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Department of Physics

University of Helsinki, Finland

Tenure-track Professor Ewan O’Connor, Ph.D.

Finnish Meteorological Institute, Helsinki,

University of Reading, UK

Reviewers: Professor Janet Barlow, Ph.D.

Department of Meteorology

University of Reading, UK

Assistant Professor Siegfried Schobesberger, Ph.D.

Department of Applied Physics

University of Eastern Finland

Opponent: Professor Lucas Alados Arboledas, Ph.D.

Applied Physics Department

University of Granada, Spain

ISBN 978-952-7276-18-1 (printed version)

Helsinki 2019

Unigrafia Oy

ISBN 978-952-7276-19-8 (pdf version)

http://www.atm.helsinki.fi/FAAR/

Helsinki 2019



Acknowledgements

The research for this thesis was carried out at the Institute for Atmospheric and Earth

System Research / Physics, University of Helsinki. I thank the former head of the

department, Prof. Hannu Koskinen for providing me with the facilities for this work. I

want to sincerely thank the head of the INAR, Prof. Markku Kulmala for giving me the

opportunity to work at the division in the beginning. Also, I am most grateful for Prof.

Tuukka Petj for supervising my PhD thesis, for taking me into BAECC project when I

started my PhD studies, and for always having time for any questions I might’ve had.

I express my sincere gratitude to tenure-track Prof. Ewan O’Connor from the Finnish

Meteorological Institute for supervising my PhD thesis, guiding me in my research and

in scientific writing, and for introducing me to the European community of researchers

from our field.

Since academia was almost completely new environment for me, I wish to sincerely

thank Dr. Ville Vakkari from the Finnish Meteorological Institute for giving me valu-

able advice especially in the beginning of my PhD studies. I equally appreciate Tobias

Marke from the University of Cologne for the relentless effort over several years to

develop our boundary layer classification scheme and for his persistence to get the pa-

per about the topic to get written. I am most grateful for Anna Franck and Ksenia

Tabakova for being the most kind and friendly office mates I could ask for and with

whom I could always exchange ideas. The most exciting research projects I worked

for during my PhD studies was the Cessna flight campaigns. Aside from having had

the chance to sit in a small and cramped airplane while admiring the magical view of

homogeneous boreal forest in every direction, this was the only project where I got the

chance to work outside the office. I sincerely thank Dr. Riikka Väänänen, Katri Leino,

and Janne Lampilahti for organising these campaigns and allowing me to participate

year after year.

I thank my friends Andac, Elina, Juho, Lassi, Lauri, Markus, Mikko K., Mikko S., and

Teppo for the long–lasting friendship. I would like to thank my parents for supporting

me in my studies from the beginning to the end and especially during the years I

studied abroad. Equally, I would like to thank Juha for shaking loose my occasional

ingrained thoughts and first and foremost being an excellent brother. Finally, I would

like to sincerely thank Vilma since without you I might’ve buckled under the stress

while finishing my thesis and while preparing for the defence. Your support made me

feel calm and confident about the whole thing.



Antti Juhani Manninen

University of Helsinki, 2019

Abstract

Global and in–situ wind field observations are crucial for predicting weather and climate. Air

motions and turbulence within the part of the Earth’s atmosphere, which is influenced by the

surface and called the atmospheric boundary layer (ABL), affect aerosol–cloud interactions

and are essential in forecasting poor air quality episodes. During the last few decades remote

sensing instruments, especially Doppler lidars, have been shown to be able to monitor the

vertical profile of the ABL with very high time and height resolution. Doppler lidars can

measure the vertical velocity directly in vertical pointing mode and with a scanning capa-

bility also retrieve the horizontal winds. Further, from Doppler lidar measurements profiles

of estimated turbulent properties, wind shear, and higher order velocity statistics, such as

skewness and kurtosis, can be calculated, which can be used to reveal detailed information

on the ABL vertical structure.

Pulsed Doppler lidar systems using heterodyne detection usually operate in the near–infrared

spectral region. They transmit a laser pulse which scatters from atmospheric particles, mostly

aerosols, and the backscattered part is recorded by the instruments. There are significant

limitations in the sensitivity of pulsed Doppler lidar systems in locations where aerosol load is

low and hence the signal–to–noise ratio (SNR) is low. In theory, sensitivity of a pulsed Doppler

lidar system discussed in this thesis can be improved by averaging the signal, which increases

the SNR assuming the noise is Gaussian. If the noise is not Gaussian the improvement

in sensitivity is effectively limited by the noise characteristics. Also, any bias in the SNR

is propagated into the vertical velocity uncertainties and thus to estimations of turbulent

properties.

This thesis is comprised of research which aimed to properly characterize the noise in the

backscatter signal of a pulsed Doppler lidar system, and to develop methods for correcting

any bias detected in the noise. The instrument’s sensitivity was improved significantly which

increased data availability and usability of the instrument in general. Method for classifying

ABL turbulent mixing was developed as well by combining several Doppler lidars quanti-

ties. The classification method enables estimating the coupling of turbulence to the surface

and/or clouds as well as identifying the sources causing turbulent mixing within the ABL.

Data processing methods developed for correcting the bias in the backscatter signal of the

Doppler lidar system were applied to detect elevated aerosol layers from measurements of

another profiling lidar system. The developed methods were collected into a freely available

software toolbox with the ultimate aim of generating harmonized Doppler lidar products

across European Doppler lidar sites.

Keywords: Doppler lidar measurements, atmospheric boundary layer, data processing
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1 Introduction

The World Meteorological Organisation (WMO) has determined that for high resolu-

tion numerical weather prediction (NWP) models wind speed and direction profiles are

the most important but not yet adequately measured atmospheric parameter (World

Meteorological Organization, 2018). The modest quality or at some areas the complete

lack of observations of the wind field is specified to be the main limitation for improv-

ing these models. Also, the vertical wind component is considered as an important

parameter, but the NWP model spatial resolution needs to be increased drastically

before proper comparison with observations can be made.

To measure wind in the Earth’s atmosphere, most remote sensing methods utilize the

Doppler effect, i.e. Doppler shift. Pulsed Doppler lidars operate in the optical spectral

region and can observe the wind component projected to the line–of–sight of the in-

strument, i.e. the radial velocity v (e.g. Reitebuch, 2012). Pulsed Doppler lidars emit

a laser pulse, which propagates through the atmosphere at the speed of light c, scatters

from atmospheric particles and molecules, and the backscattered part of the pulse is

received and recorded by the instrument (e.g. Sonnenschein and Horrigan, 1971). If

operating in the near–infrared spectral region the backscattered returns mainly origi-

nate from aerosols or cloud particles (Pearson et al., 2009), and scattering due to air

molecules in the near–infrared is weak and negligible (Turner et al., 2016). Radial

velocity can be obtained in terms of frequency by measuring the change between the

emitted laser pulse frequency f0 and the received backscattered part of the laser pulse

frequency f (e.g. Werner et al., 2005), as given by:

v = c∆f
1

2f0
, (1)

where ∆f = f − f0 is the Doppler shift which, in turn, can be written as (Reitebuch,

2012):

∆f = 2 f0
v

c
. (2)

Considering that the usual wind speeds within the Earth’s atmosphere are in the order

of 10-1-102 m s-1, Doppler lidar operating in the near–infrared spectral region (1.5 µm)

must be capable of detecting an extremely small Doppler shift which is in the order of

106-109 Hz in terms of frequency or in the order of 10-15-10-12 m in terms of wavelength.

This sets very high challenges for the instrument. Thus many Doppler lidars systems
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utilize the heterodyne technique where a local oscillator generates a reference signal at

a constant frequency which is then mixed with the outgoing and incoming signal. The

difference of the two is a low frequency signal which then can be accurately measured

(Werner et al., 2005).

The pulsed Doppler lidars achieve eye–safe requirements with low–pulse energy and

high pulse repetition rate (Pearson et al., 2009), but this affects the instrument sen-

sitivity. Especially in clean–air locations, such as polar regions for instance, there are

severe limitations in the performance of these type of Doppler lidars (e.g. Paper I).

Clean–air refers to less atmospheric particles from which the emitted laser pulse can

backscatter, lower signal–to–noise ratio (SNR), and hence reduced data availability

(Papers I-II). Therefore, it is to be noted that in order to measure the radial veloci-

ties with acceptable uncertainties and use them further for scientific observations, the

instrument needs to be characterized properly.

When pointing vertically, Doppler lidars can measure the vertical velocity directly with

very high vertical and temporal resolutions (e.g. Hogan et al., 2009; Schween et al.,

2014). This is very useful for investigating the lowest part of the troposphere, which

is continuously or intermittently influenced by the surface and generally referred as

the atmospheric boundary layer (ABL) (Stull, 1988; American Meteorological Society,

2019a). The part of the ABL, which is stirred by turbulence and where atmospheric

gases, particles, temperature, and momentum are effectively mixed vertically and cou-

pled with the surface and/or clouds, is termed the mixed layer (American Meteorolog-

ical Society, 2019b). The height of this layer, i.e. mixed layer height (MLH), depends

on the strength of turbulent mixing, which, in turn, is generated by buoyancy and/or

wind shear (Moeng and Sullivan, 1994). When present, buoyancy driven turbulence is

the most dominant source for mixing (Oke, 1992). Buoyancy is produced by surface

heating which creates upward plumes of air, called updrafts, or by cloud–top radiative

cooling which creates downdrafts (Garratt, 1994). The up– and downdrafts are clearly

visible in the Doppler lidar vertical radial velocities and by calculating variance and

skewness of the measured vertical velocities the source for the buoyancy generated tur-

bulence can be estimated (Hogan et al. (2009); Harvey et al. (2013); Paper III). In

general, the mixed layer grows when turbulent mixing increases and erodes when no

turbulence is present (Oke, 1992); a process which can be continuously monitored by

Doppler lidar (e.g. Schween et al., 2014).
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Some Doppler lidars have also a scanning ability, which enables the retrieval of wind

speed and direction profiles (Schwiesow et al., 1985; Grund et al., 2001), though hor-

izontally homogeneous wind field has to be assumed (Päschke et al., 2015; Newsom

et al., 2017). When scanning with a low elevation angle (the angle between the hori-

zon and the line–of–sight), observations of low–level winds, wind shear, and low–level

jets near the surface are also possible (e.g. Vakkari et al., 2015; Tuononen et al., 2017).

Wind shear is generated when two layers of air are moving at different speeds and/or to

different directions, or when a layer of air is moving over a stationary surface creating

mechanical friction and turbulent mixing. The amount of turbulent mixing and how

deep the mixing layer can grow depends on various factors: pre–existing atmospheric

profile, the amount of solar radiation reaching the surface and thus the strength of the

heat flux, wind speed, presence of clouds, and from meso- to synoptic-scale weather

phenomena (e.g. Oke, 1992; Garratt, 1994).

In general, better understanding of the processes controlling and influencing the ABL

remains essential for the NWP and climate models (Baklanov et al., 2011). Also, ac-

curate and continuous representation of the whole ABL vertical structure is important

for forecasting poor air quality episodes in dense urban environments (e.g. Anderson

et al., 2012). The complexity of Earth’s atmosphere sets high challenges, though.

The ABL structure exhibits significant temporal and spatial variations (e.g. Deardorff,

1972), which makes measuring and numerical modeling the turbulent mixing and MLH

accurately a very challenging task (Baklanov et al., 2011; Holtslag et al., 2013). The

temporal and spatial scales involved with the turbulent mixing within the ABL are

outside the scales which the models are able to represent (Cohen et al., 2015). Re-

gardless, the models require accurate estimates of turbulent mixing within the ABL in

order to predict local ABL flows reliably (Nielsen-Gammon et al., 2010). ABL param-

eterization schemes thus play an important part in decreasing the uncertainties of the

model prediction and also long–term data sets depicting the vertical structure of the

ABL are required (Baklanov and Grisogono, 2008; Harvey et al., 2015).

Doppler lidars can retrieve several atmospheric quantities with high temporal and ver-

tical resolution, which can be combined to estimate turbulent coupling (Harvey et al.,

2013) and to classify turbulence based on its source (Paper III), and further to develop

ABL parameterization schemes (e.g. Harvey et al., 2015). Cataloguing climatologies

generated from Doppler lidar quantities at various types of sites and environments

different ABL types can be parameterized. Doppler lidar measurements provide also
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an essential contribution for aerosol–cloud interaction studies when combined with an

array of other remote sensing and in–situ observations (Paper V).

This thesis focused on improving the sensitivity, data availability and hence the usabil-

ity of a pulsed heterodyne detection Doppler lidar system especially at high–latitude

and other clean–air locations, and to develop site–independent methods for generating

harmonized Doppler lidar products for cataloguing the ABL vertical structure. The

main objectives for this thesis were:

i to characterize instrument performance and to improve data availability (Paper

I),

ii to improve radial velocity uncertainties and enable robust estimate of turbulent

properties (Paper II),

iii objective identification of the various sources of turbulent mixing (Paper III),

iv combine the developed methods into a software toolbox for processing Doppler

lidar data (Manninen, 2019),

v and to apply data processing methodologies to different instrument types to in-

vestigate aerosol layers (Paper IV).
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2 Methods

Robust measurement uncertainty estimates are vital for any noisy measurements. At-

mospheric measurements are known to be very noisy and characterising the factors

contributing to the noise are especially important before reliable scientific observations

can be made. Majority of the work presented in this thesis concentrates on improving

data processing of Doppler lidar systems.

The methods presented in Papers I-II were applied to a specific Doppler lidar system,

which is briefly described below but, in principal, the methods in Paper I can be

applied to data from other lidar instruments as well which exhibit similar features in

their background signal. The ABL turbulence classification method presented in Paper

III was developed to be applicable with any Doppler lidar system, which provides

vertical and horizontal winds with sufficiently high temporal and vertical resolution.

The data processing methods were created to be as generalized as possible. Hence, in

Paper IV some of the methods developed in Paper I were applied to a different lidar

system, the High Spectral Resolution Lidar (HSRL), which is also described below

briefly.

Halo Photonics Stream Line Doppler lidar is a pulsed Doppler lidar system using

heterodyne detection fibre–optic technology, and operates in the near–infrared spectral

region at 1.5 µm (Pearson et al., 2009). The instrument is eye–safe due to it’s low pulse

energy coupled with high pulse repetition rate and is able to operate continuously and

nearly maintenance–free for months. The operational parameters can be configured

by the user, but usually the instrument operates at 30 m vertical and from 1 to 30

s integration times depending on the environment the instrument is operating at and

has an effective range from about 100 m to about 10 km. There are three versions

available: Stream Line, Stream Line Pro, and Stream Line XR (Paper II). The main

difference between the first two are that the Pro–version is aimed for Arctic (or sim-

ilar) deployments, where the instrument has to withstand temperatures reaching -40

°C. Data processing concepts are the same for all the Halo versions; however details

of the implementation depend on the instrument specifications (See Paper II). The

Stream Line and Stream Line XR have full hemispherical scanning capability, which

allows even very low–level scans (Vakkari et al., 2015). The instrument provides radial

velocity measurements and co–polarized (some versions also cross–polarized) backscat-

tered signal intensity in terms of SNR. In the following sections the Halo Photonics
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Stream Line Doppler lidar is referred simply as Halo DL, and the term Doppler lidar

refers to Halo DL only, if not mentioned otherwise. In the introductory part of this

thesis only the Stream Line Halo DL data was used, but for reasons of convenience.

The methods discussed in the introductory part of this thesis are applicable for all

of the Halo DL versions. For a more detailed description of the instrument reader is

referred to (Pearson et al., 2009) and to Papers I-II.

High spectral resolution lidar (HSRL) is a United States Department of Energy

funded Atmospheric Radiation Measurement (ARM) program’s profiling lidar system

(Eloranta, 2005; Goldsmith, 2016). In Paper IV, some of the data processing method-

ologies initially developed for the Halo DL in Paper I were applied to HSRL measure-

ments taken during a campaign described in Paper V. The aim was to identify ele-

vated aerosol layers (Paper IV). The HSRL is able to measure both backscatter and

extinction profiles simultaneously from the same measurement, thus enabling absolute

calibration at each range bin of the profile. Profiles of optical depth, depolarization

are also available from the system. HSRL system is very sensitive lidar which is able

to track the development and evolution of elevated aerosol layers. Please see Eloranta

(2005) and Goldsmith (2016) for a more in–detail description of the HSRL system.

2.1 Doppler lidar data processing methodologies

This Section discusses the data processing methodologies developed in Papers I-II

for correcting bias in the Halo DL background signal, which is required for estimating

accurate radial velocity uncertainties. In this Section, both of the terms signal and the

abbreviation SNR mean the Halo DL background signal, if not mentioned otherwise.

Calculation of the unbiased air motion variance, as presented in Paper III, is discussed

in Section 2.2. Once vertical extent of the turbulent mixing can be estimated robustly,

it can be used to investigate the vertical structure of the turbulence withing the ABL.

Methods for estimating coupling of the turbulence and identifying the dominant sources

causing turbulence developed in Paper III are discussed in Section 2.3.

2.1.1 Cloud and aerosol filtering from noisy Doppler lidar signal

The ability to robustly discriminate between atmospheric and background signal in

Doppler lidar data is essential for all lidar retrievals. In general, this can be done simply
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by using a SNR threshold. Selection of such threshold is arbitrary but investigating

a sufficiently long data set one can usually determine a value that gives satisfactory

results in most cases. However, if the background noise floor is not completely flat

due to features in the instrumental background signal, a SNR threshold has to be set

so high that the data availability is significantly decreased. Especially at sites where

the aerosol load is low and thus aerosol returns weak, the features in the background

signal can cause bias greater than the atmospheric signal. Papers I-II describes such

features that are present in the background signal of most of the Halo DL units, and

Paper II gives more in–detail description on the causes of these features.

Detection of the bias from the Halo DL background signal requires aerosol and cloud,

i.e. atmospheric signal to be filtered out first since the shape of the background has

to be modeled accurately before it can be corrected. A simple SNR threshold method

is unsuitable since the bias can change the shape of the SNR profile as a function of

range. In the Halo DL measurements, biased SNR profile shape follows the 1st or 2nd

degree polynomial (Paper I), or inverse exponential (Paper II). The shape imposed

by the bias on the SNR profiles is not propagated to the variance of SNR, however.

It is also assumed that when signal is backscattered from atmospheric particles, the

variance in SNR is significantly larger than variance of background noise only and

hence the SNR variance can be used in discriminating atmospheric signal from noise.

A dynamic threshold is searched for by first selecting reference windows from the

range bins that are farthest from the instrument. Atmospheric signal is assumed to

be obsolete in these range bins. Then, SNR variance within the reference windows is

filtered iteratively by using an initial threshold and then increasing the threshold at

each iteration until less than 1% of the variance in the reference windows are filtered.

The variance based filtering captures most of the atmospheric signal but filters out

some background signal as well. The intention is not to extract the atmospheric signal

accurately but to make sure all of the atmospheric signal is filtered out.

Some of the atmospheric signal, though, remains usually as outliers in the filtered

profiles and could cause significant errors in determining the shape of the background.

Thus, an outlier removal method is applied to the remaining screened SNR profiles. The

SNR profiles are modeled with robust bi–square weighted linear regression. The outliers

are detected by using Cook’s distance method (Cook, 1982; Hoaglin and Welsch, 1978).

They are identified by constructing a hat matrix, which is then used for calculating

so called leverage points. Together with the residuals of the bi–square weighted linear
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regression fit, the leverage points are used to calculate the Cook’s distance. Values

in the SNR profiles pre–filtered using the dynamic variance based threshold, which

have the highest Cook’s distance, are then filtered out as atmospheric signal remnants.

After removing the outliers, background only SNR remains. Although this method can

be used to screen background signal in general, if there are no bias in the background

signal or if it has been corrected, the simple SNR threshold method is sufficient and

computationally more efficient.

2.1.2 Step–detection from noisy Doppler lidar signal

Bias in the Halo DL background signal was shown to change from one profile to another

in Paper I as a step–change. Although the step–changes were found to occur after

the instrument performs a background check periodically for determining instrumental

noise, other more random step–changes were observed as well (Papers I-II). The Halo

DL signal, where the atmospheric signal has been screened, is still quite noisy and the

detection of step–changes in the signal is very challenging.

The method developed in Paper I is based on multilevel wavelet decomposition (e.g.

Daubechies, 1992), where the steps are detected by using convolving the background

signal with a suitably selected wavelet, a Haar wavelet in this case. The screened

parts of the signal have to be filled first to produce a coherent background signal field

required by the wavelet decomposition. This is done by fitting 1st or 2nd polynomials to

the background signal or by using robust 2D interpolation. The wavelet decomposition

is repeated selected number of times where approximation and detail coefficients are

produced at each iteration and the approximation coefficients from previous iterations

are used as an input in the next. The approximation coefficients, as the name suggests,

hold the features of the original background signal but due to the nature of convolution,

the features get smoother and smoother at each iteration. Detail coefficients, on the

other hand, get their maximum value at the point where the selected wavelet function’s

and the background signal’s patterns match the most. Eventually, the step–changes

can be detected as peaks in the detail coefficients of the highest selected level (the last

iteration) of the wavelet decomposition. For detecting the step–changes in the Halo

DL background signal, the wavelet decomposition was applied to background signal at

several range bins separately and the detail coefficients from the decomposition were

then summed together. This makes the peaks in the detail coefficients more pronounced
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and they can be detected with a standard peak detection method robustly.

2.2 Vertical velocity statistics unbiased by random noise

As mentioned earlier, Doppler lidars can measure the vertical velocity directly in ver-

tical pointing mode. The variance of the vertical velocity can be used to estimate

turbulent properties (O’Connor et al., 2010). However, the velocity variance (σ2
v),

which the Doppler lidar observes, is the sum of contributions from different sources

that cause variation into the air motions (Frehlich et al., 1998), as given by O’Connor

et al. (2010):

σ2
v = σ2

w + σ2
e + σ2

d (3)

where σ2
w is the variance caused by air motions, σ2

e is the instrumental noise and σ2
d

is the variance caused when terminal fall speeds of particles, which pass through the

measurement volume, change from one sample to the next. In precipitation there is a

wide range of potential terminal fall speeds hence the variation in the mean fall speed

from sample to sample (σ2
d) may be significant. In non–precipitating cases σ2

d can be

assumed to be negligible and thus neglected (O’Connor et al., 2010). So, in order to

measure turbulent mixing in aerosol and cloud, the noise contribution σ2
e has to be

accounted for, which can be achieved by two different previously proposed methods:

A) estimating the radial Doppler velocity uncertainty 〈σe〉 with the method presented

by Rye and Hardesty (1993), calculating its variance 〈σ2
e〉, and using it as a good

approximation for σ2
e (O’Connor et al., 2010), referred as the O’Connor method

hereinafter,

B) using autocovariance methodology to estimate the contribution of σ2
e to the σ2

v

(Lenschow et al., 2000), referred as the Lenschow method hereinafter.

Paper I shows that 〈σ2
e〉 is proportional to the SNR and thus any error in the SNR

calculation provided by the instrument will propagate into the turbulent properties

if method A) is utilized for determining the σ2
w. Paper I presents an automated

background correction method for detecting and removing any bias in the SNR of the
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Halo DL. Paper II builds upon this further by improving the background noise floor

in the SNR of Halo DL.

Ensuring the retrieval of skewness and kurtosis is unbiased by noise is challenging for

both of the methods. Also, there is no standard practise for using method B) for

Doppler lidar data and it requires some assumptions to be made (Bonin et al., 2016).

Thus, in Paper III a method presented by Rimoldini (2014), hereinafter the Rimoldini

method, is applied for the first time to Doppler lidar measurements for calculating

unbiased σ2
w directly from σ2

v and 〈σ2
e〉.

Calculation of unbiased vertical velocity statistics, variance and skewness, are required

for estimating turbulent properties (Lenschow et al., 2012), i.e. the TKE dissipa-

tion rate and turbulence coupling. In previous studies mostly the Lenschow method

has been used when calculating unbiased statistics (e.g. Grund et al., 2001; Tucker

et al., 2009; Schween et al., 2014; Bonin et al., 2016). On one hand, the advantage

of applying the Rimoldini method, as done in Paper III, is that it does not require

any assumptions to be made and it is computationally very cost–effective, unlike the

Lenschow method. On the other hand, both the Rimoldini and the O’Connor methods

utilize the estimated radial velocity uncertainties and thus any error in the uncertainty

estimates will propagate to the unbiased statistics. The assumptions required for the

Lenschow method are the selection of number of lags used in calculating autocovariance

function, and the selection of line fitting method for extrapolating to the zeroth flag.

The number of lags used should be selected so that the time scale still remains within

the inertial subrange (MacCready, 1962) and that the frozen turbulence hypotheses is

still valid (Taylor, 1935). Also, Lenschow method requires high temporal resolution

from the Doppler lidar radial velocity measurements, which becomes a limiting factor

for implementing the method at high latitudes and other locations where aerosol load

is low and where longer integration times have to be used.

Figure 1 shows the vertical velocity unbiased variance in 30 min temporal resolution

calculated with the Rimoldini, O’Connor, and Lenschow methods, and variance calcu-

lated by using a conventional method. An in–depth study, such as Bonin et al. (2016)

conducted, but which used only the Lenschow method, would be required for compar-

ing unbiased statistics calculation methods against a reference measurements from a

3D sonic anemometer placed on a mast at least 100 meters from the surface.
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Figure 1: Time–height plots of vertical velocity variance measured with Halo DL on

17 July 2018 at Hyytiälä, Finland calculated by using a conventional method (a,b)

and by using three methods presented by Rimoldini (2014), O’Connor et al. (2010),

and Lenschow et al. (2000), which provide variance unbiased by noise (c-h). Two SNR

thresholds, -23 db (a, c, e, g) and -28 dB (b, d, f, h), were used to illustrate their impact

on data availability and highlight the differences in the performance of the methods at

the top of the ABL where the SNR is generally low.
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2.3 Bitfield generation

Bitfields are often used for example in satellite remote sensing to combine information

from multiple measurements into one data field and to a scalar value in order to reduce

the vast amount data retrieved by the satellite sensors. In Paper III several Halo

DL quantities and supplementary data is combined into a bitfield, which withholds

the information on the coupling of turbulence to the surface and/or clouds, and on

the dominant sources causing turbulent mixing within the ABL. The Halo DL and

supplementary quantities used in Paper III are converted into binary information

(Table 1) by using threshold values:

bitn(t, r) =

0 if x(t, r) < a

1 if x(t, r) ≥ a
,

where t is time, r is height above the ground level, x is the Halo DL quantity in

question, a the respective threshold, and n is the number of the bit (Table 1). The

ABL classification bitfield (B) is then generated by:

B(t, r) =
N−1∑
n=0

2nbitn+1(t, r), (4)

where N is the total number of bits included into the ABL classification. In Paper

III the bitfield is comprised of ten different bits each specifying a significance of a

particular Doppler lidar or a supplementary quantity and hence the pixels in B can

be, in principal, any scalar between 0 and 1024.

The thresholds in Paper III were taken from literature or found by experimentation

(Fig 2). It is to be noted that selection of a threshold is always somewhat arbitrary.

Even if a threshold value, which classifies a quantity as significant or insignificant and

which works empirically in all locations and conditions, could be defined in theory, there

are always noise in the data caused by various independent factors. For example, high

vector wind shear can be observed during the daytime (Fig. 3). The high shear values

mostly result from highly uncertain Doppler lidar winds retrieved in inhomogeneous

wind field (Päschke et al., 2015; Vakkari et al., 2015; Newsom et al., 2017), and also the

mechanical shear turbulence is assumed to be dominated by buoyancy driven turbulence
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during the daytime (Oke, 1992). Figure 3e displays high vector wind shear values at

about 500 m from 0:00 to about 6:00 UTC. No observable shear–driven turbulence

can be observed though (Fig. 3e). Wind retrieval uncertainties increase significantly

between 8:00 and 19:00 UTC when convection–driven turbulence disturbs laminar flow

within the ABL and distorts the homogeneous wind field (Fig. 3b,d). Accordingly, the

vector wind shear uncertainties, which are propagated from u– and v–wind components

(Paper III), increase as well (Fig. 3f). Once the mixed layer erodes after about 18:00

UTC (Fig. 3g), wind shear (> 0.03 s−1) generates turbulence near the surface below

500 m, which can be observed as high dissipation rate of TKE values (> 10−4 m2 s−3).

As mentioned, the ABL classification bitfield contains large amount of information from

the vertical structure of the ABL. The bitfield is used to generate masks illustrating

turbulence coupling and the most dominant source causing turbulent mixing with high

time and height resolution. The information held by the bitfield is combined by using a

decision tree. In Paper III, a threshold–based approach was applied for its relatively

simple and transparent logic. If additional measurements are available at some location,

they can be added to the bitfield as a new bit (Eq. 4), and the decision tree can be

updated easily.
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Figure 2: Histogram showing the distribution of vector wind shear values within the

ABL and vertical lines depicting a selected threshold value for describing significance

vector wind shear (solid), as well as the 50th (dotted), 75th (dash-dotted), and 95th

(dashed) percentile values calculated from measurements during July 2015 at Jülich,

Germany.

Table 1: Quantities used in generating the ABL classification bitfield

Bit number Bit name / decision Quantity / quantities used

1 Within ABL? Backscatter signal

2 Turbulent? Dissipation rate of TKE

3 Highly turbulent? Dissipation rate of TKE

4 Coupled with the surface? Dissipation rate of TKE

& vertical velocity skewness

5 Unstable at surface level? Sensible heat flux

OR sunrise and sunset times

6 Wind shear? Vector wind shear

7 In cloud? Backscatter signal

8 Cloud–driven? Backscatter signal

& vertical velocity skewness

9 Convective? Dissipation rate of TKE

& vertical velocity skewness

10 Precipitating? Vertical velocity

& backscatter signal
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Figure 3: Time–height plots of wind speed (a), wind direction (c), vector wind shear

(e), TKE dissipation rate (g), and their respective errors (b,d,f,h) calculated from Halo

DL measurements on 31 July 2015 at Jülich, Germany.
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3 Results and discussion

3.1 Improvements in Doppler lidar radial velocity uncertain-

ties and sensitivity

The background features, i.e. varying bias in the Halo DL SNR, mentioned in Section

2.1.1 and described in–detail in Papers I-II, are clearly visible in Fig. 4a. The bias

changes from one profile to the next which appear as step–changes in the time–height

plots of the Halo DL signal. The step–changes propagate into the radial velocity

uncertainties, as can be seen in Fig. 4c. Correcting the Halo DL signal with the

background correction algorithm results to SNR field with effectively removed bias,

if present, and to improved radial velocity uncertainties as can be seen in Fig. 4b,d.

Notable also is the fact the lower the SNR, the higher the impact of the bias to signal

and to radial velocity uncertainties, as can be seen in Fig. 4a at about 100 m above

ground level (a.g.l.) from 11:00 to 13:00 UTC.

The background correction methods do not affect the radial velocities, but do affect

the signal and thus the uncertainty of radial velocities since the uncertainties are pro-

portional to the SNR (Paper I). Figure 4e-f shows a 2D histograms calculated from

radial velocity and signal measured on 5 May 2017 at Hyytiälä, Finland. After the

background correction, the noise floor is improved and centered at one in terms of

SNR+1 (Fig. 4e-f) and is evenly distributed following a normal distribution (see Pa-

per II, Fig. A1). This leads to higher data availability since after the correction

the SNR threshold, which is used to determine between atmospheric signal and noise,

can be set significantly lower than what has been previously suggested (Pearson et al.

(2009): -17 dB, by Päschke et al. (2015): -20 dB) to about -22 dB, or to even -32 dB

with the Halo XR system measurements (Paper II).

As mentioned earlier, at high latitude and other locations where the Halo DL SNR

is generally low due to low aerosol load, longer integration times or averaging has

to be used in order to improve the sensitivity. However, averaging cannot be done

before correcting for the bias or features in the Halo DL background. It is generally

assumed that when the noise is normally distributed the SNR can be improved by

averaging the data and that the sensitivity improves by 1/
√
N, where N is the temporal

averaging window (∆t). Figure 5 shows standard deviation of Halo DL SNR before

(σSNR0) and after (σSNR2) the background correction presented in Papers I-II, one–
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term power series fits, and the calculated theoretical σSNR0 and σSNR2 as a function

of ∆t = (0.5,1,2,...,29,30 min). If averaged before the correction the improvement in

sensitivity is limited by the uncorrected noise floor (Fig. 6a,c,e). More precisely, the

sensitivity is limited by the uncertainty in Halo DL background*.txt files, where the

instrument stores periodical background checks (Paper II). After the correction the

signal can be averaged and the sensitivity is significantly improved reaching nearly the

theoretical limit (Fig 5).

Elevated aerosol layers become also distinguishable after the correction and averaging,

and the height of the ABL can be estimated more accurately even when the SNR is

low (from about 12:00 to 15:00 UTC at about 1500 m in Fig. 6). The background

correction can also improve the Halo DL wind retrievals slightly. In addition to the

increase in data availability, the more robust radial velocity uncertainties propagates

into the uncertainty of wind retrievals (Päschke et al., 2015). Note, though, that there

are other factors that also impact wind retrievals and their uncertainty (Newsom et al.,

2017).
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Figure 4: Time–height plots of signal (a-b) and radial velocity uncertainty estimates

(c-d), and 2D–histogram plots calculated from radial velocity and signal (e-f) before

(a,c,e) and after (b,d,f) the correction of the bias in SNR. Plotted measurement were

taken on 5 May 2017 at Hyytiälä, Finland.
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Figure 5: Standard deviation in Halo DL SNR before (σSNR0) and after (σSNR2) the

background correction (following the notation in Paper II) calculated from a clear–sky

period between two consecutive background checks from 1:00 and 2:00 UTC and data

contained in range gates at about 3000m to 9600 m above ground level on 6 July 2015

at Jülich, Germany as a function of window length used in temporal averaging of the

SNR (∆t). The solid lines represent the one–term power series fits (f(∆t) = a ∗∆tb)

for the σSNR0 and σSNR2 , and the dotted and dashed lines represent the theoretical

values for the σSNR0 and σSNR2 , respectively, when assuming that the σSNR decreases,

i.e. the sensitivity improves, by 1/
√

∆t.
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Figure 6: Time–height plots of signal before (a,c,e) and after (b,d,f) the background

correction in original temporal resolution (a,b) and averaged to 3 minute (c,d) and to

30 minutes (e,f) temporal resolutions calculated from measurement taken on 5 May

2017 at Hyytiälä, Finland.
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3.2 Atmospheric boundary layer classification with Doppler

lidar

In Paper III the turbulent coupling and source classification methods were applied

to one year long data sets from two different sites: a high latitude rural site in boreal

environment at Hyytiälä, Finland, and a mid–latitude semi–rural continental site at

Jülich, Germany. The methods were shown to perform successfully in clear–sky and

cloud–top ABL conditions. In precipitating periods the contribution of varying droplet

fall speeds in a measurement volume to the observed vertical velocities variance (and

hence to turbulent properties as discussed in Section 2.2) should be taken into ac-

count. Such method does not exist yet, so the ABL classification method only detects

precipitation and omits profiles containing any precipitation.

The ABL classification method enables capturing the development of the ABL through-

out the day in–detail. Convective mixing periods and vertical extent of convective mix-

ing can be detected and separated from turbulent mixing caused by other sources, such

as wind shear and cloud–driven turbulence. Calculated sun rise and sun set times were

used as an estimate for stable and unstable ABL conditions near the surface. One must

keep in mind, though, that the ABL does not become unstable or stable immediately

after the sun rise or sun set, respectively, and that for instance atmospheric conditions

and local topography affect the time lag involved in the transformation between the

atmospheric states.

Turbulent mixing can be, of course, caused by a mixture of sources, and thus the

main product of the ABL classification method, the bitfield, holds information on all

of the detected sources. Classification masks (Paper III, Fig. 4, 6) are derived

from the bitfield by using a decision tree logic (Paper III, Fig. 2) and the masks

present the detected dominating source for the turbulence. If auxiliary information is

available, or methods for retrieving Doppler lidar quantities improve, the bitfield can

be supplemented, the decision tree can be updated, and more classes can be added to

the turbulent sources classification.

When applied to a suitably long data set, a climatology can be calculated from the ABL

classification results and diurnal and seasonal cycle of turbulent mixing and vertical

distribution can be studied. An example of such climatologies were presented in Paper

III drawn from the one year long data set measured at the Hyytiälä and Jülich. Three

different height ranges were selected in Paper III: 105-555 m, 585-1035 m, and 1065-
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1515 m above ground level. Clear diurnal cycles of turbulent mixing were observed

at both sites at the lowest height ranges. At the two highest height ranges diurnal

cycles were apparent at Jülich, where as at Hyytiälä they were almost obsolete due

to the difference in latitude. However, the most obvious difference between the sites,

even after the background correction discussed in Section 2.1, was the data availability.

Cloud presence at both sites was relatively high: about 30 % in winter and about 10 %

in summer at Hyytiälä, and about 15 % in winter and about 10 % in summer at Jülich.

Also, there was a significant contribution from cloud–driven turbulence, especially at

Jülich, where also wind shear contributed to more than 10 % of the detected turbulent

mixing during nighttime. The wind shear during nighttime was though to be caused

by low–level jets, which was later investigated by Marke et al. (2018). At Hyytiälä, as

expected, the ABL turbulent mixing was dominated by in–cloud turbulence due to the

high cloud presence already at the lowest height range.

3.3 Identification of elevated aerosol layers from lidar mea-

surements

In Paper IV the step–detection method developed in Paper I was applied to HSRL

backscatter cross section and depolarisation profiles to detect elevated aerosol layers.

The step–detection method was developed mainly to be used for detecting step–changes

in Halo DL noise, as discussed earlier in Sect. 2.1.2, though, the method can be

used also with other type of data with different noise characteristics. The method

detects gradients in the data whose shape match well with the shape of the selected

wavelet decomposition filter. HSRL noise has different characteristics than Halo DL

noise, but elevated aerosol layers appear as step–changes in the HSRL backscatter and

depolarisation profiles. The method was tested with two different case studies covering

clear–sky and cloudy atmospheric conditions. The vertical structure of the ABL was

simplified to six different layers identified from backscatter and depolarisation fields,

where the first and the lowest layer was determined to comprised of the mixing layer

and the residual layer.

The layer detection from the HSRL observations was verified with co–located radio

sounding and airbourne in–situ aerosol measurements. Different layers can be ob-

served clearly in the specific humidity profiles from radio soundings, where the specific

humidity values within a well–mixed layer are apparently homogeneous. In all of the
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cases the ABL was distinguished from elevated aerosol layers with the step–detection

method. This was confirmed by significant differences between the ABL and the ele-

vated layers in terms of aerosol number concentrations measured with the airbourne

in–situ measurements.

3.4 Toolbox for processing Doppler lidar data

In order to address the gap in between the understanding of the ABL physics and their

representation in high resolution climate and NWP models, ”creation of a catalogue

of the more extensive ABL data sets” (Baklanov and Grisogono, 2008) is required.

Doppler lidars have been used extensively to study the ABL structure in various loca-

tions, but the studies have mainly concentrated on a few specific quantities from the

site in question. Calculation of the same quantities from all of the sites is essential

for cataloguing the ABL data sets. Thus, to harness the full capacity of the Doppler

lidar, standardized methods should be applied to measurements from different sites to

provide harmonized Doppler lidar retrievals.

Doppler lidars are being operated by several research groups at least in Europe and

in Northern America, and often algorithms and software developed in–house are in

use to process the Doppler lidar data. Research groups who are new to operating a

Doppler lidar are often forced to develop their own software for handling the data.

A collected catalogue of data sets from different research groups would then contain

Doppler lidar retrievals generated with multiple different algorithms, different temporal

and spatial resolutions, and possible discrepant uncertainties. Clearly there is need for

a freely available software package to produce harmonized Doppler lidar retrievals with

robust and consistent uncertainty estimates. This need led to the development of the

Halo lidar toolbox, which is freely available from GitHub website (Manninen, 2019)

and contains all the required steps to process the Halo DL measurements into Doppler

lidar retrievals by using methods presented in peer–reviewed articles (Fig. 7), among

the ones discussed in Papers I-III.

The toolbox was created initially for Halo DL, but in the future the aim is to expand

the toolbox to encompass Doppler lidar systems from other manufacturers as well. In

order to use the toolbox for processing Halo DL data the instrumental parameters

have to be known and collected into a database where the software can access them

when needed. Some of the parameters are instrument specific (Table 2) and some
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are configurable by the user and are selected to suit the environment where Halo DL

operates.

The toolbox is being actively developed and as of writing of this thesis, Table 3 lists

all of the Doppler lidar quantities and products that the Halo lidar toolbox is able

to generate. Error estimates, which are essential for climate and NWP model data

assimilation, are provided for all of the quantities. The toolbox is intended to be site–

independent so it can be used to generated from multiple sites and then catalogued

together for model data assimilation purposes.

Figure 7: Sketch diagram of the Halo lidar toolbox processing chain illustrating the

data processing steps from the original uncorrected data to the ABL classification

product.
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Table 2: Instrument specific parameters required by the Halo lidar toolbox

Parameter Example (units) Parameter Example (units)

unit number 146 divergence 3.3e-5 (rad)

system Halo Stream Line number of lags 6

latitude 34.4567 (deg) lens diameter 6e-2 (m)

longitude 12.2309 (deg) energy 1e-5

altitude 34.5 (m agl) wavelength 1.5e-6 (m)

focus range 65535 (m) PRF* 15e3 (Hz)

number of pulses 15e3 pulse length 2e-7 (s)

samples per gate 10 sampling frequency 5e7 (Hz)

Nyquist velocity 19.456 (m s−1) beam width 1.5e-4 (m)

*PRF = pulse repetition frequency

Table 3: Doppler lidar quantities and products produced by the Halo lidar toolbox

Doppler lidar product/quantity Method published in

Background corrected SNR Paper I, Paper II

Radial velocity uncertainties Rye and Hardesty (1993), Pearson et al. (2009)

Wind speed and direction Päschke et al. (2015), Newsom et al. (2017)

Vertical velocity statistics O’Connor et al. (2010), Rimoldini (2014)

Dissipation rate of TKE O’Connor et al. (2010)

Vector wind shear ICAO (2005), Paper III

Low level-jet detection Tuononen et al. (2017)

ABL classification Paper III
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4 Review of papers and author’s contribution

Paper I presents a method for correcting features in the background noise of Halo

Photonics Streamline Doppler lidars. The background noise features, which appear as

step changes in the SNR time series and as a shape changes between consecutive SNR

profiles, cause bias. After the bias is removed by the correction, SNR threshold, which

determines the lowest limit for good atmospheric signal, can be set more than two

decibels lower than before the correction. This, in turn, increases the data availability

by as mush as 50 %. The correction also improves the turbulent property estimates

since any bias in the SNR propagates in to the radial Doppler velocity uncertainties

and to turbulent calculations. The algorithm was developed by me and I also wrote

most of the paper.

Paper II presents a novel post-processing algorithm for the Halo Photonics Stream-

line Doppler lidars and improves the sensitivity of the instruments by factor of five

or more. In addition to the background noise features described by the Paper I, the

method improves the instrumental noise floor. After applying the algorithm, the back-

ground noise follows a normal distribution centered at 1 (SNR+1), and thus enables

averaging existing high temporal resolution data or using a longer integration time for

future measurements. The algorithm increases data availability significantly due to

the improved noise floor, improves radial Doppler velocity uncertainty estimates and

turbulent property retrievals. I helped in the algorithm development and contributed

in writing of the paper.

Paper III describes a method to classify main source for causing turbulent mixing

within the ABL. Classification can be done with standalone Doppler wind lidar mea-

surements or together with complementary measurements, such as sensible heat flux,

for example. The classification method and climatology derived from the classification

enable investigation of the processes dominating the turbulent mixing with high time

and height resolutions and provides information on the temporal and spatial variation

of the turbulent mixing within the ABL, respectively. I did most of the coding for

the algorithm, the method was developed together with Tobias Marke with whom we

contributed equally to the writing of the paper.

Paper IV investigates elevated aerosol layers by combining airborne in-situ measure-

ments, radio soundings, and ground based lidar profiles. Several case studies were

chosen, elevated aerosol layers were detected from the HSRL profiles and from ra-
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dio sounding, and co-located and coinciding airborne in-situ measurements were used

to study the aerosol properties with the layers. I contributed in the flight campaign

measurements and data collection, in HSRL data analysis, and in writing of the paper.

Paper V investigated the impact of biogenic aerosols on clouds and climate by com-

bining a comprehensive array of ground based and airborne in–situ measurements of

aerosol properties, and ground based remote sensing measurements for a 8-month long

campaign. During the campaign I compared the in–situ campaign measurements of

aerosol properties to the corresponding continuous measurements carried out at the

SMEAR-II site and contributed to the writing of the paper.
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5 Conclusions and future perspectives

The overarching topic of this thesis was to investigate what is needed for resolving

the ABL vertical structure with continuous high temporal and vertical resolution, and

can the dominating sources causing turbulent mixing be identified. The phenomena

occurring within the ABL exhibit a wide range of temporal and spatial scales: from 1

second to one day, from meters to kilometres vertically, and up to 100 km horizontally

which impose a great challenge for the measurements. In recent years, Doppler lidars

have been shown to have distinctive advantage in measuring the ABL structure since

they are able to operate continuously with very high time and height resolutions. Scan-

ning Doppler lidars can provide also wind profile and can be used to investigate how

representative the vertical profile measurements are horizontally. Although, Doppler

lidars have been used to monitor the ABL continuously at various locations, some no-

table limitations remain in very low SNR clean–air conditions. Papers I-II present

methods for Halo Photonics Streamline Doppler lidar to overcome these limitations

and significantly improve the sensitivity of the instrument. Paper III describes a

site–independent classification method for identifying main sources causing turbulent

mixing with Doppler wind lidar, Paper IV investigates vertical structure of ABL, es-

pecially elevated aerosol layers, and Paper V discusses the advantages of investigating

the ABL phenomena and structure by using multi–instrument approach.

Paper I describes an algorithm for correcting bias in the Halo Doppler lidar measure-

ments. To be able to retrieve turbulent properties from Doppler lidar measurements,

and to investigate the distribution of turbulence within the ABL, the radial Doppler

velocity uncertainties have to be estimated robustly. However, any bias in the SNR

propagates into the radial Doppler velocity uncertainties and further into turbulent

properties. Further, in Paper II the performance of the Halo Doppler lidar is signif-

icantly improved by identifying and correcting deviations in instrumental noise floor,

and thus increasing sensitivity by several factors. It is to be noted, that any im-

provements to the Halo Doppler lidar SNR gained by averaging or by using a longer

integration time can be achieved only after any biases and/or the background noise

floor has been corrected. Data availability is increased dramatically at high latitude

or other clean-air locations because the SNR threshold used to determine atmospheric

signal from background can be set much lower after the corrections. The improved

sensitivity also enables investigation of cirrus clouds and elevated aerosol layers, which

has previously been thought as out of scope of the instrument.
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After the corrections, the Halo Doppler lidar measurements can be used for retrieving

turbulent properties and other quantities, such as vector wind shear and vertical ve-

locity skewness. Paper III describes a scheme which combines these retrievals and,

if available, complementary measurements and identifies the dominant sources causing

turbulent mixing within the ABL. The site–independent method can discriminate be-

tween buoyancy and mechanical friction driven turbulent mixing and is it connected to

the surface, to clouds, or neither. The main outcome is a classification bitfield, where

each bit contains information on the retrieved lidar and complimentary quantities. The

bitfield is given in time—height dimensions with highest temporal and vertical resolu-

tions of 3 minutes and 30 meters (depending on instrument parameters), respectively.

Two classification masks can be produced from the bitfield: 1) presences of turbulent

mixing and its association to clouds, surface or neither, and 2) identified dominant

sources for turbulent mixing. These fields will provide information with high temporal

and vertical resolution on the vertical structure of turbulence within the ABL. A cli-

matology describing vertically resolved diurnal and seasonal cycles of turbulent mixing

can be derived by applying the ABL classification scheme to sufficiently long data set.

The developed data processing methodologies were applied to profiling HSRL lidar

measurements as well. In Paper IV a step–change detection method based on wavelet

decomposition, which was presented in Paper I, was successfully used to detect ele-

vated aerosol layers. Several separate layers were identified and elevated layers were

discriminated from the ABL. Layer separation together with co–located and coincident

airborne in–situ, and radio sounding measurements enabled in–detail investigation of

aerosol properties in each separate layer and their vertical distribution of aerosols,

which is essential for direct and indirect radiative forcing studies.

Doppler lidars, like many remote sensing instruments, output an immense amount

of data which can be processed into multiple stand–alone scientific observations and

data products. In order to reliably compare observations from different sites and en-

vironments, the data products must be harmonized and be generated with the same,

preferably, peer–reviewed methods. At the time of writing this thesis, the Halo lidar

toolbox has been tested already at several sites and has been used to collect ABL data

sets and climatologies. These data sets reveal essential information on the vertical

transport within the ABL. Though, to fully reveal the ever developing ABL struc-

ture and atmosphere–surface exchanges, a holistic multi–instrument synergy approach

is required, such as described e.g. by Paper V, and preferably be carried out con-
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tinuously where co–located measurements can be processed into synergetic scientific

observations.
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