing ca. 100 

pigs (Visit A: median 110 pigs, range 19–181 pigs; Visit B: median 105 pigs, 

range 19–180 pigs) for signs of lameness and fresh/healed tail-biting lesions. 

In addition, all pigs in each compartment were forced to stand up and the 

number of coughing episodes during the following five minutes was 

http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/


Materials and methods 

38 

registered. A coughing index was calculated by dividing the number of 

coughing episodes by the number of pigs in the compartment.  

Meat inspection data (Table 3) were obtained from the veterinary meat 

inspection reports covering the slaughtering periods of the animals in the 

studied batches. Data covered all fattening pigs (n=25 552) slaughtered 

concurrently with the studied pigs from each farm.  
 

Table 3 Farm-level data concerning on-farm health and meat inspection findings in fattening pigs 
from pig farms in Finland. Published in Felin et al., 2018 (III), reprinted with permission of the 
copyright holder. 
 

aCoughing index: Pigs in one compartment were forced to stand up, the coughing episodes were  
recorded for 5 minutes and the number was divided with the number of pigs in the compartment.

Subject Collected data No. of 
farms 

Description of data  
 

   Mean Median Range 

On-farm pig 
health 

Coughing index at the beginning of the 
fattening period a 

 

34 0.6% 0.5% 0–2.6% 

Coughing index at the end of the 
fattening period a 

 

57 0.6% 0% 0–5.5% 

% of pigs with fresh tail-biting injuries 

at the beginning of the fattening period   
 

34 2.8% 0% 0–36.1% 

% of pigs with fresh tail-biting injuries 

at the end of the fattening period 
 

57 0.7% 0% 0–11.2% 

% of pigs with healed tail-biting injuries 
at the beginning of the fattening period 
 

34 8.0% 2.7% 0–38.0% 

% of pigs with healed tail-biting injuries 

at the end of the fattening period 
 

57 16.1% 11.3%  0–94.7% 

% of lame pigs at the beginning of the 
fattening period 
 

34 0.9% 0% 0–6.0% 

% of lame pigs at the end of the 
fattening period 

57 1.7% 1.7% 0–8.0% 

Within-farm 
meat inspection 
data at 
slaughter 

Partial carcass condemnation % 57 7.0% 6.8% 1.0–16.0% 

Arthritis % 57 3.3% 3.1% 0–10.0% 
Abscess % 57 4.5% 3.8% 1.0–13.0% 
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4.4 STATISTICAL ANALYSIS 

Several statistical analyses were used in the thesis (Table 4). P-values <0.05 

were considered to indicate statistical significance. The analyses were mainly 

conducted with SPSS® Statistics (IBM Corporation, New York, USA) (Table 

4). 

 
Table 4 Statistical analyses used in studies I to IV. 

4.4.1 STATISTICAL ANALYSIS OF SEROLOGICAL AND FARM-LEVEL 
DATA (I) 

An animal was considered seropositive if its meat juice sample was positive. 

A farm was considered seropositive when at least one of the sampled animals 

tested positive.  

The Open-Epi programme and the Wilson method were used to calculate 

the 95% confidence intervals (CIs) for the seroprevalences (Dean et al., 

2013). Cross-tabulations and the Pearson chi-square test were used to 

analyse relationships between seropositivity to various pathogens studied 

both at the animal and farm levels. Bivariate Pearson (two-tailed) was used 

to calculate correlations between variables. The seropositivity of pigs 

originating from various farm types was compared using one-way analysis of 

variance (ANOVA) and Tukey´s honestly significant difference.  

Statistical analysis Programme Studies 

  I II III IV 

Confidence intervals Open-Epi x    

Cross tabulations SPSS® Statistics version 21 x    

Pearson chi-square test SPSS® Statistics version 21 x    

Pearson correlation SPSS® Statistics versions 21, 22, 23 x x x x 

Variance (ANOVA) SPSS® Statistics versions 21, 22, 23 x  x  

Independent sample t-test SPSS® Statistics version 22  x   

Linear regression  SPSS® Statistics version 22  x   

Regression model 

(GenLinMixed) 

SPSS® Statistics version 23   x  

Spearman correlation SPSS® Statistics version 23   x  

Wilcoxon signed rank test SPSS® Statistics version 23   x  

McNemar test SPSS® Statistics version 23   x  

Kappa SPSS® Statistics version 23    x 

ROC  SPSS® Statistics version 23    x 
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4.4.2 STATISTICAL ANALYSIS OF MEAT INSPECTION RESULTS, FCI 
AND SEROLOGICAL DATA (II) 

Correlations between variables were analysed by calculating Pearson 

correlation coefficients (r).  

Independent sample t-tests were used to compare the differences between 

mean values of the groups. For the t-tests, variables were transferred using 

the arcus sine of the square root transformation to achieve homogenous 

variances and approximately normal distributions.  

Stepwise linear regression analysis was used to predict meat inspection 

results to indicate which slaughter batches could have been suitable for visual 

meat inspection. Partial condemnation rate, organ condemnation rate and 

the sum of the partial and total condemnation rates were the response 

variables used in the analysis. These indicators were assumed to 

retrospectively indicate, whether a slaughter batch could have been suitable 

for visual meat inspection. This was because batches with high frequencies of 

lesions require additional inspection procedures. Total condemnations were 

so rare that the variable was not considered a relevant response variable as 

such. The response variables were transformed using the arcus sine of the 

square root transformation to achieve homogenous variances and 

approximately normal distributions. Regression models were also estimated 

for untransformed responses using the regressors found in the stepwise 

procedures.  

The predictors tested in the linear regression analysis were all variables in 

previous meat inspection reports, i.e. the mortality rate and the information 

on the batch declared in the FCI. The previous year´s organ condemnation 

rate and the previous year´s rate of tail biting, both of which had 54 missing 

values, were exceptions to this. One extreme value for the previous year´s 

partial carcass condemnation rate (24%) was discarded from the analysis, as 

it would have resulted in illogical models. FCI data regarding the farm were 

not included in the analysis, because none of the farms declared 

salmonellosis, trichinellosis or any restrictions imposed by the authorities, 

and only three farms declared erysipelas.  

4.4.3 STATISTICAL ANALYSIS IN STUDY III 
An animal was considered seropositive for a pathogen if its serum sample 

was positive. Seroprevalence at a farm was calculated by dividing the number 

of seropositive pigs from the farms by the number of samples taken from the 

farm. ‘Within-farm seroprevalence’ means the number of positive samples 

from a farm per the number of samples taken from the farm, presented as a 

percentage. 
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Logistic regression analysis for associations to serological status of 
the pigs  
Statistical analyses were conducted to evaluate the comorbidity and the effect 

of the within-farm seroprevalence at the beginning of the fattening. Each 

dependent variable was separately analysed. The dependent variables were 

1. Yersinia seropositivity of the pig (seropositive/seronegative) at the 

beginning of fattening,  

2. Yersinia seropositivity of the pig (seropositive/seronegative) at the 

end of fattening,  

3. Seroconversion of the pig to Yersinia seropositive during fattening 

(yes/no), 

4. Salmonella seropositivity of the pig (seropositive/seronegative) at the 

beginning of fattening,  

5. Salmonella seropositivity of the pig (seropositive/seronegative) at the 

end of fattening,  

6. Seroconversion of the pig to Salmonella seropositive during fattening 

(yes/no).  

Independent variables were a pig’s simultaneous seropositivity to the 

pathogen (Yersinia/Salmonella, binomial variable) other than the dependent 

variable. The within-farm seroprevalence (%) of the studied pathogen at the 

beginning of fattening (scale variable) was included as an independent 

variable for dependents 2, 3, 5 and 6. 

First, a univariable generalized linear mixed model, with farm as a 

random effect using the logistic link function, was performed to screen the 

association between each independent and dependent variable. Independent 

variables with P≤0.1 in the univariable analysis were introduced to the 

multivariable generalized linear mixed model with farm as a random effect 

using the logistic link function. These risk factors were checked for 

collinearity by calculating Spearman correlation coefficients. Correlations 

were moderate at maximum (all <0.35).   

Risk factors for Toxoplasma seropositivity were not analysed because of 

the low number of seropositive pigs. 

Logistic regression analysis for risk factors for condemnations at 
slaughter 
The associations between condemnations at slaughter and on-farm health 

data were analysed to examine whether on-farm health data predicted 

condemnations. The dependent variables were  

1. Partial carcass condemnation rate,  

2. Arthritis rate, 

3. Abscess rate. 

Dependent variables were introduced to the model as ‘events/trials’, e.g. 

‘n of condemned pigs/n of pigs’. Independent variables were scale farm-level 
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variables, which are described in Table 3 (Health of pigs). Independent 

variables also included the within-farm seroprevalences of Salmonella and 

Yersinia at the beginning and end of fattening.  

First, a univariable generalized linear mixed model, with farm as a 

random effect using the logistic link function, was performed to screen the 

association between each independent and dependent variable. Independent 

variables with P≤0.1 in the univariable analysis were introduced to the 

multivariable generalized linear mixed model with farm as a random effect 

using the logistic link function. These risk factors were checked for 

collinearity by calculating Spearman correlation coefficients. Correlations 

were moderate at maximum (all <0.35). Each dependent variable was 

separately analysed with the factors in effect at the beginning of fattening 

(n=34 farms) and with the factors in effect at the end of fattening (n=57 

farms).  

Other statistical analysis 
Differences between within-farm seroprevalences at the beginning and end 

of fattening were tested with a Wilcoxon signed-rank test. The McNemar test 

was used to compare the seroprevalence of all pigs sampled twice at the 

beginning and the end of fattening. 

The number of seropositive pigs originating from various farm types was 

compared using ANOVA and the Games Howell post hoc test. 

4.4.4 STATISTICAL ANALYSIS COMPARING COMMERCIAL ELISA 
TESTS FOR THE DETECTION OF TOXOPLASMA ANTIBODIES 

MAT was used as a reference test in the calculations. Sensitivity (SE), 

specificity (SP), accuracy, positive predictive value (PPV) and negative 

predictive value (NPV) were calculated. SE was calculated as the probability 

(percentage) that seropositive pigs determined by the MAT result will have a 

positive result using the test under evaluation (TDR diagnostics evaluation 

expert panel et al., 2010). SP was calculated as the probability (percentage) 

that seronegative pigs determined by the MAT result will have a negative 

result using the test under evaluation (TDR diagnostics evaluation expert 

panel et al., 2010). Accuracy was calculated as the percentage of correct 

results obtained by the test under evaluation compared with the MAT results 

(TDR diagnostics evaluation expert panel et al., 2010). NPV was calculated as 

the probability that a negative result accurately indicates the absence of 

infection (TDR diagnostics evaluation expert panel et al., 2010). PPV was 

calculated as the probability that a positive result accurately indicates the 

presence of infection (TDR diagnostics evaluation expert panel et al., 2010). 

PPV and NPV also depend on infection prevalence in the population studied 

(TDR diagnostics evaluation expert panel et al., 2010). The agreement level 
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between the ELISA tests and MAT was tested by calculating. Agreement was 

considered good or very good with Kappa values between 0.6 and 0.8 or over 

0.8, respectively. We additionally estimated the Pearson correlation between 

the ELISA tests and intra-class correlation between the two repeated 

analyses with the same test. ROC curves were also drawn.  
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5 RESULTS 

5.1 THE SEROPREVALENCE OF SALMONELLA SPP., 
PATHOGENIC YERSINIA SPP., T. GONDII AND 
TRICHINELLA SPP. IN FATTENING PIGS IN 
FINLAND (I, III, UNPUBLISHED) 

5.1.1 SEROPREVALENCE OF SALMONELLA SPP. IN FATTENING 
PIGS IN FINLAND 

We analysed Salmonella antibodies in two separate studies (I, III). 

Salmonella antibodies were detected in 3.1% of the meat juice samples 

collected at slaughter (study I) and in 17.6% of the blood samples collected 

from the farms (study III) at the end of the fattening period (Table 5). Most 

of the farms (91.2%) where blood samples were taken (an average 20 

pigs/farm sampled) were seropositive at the end of fattening and 13.5% of the 

farms where meat juice samples were taken at slaughter (an average of five 

pigs/farm sampled) were seropositive. 

 
Table 5 Salmonella seroprevalence estimates in fattening pigs and fattening pig farms in Finland. 
 

Sample 
Seropositives at the end of the fattening perioda 
All pigs  All farmsb 
N % 95% CI N % 95% CI 

Meat juice 42/1353 3.1 2.3–4.2 35/259 13.5 9.9–18.2 

Serum 196/1116 17.6 15.3–19.8 52/57 91.2 83.7–98.8 
a Blood samples were collected at the farm at the end of the fattening period and meat juice 
samples were collected at slaughter  
b Seropositive farm = at least one positive sample 

 
No differences were found between farm types at the end of fattening (I 

and III). We observed significant differences between individual farms: 

within-farm Salmonella seroprevalences at the end of fattening ranged from 

0 to 60% (I) and from 0 to 55% (III).   

The OD values of Salmonella were low (Figure 2; Figure 3). When the cut-

off value OD40% was used according to the German Salmonella monitoring 

programme (QS Qualität und Sicherheit GmbH, 2018), Salmonella 

seroprevalence at the end of the fattening period was 0.1% in study I (Figure 

2) and 1.9% in study II (Figure 3).  
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Figure 2 Salmonella OD values in meat juice samples of 1353 fattening pigs at slaughter in 

Finland. Published in Felin et al., 2015 (I), reprinted with permission of the copyright 
holder. 

 
Figure 3 Salmonella OD values of 1116 blood samples taken at the end of the fattening 

period in Finland. Published in Felin et al., 2018 (III), reprinted with permission of 
the copyright holder. 
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In study III, we also analysed changes in Salmonella seropositivity of 

individual pigs during the fattening period (Table 6). Salmonella 

seroprevalence rose significantly (P<0.001) during the fattening period: from 

8.1% to 17.2% seropositive pigs. At the beginning of fattening, the 

seroprevalence was highest among pigs from farrow-to-finish farms (10.4%), 

but the difference was not statistically significant (P=0.145, One-way 

ANOVA, compared to large fattening farms 6.0%). 
 

Table 6 Salmonella-seropositive blood samples from fattening pigs in Finland. 

aSampling A = at the beginning of the fattening period 
bSampling B= at the end of the fattening period 
 

In total, 13 farms were included in both studies I and III. When 

considering these farms only, the mean Salmonella seroprevalence of a batch 

of fattening pigs at slaughter was 3.1% in study I (meat juice samples) and 

13.2% at the end of fattening in study III (blood samples). The difference was 

statistically significant (paired sample t-test, P=0.03). We found no 

significant correlations between the seroprevalence of the batches in studies I 

and III. However, the results of different batches from the same farm are 

quite similar when considering the sample size: five samples/batch in study 

I, 20 samples/batch in study III (Table 7) (unpublished).  

Pigs sampled twice Farms sampled twice 
Sampling Aa Sampling Bb Sampling Aa Sampling Bb 
n % N % N % N % 
53/653 8.1 112/653 17.2 23/34 67.6 30/34 88.2 
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Table 7 Salmonella seroprevalences of different fattening pig batches originating from 13 pig 
farms in Finland. 

Farm Sampling date 
in study I 

Seroprevalence of the 
batch in study I, % a 

Sampling date 
in study III 

Seroprevalence of the 
batch in study III, % b 

1 09-11-2012 <20 15-04-2014 5 
2 09-11-2012 <20 15-08-2012 5 
3 09-11-2012 <20 25-11-2012 5 
4 03-01-2013 <20 12-03-2013 15 
5 07-01-2013 <20 12-03-2014 <5  
6 07-01-2013 <20 11-04-2014 5 
7 08-01-2013 <20 30-08-2012 30c 
8 09-01-2013 <20 03-07-2014 15 
9 11-01-2013 <20 05-04-2013 17 
10 13-02-2013 20 11-07-2013 20 
11 21-02-2013 20 11-10-2012 <5c 
12 25-02-2013 <20 30-01-2013 40c 
13 25-02-2013 <20 27-01-2014 15 

aFive meat juice samples/batch studied at slaughter, a value <20 means that no seropositive 
samples were found 

b20 blood samples/batch studied at the end of the fattening period, a value <5 means that no 
seropositive samples were found 
cDifference shown between batches from the same farm 
 
Farms were allocated into risk categories according to Salmonella 

serological results using the Danish and German schemes (Alban et al., 2012; 

QS Qualität und Sicherheit GmbH, 2018). All farms were in German category 

1 (Table 8). Most (98%) farms were in Danish category 1 and only 2% of 

farms were in Danish category 2 (Table 9).  In addition, we allocated farms 

according to our modified categorization (Table 10)  (unpublished). 

 
Table 8 Serological results from Finnish fattening pig farms allocated according to the German 
QS Salmonella control programmea using a cut-off value of OD40%. 

Risk category Results from 
study I  
(259 farms) 

Results from 
study III  
(57 farms) 

Corrective actions in 
German QS 

Category 1, Low, within-farm 
seroprevalence ≤20% 
 

100% of 
farms 

100% of 
farms 

None 

Category 2, Medium, within-farm 
seroprevalence >20-40% 
 

0% of farms 0% of farms Check and document the 
hygiene status 
 

Category 3, High, within-farm 
seroprevalence >40% 

0% of farms 0% of farms Bacteriological sampling, 
epidemiological 
investigation, corrective 
actions at farm  

a QS Qualität und Sicherheit GmbH 2018 
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Table 9 Serological results from Finnish fattening pig farms allocated according to the Danish 
Salmonella control programmea using a cut-off value of OD20%.  

Risk category  Results from 
study I  
(259 farms) 

Results from 
study III  
(57 farms) 

Corrective actions in 
Danish programme 

Category 1, Low, within-farm 
seroprevalence <40%b 
 

98.1% of farms 98.2% of farms None 

Category 2, Medium, within-farm 
seroprevalence 40-65%b 
 

1.9% of farms 1.8% of farms Penalty fee 

Category 3, High, within-farm 
seroprevalence >65%b 

0% of farms 0% of farms Penalty fee, 
slaughtered 
separately 

aAlban et al., 2012 
bWeighted average based on data from the previous three months 
 

Table 10 Serological results from Finnish fattening pig farms allocated according to modified 
categories using a cut-off value of OD20%. 

Risk category  Results from study I  
(259 farms) 

Results from study III  
(57 farms) 

Category 1, Low, within-farm 
seroprevalence <20% 
 

88.4% of farms 75.4% of farms 

Category 2, Medium, within-farm 
seroprevalence 20-40% 
 

9.7% of farms 22.8% of farms 

Category 3, High, within-farm 
seroprevalence >40% 

1.9% of farms 1.8% of farms 

 

5.1.2 SEROPREVALENCE OF PATHOGENIC YERSINIA SPP. IN 
FATTENING PIGS IN FINLAND 

Antibodies for pathogenic Yersinia spp. were analysed in two separate 

studies (I, III). Yersinia antibodies were detected in 56.6% of the meat juice 

samples collected at slaughter (I) and in 66.1% of the blood samples collected 

at farms (III) at the end of the fattening period (Table 11). In both studies, 

most farms were seropositive at the end of fattening (Table 11).  
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Table 11 Pathogenic Yersinia seroprevalence estimates in fattening pigs and fattening pig farms 
in Finland. 

Sample Seropositives at the end of the fattening perioda 
All pigs All farmsb 
N % 95% CI N % 95% CI 

Meat juice 766/1353 56.6 54.0–59.2 220/259 84.9 80.1–88.8 

Serum 738/1116 66.1 63.3–68.9 50/57 87.7 78.9–96.5 
a Blood samples were collected at the farm at the end of the fattening period and meat juice 
samples were collected at slaughter  
b Seropositive farm = at least one positive sample 

 

Pigs at large fattening farms were more often seropositive than pigs at 

farrow-to-finish farms in study III (69.7% vs. 62.2%, P<0.05). The 

differences between farm types were not statistically significant in study I:  

60.6%, 55.0% and 53.6% of meat juice samples from large fattening farms, 

small fattening farms and farrow-to-finish farms were positive. We found 

significant differences between individual farms: on-farm Yersinia 

seroprevalences at the end of fattening ranged from 0 to 100% in both 

studies. All pigs tested seropositive for Yersinia at the end of fattening at 60 

farms (23%) in study I and at 14 farms (25%) in study III.  

In study III, we also analysed changes in Yersinia seropositivity of 

individual pigs during the fattening period. Yersinia seroprevalence rose 

significantly (P<0.001) during this period: from 30.3% to 72.3% (Table 12). 

Interestingly, seroprevalence at the beginning of fattening was highest in 

farrow-to-finish farms compared to the other two farm types. 

 
Table 12 Yersinia-seropositive blood samples from fattening pigs in Finland. 

aSampling A = at the beginning of the fattening period 
bSampling B= at the end of the fattening period 

 

In total, 13 farms were included in both studies I and study III. When only 

considering these farms, mean Yersinia seroprevalences of a batch of 

fattening pigs at slaughter were similar in both studies, 50.8% in study I and 

56.5% in study III. We observed no significant correlation between the 

seroprevalence of the batches in studies I and III (Table 13). Two farms 

(farms no. 5 and 8) were Yersinia seronegative in both studies 

(unpublished). 
  

Pigs sampled twice Farms sampled twice 
Sampling Aa Sampling Bb Sampling Aa Sampling Bb 
n % N % n % N % 
198/653 30.3 472/653 72.3 20/34 58.8 32/34 94.1 
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Table 13 Yersinia seroprevalences of various fattening pig batches originating from 13 pig farms 

in Finland. 

Farm Sampling date 
in study I 

Seroprevalence of the 
batch in study I, % a 

Sampling date 
in study III 

Seroprevalence of the 
batch in study III, % b 

1 09-11-2012 80 15-04-2014 100 
2 09-11-2012 100 15-08-2012 84 
3 09-11-2012 40 25-11-2012 32 
4 03-01-2013 20 12-03-2013 100 
5 07-01-2013 <20 12-03-2014 <5 
6 07-01-2013 60 11-04-2014 75 
7 08-01-2013 60 30-08-2012 100 
8 09-01-2013 <20 03-07-2014 <5 
9 11-01-2013 100 05-04-2013 89 
10 13-02-2013 100 11-07-2013 50 
11 21-02-2013 100 11-10-2012 10 
12 25-02-2013 <20 30-01-2013 90 
13 25-02-2013 <20 27-01-2014 5 

aFive meat juice samples/batch studied at slaughter, a value <20 means that no seropositive 
samples were found 

b20 blood samples/batch studied at the end of the fattening period, a value <5 means that no 
seropositive samples were found 

5.1.3 SEROPREVALENCE OF T. GONDII IN FATTENING PIGS IN 
FINLAND 

Antibodies for T. gondii were analysed in two separate studies (I, III). In 

study I, 3.2% of fattening pigs originating from 9.3% of farms were 

seropositive for T. gondii at slaughter. Only 0.7% of fattening pigs originating 

from 10.5% of farms were T. gondii seropositive at the end of the fattening 

period in study III (Table 14). 

Table 14  Toxoplasma gondii seroprevalence estimates in fattening pigs and fattening pig farms 
in Finland. 

Sample Seropositives at the end of the fattening perioda 
All pigs All farmsb 
N % 95% CI N % 95% CI 

Meat juice 43/1353 3.2 2.4–4.3 24/259 9.3 6.3–13.4 

Serum 8/1116 0.7 0.2–1.2 6/57 10.5 2.3–18.7 
a Blood samples were collected at the farm at the end of the fattening period and meat juice 
samples were collected at slaughter  
b Seropositive farm = at least one positive sample 

 

We found statistically significant differences between farm types in study 

I. Fattening pigs originating from small fattening farms showed significantly 

higher seroprevalences (6.0%, p<0.01) than fattening pigs from large 
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fattening farms (1.8%) and from farrow-to-finish farms (1.9%). Significant 

differences were also found between individual farms in study I: on-farm T. 

gondii seroprevalences at the end of fattening ranged from 0 to 100%. High 

seroprevalences (>20%) were only found in small fattening farms with <500 

pig places at the farm. A strong negative correlation was observed between 

the pigs’ seropositivity for T. gondii and the number of pig places on the farm 

of origin (P<0.001, n=918 pigs, study I).   

In study III, we only observed minor differences between farms, most of 

the T. gondii-seropositive pigs were scattered and the highest within-farm 

seroprevalence was 10%. T. gondii seroprevalence remained at 0.6% during 

the entire fattening period at farms that were sampled twice in study III, 

though certain changes were observed in the seropositivity of individual pigs 

during the fattening period. 

5.1.4 SEROPREVALENCE OF TRICHINELLA SPP. IN FATTENING PIGS 
IN FINLAND 

Antibodies for Trichinella spp. were analysed in study I. Trichinella 

antibodies were not detected. All the samples (n=1353) were clearly negative. 

5.1.5 ASSOCIATIONS BETWEEN PATHOGENS 
We found strong positive associations at the animal level between the pigs´ 

seropositivity for Salmonella and Yersinia in both studies I and III.  

In study I, 83% of the Salmonella-seropositive pigs were also Yersinia 

seropositive (χ2, P<0,001). At the farm level, no significant association was 

observed between farm seropositivity for Salmonella and Yersinia (χ2, 

p=0.25). However, the within-farm seroprevalences of Salmonella and 

Yersinia did correlate positively (r=0.15, P<0.05). The within-farm 

seroprevalence of Yersinia was higher in Salmonella-seropositive farms than 

in Salmonella-seronegative farms (71% and 54%, respectively, P<0.05). 

Animal-level (but not farm-level) associations between Salmonella and 

Toxoplasma seropositivity were found in study I (χ2, P<0.05), but not in 

study III, where Toxoplasma-seropositive pigs were rare. 

In study III, the simultaneous Salmonella seropositivity of a pig was a risk 

factor for Yersinia seropositivity of the same pig, and vice versa, and we 

found multiple associations between Salmonella and Yersinia seropositivity 

of the pigs in the multivariable model (Table 15). 

 ‘Yersinia seroprevalence (%) at the farm at the beginning of fattening’ 

was a protecting factor for Yersinia seroconversion of the pig during 

fattening (OR 0.98, P=0.02).  

Interestingly, Salmonella seroprevalence at the farm at the beginning of 

fattening was not associated with a pig’s seropositivity at the end of fattening 

(p=0.49). Meanwhile, whenever Yersinia seroprevalence at the farm at the 

beginning of fattening increased by a one per cent unit, the pressure of a pig 



Results 

52 

being Yersinia seropositive at the end of fattening increased by 3% (OR 1.03, 

p=0.005, Table 15).  

 
Table 15 Variables significantly (P<0.05) associated with Yersinia and Salmonella seropositivity 
in fattening pigs in Finland using a generalized linear mixed model with farm as a random effect. 
  
Dependent Factor Odds 

ratio 
95% 
CI 

p-
value 

n 

Yersinia seropositivity of a pig 
(seropositive/seronegative) at 
the beginning of fattening 
 

Simultaneous Salmonella 
seropositivity of the pig 
 
 
 

6.37 2.59–
15.69 

<0.001 677 

Yersinia seropositivity of a pig 
(seropositive/seronegative) at 
the end of fattening 

 

Simultaneous Salmonella 
seropositivity of the pig 
 

6.47 2.33–
17.94 

<0.001 656 

Yersinia seroprevalence 
(%) at the farm at the 
beginning of fattening 
 

1.03 1.01–
1.05 

0.005 656 

Seroconversion of a pig to 
Yersinia seropositive during 
fattening (yes/no) 
 

Seroconversion of the pig 
to Salmonella seropositive 
during fattening 

5.83 3.01–
11.28 

<0.001 653 

 The Yersinia 
seroprevalence (%) at the 
farm at the beginning of 
fattening 
 

0.98 0.97–
1.00 

0.02 653 

Salmonella seropositivity of a pig 
(seropositive/seronegative) at 
the beginning of fattening 
 

Simultaneous Yersinia 
seropositivity of the pig 

5.10 2.94–
8.85 

<0.001 677 

Salmonella seropositivity of a pig 
(seropositive/seronegative) at 
the end of fattening 
 

 

Simultaneous Yersinia 
seropositivity of the pig 
 

4.05 2.44–
6.74 

<0.001 1116 

Seroconversion of a pig to 
Salmonella seropositive during 
fattening (yes/no) 

Seroconversion of the pig 
to Yersinia seropositive 
during fattening 

6.45 3.55–
11.73 

<0.001 653 
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5.2 THE FEASIBILITY OF THE SEROLOGICAL 
MONITORING AND THE USABILITY OF THE 
RESULTS AS PART OF THE FCI (I, III) 

Commercial ELISA kits were easy to use. Collecting meat juice samples at 

slaughter was practical and effortless, and handling and sending the meat 

juice samples was simple. A sufficient quantity of meat juice was obtained 

from a 10-g piece of diaphragm muscle. Collecting the blood samples at the 

farm was resource consuming and more difficult to implement in practice, as 

it required on-farm visits and competence in taking blood samples from live 

animals.  

Results from the blood samples taken at the farms are available for each 

batch before slaughter and can be included in FCI, while the meat juice 

sample results for a batch taken at slaughter are available only after 

slaughter, and the information can be included in the FCI of forthcoming 

batches.  

We observed significant differences between individual farms concerning 

Salmonella and Yersinia within-farm seroprevalences in both studies (see 

5.1.1 and 5.1.2). Toxoplasma-seropositive pigs were sporadic in study III, 

while farms with exceptionally high Toxoplasma seroprevalence were found 

in study I. Consequently, differences were seen between farms and could be 

taken into account if this information were part of the FCI. 

Trichinella antibodies were not detected, so no differences occurred 

between farms, and including this information in the FCI would mainly be 

confirmation of the favourable situation (I). 

5.3 THE USABILITY OF THE FCI FOR THE NEEDS OF 
VISUAL MEAT INSPECTION AND RISK-BASED 
MEAT INSPECTION (I, II, III) 

5.3.1 DECLARATIONS IN CURRENT FCI, MEAT INSPECTION 
RESULTS, SEROLOGICAL RESULTS AND MORTALITY RATES 
(II) 

None of the farms declared salmonellosis, trichinellosis or any restrictions 

imposed by the authorities in their FCIs, and erysipelas was noted by only 

three batches (Table 16). In total, 74% (63/85) of the FCI documents 

included at least one declaration regarding the current batch.  

The meat inspection results corresponded well with the national meat 

inspection statistics for the same year (Table 16). Pleuritis rates were higher 

due to even the smallest lesions being reported in this slaughterhouse, 

though those may not lead to condemnations.  

The samples used in study II were obtained from study I, and the 

serological results from study II corresponded well with the overall 
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serological results from study I (Table 16). The mortality rate of the batches 

during fattening had a mean of 1.7% (range 0–8.4%)
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Table 16 Data collected from 85 randomly selected slaughter batches of finishing pigs from a Finnish slaughterhouse. Published in Felin et al., 2016 (II), reprinted 
with permission of the copyright holder. 
A. Food chain information regarding the farm % (number) of batches (n=85) % of pigs in current 

batches (n=8954) 
Of concern to 

Salmonellosis present  0 0 P 
Trichinellosis present 0 0 P 
Erysipelas present 3.5 (3) n/a P 
Official restrictions 0 0 A / P 
Drug residues detected in animals 0 0 P 

B. Food chain information regarding the batch    Of concern to 

Includes pigs medicated within the last three months 52.9 (45) n/a A / P 
Includes pigs with hernia 35.3 (30) 0.7 W / (P, faecal contamination) 
Includes pigs with abscesses/lumps 21.2 (18) 0.4 W 
Includes lame pigs 15.3 (13) 0.3 W 
Includes pigs with bitten tails 44.7 (38) 1.4 W 
Constant coughing three months prior to slaughter: somewhat / a 
lot 

4.7 (4) / 0.0 n/a A 

C. Meat inspection results  Study data Official statisticsb Of concern to 
Mean % (variation 
interval) of 
batches (n=85) 

Mean % (variation 
interval) of farm 
resultsa (n=80) 

% of all fattening pigs 
slaughtered in Finland 
2013 

 

Total condemnation 0.2 (0.0–2.9) 0.3 (0.0–3.4) 0.3 A / P 
Partial condemnation  5.0 (0.0–17.6) 5.6 (1.5–23.9) 6.4 A / W 
Condemned organs 1.6 (0.0–19.5) 1.7 (0.2–11.7) e n/a A / W / P 
Pneumonia 3.8 (0.0–29.2) 2.0 (0.0–11.7) 2.2 A 
Pleuritis  35.0 (1.7–90.0) 17.8 (0.0–58.8) 15.9 A 
Pericarditis  3.6 (0.0–32.9) n/a 2.3 A 
Condemned livers  9.1 (0.0–54.4) 6.0 (0.0–52.5) 6.3 A 
Arthritis 1.7 (0.0–17.6) 2.4 (0.6–18.0) 3.0 W 
Bitten tails  1.5 (0.0–8.3) 0.5 (0.0–1.7) e 1.0 W 
Abscesses  4.1 (0.0–12.9) 4.5 (0.0–11.3) 3.2 A / W 
Findings related to Mycobacterium avium complex 0.5 (0.0–6.8) 0.4 (0.0–4.7) 0.3 P 
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Table 16 (Continued) 
D.  Serological analysis results  Positive batches c, % (n=85) Positive pigs, % 

(n=431) 
Of concern to 

Salmonella spp. 14.1 3.5 P 
Pathogenic Yersinia spp. 81.2 56.1 P 
Trichinella spp. 0.0 0.0 P 
Toxoplasma gondii  8.2 2.6 P 

E. Other data Mean of batches, % (variation interval)  Of concern to 

Mortality rate of the batch during the fattening period 1.7 (0.0–8.4) d n/a A / W 

Note: A = animal health; W = animal welfare; P = public health; adapted from EFSA, 2011. 
n/a= not available 
afarm result = result of all pigs slaughtered from the farm the previous year   
bmeat inspection statistics 2013 from Food Safety Authority Evira 
c3–10 pigs per batch tested 
ddata from Sikava - Stakeholders health and welfare register for pig herds in Finland, available for 82/85 batches 
eprevious years meat inspection data considering organ condemnations and tail biting was available for 31/80 farms



 

57 

5.3.2 ASSOCIATION BETWEEN CURRENT FCI REGARDING THE 
BATCH, MORTALITY DURING FATTENING AND MEAT 
INSPECTION RESULTS (II) 

Slaughter batches were divided into two groups according to the FCI reports: 

a group with “nothing to declare” in their FCIs (n=22) and a group with 

something to declare in their FCIs (n=63). Batches with something to declare 

had lower condemnation rates for livers than batches with nothing to declare 

(6.6% and 16.0%, p<0.01). The organ condemnation rate was also lower for 

batches with something to declare, but the difference was not statistically 

significant (1.1% and 2.9%, p=0.13). 

Only four batches declared constant coughing during the three months 

prior to slaughter, which lowers the generality of our results. However, these 

four batches had higher mean arthritis prevalence (6.4% and 1.5 %, p<0.01), 

and partial (8.8% and 4.8%, p=0.05) and total (0.8% and 0.2%, p=0.07) 

condemnation rates than the other batches. The difference between the 

partial and total condemnation rates was not statistically significant. In 

contrast, pneumonia and pleuritis rates observed at meat inspection did not 

differ in batches for which coughing was declared in the FCI. 

Batches that, according to FCI, included pigs medicated within the last 

three months prior to slaughter had lower mean condemnation rates for 

livers (6.3% and 12.2%, p<0.01).  

Batches declaring lameness had a statistically significantly higher mean 

prevalence of pleuritis (45.3% and 33.1%, p=0.04) at meat inspection. No 

other statistically significant differences were found. 

The FCI declaration rates, i.e. the percentages of pigs in a batch declared 

to have a symptom/sign for one of the following: hernias, abscesses/lumps, 

and lameness, correlated with higher pleuritis rates at meat inspection 

(r=0.24, 0.26, 0.31 and p=0.03, p=0.02, p<0.01 respectively).  

The FCI declaration rate for tail biting correlated with higher pneumonia 

rates (r=0.25, p=0.02) at meat inspection and the FCI declaration rate for 

lameness correlated with more observations of tail biting (r=0.26, p=0.02) at 

meat inspection. However, two exceptional batches occurred in the data: one 

batch with 29% pneumonia found at meat inspection and another batch with 

7% lameness declared in FCI. When these batches were discarded from the 

analysis, these correlations disappeared. 

The percentage of bitten tails declared in the FCIs correlated with 

observations of tail biting at meat inspection, but this correlation was not 

statistically significant (r=0.20, p=0.06, Figure 4). However, when the zero 

values were discarded, the correlation was clear (r=0.56, p<0.01) (Figure 4). 
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Figure 4 The correlation between food chain information and meat inspection reports of tail biting 
in finishing pigs from 85 slaughter batches.  

We found clear positive correlations between FCI declaration rates for 

hernias, abscesses/lumps, abnormalities in gait and bitten tails (r=0.49-0.71, 

p<0.001). 

We suspected that certain FCIs with “nothing to declare” were unreliable. 

Therefore, all the analyses were repeated so that only batches with something 

declared in the FCI (n=63) were included. No new associations were found.  

The mortality rate during fattening did not correlate with any of the meat 

inspection results. 

5.3.3 ASSOCIATION BETWEEN MEAT INSPECTION RESULTS OF 
CURRENT AND PREVIOUS BATCHES FROM THE SAME FARM 
(II) 

Several meat inspection results of all the pigs sent for slaughter during the 

previous year and the meat inspection findings from the currently 

slaughtered batch correlated at the farm level (Table 17). We found no 

correlations solely for the total condemnation, pneumonia and arthritis rates 

of the currently slaughtered batch. 
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Table 17 Statistically significant correlations (p<0.05) between meat inspection results for the 
currently slaughtered batch (n=85) and between meat inspection results for pigs sent from the 
same farm for slaughter the previous year. Published in Felin et al., 2016 (II), reprinted with 
permission of the copyright holder. 

Currently slaughtered 
batch  

Slaughtered pigs from the 
farm during previous year 

Pearson 
correlation 
coefficient 

p-value Number of 
batches 
concerned 

partial condemnations % partial condemnations %  
abscesses % 
tail biting % 
 

0.32 
0.37 
0.42 

<0.01 
<0.01 
0.02 

85 
85 
31 

organ condemnations % organ condemnations %  
pleuritis %  
pneumonia % 
 

0.42 
-0.25 
-0.23 

0.02 
0.02 
0.03 

31 
85 
85 

abscesses % abscesses % 
tail biting % 
partial condemnations% 
 

0.41 
0.51 
0.31 

<0.01 
<0.01 
<0.01 

85 
31 
85 

tail biting % tail biting % 
abscesses % 
 

0.45 
0.35 

0.01 
<0.01 

31 
85 

pleuritis % pleuritis % 
 

0.28 <0.01 85 

pericarditis % 
 

organ condemnations % 
liver condemnations % 
 

0.91 
0.27 

<0.01 
0.01 

31 
85 

liver condemnation % liver condemnations % 
organ condemnations % 
 

0.56 
0.63 

<0.01 
<0.01 

85 
31 

Mycobacterium avium –
complex % 

Mycobacterium avium –
complex, % 

0.30 <0.01 85 

 

5.3.4 RISK FACTORS FOR CONDEMNATIONS AT SLAUGHTER (II, III) 

Linear regression analysis in study II 
The partial condemnation rate of the previous year was revealed as the most 

important variable for predicting condemnations at slaughter and thus also 

whether the current batch would have been suitable for visual-only meat 

inspection.  

The regression analyses revealed that the partial condemnation rate of the 

previous year (p<0.001, Figure 5) and a declared cough in the current FCI 

(p=0.02) were the best predictors for the partial condemnation rate of the 

batch. Total condemnations were so rare that the predictors were the same 

for the sum of the total and partial condemnation rates. When the 

untransformed partial condemnation rate was predicted by the two best 

predictors, the adjusted R2 was 0.31, the regression coefficient of the partial 

condemnation rate of the last year was 0.93 and the coefficient of the 
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declared cough in the FCI was 4.5. This means that for each additional per 

cent in partial condemnation rate of the last year, the partial condemnation 

rate of the current batch increased by an average of 0.93 per cent units and 

that the predicted partial condemnation rate increased by 4.5 per cent units 

if coughing was reported in the slaughter batch.  

The best predictor for the organ condemnation rate of the current batch 

was the farm’s organ condemnation rate of the previous year (n=31, p=0.03). 

When the untransformed organ condemnation rate was predicted by the best 

predictor, the adjusted R2 was 0.15, and the regression coefficient of the 

organ condemnation rate of the last year was 0.19. 

Figure 5 The partial condemnation rate of 85 slaughter batches of fattening pigs and the batches 
from the same farm during the previous year. Published in Felin et al., 2016 (II), reprinted with 
permission of the copyright holder. 

Logistic regression analysis in study III 
The healed tail-biting rate at the end of the fattening period and the fresh 

tail-biting rate at the beginning of fattening were significant risk factors for a 

partial carcass condemnation rate at slaughter (Table 18). No significant risk 

factors were observed for abscess rate, and only one for arthritis rate, namely 

the fresh tail-biting rate at the beginning of the fattening period (Table 18). 

The odds ratios detected were small, e.g. 1.009 for healed tail biting. 

However, this means that the odds of a pig carcass being partially 

condemned were 0.9% higher when the percentage of pigs affected with 
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healed tail biting at a farm increased by one per cent unit (Figure 6). For 

example, if a farm had a problem and the healed tail-biting index was 50, the 

probability of a pig carcass being partially condemned was 8.8% (OR 0.097; 

p(probability)=OR/(1+OR); logit=b0+ b1*x1; OR=exp(logit)). Salmonella and 

Yersinia seroprevalences at the farm did not associate with any of the meat 

inspection findings. 

 
Table 18 Farm-level factors significantly (P<0.05) associated with farm-level condemnation rates 
in fattening pigs in Finland using a generalized linear mixed model with farm as a random effect. 
Published in Felin et al., 2018 (III), reprinted with permission of the copyright holder.  

Dependent Factor Odds ratio 95% CI P-value N of 
farms 

Partial 
condemnation 
rate 

Fresh tail biting Aa 1.028 1.000–1.057 0.047 34 

 Healed tail biting 
Ba 

 

1.009 1.002–1.016 0.008 57 

Arthritis rate Fresh tail biting Aa 1.035 
 

1.010–1.061 0.008 34 

a A= at the beginning of fattening, B= at the end of fattening 
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Figure 6 The association between the healed tail-biting injuries observed by a veterinarian at the 
farm and partial carcass condemnation rate during the meat inspection of fattening pigs from 57 
farms in Finland. Published in Felin et al., 2018 (III), reprinted with permission of the copyright 
holder. 

Scoring system to predict slaughter batches unsuitable for visual-only 
meat inspection (II) 
A scoring system was developed to allocate slaughter batches into two 

categories in advance, namely: “suitable for visual-only meat inspection” 

with scores of 0 to one and “needs additional inspection procedures” with 

scores of two to four (Table 19). Scoring was done using the statistically 

significant risk factors for condemnations: the previous year´s partial 

condemnation rate (%) and the FCI regarding the current slaughter batch 

declaring the occurrence of constant coughing during the three months prior 

to slaughter. Threshold limits for scoring were calculated using the 10 and 90 

deciles from the previous year´s condemnation rates: 0 points for below the 

10 decile, one point for 10 to 90 decile, and two points above the 90 decile. 

The declaration for a constant coughing added another two points. Note that 

only four batches (4.7%) were declared to have had constant coughing within 

the three months prior to slaughter, which compromises the results (Table 

19). 
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Table 19 Scoring of 85 batches of slaughter pigs according to food chain information provided. 
Published in Felin et al., 2016 (II), reprinted with permission of the copyright holder. 

 
Scoring points 
 
Previous year’s partial 
condemnation rate  
 
Declaration for  
constant cough 
 
% of batches 
 

0 1   2 3 4 
 
< 3% 
 
 
no 
 
 
9.4 
 

 
3–8% 
 
 
no 
 
 
75.3 

 
>8% 
 
 
no 
 
 
10.6 

 
3–8% 
 
 
yes 
 
 
4.7 

 
>8 % 
 
 
yes 
 
 
0.0 

 

Eight batches (9.4%) were given a score of zero points, which indicated 

that they would have been suitable for visual-only meat inspection (Table 19). 

Analysis of the meat inspection reports for these batches showed them to be 

suitable for visual-only meat inspection (partial condemnation rate 1.4–

3.8%, organ condemnation rate 0.0–3.5 %).  

A total of 64 (75.3%) batches were scored with one point (Table 19). An 

analysis of the meat inspection reports of these batches showed a majority to 

be suitable for visual meat inspection. However, five batches could not be 

considered suitable for visual meat inspection only because of a high rate of 

partial condemnations (9–13%), and these could not have been detected 

beforehand with the suggested scoring system. The FCI of these five batches 

only revealed that two batches had pigs that had been treated with veterinary 

medicinal products within the three months prior to slaughter. Their 

historical meat inspection data and mortality rates during fattening did not 

markedly differ from the mean. The available prior information was 

insufficient to discriminate these batches beforehand.   

Thirteen batches (15.3%) were considered to need additional inspection 

procedures, as they had scores of two points or more (nine batches with last 

year’s partial condemnation rate over 8% and four batches with FCI on 

constant coughing) (Table 19). However, seven of these batches had current 

partial condemnation rates of less than 9% and therefore could have been 

suitable for visual-only meat inspection. Nevertheless, the high 

condemnation rates for the previous year or coughing reported in the FCI for 

the current slaughter batches indicated that carrying out additional 

inspection procedures would have been appropriate.   

We suggested that batches with two points or more (last year’s partial 

condemnation rate over 8% or FCI declarations for constant coughing in the 

current slaughter batches) should be indications for additional meat 

inspection procedures. With this classification, the worst eighth of the 

batches were classified as unsuitable for visual-only meat inspection. Current 

batches with high partial condemnation rates (>9%) were classified as not 

being suitable for visual meat inspection only.   

SP for identifying batches suitable for visual meat inspection was 91% 

(CI95: 82–95 %) (Table 20). The SE of the scoring system to identify the 



Results 

64 

batches unsuitable for visual meat inspection was 55% (95 % confidence 

interval: 28–79 %). The accuracy of identifying the batches unsuitable for 

visual meat inspection was 86% (CI95: 77–92 %). 

 
Table 20 Sensitivity and specificity of the scoring system for finding slaughter batches of pigs 
unsuitable for visual-only meat inspection. Published in Felin et al., 2016 (II), reprinted with 
permission of the copyright holder.  

 
 Previous year´s partial 

condemnation rate >8% 
or reported cough 

Previous year´s partial 
condemnation rate≤ 8% 
no reported cough 

 

Batches unsuitable for 
visual-only meat 
inspection 
 

6 5 11 

Batches suitable for 
visual-only meat 
inspection 
 

7 67 74 

Total 13 72 85 
Sensitivity 55% (95% confidence interval 28–79%) and specificity 91% (CI95: 82–95%) 

5.3.5 ASSOCIATIONS BETWEEN SEROLOGY AND MEAT INSPECTION 
RESULTS (II, III) 

No statistically significant correlations were found between any of the tested 

seroprevalences and current meat inspection findings at the slaughter batch 

level (II, III).  

In study II, we found a positive correlation between the current 

seroprevalence of Salmonella and the historical prevalence of pneumonia 

(r=0.28, p<0.01) and pleuritis (r=0.24, p=0.02) in the previous year’s meat 

inspection reports.  

5.4 COMPARISON OF COMMERCIALLY AVAILABLE 
ELISA KITS FOR DETECTING TOXOPLASMA 
ANTIBODIES IN THE MEAT JUICE OF NATURALLY 
INFECTED FATTENING PIGS (IV) 

The MAT detected 31% and the ELISA tests detected 1–41% of the 90 

selected meat juice samples as Toxoplasma antibody-positive with the cut-

offs recommended by the manufacturers (Table 21). The highest number of 

positive samples (47.8% and 41.1%) was obtained by test I, which had the 

lowest cut-off levels 0.15 (old) and 0.20 (new), respectively. Test III had the 

highest cut-off level (0.50), and a clearly lower number of positive samples 

was obtained compared to tests I and II. The number of positive samples was 

extremely low using test IV, which also gave very low OD values varying 

between 0.04 and 0.45. However, the OD values were high for the positive 
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controls (1.48–1.73) for test IV. The samples were tested a second time with 

another lot of test IV, but the OD values were not higher than in the first run. 
 
Table 21 Prevalence of Toxoplasma-positive samples using different commercial ELISA tests 
with various cut-off values for 90 pig meat juice samples. Published in Felin et al., 2017 (IV), 
reprinted with permission of the copyright holder. 

Test S/P ratioa Cut-off 

value 

No. of 
positives 

Prevalence 

 (%)  Min Max Mean Median 

I 0.02 1.51 0.33 0.14 0.15b 43 47.8 

     0.20c 37 41.1 

     0.30 30 33.3 

     0.40 26 28.9 

     0.50 23 25.6 

II 0.00 2.27 0.33 0.04 0.20 27 30.0 

     0.30c 25 27.8 

     0.40 22 24.4 

     0.50 20 22.2 

III 0.04 1.77 0.36 0.14 0.20 40 44.4 

     0.30 28 31.1 

     0.40d 24 26.7 

     0.50c 22 24.4 

IV 0.04e 0.45 0.06 0.04 0.07f 12 13.3 

     0.20 3 3.3 

     0.30c 1 1.1 

     0.40 1 1.1 

     0.50 0 0 

a S/P ratio = (sample optical density (OD) – mean OD of the negative control) / (mean OD of the 
positive control – mean OD of the negative control) 

b Old cut-off value used by Felin et al. (2015) 
c Cut-off value recommended by the manufacturer  
d S/P values between 40 and 50 are considered weakly positive 
e OD value 
f According to Hill et al. (2006) 

 

The SE, SP, accuracy and Kappa value of the ELISA tests were determined 

using MAT as a reference test (Table 22). The SEs of tests I (cut-off=0.20), II 

(cut-off=0.30) and III (cut-off=0.50) were 96.4, 89.3 and 78.6, respectively, 

and the SPs were 83.9, 100.0 and 100.0, respectively. SE was unacceptably 

low (3.6) for test IV (cut-off=0.30). 
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Table 22 The sensitivity (SE), specificity (SP), accuracy, positive predictive values (PPV), 
negative predictive values (NPV) and Kappa (K) values of four commercial ELISA tests using a 
commercial modified agglutination test as the reference test. Published in Felin et al., 2017 (IV), 
reprinted with permission of the copyright holder. 

ELISA 
test 

Cut-off 
Value 

SE 
(%) 

SP 
(%) 

Accuracy 
(%) 

PPV 
High 
Pd 
(%) 

NPV 
High 
Pd 
(%) 

PPV 
Low 
Pe 
(%) 

NPV 
Low 
Pe 
(%) 

K 
value 

I 0.15a 96.4 74.2 81.1 62.8 97.9 7.1 99.9 0.62 
 0.20b 96.4 83.9 87.8 73.0 98.1 10.9 99.9 0.74 
 0.30 92.9 93.5 93.3 86.7 96.7 22.6 99.8 0.85 
 0.40 85.7 96.8 93.3 92.3 93.8 35.3 99.7 0.84 
 0.50 78.6 98.4 92.2 95.7 91.0 50.1 99.6 0.81 
II 0.20 92.9 98.4 96.7 96.3 96.8 54.2 99.9 0.92 
 0.30b 89.3 100.0 96.7 100.0 95.4 100.0 99.8 0.92 
 0.40 78.6 100.0 93.3 100.0 91.2 100.0 99.6 0.84 
 0.50 71.4 100.0 91.1 100.0 88.6 100.0 99.4 0.78 
III 0.20 96.4 79.0 84.4 67.5 98.0 8.6 99.9 0.68 
 0.30 92.9 96.8 95.6 92.9 96.8 37.2 99.9 0.90 
 0.40c 85.7 100.0 95.6 100.0 93.9 100.0 99.7 0.89 
 0.50b 78.6 100.0 93.3 100.0 91.2 100.0 99.6 0.83 
IV 0.07 42.9 100.0 82.2 100.0 79.5 100.0 98.8 0.51 
 0.20 10.7 100.0 72.2 100.0 71.3 100.0 98.2 0.14 
 0.30 b 3.6 100.0 70.0 100.0 69.7 100.0 98.1 0.05 
 0.40 3.6 100.0 70.0 100.0 69.7 100.0 98.1 0.05 
 0.50 0.0 100.0 68.9 - 68.9 - 98.0 0.00 
For equations see: TDR diagnostics evaluation expert panel, 2010 

a Old cut-off value recommended by the manufacturer 
b Cut-off value recommended by the manufacturer  
c S/P ratios between 40 and 50 are considered weakly positive 
d PPV and NPV values calculated for a high prevalence population 31% seropositive rate 
e PPV and NPV values calculated for a low prevalence population 2% seropositive rate 

 

Accuracy was high for tests II and III: 96.7% and 93.3%, respectively. 

Tests II and III showed very good agreement (K=0.92 and 0.84, respectively) 

with the reference test (MAT) (Table 22). Tests I, II and III all had the 

highest accuracy and the best agreement with the MAT when a cut-off of 

0.30 was used for the tests (Figure 7). A very strong positive correlation 

(Pearson correlation>0.89) was observed between the S/P values of the three 

ELISA tests. The highest positive correlation (0.96) was between tests II and 

III. Majority of the samples were tested twice with the same test, and the 

repeatability was shown to be good with all three tests: intra-class correlation 

was 0.92 (n=90), 0.81 (n=63) and 0.89 (n=61) for tests I, II and III, 

respectively. 
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Figure 7 The ROC Curve of four commercial ELISA tests’ S/P ratios using a commercial 
modified agglutination test as the reference test. Published in Felin et al., 2017 (IV), reprinted 
with permission of the copyright holder. 
 

The 90 samples were selected from the study I and included all 43 

positive samples with S/P ratios ≥0.15. The positive samples were from 

slaughter pigs originating from large fattening farms (nine pigs), small 

fattening farms (26 pigs) and from farrow-to-finish farms (eight pigs). The 

number of positive samples decreased from 43 to 37 when using the new cut-

off of 0.20 instead of 0.15 used in test I. This mostly affected the large 

fattening farms: the number of positive pigs decreased from nine to four. 

This did not affect the number of positive pigs from farrow-to-finish farms, 

because most of the positive pigs originating from these farms had high 

(0.30–0.50) or very high (>0.50) S/P values. The new cut-off of 0.2 for test I 

lowered the apparent seroprevalence in large fattening farms observed in our 

study I, when five previously positive samples were re-rated as negative. 

These five samples were also negative when tested with other tests used in 

our present study. However, three out of these five samples had slightly 

raised S/P values also with tests II and III. 
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6 DISCUSSION 

6.1 CONTROLLING PORK-RELATED PUBLIC HEALTH 
HAZARDS DURING MEAT INSPECTION  

6.1.1 OCCURENCE OF THE MAIN HAZARDS IN FATTENING PIGS IN 
FINLAND 

Salmonella spp., Y. enterocolitica, T. gondii and Trichinella spp. are the 

main pork-related biological hazards within the EU (EFSA, 2011). The 

seroprevalences of Salmonella spp. and T. gondii were low in Finland. 

However, we still appear to have some small farms with high T. gondii 

occurrence in pigs. Trichinella antibodies were not detected. The 

seroprevalence of pathogenic Yersinia spp. was the highest of the studied 

pathogens. 

Salmonella spp. 
The seroprevalences of Salmonella spp. were lower than results previously 

reported from other European countries (Lo Fo Wong et al., 2003; Hautekiet 

et al., 2008; Smith et al., 2011; Alban et al., 2012; Wacheck et al., 2012; 

Meemken et al., 2014). This reflects the favourable Salmonella situation of 

pig farms in Finland, Sweden and Norway (EFSA and ECDC, 2018) and is 

consistent with results from the Finnish National Salmonella Control 

Programme.  

Salmonella seroprevalence in study III rose significantly during fattening. 

However, Salmonella seroprevalence at the farms at the beginning of 

fattening was not associated with pig seropositivity at the end of fattening. 

This may indicate that Salmonella infections were most often acquired 

during fattening. During a recent risk analysis, the Finnish Food Safety 

Authority Evira assessed that 34% of Salmonella infections in fattening pigs 

in Finland are attributable to feed (Finnish Food Safety Authority Evira, 

2018).  

The seroprevalence of Salmonella spp. was higher in study III (17% at the 

end of fattening) than in study I (3% at slaughter). Samples were taken 

approximately during the same time period (2012 and 2013 study I, 2012–

2014 study III). The ELISA kits used were practically the same, although 

product name and manufacturer changed between studies. Cut-off values 

recommended by the new manufacturer were slightly different, but because 

the calculation formula of the OD value was changed simultaneously, the 

final results were influenced only minimally. The sample matrix was the 

largest difference influencing the results between studies: meat juice samples 
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in study I and serum samples in study III. Serum samples are shown to result 

in higher OD values than meat juice samples, despite the different dilution 

factor (Vico and Mainar-Jaime, 2011) and this is likely to also explain our 

results. Considering the sample matrix and cut-off value is important 

whenever comparing serological results between studies or countries. 

However, Salmonella seroprevalence, especially in study III, was higher 

than expected considering the results from the Finnish Salmonella Control 

Programme, where the prevalence of Salmonella culture-positive lymph 

node samples at slaughter has been <0.1% and no Salmonella has been 

found in carcass swabs or pork during the 2010s (Anonymous, 2015; 

https://www.evira.fi/globalassets/elaimet/zoonoosikeskus/zoonoosit/taudit

/salmonella/salmovalvontaohj_siat2016paivheinakuu2017.pdf, visited July 

8, 2018). However, OD values of positive samples were considerably low. 

Low-dose infections during fattening with feed- or environment-associated 

Salmonella serotypes may explain the considerably high seroprevalence 

associated with low OD values in positive pigs, while the findings in 

lymphatic tissues at slaughter are rare (van Winsen et al., 2001; Österberg 

and Wallgren, 2008). In addition, the SP of the test in natural infections may 

be far less than 100% (Vico et al., 2010), especially when using low cut-off 

values, in which case the estimated true prevalence decreases close to 0% 

(Reiczigel et al., 2010). However, in our studies, 0.1–1.9% of the pigs were 

seropositive with a cut-off of OD40%. The estimated true seroprevalence 

does not differ greatly from this apparent seroprevalence, as the test is 

expected to be highly specific but less sensitive, with a cut-off of OD40%.   

Recent studies by Casanova-Higes et al. (2017) and Mainar-Jaime et al. 

(2018) found a significant relationship between on-farm Salmonella serology 

and Salmonella shedding at slaughter. However, if we wish to assess the risk 

of shedding at slaughter, reflecting the food safety aspect, a cut-off of OD40% 

would be more suitable (Casanova-Higes et al., 2017; Mainar-Jaime et al., 

2018). Our cut-off corresponds to OD15%, which likely sensitively reflects the 

Salmonella exposure during fattening, but not the shedding at slaughter 

(Methner et al., 2011).  

Our results indicate some level of exposure to Salmonella spp. in pigs 

during fattening, which we cannot find in the lymph nodes in the current 

Finnish Salmonella Control Programme. This is not a food safety issue as 

such, because the vast majority of these pigs most probably do not shed the 

pathogen at slaughter (only 0.1–1.9% had OD%>40). 

Pathogenic Yersinia spp. 
The high seroprevalence of pathogenic Yersinia spp. (57–66%) was expected, 

based on a previous study in Finland, in which the isolation rate of 

pathogenic Y. enterocolitica in slaughter pig tonsils was 52% (Korte et al., 

2004). The occurrence of pathogenic Yersinia spp. in fattening pigs appears 
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to be at the same level in Finland as in the other EU countries (von Altrock et 

al., 2011; Van Damme et al., 2014; Meemken et al., 2014).  

Yersinia-seropositive pigs were detected more often at large fattening 

farms than at farrow-to-finish farms. This is in accordance with a previous 

study by Skjerve at al. (1998) and may result from the limited traffic of live 

animals to farrow-to-finish farms, which seldom buy piglets from other 

farms. Piglets transport Y. enterocolitica to the fattening unit, where it 

spreads effectively during fattening (Virtanen et al., 2012). This may also 

explain our results in study III: Yersinia seroprevalence rose significantly 

during the fattening period and higher within-farm Yersinia seroprevalence 

at the beginning of fattening associated with more seropositive pigs at the 

end.  

However, all tested pigs were Yersinia seronegative at the end of fattening 

at seven (12%) farms in study III and 39 (15%) farms in study I. Two of these 

Yersinia-negative farms were included in both studies (I and III) and 

consequently these two farms tested negative during each of the three 

samplings over a 1.5-year period. Despite the high seroprevalence of 

pathogenic Yersinia spp. in the pork production chain, certain farms have 

recurrently low Yersinia prevalence.  

T. gondii 
The seroprevalence of T. gondii was low (3.2%) in study I and very low 

(0.7%) in study III. Differences between results are presumably due to the 

different ELISA test kits we utilized and to our farm selection. The test used 

in study I was more sensitive in our comparison than the test used in study 

III. 

Study III included farms that slaughter at least 1000 pigs per year. The 

seropositive pigs were sporadic and the overall seroprevalence remained low 

(<1%) during fattening, despite certain changes in individual pig 

seropositivity. Considering the test does not have 100% specificity, the 

estimated true prevalence in study III was close to 0% (Reiczigel et al., 2010).  

These results are in accordance with previous results from Latvia and the 

Netherlands, where the seroprevalences in intensively farmed pigs were 0.4% 

(van der Giessen et al., 2007; Deksne and Kirjusina, 2013). 

Study I also included smaller fattening farms, and the total 

seroprevalence was 3.2%, which is similar to a previous Finnish study 

conducted over 30 years ago (1984) and a Swedish study conducted in 1999 

(Hirvelä-Koski, 1992; Lunden et al., 2002). Most (60%) of the seropositive 

pigs in study I originated from small fattening farms and, on three small-

scale fattening farms, all samples tested were Toxoplasma seropositive. 

Other studies have also shown that pigs from smaller herds have a higher 

risk for Toxoplasma seropositivity (Villari et al., 2009; Limon et al., 2017).  

The seroprevalences of fattening pigs in other European countries have 

varied between 0% to 45%, and the highest seroprevalences are detected in 
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pigs with outdoor access (Kijlstra et al., 2004; Klun et al., 2006; van der 

Giessen et al., 2007; Dubey, 2009; Villari et al., 2009; Deksne and Kirjusina, 

2013; Wallander et al., 2016; Limon et al., 2017). All pigs sampled in study 

III were raised indoors. Information on access to the outdoors was not 

available for all the pigs in study I, but fattening pigs in Finland are raised 

nearly exclusively indoors (Finnish Food Safety Authority Evira, 2011).  

Results show that the prevalence of T. gondii in fattening pigs in Finland 

is generally negligible, however; certain small farms had very high 

prevalences, and biosecurity measures require improvements in these 

locations.  

Trichinella spp. 
Antibodies were not found for Trichinella spp.. This was expected, based on 

results from the digestion analyses performed at meat inspection. Since 

2004, over 25 million pigs have been tested using the digestion method, and 

only one positive pig was detected in 2010 (Finnish Food Safety Authority 

Evira, https://www.evira.fi/elaimet/zoonoosikeskus/zoonoosit/loisten-

aiheuttamat-taudit/trikinelloosi/, accessed in 8 July, 2018).  

Comorbidity with Salmonella spp. and Yersinia spp. 
We observed a clear positive association between an individual pig`s 

seropositivity for Salmonella spp. and Yersinia spp.. This is in contrast with 

findings from other countries (von Altrock et al., 2011; Nathues et al., 2013; 

Powell et al., 2016). However, Nathues et al. (2013) and Powell et al. (2016) 

used a bacterial culturing method, which detects only present infections, 

while serological methods reflect the past exposure of an animal to a 

pathogen, which may partly explain the different results. In addition, none of 

the other studies analysed the association of seropositivity at the individual 

pig level. Vico et al. (2010) speculated the possible cross-reactivity of the 

Salmonella ELISA with e.g. Yersinia enterocolitica antibodies because of the 

use of polyclonal peroxidase conjugate, but the test we used has the anti-IgG 

conjugate. The antigens used in the tests are specific, and no cross-reactivity 

is suspected between Yersinia spp. and Salmonella spp. (Nielsen et al., 

1995). The difference between the results in Finland and other countries may 

be due to the low prevalence of Salmonella spp. infections in Finnish pigs, 

which would affect the epidemiology. This finding indicates that these two 

pathogens have certain similar infection routes (e.g. rodents and wild birds) 

in fattening pigs in Finland.  
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6.1.2 SEROLOGICAL MONITORING AND IMPROVED FOOD CHAIN 
INFORMATION AS RISK-BASED CONTROL TOOLS 

The seroprevalences at the end of fattening and at slaughter were not 

associated with the post-mortem findings of the current batch, which was 

expected. This means that current post-mortem inspection cannot find these 

pathogens and we thus need new tools to control these public health hazards 

in pork.  

Practical aspects of conducting serological monitoring 
EFSA (2011) concluded that improved FCI should be used to risk-

differentiate slaughter batches in relation to the most relevant biological 

hazards (Salmonella spp., Y. enterocolitica, T. gondii, Trichinella spp.). This 

could be done by sampling pigs at farms or at slaughterhouses and analysing 

the within-farm seroprevalences of these pathogens and including these data 

to the FCI. In our study, this was tested in practice by collecting blood and 

meat juice samples from fattening pigs at farms and at slaughterhouses, 

respectively.  

Meat juice samples were more feasible than blood samples as a sample 

matrix. Collecting the meat samples at slaughter was easy and handling the 

samples was simple. In addition, we experienced no problems with 

haemolysis, as with the serum samples. However, meat juice is not a 

homogenous serological matrix and diaphragmatic meat juice samples give 

lower OD values than blood despite the different dilution factor (Vico and 

Mainar-Jaime, 2011; Wallander, Frossling, Vagsholm, Burrells et al., 2015). 

Considering the sample matrix when adjusting the cut-off values is therefore 

important.   

Sampling at the slaughterhouses was far more feasible than sampling at 

the farms. Mainar-Jaime et al. (2018) have suggested that sampling should 

be performed on-farm for each batch to determine beforehand the risk of 

Salmonella spp. shedding at slaughter, because of the variation between 

batches originating from the same farm. However, on-farm sampling would 

be very difficult to conduct in practice. Thus, meat juice sampling at 

slaughter would be the method of choice in large control programmes and it 

is already in use for Salmonella control in Germany and Denmark (Alban et 

al., 2012; QS Qualität und Sicherheit GmbH, 2018). Sampling at slaughter 

indicates the biosecurity level of the farm rather than the risk of a certain 

batch, and this approach would also fit in the Finnish context. 

Serological monitoring of Salmonella spp. 
Results from the Finnish Salmonella Control Programme have been 

successful (Maijala et al., 2005; Finnish Food Safety Authority Evira, 2018). 

However, individual farms show differences in Salmonella seroprevalences 
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and a certain level of Salmonella exposure, which we cannot find within the 

current control programme. The current Finnish Salmonella Control 

Programme operates as an eradication strategy (Finnish Food Safety 

Authority Evira, 2018). Because the cost of Salmonella eradication is very 

high on pig farms, the eradication decision cannot be based only on highly 

sensitive serological monitoring. However, serological monitoring would 

provide us with large-scale farm-level data. With serological testing, we could 

monitor farm-level Salmonella risks and react promptly by improving 

preventive measures at the farms. 

In Finland, serological Salmonella sampling would have only a limited 

positive impact on food safety, because the current situation is already 

excellent. However, we would be able to follow farm-level trends, detect 

changes readily, target microbiological sampling at slaughterhouses and 

locate infected farms more quickly, which may ease eradication, or possibly 

even improve biosecurity measures before expensive eradications are 

needed.  

When allocating farms to risk categories, the targets of the programme 

and corrective actions must be considered. The German and Danish 

serological sampling programmes are part of their reduction strategies, while 

Finland is applying an eradication policy. Consequently, the German and 

Danish categorizations are not directly applicable in the Finnish context. In 

Finland, we could use a modified allocation of farms using the same cut-off 

OD20% as Denmark, but modified corrective actions and modified limits of 

within-farm seroprevalences (5.1.1). For example, if the within-farm 

seroprevalence were 20–40% (Category 2), the farmer would be 

recommended to self-check the biosecurity measures using a specific 

checklist. If meat juice samples were used, approximately 10% of the farms 

would fall within this category in the current Finnish situation. A within-farm 

seroprevalence exceeding 40% (Category 3) would indicate an elevated food 

safety risk, which would result in bacteriological sampling and a biosecurity 

check at the farm in question. Approximately 2% of farms would fall into this 

Category 3 in the current Finnish situation. In the Finnish context, 

subsequent procedures for eradicating the pathogen from a farm follow 

whenever Salmonella spp. is isolated from animals at the farm. This 

modified categorization system is only an example, and it would need to be 

adjusted and optimized after additional data collection. This programme 

could also have a positive effect considering Yersinia spp., as the two appear 

to coexist in the Finnish epidemiological situation.  

Serological monitoring of Yersinia spp. 
We observed huge differences between farms considering within-farm 

Yersinia seroprevalence. By serological monitoring at slaughter, farms with 

low Yersinia prevalence could be found and supported to maintain the 

situation. However, this would also require the possibility of buying piglets 
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from Yersinia-negative farms (Skjerve et al., 1998; Virtanen et al., 2012; Vilar 

et al., 2013; Laukkanen-Ninios et al., 2014). Currently, Y. enterocolitica 

prevalence is high in fattening pigs (especially in the tonsils) at slaughter and 

good slaughter hygiene is therefore a major control measure to reducing 

carcass contamination. However, serosurveillance could be the first step in 

overcoming the huge challenge of Y. enterocolitica in pigs. Surveillance 

would increase our understanding of the occurrence and trends of Y. 

enterocolitica at farms, even if it would not incorporate farm-level control 

measures at first. Serological results in FCI would provide slaughterhouses 

with the possibility of risk-ranking farms according to the Yersinia spp. 

shedding risk or risk of carrying it in their tonsils. Pigs from high-risk farms 

could then be slaughtered at the end of the day, thus improving food safety. 

Serological monitoring of T. gondii 
The true prevalence was negligible in indoor fattening farms slaughtering at 

least 1000 pigs per year and no extensive serological monitoring for T. gondii 

is thus required at slaughterhouses. However, despite the seroprevalence of 

T. gondii being low in general, we found certain farms with 100% 

seroprevalence. Therefore, serological monitoring could be beneficial if 

targeted risk-based small fattening farms and outdoor farms. Serological 

monitoring would enable detecting these farms where improvement in 

biosecurity measures are needed. These farms should be visited and advised 

to improve their biosecurity measures. Carcasses from high-risk farms could 

be frozen or heated until the situation is improved. 

Serological monitoring of Trichinella spp. 
We found no seropositive pigs, so we could not risk-rank farms according to 

their Trichinella risk using serological monitoring. Current regulation 

(European Commission, 2015) requires 10% of the pigs raised in a controlled 

housing system to be tested yearly using digestive methods. However, if the 

risk is negligible, as it is in Finland (prerequisites defined by the European 

Commission, 2015), a Member State can apply for a derogation and 

subsequently exempt pigs raised in a controlled housing system from the 

Trichinella testing. If Trichinella testing is to be lessened, as the legislation 

(European Commission, 2015) enables, then serology could be a feasible way 

for surveying the situation and the effectivity of the controlled housing 

conditions (EFSA, 2011). Serology is more sensitive to detecting light 

infections than the current digestive method (Gamble et al., 1983). 

Surveillance is important, as the parasite is abundant in wildlife in Finland, 

although T. spiralis prevalence has been significantly reduced in recent years 

(Airas et al., 2010; The Zoonosis Centre team, 2012; Oksanen et al., 2018).  
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Serological monitoring as part of the risk-based meat inspection of 
pigs 
As part of the comprehensive pork carcass safety assurance system, 

serological monitoring could be used to allocate pig farms into risk 

categories, for which targeted control measures could be applied. By 

continuously collecting farm-level serological data we could create 

serological farm profiles, which could be used as part of the FCI reflecting the 

food-safety risk of certain batches. Risk-based decisions include additional 

carcass processing, separate slaughter, targeted sampling at the 

slaughterhouse and improved biosecurity measures at the farm. However, 

risk mitigation targets and procedures must be carefully adjusted for each 

pathogen, as described earlier in this chapter.  

A cost-benefit analysis was beyond the framework of this study. It is 

obvious that the suggested serological monitoring would raise the costs of 

official controls, if it were conducted additionally to current controls. 

However, serological analyses are relatively cheap, and all these pathogens 

can be analysed from the same meat juice sample. The cost of serological 

sampling can be estimated at 5€/sample. If we were to sample all 1000 farms 

raising fattening pigs in Finland with 60 samples/farm/year, the total annual 

cost would be 300 000 € for one pathogen. The additional cost of analysing 

more pathogens from the same sample would be less, because the sampling 

and preparation of the sample has already been done. Considering 

Salmonella spp., with this investment we would acquire a huge data (60 000 

samples annually) compared to the current random 3000 lymph node 

samples from fattening pigs. The analysis of current lymph node samples can 

be estimated to cost 75 000 € annually (3000 samples x 25 €/sample). The 

serological Salmonella results could be used to target lymph node sampling 

or even possibly replace it.  

Serological monitoring for Salmonella is already in use in Germany and 

Denmark, and at least one large meat company in the Netherlands 

voluntarily surveys T. gondii serology. We should shift towards this system, if 

we wish official controls to be risk-based and effective at improving food 

safety. Probably, considering the challenges of the industry, the change to 

multi-serology would require the simultaneous change of the entire meat 

inspection process and subsequent reallocation of the resources, which 

would also require changes to current EU legislation (see more in section 

6.2).  

6.1.3 DIFFERENCES BETWEEN COMMERCIAL ELISA TESTS FOR 
THE DETECTION OF T. GONDII ANTIBODIES 

We compared four commercial ELISA tests for the detection of T. gondii 

antibodies in pigs at slaughter with each other and with a MAT as a 

reference. Comparison is challenging, as no reference method with 100% SE 

and SP is available. The MAT was used as a reference test, in the same 



Discussion 

76 

manner as in other studies (Forbes et al., 2012; Steinparzer et al., 2015; 

Wallander, Frossling, Vagsholm, Uggla et al., 2015). It has been shown to 

work even for meat juice samples with low antibody levels (Forbes et al., 

2012). However, it must be noted that the MAT is not a “gold reference test”, 

which influences the result. To overcome this, we also compared the ELISA 

tests with each other.  

The cut-off values provided by the manufacturers varied, and this 

appeared to most significantly influence the results with tests I–III. We 

found a very strong correlation between the S/P values of these three ELISA 

tests, and observed the highest accuracy and best agreements with the MAT 

when the cut-off value 0.30 was used for each of the tests. 

One of the tests (test IV) had poor performance. The antibody levels in the 

diaphragm muscle tissue of naturally infected pigs appear to be too low for 

proper detection by this test. Forbes et al. (2012) have previously shown that 

this test can be used to test meat juice, but the study was performed on 

experimentally infected pigs. Gamble et al. (2005) and Hill et al. (2006) also 

reported that the sensitivity of this test was clearly lower for meat juice 

samples than for serum samples of naturally infected pigs.  

Results show that three of the ELISA tests performed comparably when 

cut-off values were adjusted, while one of the tests could not detect 

antibodies properly. To ensure proper sensitivity, the validation protocols 

should include meat juice samples from experimentally infected animals with 

different infection doses and samples from naturally infected pigs. 

6.2 FOOD CHAIN INFORMATION IN VISUAL-ONLY 
MEAT INSPECTION 

FCI should be the link between the farm and the slaughterhouse in providing 

information related to food safety, animal health and animal welfare. The 

main purpose of the FCI is that the pig producer declares that no restrictions 

exist for normal slaughter considering these issues.  

In addition to food safety and animal health issues, meat is also declared 

unfit for human consumption if it indicates patho-physiological changes or 

anomalies in consistency or in organoleptic quality (European Parliament 

and Council, 2004). As the official EU post-mortem inspection of pigs has 

shifted to visual-only meat inspection, palpation and incision procedures 

should be carried out only for abnormal or suspect carcasses and offal.  Pig 

batches with high frequencies of lesions are unsuitable for visual-only meat 

inspection and should be slaughtered separately, as they need a slower line 

speed and adequate human resources at the trimming line. FCI could be a 

tool for food business operators and OVs to recognize beforehand the 

slaughter batches with high frequencies of lesions, which need additional 

inspections and are not suitable for visual-only meat inspection. 
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Our study showed that FCI could be used to assess the likelihood of 

carcass condemnations in meat inspection. The partial carcass condemnation 

rate of the current batch was best predicted by the partial carcass 

condemnation rate of the pigs from the same farm within one year. However, 

historical meat inspection data cannot predict unexpected variation between 

batches (Harbers et al., 1991). We found that properly reported health 

indicators in FCI could be used to partly overcome this problem. Tail biting 

and coughing were shown to be the best on-farm health indicators predicting 

carcass condemnations. A scoring system could easily be established ranking 

batches using the historical (one-year average) partial carcass condemnation 

rate, and tail biting and coughing as additional indicators. Farmers should 

additionally be advised to separately report in the FCI if they have any doubts 

that the current batch could result in more condemnations than normally.  

In study II, we analysed the authentic FCIs provided by farmers to the 

slaughterhouses and compared them to the meat inspection findings. 

Reports were analysed anonymously and farmers did not know that their 

FCIs were to be included in the study. Our results suggest that FCIs were not 

always accurate. This is in accordance with a questionnaire study by 

Luukkanen et al. (2015), where Finnish OVs reported serious problems in 

receiving accurate FCIs. We found that batches with “nothing to declare” had 

poorer meat inspection results than batches that did declare. Moreover, the 

FCI reports and meat inspection records on tail biting did not correlate, and 

a high level of false reporting appears to have occurred. In study II, reports of 

constant coughing during the last three months prior to slaughter was the 

only factor in the FCI that predicted higher partial carcass condemnation and 

arthritis rates. However, only four batches were declared to have had 

constant coughing, so the result may not be generalizable. 

In study III, we wished to examine associations between on-farm health 

data and condemnations at slaughter using accurate assessments by 

veterinarians, to overcome the problem of inaccurate reporting in study II. 

The main shortage in study III was that on-farm health status was assessed 

for only approximately 100 pigs and the meat inspection findings 

represented the entire batch. Despite this, we found that the fresh tail-biting 

rate at the beginning and the healed tail-biting rate at the end of fattening 

observed by a veterinarian predicted partial carcass condemnations at 

slaughter. Tail-biting victims have previously been shown to express an 

increased incidence of abscesses and arthritis at slaughter, which leads to 

carcass condemnations (Valros et al., 2004; Marques et al., 2012). These 

results together show that a correctly reported tail-biting rate in FCI could be 

used in addition to the information on previous meat inspection results at 

slaughterhouses to predict the condemnations of incoming batches. The 

coughing index in study III was not associated with partial carcass 

condemnations. However, it was defined differently than coughing in study 

II. Declarations of constant coughing during the last three months should 
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result in additional inspections, as it is nonconforming and appears to 

predict a higher frequency of meat inspection findings.  

In a non-peer-reviewed questionnaire, farmers reported inaccuracies in 

FCI due to the time-lag between sending the FCI and the delivery of pigs to 

slaughter, because they often submit the FCI concurrently as they announce 

their intention to send pigs for slaughter (Nieminen, 2015). In addition, 

farmers found it difficult to assess the number of animals in the batch with 

specific lesions (Nieminen, 2015). However, Finnish farmers appeared to 

regard the FCI with high motivation. The majority of respondents believed 

that the FCI currently in use improves food safety and prevents animal 

diseases (Nieminen, 2015).  

These results together show that proper guidelines for FCI reporting are 

needed so that farmers can provide more useful and accurate information. 

However, farmers appear to be willing to perform this duty, as they consider 

FCI important.  

However, despite scoring of the historical meat inspection data and the 

health indicators (constant coughing and increased tail-biting rate), some 

unexpected variation between batches will still occur (e.g. a sudden “bad” 

batch from a “good” farm). This was also shown in our study. These batches 

probably included considerable numbers of remnant pigs collected from 

several compartments of the farm. Such pigs are typically not the best 

individuals. However, when the partial carcass condemnation rate is over 

10%, the farmer should be expected to notice something unusual in the batch 

during fattening. Improving the reliability of FCI reporting, including 

information on irregular slaughter batches and informing farmers why this 

information is important are the only solutions for detecting these remnant 

and outlier batches beforehand. 

To conclude, well-chosen on-farm health indicators (such as healed tail-

biting rate at the end of fattening and constant coughing during fattening) 

together with previous meat inspection results could be used as part of the 

FCI to make decisions regarding the meat inspection procedure: visual-only 

or additional inspections. Slaughterhouses could adjust their thresholds and 

use this information as an automatized scoring system. Farmers would also 

report abnormal batches for other reasons. They must be properly advised to 

carefully report this information. 

Such allocation of slaughter batches is not a food safety issue, but 

important for visual-only meat inspection. It would be beneficial regardless 

of who is conducting the task of condemning meat due to quality issues. 

Currently this is the task of official control. EFSA (2011) suggested a shift to 

visual-only meat inspection and that a meat quality assurance system 

conducted by slaughterhouse operators could ensure the elimination of 

abnormalities due to aesthetic/meat quality grounds. Only the first-

mentioned change was included in the legislation. In our study, we did not 

assess the distribution of the meat inspection task. In a recent study by 

Luukkanen et al. (2015), the majority of red meat slaughterhouse 
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representatives and OVs considered that post-mortem inspections should be 

performed by official auxiliaries employed by an authority to ensure 

consumer confidence. However, 75% of red meat slaughterhouse 

representatives considered redistributing meat inspection tasks essential for 

increasing cost-efficiency, although they were not willing to redistribute 

whole-carcass condemnations (Luukkanen et al., 2015). Considering food 

safety, applying a risk-based approach would be crucial in meat inspection 

(6.1.2). However, if reallocation of current resources is required to finance 

this change, further research is needed to also ensure the meat quality, 

animal health and animal welfare aspects included in current meat 

inspection. 
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7 CONCLUSIONS 

The seroprevalence of pathogenic Yersinia spp. was the highest of the 

studied pathogens. The seroprevalences of Salmonella spp. and T. gondii 

were low. Trichinella antibodies were not detected.  

 

Differences between farms were huge when considering Salmonella spp., 

Yersinia spp. and T. gondii seroprevalences. As part of a comprehensive pork 

carcass safety assurance system, serological monitoring of these pathogens 

could be used to allocate pig farms into risk categories for which targeted 

control measures could be applied. Risk mitigation targets and procedures 

must be carefully adjusted for each pathogen. 

 

Serological Salmonella monitoring would enable us to follow farm-level 

trends and detect changes readily and sensitively. However, this would have 

only a limited positive impact on food safety, because the current situation is 

already excellent.  

 

Considering Yersinia spp., serological results in FCI would provide the 

slaughterhouse with the opportunity of risk-ranking farms according to their 

pigs’ risk of shedding Yersinia spp. or carrying it in their tonsils, and to 

slaughter pigs from high-risk farms at the end of the day.  

 

As the seroprevalence of T. gondii was very low, no extensive serological 

monitoring is needed at slaughterhouses. However, monitoring could be 

targeted to small fattening farms and outdoor farms. Serological results in 

FCI provide the possibility for slaughterhouses to risk-rank farms according 

to their T. gondii risk, and to direct carcasses from high-risk farms to 

freezing or heating. 

 

Serological monitoring of Trichinella spp. is not necessary in the current 

situation, as virtually all pigs are tested at slaughter using the digestive 

methods and the seroprevalence is 0%. However, as routine Trichinella spp. 

testing is to be diminished, serosurveillance could be used to verify the 

effectivity of controlled housing conditions.  

 

The partial carcass condemnation rate for a batch was best predicted by the 

partial carcass condemnation rate of the pigs from the same farm within one 

year. In addition, constant coughing and tail biting at a farm were associated 

with partial carcass condemnations. 

 

On-farm health status indicators (such as tail biting and coughing) together 

with previous meat inspection results could be used as FCI to allocate 
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batches beforehand and to make decisions regarding the meat inspection 

procedure: visual-only or additional inspections.   
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