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ABSTRACT
We present a new power spectrum emulator named EuclidEmulator that estimates
the nonlinear correction to the linear dark matter power spectrum depending on the six
cosmological parameters ωb, ωm, ns, h, w0, and σ 8. It is constructed using the uncertainty
quantification software UQLab using a spectral decomposition method called polynomial
chaos expansion. All steps in its construction have been tested and optimized: the large high-
resolution N-body simulations carried out with PKDGRAV3 were validated using a simulation
from the Euclid Flagship campaign and demonstrated to have converged up to wavenumbers
k ≈ 5 h Mpc−1 for redshifts z ≤ 5. The emulator is based on 100 input cosmologies simulated
in boxes of (1250 Mpc/h)3 using 20483 particles. We show that by creating mock emulators
it is possible to successfully predict and optimize the performance of the final emulator prior
to performing any N-body simulations. The absolute accuracy of the final nonlinear power
spectrum is as good as one obtained with N-body simulations, conservatively, ∼1 per cent for
k � 1 h Mpc−1 and z � 1. This enables efficient forward modelling in the nonlinear regime,
allowing for estimation of cosmological parameters using Markov Chain Monte Carlo methods.
EuclidEmulator has been compared to HALOFIT, CosmicEmu, and NGenHalofit,
and shown to be more accurate than these other approaches. This work paves a new way for
optimal construction of future emulators that also consider other cosmological observables,
use higher resolution input simulations, and investigate higher dimensional cosmological
parameter spaces.

Key words: methods: numerical – methods: statistical – cosmological parameters – large-
scale structure of Universe.

1 IN T RO D U C T I O N

Next generation cosmological surveys of large-scale structure such
as DES1 (The Dark Energy Survey Collaboration 2005), Euclid2

(Laureijs et al. 2011), LSST3 (LSST Science Collaboration 2009),
and WFIRST4 (Green et al. 2012) will exploit the highly nonlinear
domain in order to vastly improve upon current precision estimates
of cosmological parameters coming from cosmic microwave back-
ground (CMB) experiments such as Planck (Tauber et al. 2010;
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Planck Collaboration XIII 2015) and WMAP (Bennett et al. 2003).
Euclid, to be launched by ESA in 2021, will measure the matter
distribution in the Universe over most of its cosmic history (up to
a redshift z ≈ 2.3). Dark matter (DM), dark energy, and neutrino
mass are currently the biggest challenges to modern physics. Euclid
will be one of the first missions to shed light on this dark sector,
provided it manages to fully exploit the highly nonlinear scales of
this large-scale structure. It is not just an observing challenge, but
also a theory challenge that is laid down by these new large-scale
structure surveys.

The theory delving into this highly nonlinear domain is ex-
tremely complex and computationally expensive as the desired
level of accuracy is currently only achieved by cosmological N-
body simulations. Such simulations are very expensive since both
large simulation volumes and large numbers of particles are needed
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to reach the required precision. It is therefore mandatory to have
theoretical tools able to much more rapidly predict cosmological
observables on these small, highly nonlinear scales at an accuracy
level of better than 1 per cent (Huterer & Takada 2005). Even
elaborate perturbation theory techniques break down below scales
of x � 10 h−1 Mpc or k � 0.6 h Mpc−1 (Carrasco et al. 2014).
Fast, accurate, and easy-to-use emulators like EuclidEmulator
presented in this paper are critical to the success of large-scale
structure surveys.

Cosmic emulators provide a fast alternative to reliably predict
cosmological observables, needing only a very small number
of high-precision N-body simulations during their construction.
Recent examples include FRANKENEMU, based on the Coyote
Universe simulations presented by Heitmann et al. in Heitmann
et al. (2010a,b); Lawrence et al. (2010b); Heitmann et al. (2014);
CosmicEmu (Lawrence et al. 2010a), based on the Mira-Titan
simulation suite discussed in Heitmann et al. (2016); Lawrence
et al. (2017); and the Aemulus project introduced by DeRose,
McClintock, Zhai et al. in DeRose et al. (2018); McClintock
et al. (2018); Zhai et al. (2018). Emulation makes use of pre-
evaluated simulations for a relatively small set of cosmologies in
a given parameter space. Having these data available, a surrogate
model for a desired cosmological observable can be computed.
This surrogate model computes the desired quantity for a given
input cosmology within fractions of a second on a usual desktop
machine.

Applications, such as Monte Carlo approaches for parameter
space searches and forward modelling of cosmological observa-
tions, become feasible. This then also allows for likelihood sampling
and thus for forecasting of Fisher matrices and Kullback–Leibler
divergences (Kullback & Leibler 1951; Amendola et al. 2018).
Cosmological emulators can hence be used to accurately estimate
the tightness of an error ellipsoid (referred to as ‘Figure of Merit’),
and thus are an important tool to maximize the science output of
such large-scale projects.

Baryonic effects, such as cooling and feedback, complicate the
study of matter clustering at medium and small scales because so far
there is no self-consistent treatment of the relevant processes in the
cosmological context. Recent hydrodynamical simulations report
a suppression of power of the order of 10–30 per cent at medium
scales (0.2 < k < 10 h Mpc−1) followed by a strong enhancement
at very small scales (k > 10 h Mpc−1) (Van Daalen et al. 2011);
the latter is a consequence of baryon cooling and star formation
in the halo centres. While most simulations reproduce this general
trend, there is currently no agreement at the quantitative level. Some
simulations predict a relatively small suppression affecting modes
above k > 1 h Mpc−1 only (Hellwing et al. 2016; Chisari et al.
2018; Springel et al. 2018), others show a much stronger effect
impacting modes above k > 0.1 h Mpc−1 (Van Daalen et al. 2011;
Vogelsberger et al. 2014; Mummery et al. 2017).

The lack of agreement between different hydrodynamical simu-
lations poses a serious challenge for future weak lensing and galaxy
clustering surveys. Only if all baryonic effects can be controlled at
the level of a few per cent will it be possible to fully exploit the
potential of future galaxy surveys like Euclid. Recently, it has been
shown that the amplitude of the baryon power suppression can be
constrained with X-ray and Sunyaev–Zel’dovich observations of
gas around galaxy groups and clusters (Schneider & Teyssier 2015;
McCarthy et al. 2017; Mummery et al. 2017). This means that it
is possible to come up with models to parametrize baryonic effects
and calibrate them against observations (Semboloni et al. 2011;
Zentner et al. 2013; Schneider & Teyssier 2015; McCarthy et al.

2017). These models can be encoded in a baryonic correction to the
nonlinear power spectrum (sometimes referred to as the baryonic
boost factor) that we hope to add to the analysis at a later stage.

Davis & Peebles (1983), Kaiser (1984), Bardeen et al. (1986),
and others have shown that galaxies cluster significantly differently
than DM and hence a thorough understanding of this so-called
galaxy bias is crucial in order to compare observations to theoretical
predictions based on DM simulations. While this bias is not part
of the work presented in this publication, in the third paper of the
Aemulus project series (Zhai et al. 2018) an emulation approach for
the galaxy correlation function (and accordingly for the galaxy bias)
is presented. They show that these quantities can be emulated by
adding the relevant parameters to the cosmological parameter space,
assuming that the halo occupation distribution (HOD) approach is
sufficient to model the galaxy bias.

In this paper we present a new cosmic emulator for the nonlinear
correction factor, i.e. the ratio between the nonlinear and the linear
contribution of the matter power spectrum. This quantity is advan-
tageous for three reasons: first, emulating the nonlinear correction
factor is more accurate than emulating the power spectrum directly.
Recall that the linear power spectrum can be computed exactly
using Boltzmann solvers like CAMB (Lewis, Challinor & Lasenby
2000) or CLASS (Blas, Lesgourgues & Tram 2011) and hence the
product of such a linear power spectrum and an emulated nonlinear
correction is more accurate than a directly emulated nonlinear
power spectrum. Secondly, full transparency for all steps involved
in the power spectrum estimation is maintained, as both the linear
power spectrum and its nonlinear correction are accessible in the
entire emulation process. Thirdly, as the nonlinear correction factor
is multiplied by a linear power spectrum, the latter may feature
additional physics that is not included in the nonlinear correction.
As an example, a nonlinear correction factor emulated based on
the six-parameter model (as laid out in this paper) still allows for
a final nonlinear power spectrum that includes neutrino physics or
general relativistic effects to linear order. Furthermore, the nonlinear
correction factor approach provides a framework that can be easily
extended at a later stage. For example, an additional correction
describing the aforementioned baryon effects could be readily added
to a future version of the emulator. For now we focus on the six-
parameter model inspired by Planck2015 (Donzelli, Dor & Gregorio
2016) including the baryon density ωb, the matter density ωm, the
spectral index ns, the reduced Hubble parameter h, the dark energy
(DE) equation of state (EoS) parameter w0 and the variance σ 8

in a first step. We leave further parameters that quantify mostly
deviations from standard �CDM (Lambda cold dark matter) models
(as e.g. time varying DE EoS wa, neutrino density ων or primordial
non-Gaussianity of the local type fNL) to subsequent studies.

In contrast to prior emulators (Heitmann et al. 2010a,b; Lawrence
et al. 2010b; Heitmann et al. 2014, 2016; Lawrence et al. 2017;
DeRose et al. 2018; McClintock et al. 2018; Zhai et al. 2018)
that use Kriging (Santner, Williams & Notz 2013), a Gaussian
process interpolation technique, we use regression between the
sample cosmologies using sparse polynomial chaos expansion
(SPCE), discussed e.g. in Blatman & Sudret (2011). Choosing
this emulation technique we decrease the global maximal error
of our emulator compared to a Kriging emulator. As we will
find in Section 3, a sample of the cosmological parameter space
[which in the field of uncertainty quantification, from now on
abbreviated as UQ, is commonly referred to as the experimental
design (ED)] with 100 points being enough to achieve a global
maximal emulation-only error (EOE; i.e. the relative error between
the emulated nonlinear correction spectrum and the nonlinear
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correction spectrum computed from a full N-body simulation) below
1 per cent. In order to assess how the uncertainties on the input
parameters affect the output observables, we use a state-of-the-art
uncertainty quantification software calledUQLab (Marelli & Sudret
2014).

Further, we are the first to apply pairing-and-fixing techniques
(Angulo & Pontzen 2016) together with an extension of the
algorithm presented in Jing (2005) on piece-wise cubic spline (PCS)
mass assignment (Sefusatti et al. 2016) to pre-process the input
cosmological simulations. This strategy allows us to drastically
reduce numerical effects such as computational cosmic variance in
the low k regime and aliasing effects near the sampling Nyquist
frequency.

In this work we mainly focus on the emulation strategy and how
it can be optimized. As the power spectrum is a very fundamental
quantity and because it is very natural to emulate, we choose it as
our observable of interest. Emulation of other observables can and
will be investigated in subsequent work.

This paper is structured as follows: in Section 2 the input simu-
lations of the emulator and the applied optimization techniques are
discussed. Then, in Section 3, we investigate the actual construction
and calibration of the emulator whose performance is assessed
in Section 4. We summarize and conclude in Section 5. We list
the codes and acronyms used in this work together with short
explanations in the ‘Glossary’ section.

2 IN P U T C O S M O L O G I C A L S I M U L AT I O N S

For the construction of an emulator, a full suite of high-quality
cosmological simulations serves as the input data set. As will be
discussed in Section 4, in our approach, the simulation errors are
the dominant contribution to the uncertainties in the final emulated
nonlinear correction. As a consequence, the production of these data
is not only very expensive but also challenging considering the tight
bounds of 1 per cent on the power spectrum estimation set by the
Euclid mission. Here, we describe a number of applied optimization
techniques that allow us to reduce the computational time by roughly
a factor of 5 compared to a standard N-body simulation approach
without any decrease in the quality of the data.

The EuclidEmulator predicts the nonlinear correction
B(k, z) of the DM power spectrum defined as

B(k, z) := Pnl(k, z)

Plin(k, z)
, (1)

which divides the nonlinear by the linear DM power spectrum.
An example of nonlinear correction is shown in Fig. 1, where
the expected (Eisenstein et al. 2005; Crocce & Scoccimarro 2008)
damping and broadening of the Baryon acoustic oscillation (BAO)
wiggles are evident. On k � 0.1 h Mpc−1 there is a clear nonlinear
suppression of power corresponding to pre-virialization (Davis &
Peebles 1977; Peebles 1990; Jain & Bertschinger 1994), which can
also be understood as the nonlinear growth of voids at these scales.

The quality and performance of the emulator are highly depen-
dent on the sampling of the cosmologies for which the N-body
simulations are run. This sample of input cosmologies is called the
ED. In this section the simulation strategies for the computation of
the ED are explained.

2.1 Simulation of the ED

The ED was computed performing N-body simulations of the non-
linear matter power spectrum for a sample of 100 input cosmologies

Figure 1. The nonlinear correction to the power spectrum of the Euclid
reference cosmology at different redshifts. While the overall behaviour of the
nonlinear correction is smooth (top panel), a zoom-in (bottom panel) reveals
clear structure like the pre-virialization dip and the nonlinear suppression
of the linear baryon acoustic oscillations (BAOs; indicated by the red line
in the bottom panel). In the bottom it is nicely visible how the nonlinear
features become more and more distinct over time. The grey dashed vertical
lines make clear that the minima of the nonlinear damping features coincide
perfectly with the BAO maxima.

Table 1. Cosmological parameters of the Euclid reference cosmology.

�b �m ns h w0 σ 8

0.049 0.319 0.96 0.67 −1.0 0.83

using the code PKDGRAV3 (Stadel 2001; Potter & Stadel 2016).
Each simulation started at the initial redshift zi = 200 and evolved up
to the final redshift zf = 0 in 100 base time-steps (smaller individual
substeps are also used). Further details about the simulations will
be discussed in Section 2.2. As our surrogate model emulates the
nonlinear correction, the last step of the process in building the ED is
to compute the nonlinear correction for each simulated cosmology
(further explanations in Section 2.2.4).

Convergence testing of the power spectrum (see Appendix C)
was performed on the Euclid reference cosmology (Table 1) for
which we had available a much higher resolution simulation (part
of the Euclid Flagship simulation campaign, see Potter, Stadel &
Teyssier 2017). However, the results at this particular reference
cosmology are not included in the ED. In Fig. 2 the set of 100 + 1
nonlinear correction curves (including the nonlinear correction of
the Euclid reference cosmology) corresponding to the 60th time-
step (equivalent to a redshift z ∼ 0.5) is shown.

2.2 Cosmological N-body simulation

The matter power spectrum is well understood to linear order, i.e.
in the regime where the DM overdensities in the Universe are
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Figure 2. The ED used as input for the construction of the EuclidEm-
ulator: nonlinear correction curves for each input cosmology and the
Euclid reference cosmology (red line with diamond markers) at output step
60 (roughly z ∼ 0.5, depending slightly on the cosmology). The colour bar
labels the 100 different cosmologies in the ED via their IDs. It is clearly
visible that the Euclid reference cosmology is reasonably near the centre of
the parameter space as all nonlinear corrections of the input cosmologies
scatter nicely around it. The black oscillatory curve in the lower panel
indicates the BAO at high redshift, as in Fig. 1.

small enough to allow a valid description in terms of linearized
fluid equations. Apart from higher order perturbative approaches,
there are no precise analytical means to calculate the nonlinear
power spectrum. Several codes provide fast computations of these
higher order corrections (Crocce, Scoccimarro & Bernardeau 2012;
McEwen et al. 2016; Fang et al. 2017) but all of them break down
in the weakly nonlinear regime (Carlson, White & Padmanabhan
2009). This is where N-body simulations come in. These codes are a
direct first principles approach for simulating the process of cosmic
structure formation by numerically evolving the density field.

2.2.1 The PKDGRAV3 N-body code

The main cost of producing an emulator of the nonlinear power spec-
trum is in performing the needed simulations over the cosmological
parameter space. For this reason, it is important to have available a
fast and accurate N-body code. We have used the publicly available
(Potter & Stadel 2016) N-body code PKDGRAV3 by Potter et al.
(2017) and Stadel (2001). PKDGRAV3 is a parallel fast multipole
method tree code, which uses a block-step multiple time-stepping
scheme for the integration of the equations of motion for the
particles. It uses 5th order multipole expansions of the potential
in calculating the force due to all the other particles, as well as for
the calculation of periodic boundary conditions.
PKDGRAV3 has been validated (Schneider et al. 2016) against

two other well-established N-body codes, namely GADGET3 (for an
older version of the code, see Springel 2005) and RAMSES (Teyssier
2010). From this comparison, we know that the absolute accuracy of
power spectra generated with PKDGRAV3 is better than 1 per cent
for k � 1 h Mpc−1 and z � 1 (at z = 0, 1 per cent accuracy is
achieved up to 6 h Mpc−1). PKDGRAV3 is very memory efficient,

allowing for large simulations to fit on a relatively small number of
nodes. In our case the 20483 simulations fit comfortably on 16 nodes.
Each simulation on 16 nodes (each node having 64 GB of RAM, 16
cores, and no GPU) took almost exactly 3 days to complete. This
adds up to 190 000 node hours to complete all 2 × 100 simulations
used as input for our emulator (the factor of 2 comes from the
pairing-and-fixing described in Section 2.2.2).

2.2.2 Pairing-and-fixing of initial conditions

A common issue in power spectrum estimations in numerical
simulations is the computational cosmic variance arising from the
finiteness of the simulation box: very small Fourier modes (or
equivalently very large physical distances) are undersampled. This
leads to a loss of information or, put differently, to a large variance
in statistical quantities like the power spectrum. We do not want to
include any contributions due to this effect within our emulator.

We have used two techniques to reduce contributions from
this sampling variance for the suite of input simulations. First,
it is possible to reduce these contributions at the linear level by
computing the nonlinear correction in a specific way, namely by
dividing the nonlinear power spectrum at redshift z by the properly
rescaled initial output power spectrum of the very same simulation.
Here, a properly rescaled initial power spectrum is obtained by
taking the linear power spectrum at redshift z = 0 and scaling it
back to the initial redshift zi using the linear growth factor. However,
due to mode coupling in the nonlinear evolution, the sampling
variance still propagates somewhat from larger to smaller scales.
This phenomenon adds a sample variance contribution to the power
spectrum that remains despite the described division procedure.
Secondly, to further improve on this, we apply the method of phase
pairing and power spectrum amplitude fixing (hereafter ‘pairing-
and-fixing’) described in Angulo & Pontzen (2016). This method
is able to drastically reduce the computational cosmic variance and
shall briefly be reviewed here: we use a fixed, linear input power
spectrum Pi (computed, e.g. with CLASS) and draw the initial
overdensity fields δi,lin that can be decomposed into a magnitude
|δi,lin| and a phase θ i according to the probability distribution
function given by

P (|δi,lin|, θi) =
∏

i

1

2π
δD(|δi,lin| −

√
Pi) , (2)

with δD being the Dirac delta function and the index i labels
the Fourier modes. This probability distribution function identifies
uniquely the magnitude of δi,lin (it is ‘fixed’) while the phase is still
uniformly random between 0 and 2π such that one obtains

δi,lin =
√

Pie
iθi . (3)

For a comparison between paired-and-fixed simulations against
traditional Gaussian random initial condition-based simulations,
we refer the reader to Appendix D. Following this algorithm, we
generate two initial conditions per set of cosmological parameters,
both having the same magnitudes |δi,lin| = √

Pi but the phases being
shifted by π with respect to each other, i.e. we draw the first phase
θ i, 1 randomly and set θ i, 2 = θ i, 1 +π for the second initial condition.
For the generation of each initial condition, we use the transfer
function at z = 0 (from CLASS) and scale it back to high redshift
(zi = 200). Particle displacements are then set using the Zel’dovich
approximation (ZA). We then perform a simulation for each of the
two initial conditions and measure the power spectra.

ZA was chosen over 2LPT for computing the displacement field
due to the fact that a version of PKDGRAV3 that correctly accounted
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for relativistic fluids with 2LPT was not available at the time.
Current development versions of PKDGRAV3 address this and will
allow us to avoid the very high redshift starts using ZA, thereby
minimizing systematic effects due to discreteness without loss of
accuracy. In principle, 2LPT starts at lower redshift are favoured
and will be considered in future work.

The resulting power spectra are then averaged (‘paired’) and
the nonlinear correction is subsequently computed from the paired
power spectra (for a deeper discussion of this nonlinear correction
computation, see Section 2.2.4). We find that, on large and interme-
diate scales where computational cosmic variance poses a problem,
a nonlinear correction computed with this algorithm is comparable
to a nonlinear correction coming from a power spectrum ensemble
averaged over 10 realizations. For a more detailed analysis of this
algorithm and its performance, we refer to Angulo & Pontzen (2016)
and Pontzen et al. (2016). We found that we could reduce the
computational effort by at least a factor of 5 using this method
of pairing fixed simulations over conventional ensemble averaging.

2.2.3 4th-order mass assignment

As the code PKDGRAV3 evolves particles in a tree, their mass needs
to be assigned to a grid whenever the power spectrum is computed.
The mass assignment scheme has a non-negligible impact on the
quality of the power spectrum, particularly on nonlinear scales.
While 2nd- and 3rd-order (cloud-in-cell and triangular shaped
cloud) mass assignment schemes are widely used in simulations,
we use 4th-order PCS mass assignment as in Sefusatti et al.
(2016). Although the time required for the mass assignment with
this technique is increased, the errors in the power spectrum are
substantially reduced.

2.2.4 Post-processing: computing the nonlinear correction

The main advantage of emulating the nonlinear correction over
full power spectrum emulation is that B(k, z) = 1 on linear scales
for all redshifts. This allows one to multiply it by a linear power
spectrum that includes more physics on these large scales than can
be explained by the relatively limited six-parameter model used for
the nonlinear correction computation itself (a prominent example is
given by the superhorizon damping of the matter power spectrum
captured, e.g. by the Boltzmann codesCAMB andCLASS). An added
benefit is that emulating the logarithm of the nonlinear correction
appears to be almost an order of magnitude more precise than
emulating the raw power spectrum, as is shown in Fig. 3 and in
Section 3.

Having access to both the linear power spectrum from Boltzmann
solvers like CAMB or CLASS and the power spectra from N-body
simulations at all time-steps, there are two different possible ways
to compute the nonlinear correction:

(i) Take the nonlinear power spectrum simulated by the N-body
code and divide it by the linear input power spectrum computed
with a Boltzmann solver like CAMB or CLASS.

(ii) Divide the nonlinear power spectrum at redshift z by the
properly rescaled quasi-linear power spectrum at the initial redshift
zi of the N-body code.

We follow the second approach for two reasons: first, this is the
only approach where the nonlinear correction is actually equal
to 1 (as visible in Figs 1 and 2) for low k-values as required by
the argument stated above. This would not be achieved if one

divided by the linear power spectrum computed with a Boltzmann
solver. Secondly, as mentioned in Section 2.2.2, the former division
already cancels out a considerable amount of computational cosmic
variance.

We show in Section 3.4 that only 100 cosmologies need to be
simulated to achieve a maximal error of less than 1 per cent over
the k-range of interest 0.01 h Mpc−1 ≤ k ≤ 5 h Mpc−1. We run two
simulations per ED sampling point in a 1250 h−1 Mpc box with
20483 particles, each with fixed initial conditions starting at a
redshift zi = 200 and evolving to the present day (zf = 0). We
produce nonlinear 1D power spectrum outputs for 100 time-steps
(equidistantly spaced in time) along the way. In a next step we
average the power spectra over each pair of simulations (P1 and
P2) and subsequently compute the nonlinear correction spectrum
at a certain redshift z by dividing the averaged nonlinear power
spectrum at redshift z by the averaged nonlinear power spectrum at
initial redshift. We thus compute

B(k, z) =
1
2 [P1(k, z) + P2(k, z)]

1
2 [P1(k, zi) + P2(k, zi)]

(
D1LPT(zi)

D1LPT(z)

)2

(4)

instead of averaging the nonlinear corrections themselves (in this
equation, D1LPT denotes the scale-independent 1LPT growth factor).
In a comparison of these two calculation strategies, they turned
out to agree almost perfectly (to within less than 0.1 per cent over
all wavenumbers of interest). Now we have an ED of nED = 100
nonlinear correction spectrum sets each with nz = 100 different
nonlinear correction spectra (one for each redshift output step in
the simulations) measured at nk = 2000 different linearly spaced
k-points.

2.3 Convergence of simulations

As will be discussed below, the main contribution to the overall emu-
lation error is due to the underlying simulations. We have performed
a convergence test using different box sizes with an edge length L
between 480 and 1920 h−1 Mpc, with different particle numbers N3

ranging from 10243 to 20483 and with different grid resolutions
(once, twice, or four times as many grid points as particles per
dimension). For reference, two simulations have been used: a large
volume simulation with a (4000 h−1 Mpc)3 box with 40963 particles
for assessing the minimally required simulation volume and a high-
resolution run with 80003 particles in a (1920 h−1 Mpc)3 box to
find the minimal mass resolution. We found that simulations with
L3 = (1250 h−1 Mpc)3 and N3 = 20483 particles (corresponding to
a mass resolution of roughly 2 × 1010 h−1 M� per particle) have
converged to the level of accuracy required, if a power spectrum
measurement grid with roughly double this resolution is used.
Using these specifications, we find that the simulated nonlinear
correction spectra have converged up to kmax = 5.48 h Mpc−1 for
all redshifts z ≤ 5 (reducing the number of k-points to 1100).
For further details about the convergence tests, please refer to
Appendix C.

3 EM U L ATO R C O N S T RU C T I O N A N D
C O N F I G U R AT I O N

The emulated data are supposed to approximate simulations as
accurately as possible. Accuracy, however, comes at the expense
of higher cost in the construction of the emulator, or can result in an
increase of the time and resources needed in the use of the emulator.
In this section we will highlight the important aspects that influence
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the performance and the efficiency of the emulator and discuss how
the EOE can be reduced while keeping the overall costs for the
construction of the emulator manageable. We define the EOE as
follows:

EOEc(k, z) = Bemulated
c (k, z)

Bsimulated
c (k, z)

− 1 , (5)

where k is the wavenumber, z is the redshift, and c stands for a
cosmology for which the nonlinear correction is evaluated. The
steps involved in the construction of EuclidEmulator are as
follows:

(i) Definition of the cosmological parameter space, in our case,
a six-dimensional box over which a uniform prior is assumed,

(ii) Latin hypercube sampling (LHS) of the parameter space,
(iii) N-body simulation of all cosmologies in the Latin hypercube

(LH) sample,
(iv) Computation of the nonlinear correction spectra (this data

set in its entirety is called the ED),
(v) principal component analysis (PCA) of the nonlinear correc-

tions,
(vi) polynomial chaos expansion (PCE) of each individual eigen-

value of the PCA, neglecting polynomial terms based on the
sparsity-of-effects principle (hence SPCE using UQLab),

(vii) Recombination of the principal components in a single
emulator (using UQLab or our own stripped down C code).

For actually using EuclidEmulator to produce nonlinear power
spectra, one only needs to combine step (vii) with a linear power
spectrum generated by the CLASS or CAMB Boltzmann codes.

Redshift is not an emulated parameter and the ED data matrix
D contains a specific set of 100 nonlinear correction spectra at
different, cosmology dependent, redshifts (one for each output step
of the simulations). To allow the computation of the nonlinear
correction at any requested z-value, we linearly interpolate between
two adjacent nonlinear correction spectra that bracket this redshift.
By doing so, we commit the biggest error at the maximal redshift
(because the input simulations are distributed less densely in redshift
space towards higher redshifts) and maximal k-mode (as the change
in nonlinear correction is larger per z-interval for larger k-values)
allowed by the emulator. We have tested that this maximal error is
∼0.6 per cent. For all smaller k-modes and redshift values, the error
due to linear interpolation is smaller. Higher order interpolation over
the data matrix D would make such errors at high z and k negligible,
but since this consideration lies outside of the emulation strategy,
we do not further consider it here.

3.1 ED sampling

The performance of the emulator crucially depends on how the ED
is constructed (Blatman & Sudret 2011). The construction of the ED
involves steps (i)–(iii). In this subsection these three phases shall be
explained in more detail.

3.1.1 Definition of the parameter space

Similar to Lawrence et al. (2010b), our emulator is built upon the six-
parameter model including the following cosmological parameters:

(i) baryonic matter density parameter in the Universe, ωb =�bh2,
(ii) total matter density parameter in the Universe, ωm = �mh2,
(iii) reduced Hubble parameter h,
(iv) spectral index ns,

(v) EoS parameter of dark energy w0,
(vi) power spectrum normalization σ 8,

where we assume a flat geometry of the Universe throughout (�k =
1) such that the dark energy density parameter �DE is uniquely
defined by the relation

�m + �rad + �DE = 1, (6)

where �rad has a constant non-zero value for all cosmologies. These
parameters are a subset of the parameters of the base �CDM
cosmology from Planck (Donzelli et al. 2016). A key goal of
the Euclid mission is to further constrain the DE EoS (Amendola
et al. 2018). For this reason, w0 has been added to the investigated
parameter space. Further important physical processes relevant for
power spectrum measurement are, amongst many others, the effect
of neutrinos on DM clustering or the impact of a time-dependent
DE EoS. Corresponding parameters have been included in the
Mira-Titan Universe-based CosmicEmu (Heitmann et al. 2016;
Lawrence et al. 2017) and will be included in future versions of
EuclidEmulator.

We base our parameter box ranges on the Planck2015 best-
fitting values mentioned in table 4 in Donzelli et al. (2016).
For the parameters ωm, ns, h, and σ 8, we use Planck-only data.
However, as the constraining power of Planck for ωb and w0 is
significantly improved by combining it with external data, we use
the combined best-fitting values for bounding the ranges of these
two parameters. The upper and lower bounds are defined by μ ±
�, where � corresponds to 6σ quoted in Donzelli et al. (2016) for
all cosmological parameters but w0 (�w0 = 3.5σ ). The parameter
‘box’ thus is finally defined as follows:

ωb ∈ [0.0215, 0.0235] ,

ωm ∈ [0.1306, 0.1546] ,

ns ∈ [0.9283, 1.0027] ,

h ∈ [0.6155, 0.7307] ,

w0 ∈ [−1.30, −0.70] ,

σ8 ∈ [0.7591, 0.8707] . (7)

We assume massless neutrinos for all cosmologies and take their
energy contribution into account as a component of ωrad. The
photonic contribution to it is related to the CMB temperature,
which we set to TCMB = 2.7255 K. Our final ωrad, including both
photons and massless neutrinos, is cosmology dependent (via h).
Since CLASS calculates this internally, we use its value for each
PKDGRAV3 simulation.

3.1.2 Sampling

The parameter space constructed above then has to be sampled
in such a way that on the one hand one ends up with an ED
containing only a relatively small number of points (otherwise
the computational cost to produce the corresponding simulations
explodes) and on the other hand the emulator built on top of these
simulations must return highly accurate results. For now we assume
no preliminary knowledge about the behaviour of the emulated
observable depending on the point in the parameter space. It is hence
standard to use LHS (McKay, Beckman & Conover 1979; Tang
1993), which provides a fairly uniform coverage of the parameter
space. For further discussion of statistical sampling techniques
and their properties, see Heitmann et al. (2010a), section 2.1 and
references therein.
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In order to perform an LHS, one needs to define the number
of sampling points in advance. As we describe in Section 3.4,
100 sampling points are enough in order to construct an emulator
that reaches the required accuracy in the output quantities. This
step is performed using the statistics and uncertainty quantification
software UQLab5 (Marelli & Sudret 2014). As the construction of
such a sample is a random process and not unique at all, we add an
optimization step by generating 105 different samples and choosing
the realization for which the minimal distance (in Euclidean metric)
between the sampling points is maximized (a classical maximin
criterion, see e.g. Johnson, Moore & Ylvisaker 1990). By doing
so we, e.g., avoid the unlikely event of all sampling points being
aligned along the diagonal of the parameter space.

3.2 Principal component analysis

Simulation data are usually noisy and suffer from non-physical,
spurious numerical signals. We want the emulated data to be free
from these problems, which can be achieved by de-noising the input
simulation data of the ED using PCA. The entire ED nonlinear
correction spectrum data set D can be represented as a nED × (nz ·
nk) matrix, where nED is the number of sampling points in the ED,
nz is the number of output steps per simulation, and nk is the number
of wavenumbers considered for the power spectrum measurement.
It turns out that the overall EOE (the L∞ norm over all k and z)
is drastically reduced (by roughly an order of magnitude) if we do
not store the nonlinear correction values themselves into the data
matrix D but rather use the logarithm thereof. The data matrix D is
next decomposed into its nED principal components

D =
nED∑
i=1

λi(ωb, ωm, ns, h,w0, σ8)PCi(k, z) , (8)

where the λi’s are the eigenvalues of the covariance matrix cov(D)
and the principal component (PC)’s are its eigenmodes (vectors of
length nz · nk).

3.3 The surrogate model

The main goal of emulation is to produce data in a simultaneously
fast and precise way for all possible inputs. Therefore we choose to
use PCE (a spectral representation on an orthonormal polynomial
basis, see Ghanem & Spanos 2003; Xiu & Karniadakis 2006; Xiu
2010; Blatman & Sudret 2011) in contrast to Gaussian process
modelling (aka Kriging) as done e.g. by Heitmann et al. (2016),
Lawrence et al. (2017) and also by Zhai et al. (2018). This strategy
minimizes the global error, but comes at the expense of not exactly
retrieving the simulation data at the input cosmologies.

Since according to equation (8) all information about the cos-
mological parameters is stored in the eigenvalues λi, one only
needs to find a surrogate for them. We therefore create a PCE
of each component separately. In the case of EuclidEmulator,
the expansion reads

λi(ωb, ωm, ns, h,w0, σ8) ≈
∑
α∈A

ηα�α(x) , (9)

where α = (α1, . . . , α6) denotes a multi-index, �α the poly-
nomial basis element, and ηα the corresponding coefficient. Here

5http://www.uqlab.com

x = (x1, . . . , x6) is the vector of the six cosmological parameters,
each mapped to the [−1, 1] interval. In practice the sum is truncated,
making A finite and the above equation an approximation. The
multivariate basis functions can be expressed in terms of normalized
Legendre polynomials like so:

�α(x) = φα1 (x1)φα2 (x2) . . . φα6 (x6) =
6∏

l=1

√
2αl + 1Pαl

(xl) . (10)

The PCE coefficients ηα are computed with the least-angle
regression (LARS) algorithm (Efron et al. 2004; Blatman & Sudret
2011). This algorithm considers a set of candidate multivariate basis
functions Acand defined by criteria related to the maximal total
degree of polynomials p, the maximum interaction r (the number of
non-zero values in the α vector of size 6), and a sparsity-inducing
q-norm as follows:

Acand =
⎧⎨
⎩α :

(
6∑

i=1

α
q

i

)1/q

≤ p,

6∑
i=1

1αi 
=0 ≤ r

⎫⎬
⎭ . (11)

The least-angle regression then determines an optimal sparse set of
polynomials A ⊂ Acand such that a built-in error estimator on the
truncated series equation (9) is minimized. For a deeper discussion
of the least-angle regression-based selection (LARS) algorithm, we
refer to Appendix B2.2 or to the literature mentioned above. The
final performance of the emulator is tightly related to how the series
is truncated, which terms are taken into account, and which ones are
dropped. The applied truncation scheme is a hybrid of hyperbolic
and so-called maximum interaction truncation (Marelli & Sudret
2017). For more elaborate instructions about how to compute a
PCE, we refer to the referenced literature.

3.4 Optimizing and projecting emulator performance

A proper configuration of the emulator is key for good performance.
While a misconfigured emulator can introduce EOEs much larger
than the simulation uncertainties (basically defeating the purpose
of the emulator), a carefully configured surrogate model is able
to introduce EOEs so small that they are negligible compared to
simulation errors. Such an emulator is thus capable of producing
effectively simulation-quality results (but at much lower cost).

3.4.1 The configuration space

As we have discussed in the previous sections, the emulator
construction process depends on various degrees of freedom (for
a deeper discussion, we refer to Appendix B):

(i) the number of sampling points nED in the ED,
(ii) the truncation parameters p, q, and r characterizing the multi-

index set A,
(iii) the accuracy parameter a defined as the fraction of the total

variance captured by the principal components taken into account
with respect to the total variance of the data. This is directly related
to the number of principal components nPCA taken into account.6

As briefly described in Appendix B, the maximal polynomial order
p can be found following an iterative approach. This is done

6Notice that the accuracy parameter a is more fundamental than nPCA since
the latter additionally depends on further quantities as, e.g. the size of the
data set.
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Figure 3. Error maps of the (h, w0) plane based on an ED with nED = 100 for direct emulation of the power spectrum (left-hand panel, similar to Heitmann
et al. 2010b and Lawrence et al. 2017) and the logarithm of the nonlinear correction (right-hand panel). We stress that logarithms are just used to construct
the emulator and the errors shown here in both panels are based on comparisons of the full nonlinear power spectrum/nonlinear correction. For the nonlinear
correction emulation, the maximal error over all cosmologies is of the order of 0.5 per cent (in contrast to 3.7 per cent for direct power spectrum emulation)
but if restricted to the 0.83�-ellipsoid (red ellipse), the maximal EOE drops to below 0.2 per cent (direct power spectrum emulation: 2.75 per cent). The black
circles indicate the different �-ellipsoids (the innermost ellipse corresponds to the 0.17�, the second to the 0.33�, etc.).

automatically by UQLab for every principal component separately
and hence does not form part of the subsequent analysis. The
remaining four parameters, though, need to be tuned carefully in
order to optimize the emulator’s final performance (i.e. balance its
accuracy against its efficiency). We investigated this 4D parameter
space on a grid given by

nED = 10, 25, 50, 75, 100, 250 ,

a = 1 − 10−κ with κ = 1, 2, . . . , 10 ,

q = 0.1, 0.2, . . . , 1.0 ,

r = 2, 3, 4, 5, 6 . (12)

For each of these 3000 grid points, an emulator was constructed
and used to make predictions that in turn were tested against a
comparison data set. The relative error between prediction and
comparison data was recorded. The most precise of all these 3000
emulators has then been filtered out under the requirement that it
also be computationally efficient, i.e. under 0.1 s on a single CPU
core (comparable to the best Boltzmann codes).

3.4.2 Comparison data set

Notice that since we are interested in studying the EOE, it is
mandatory that both the ED and the comparison data set are
computed the same way (as otherwise differences in the com-
putation strategy could contaminate the EOE). As will become
clear, this investigation requires more data than could be produced
with N-body simulations. This is why we map out the error
committed by emulating the nonlinear correction using CLASS
(version 2.6.3) and Takahashi’s extension of HALOFIT (Smith et al.
2003; Takahashi et al. 2012) (hereafter abbreviated as THF) as an
alternative surrogate technique. For each cosmological parameter,
we have chosen 100 values equidistantly spread over the respective

range resulting in a six-dimensional lattice with 1012 points. As
a computation of the nonlinear correction spectrum for 1 trillion
cosmologies is not feasible even with the halo model, we restrict
the further analysis to the 15 coordinate planes of the parameter
space (i.e. the planes of pairs of cosmological parameters), each
of which is sampled by 104 points, and a random sample of 104

cosmologies in the bulk of the entire six-dimensional space. For
the resulting 16 × 104 cosmologies, we compute the nonlinear
correction curves for redshifts z = 10−16, 1, 2, and 5 in the interval
10−5 h Mpc−1 ≤ k ≤ 10 h Mpc−1.

3.4.3 Comparisons and tests

The EDs are as well computed using CLASS and Takahashi’s halo
model, one for each of the nED values, at the same four redshifts and
for the same wavenumber intervals like in the comparison data set.
We constructed emulators based on the logarithm of these nonlinear
correction data. To predict the EOE (labelled as εTHF to emphasize
that it is based on the THF), we then evaluate the emulator at
each lattice point of the cosmological coordinate planes, take the
exponential of the emulation result in order to undo that logarithm
and compare it to the data obtained directly from CLASS/THF. The
relative error was subsequently computed and maximized over all
redshifts and wavenumber values, and plotted as a density plot as
shown in the example plot Fig. 3. We thus get one such density plot
for each coordinate plane. At this point we emphasize that while
emulating log (B) instead of the nonlinear correction itself is an
essential technical step improving the final accuracy of the emulator
dramatically, it has no effect on how the comparison is presented.
For the comparison of directly computed and emulated nonlinear
correction spectra, the logarithm has always been undone. Since the
largest emulation errors are often found close to the boundaries of
the parameter box, we exclude these by restricting the emulator to
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Figure 4. Maximal errors over all cosmologies in all coordinate planes and
in the bulk of the space (restricted to the 0.83� region). This bar chart shows
that a comparison of error maps as in Fig. 3 looks similar for all coordinate
planes: the maximal error of EuclidEmulator over all coordinate planes
is about 0.27 per cent in contrast to roughly 1 per cent of the FRANKENEMU

(Heitmann et al. 2010b) and 4 per cent of the CosmicEmu (Lawrence et al.
2017).

Figure 5. Dependence of the relative error on the size of the ED and the
accuracy parameter a. The truncation parameters r and q have been set to
2 and 0.5, respectively, as these values are used for the construction of the
actual EuclidEmulator. While the curves represent the mean of the
maximal error (i.e. the error maximized over all k and z and then averaged
over all cosmologies in the 15 coordinate planes and the bulk), the red
shaded region additionally indicates the maximal and minimal maximal
errors measured for a = 1–10−5. The curves plateau when the errors
due to omission of terms dominate the errors coming from the sampling
size.

lie within the inner 0.83�-ellipsoid (� defined in Section 3.1.1).
The region outside of this is no longer considered in what follows.

Fig. 4 shows the maximum error found within each of the 15
possible parameter planes, as well as over the entire parameter
box (labelled bulk). Clearly, all max(εTHF) are comparable and
considerably smaller than the maximal error reported in Heitmann
et al. (2010b) and Lawrence et al. (2017).

3.4.4 Cardinality of the ED

We expect the maximal error to decrease as more cosmologies
are included in the ED. This expectation has been tested over the
range 10 ≤ nED ≤ 250 keeping all the other parameters fixed. The
result is shown in Fig. 5. Notice that this plot suggests that as few
as 50 cosmologies in the ED are enough to bring the maximal
error within the 0.83�-ellipsoid down to below 1 per cent given

the configuration used (a = 1–10−5). However, unlike the halo
model, whose data are smooth, a N-body simulation will produce
data with some noise. Techniques, such as PCA, can reduce but not
eliminate this noise contribution. Thus the overall maximal error
of N-body simulation-based emulators can be larger than predicted
by halo model-based emulators. For this reason, we decided to
build the EuclidEmulator on a conservative ED containing 100
cosmologies, reducing the expected relative error again by roughly
a factor of 2.

It is important to notice that the relation between the parameter
a and the number of principal components taken into account is
non-trivial and depends on nED as well as the nature of the data in
the ED itself (e.g. are the data noisy or not). As a result, the number
of principal components is not constant along the curves in Fig. 5:
the larger nED, the more principal components are considered for a
given parameter value for a.

3.4.5 Truncation and accuracy parameters

The truncation parameters are q ∈ [0, 1] and r ∈ N (characterizing
the multi-index set A) together with the accuracy parameter a ∈ [0,
1] (or alternatively the number of principal components). We have
constructed an emulator for each set (a, q, r) in the grid defined in
equation (12) using N = 100 cosmologies in the ED and computed
the maximal error as explained above. The goal now is to find the set
(a, q, r) that includes the least number of terms in the PC expansion
while keeping the EOE low.

As this emulator shall be capable of evaluating many nonlinear
correction spectra within a second, we try to identify the most
efficient emulator. We find that the accuracy parameter a is the most
dominant of those three parameters and that changing q and r does
not have a significant effect as long as r ≥ 2 and q ≥ 0.5. We thus
report the subsequent results always for nED = 100, r = 2, and q =
0.5 and only investigate the dependence on a and nPCA, respectively.

We find that the smallest number of PCs that have to be
taken into account is nPCA = 4 (corresponding to a = 1–10−3)
as this leads to a maximal EOE of just about 1 per cent. It is
also possible to identify the emulator minimizing the maximal
error, which is achieved by setting nPCA = 26 (a = 1–10−6) with
max(εTHF) ≈ 0.1 per cent, which is an order of magnitude smaller
than the simulation uncertainty. Notice, though, that increasing
nED further does not automatically improve the result: taking all
principal components into account leads to an enhanced final error,
hinting at the fact that there is an optimal number of PCs that can
be taken into account.

Including more principal components will decrease the emulator
performance as more terms have to be computed and the amount
of input data for the emulator increases considerably. It is thus
desirable to find a configuration that keeps the maximal EOE well
within the 1 per cent region but still leads to an efficient emulator.

We have chosen to configure EuclidEmulator with the
parameters

nED = 100 , (13)

nPCA = 11 (a = 1–10−5) ,

q = 0.5 ,

r = 2 .

The conclusion of our Takahashi HALOFIT modelling is that
our final EuclidEmulator should achieve a maximal error
of 0.27 per cent using only 100 different cosmologies, or 200
paired-and-fixed N-body simulations. We show in the next section
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that this appears to be confirmed for the final simulation-based
emulator. Thus we can quickly and reliably predict the performance
and minimize the computational cost of any future emulator,
thereby maximizing the return of the entire N-body simulation
campaign.

4 EM U L ATO R PE R F O R M A N C E , ER RO R S , A N D
SENSITIVITY TO PARAMETERS

4.1 End-to-end tests of the EOE

The predictions we have obtained in the previous section now have
to be tested in an end-to-end manner for the actual EuclidEmu-
lator based on real simulations. The test is performed along the
six coordinate axes (varying only one parameter at the time). For
each of them, a N-body simulation of the cosmologies at ±1σ , ±3σ ,
and ±5σ (for w0 we similarly chose ±0.58σ , ±1.75σ , and ±2.92σ )
from the centre of the parameter range is run resulting in a test set of
36 reference simulations outside the ED used for the construction
of the emulator. Then the emulator is executed at the very same
cosmologies and compared to the simulations. In Table 2 we report
the relative errors maximized over the entire k-range, the redshift
range, and the σ -set (i.e. we report max [EOE(nσ ), EOE(−nσ )]):
the overall maximal EOE found is 0.145 per cent and thus much
better than the error coming from the simulations and within the
limit predicted by the HALOFIT-based error map. In Fig. 6 we
explicitly compare simulated and emulated nonlinear correction
curves for six different cosmologies along the h-axis for redshift
z = 0 (plotted are the corrections relative to the Euclid reference
cosmology). As will be established in the following Section 4.2, the
Hubble parameter h is one of the parameters the emulator is most
sensitive to, even for higher order principal components, and thus its
variation should have a non-negligible effect. This is actually true
as the six different cases are clearly distinguishable in the figure:
While varying h has almost no effect on linear scales, the curves
corresponding to these six cases clearly deviate from one another
on small scales.7 Yet, the emulated nonlinear corrections coincide
almost perfectly with the simulated ones that are based on paired-
and-fixed initial conditions. Though the relative differences (lower
panel) do show a systematic around BAO scale, these differences
are negligible and the emulated data are effectively of simulation-
quality. Note that the simulation of one of these nonlinear correction
curves takes about 2000 node hours while the corresponding
emulated curve is computed within less than 50 ms on a usual laptop.
EuclidEmulator thus speeds up the data generation process by
more than seven orders of magnitude compared to a classic N-
body simulation with essentially no additional uncertainty due to
emulation.

4.2 Sensitivity analysis

Sobol’ indices (Sobol’ 1993, 2001) measure how sensitive the
eigenvalues λi(ωb, ωm, ns, h, w0, σ 8) (introduced in equation 9) are
to each single input parameter as well as to any of their interactions.
For an introduction into Sobol’ sensitivity analysis, we refer to
the previous references or to Marelli et al. (2017) and Le Gratiet,
Marelli & Sudret (2016).

7This makes it obvious, why it is important for surveys like Euclid to
investigate the small scales. There is tremendous leverage on cosmological
parameters in this regime.

Sobol’ indices are based on the Hoeffding-Sobol’ decomposition,
which states that any square-integrable function over a hypercube
input parameter space can be cast as a sum of a constant, a
set of univariate functions of each input parameter, another set
of bivariate functions, etc. This decomposition is unique and the
various terms are orthogonal with each other (with respect to the
uniform probability measure over the hypercube). The variance of
the output can then be apportioned to each input parameter, each
pair, triplets, etc.: these contributions are called Sobol’ sensitivity
indices S. Although their classical estimation relies on costly Monte
Carlo simulations, Sobol’ indices can be computed analytically
from a PCE as in equation (9), see Sudret (2008). In our case, we
get one such Sobol’ expansion for each principal component. Each
Sobol’ index corresponds to the fraction of the total variance of
the respective eigenvalue that is caused by the parameter(s) under
consideration. The bigger this number, the more λi depends on
the considered set of input parameters. Fig. 7 shows the first-
order (no interactions) Sobol’ index plots for the first and fifth
principal components (see Fig. A1 in Appendix A). It is interesting
to notice that the input parameter ωb has no leading-order effect on
the output nonlinear correction. The nonlinear correction starts to
show non-vanishing sensitivity to this parameter only at fifth order
and higher. This is explained by the fact that baryons are treated as
a background quantity that only come into the simulation data via
the transfer function. As they are not directly evolved themselves in
PKDGRAV3, their nonlinear contribution is only due to their mass,
which is taken into account in the ωm parameter.

4.3 Performance of EuclidEmulator

For the current implementation of EuclidEmulator, we have
measured the execution times in three different set-ups (all times
quoted were measured using one computing node):

(i) the emulation of the full nonlinear power spectrum using
the python wrapper of EuclidEmulator (called e2py), which
in turn calls the python wrapper of CLASS (called classy) to
compute the linear power spectrum. In this set-up, a wall-time of
0.37 s was measured.

(ii) the emulation of the nonlinear correction only using the C
code. For this task, we measured a wall-time of 6 ms. This time
includes loading the information from the data table, calculation of
cosmological quantities (e.g. the conversion from expansion factor
to time), redshift interpolation, and printing the results.

(iii) in a ‘Monte Carlo set-up’ (not yet available in the currently
public version), i.e. the set-up that would be used to actually perform
a Markov Chain Monte Carlo (MCMC) search of the parameter
space. In this scenario one would load the data table only once and
pre-compute the needed parts (dependent on the redshift) of the
output data space D for the interpolation. This leaves calculating
the PCE and assembling the principal components for each MCMC
step. In this case we measure an evaluation time of less than 5
μs (for nPCA = 11). Notice that only in this setting we were able
to measure the difference in wall-time between emulators taking
different numbers of principal components into account as in the
two previous cases this difference was unmeasurable compared to
the total runtime. If we reduce nPCA to 8, we measured 2.92 μs and
1.72 μs for nPCA = 2.

We stress that the current implementation of the code is not
particularly optimized and any optimization at this point would be
premature as clearly the biggest part of the calculation is spent in the
computation of the linear power spectrum. This motivates the need
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Table 2. In this table we compare nonlinear correction spectra computed with EuclidEmulator (EE) on the one hand and with an emulator based on
Takahashi’s HALOFIT (THF) on the other hand to nonlinear correction spectra of full N-body simulations for 36 cosmologies outside the ED over the entire k
and z range. The numbers in the table correspond to the relative errors in per cent between the emulated and simulated nonlinear corrections. We find that the
errors predicted with the THF emulator are broadly consistent with the EE errors. This implies that the configuration of the EE based on a HALOFIT emulator
is actually valid and that there is no need to make a huge investment to run N-body simulations just for the configuration study of an emulator. This result is
particularly important for finding the size of the ED (see Fig. 5).

ωb ωm ns h w0 σ 8

EE THF EE THF EE THF EE THF EE THF EE THF

±1σ 0.081 0.081 0.093 0.091 0.082 0.076 0.078 0.119 0.082 0.076 0.086 0.097
±3σ 0.081 0.098 0.105 0.124 0.085 0.064 0.114 0.181 0.076 0.080 0.089 0.067
±5σ 0.073 0.062 0.166 0.220 0.121 0.069 0.145 0.127 0.081 0.062 0.089 0.096

Figure 6. Comparison of the emulated (solid lines) and the paired-and-fixed
(PF) initial condition-based simulated (dashed lines) nonlinear corrections
for six different cosmologies at ±1σ , ±3σ , and ±5σ away from the
centre of the h-parameter axis (see column 7 of Table 2). In the upper
panel, corrections of the nonlinear corrections themselves relative to Euclid
reference (‘EucRef’) cosmology are shown. No difference between the
emulated and the simulated curves is visible. In the lower panel, the relative
differences between emulated and PF-simulated nonlinear corrections are
plotted. The entire y-range of the lower subplot corresponds to the accuracy
tolerance regime of ±1 per cent, while the maximal error is roughly 6 times
smaller than this upper limit.

for a comparably fast method to estimate the linear component, e.g.
with a (separate) emulator. Clearly, this approach makes an MCMC
search of the parameter space very efficient.

4.4 Comparison to other fast prediction techniques

We compare EuclidEmulator against two well-known alterna-
tive surrogate modelling tools: Takahashi’s extension of HALOFIT
and the CosmicEmu code based on the Mira-Titan Universe
suite of simulations (Lawrence et al. 2017) produced with the
N-body code HACC described in Habib et al. (2016). Moreover,
we also compare EuclidEmulator against the very recent
NGenHalofit (Smith & Angulo 2018). For these comparisons,
we use the Euclid Reference cosmology (i.e. the comparisons
are out-of-sample tests) and they are performed on the level of

Figure 7. Sobol’ index analysis plots. The bar plots show the individual
first-order Sobol’ indices for each cosmological parameter for the first (upper
panel) and fifth principal components (lower panel). It is clearly visible that
the baryon density parameter ωb has only a higher order effect on the
nonlinear correction spectrum.

power spectra, i.e. the nonlinear correction curves computed by
EuclidEmulator were multiplied with a linear power spectrum
generated with the Boltzmann code CLASS. The result is then
compared to the data from the other two predictors.

4.4.1 Takahashi extension of HALOFIT

It becomes evident that EuclidEmulator is indeed able to
correctly reproduce the linear regime of the power spectra (see
Fig. 8). This is a big advantage of nonlinear correction emulation
over direct emulation of power spectra (as is clear from the
comparison to the CosmicEmu, see Section 4.4.2). Further, one
can see the distinct systematic wiggles at BAO scales. They
come from the fact that HALOFIT does not capture the nonlinear
evolution of the BAOs very well (Heitmann et al. 2010b). On even
smaller scales, there is a clear disagreement between the Takahashi
model and EuclidEmulator at the level of several percentages.
The differences, however, obey the uncertainty limits quoted in
Takahashi et al. (2012).
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Figure 8. Comparison of nonlinear power spectra computed using Eu-
clidEmulator (upper panel, solid curves) and the Takahashi model
(upper panel, dashed curves). In the upper panel the absolute power spectra
are shown while in the lower panel the relative error curves between
the power spectra computed by the two different means are plotted. The
agreement on large, linear scales is nearly perfect. On intermediate scales
a distinct systematic coming from the BAO signal is observed for all tested
redshifts. This shows that the Takahashi model does not capture the BAOs
at the desired level of accuracy. The disagreement on the smallest scales is
of the order of several percentages over all redshifts.

4.4.2 CosmicEmu (Mira-Titan emulator)

One observes a disagreement up to ∼2 per cent between Cos-
micEmu and EuclidEmulator at linear scales (see Fig. 9). This
is partially explained by the fact that COSMICEMU (see glossary)
emulates the nonlinear power spectrum directly, which introduces
an error on all scales. As EuclidEmulator nonlinear correction
curves have to be multiplied with a linear power spectrum, the
resulting nonlinear power spectrum matches linear theory on large
scales by construction. As we use CLASS for the computation
of the linear power spectrum, the resulting nonlinear curve does
also contain the general theory of relativity (GR) corrections to
the level given by CLASS. This is one of the biggest advantages
of EuclidEmulator, but also comes at the expense of speed.
Since direct emulation of the power spectrum circumvents the
need for a Boltzmann solver, CosmicEmu is substantially faster: It
takes CosmicEmu roughly 20 ms to compute the nonlinear power
spectrum.

On intermediate and small scales the disagreement between
CosmicEmu and EuclidEmulator is at most 3 per cent and
thus consistent with the uncertainty bounds reported in Lawrence
et al. (2017). Summarizing, one can say that on large scales
(k < 0.06 h Mpc−1) where the DM clustering nicely follows lin-
ear theory, EuclidEmulator can be used to produce power
spectra consistent with HALOFIT and Takahashi’s extension well
within the 1 per cent region. CosmicEmu, however, does deviate

Figure 9. Comparison of nonlinear power spectra computed using Eu-
clidEmulator (upper panel, solid curves) and the CosmicEmu code
(upper panel, dashed curves). The relative errors between the power spectra
computed with the two different approaches are again shown in the lower
panel. On the largest scales, there is a systematic disagreement originating in
the CosmicEmu data (remember that on these scales EuclidEmulator
is correct by construction). While on intermediate scales one observes
disagreements of the order of a few per cent as well, the agreement on
small scales is very good over all redshifts.

from the Takahashi model by a few per cent on these scales; a
consequence of the emulation strategy. On mildly nonlinear scales
(0.06 < k < 0.5 h Mpc−1), there is a certain disagreement between
EuclidEmulator and both the Takahashi model and Cos-
micEmu, but of an entirely differing nature. While the deviation
of Takahashi’s model is systematic and correlated with the BAO
signal, the few per cent differences between EuclidEmulator
and CosmicEmu show an overall offset with redshift over these
intermediate scales. On small scales (k > 0.5 h Mpc−1), Cos-
micEmu and EuclidEmulator are largely consistent in contrast
to Takahashi’s HALOFIT, which systematically overestimates the
nonlinear power by 4–8 per cent, depending on redshift. These
observed discrepancies are broadly consistent with the ones shown
in fig. 5 of Schneider et al. (2016). Only on the smallest scales
(k > 3 h Mpc−1) and redshifts z ≥ 1, there is also a mismatch in the
comparison, which can be explained by the different mass resolution
considered in that figure.

4.4.3 NGenHalofit

The agreement between EuclidEmulator and NGenHalofit
is nearly perfect for large scales with k ≤ 0.1 h Mpc−1 for all
tested redshifts, as can be seen in Fig. 10. On intermediate
scales the agreement is slightly above the 1 per cent level, which
is better than the corresponding results from the comparison to
CosmicEmu or Takahashi’s HALOFIT. On small scales, however,
we observe a mismatch of up to ∼6 per cent (at z = 2), which
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Figure 10. Comparison of nonlinear power spectra computed using Eu-
clidEmulator (upper panel, solid curves) and the NGenHalofit code
(upper panel, dashed curves). The agreement on linear and intermediate
scales is very good with relative errors above 1 per cent at only a few k-
modes around the BAO scale. However, there are substantial deviations on
small scales that grow as one goes back in redshift.

is outside the bounds reported in Smith & Angulo (2018). This
disagreement may be explained by the fact that the Dämmerung
simulation suite used to build NGenHalofit uses 2LPT initial
conditions generated at redshift z = 49 while the simulations used
to construct EuclidEmulator are based on ZA initial conditions
(see the discussion in Section 2.2.2). We performed a comparison
between ZA-based simulations (zZA = 200) including radiation (the
EuclidEmulator simulations) and 2LPT simulations (z2LPT =
49) without radiation (like the Dämmerung simulations). At z ∼ 2
and k ∼ 5 h Mpc−1, we find an underestimation of power in the ZA
case compared to the 2LPT data at the level of roughly 3 per cent.
While the two approaches agree perfectly on linear scales, the
disagreement only becomes significant towards higher redshifts and
higher k-modes (the agreement between ZA and 2LPT is better than
1 per cent for all z � 1). The exact k-mode at which the maximal
mismatch is located is resolution dependent. This finding explains
the excess mismatch we find in Fig. 10. This topic has also been
discussed in Garrison et al. (2016), where the authors find that the
2LPT approach is the more accurate one. The agreement is at the
3 per cent level (or better) up to z ∼ 1 and out to k ∼ 5 h Mpc−1.

5 C O N C L U S I O N

Efficient and at the same time accurate estimation of nonlinear
matter power spectra is crucial in order to exploit the full potential
of cosmological surveys such as Euclid, DES, LSST, and WFIRST.
The Boltzmann solvers CAMB and CLASS are well established as
numerical tools to compute the linear matter power spectra. In
this paper we hence focused on the nonlinear correction in order
to combine the strengths of the Boltzmann solvers and N-body

simulation codes: the former include much more physics (such as
GR and baryonic physics) than any contemporary N-body code
efficient enough to produce simulations of the size and resolution
needed for current and upcoming surveys. The latter, however, are
the only means by which structure growth on highly nonlinear scales
can be studied. EuclidEmulator, presented in this paper, is a
numerical tool that estimates the nonlinear correction spectra of an
input cosmology (respecting the predefined parameter boundaries
of 0.83� around the Planck2015 best-fitting cosmology) at any
redshift z ≤ 5 with an overall accuracy far better than 1 per cent
based on only 100 pre-evaluated DM-only simulations performed
with the N-body code PKDGRAV3. The EOE is of the order of
a fraction of a per cent and is hence dominated by the expected
simulation errors (of the order of ∼1 per cent up to k∼1 h Mpc−1).

The accuracy of the emulation could be achieved by using
well-tested statistical techniques from the field of uncertainty
quantification: like Heitmann et al. (2010b), we have used a
special sampling technique called LHS in order to guarantee that
the resulting ED of input cosmologies covers the cosmological
parameter space in a statistically uniform way. We then simulate
the corresponding nonlinear responses with PKDGRAV3, using
paired-and-fixed (Angulo & Pontzen 2016) initial conditions that
drastically reduce computational cosmic variance in the simulations.
In contrast to the Coyote Universe, the Mira-Titan Universe and the
Aemulus project emulators by Heitmann et al. (2010b), Lawrence
et al. (2017), and Zhai et al. (2018), respectively, we employ a
regression strategy called sparse PCE in order to surrogate model
the nonlinear correction spectra. Our nonlinear correction approach
leads to very accurate emulation of the nonlinear matter power
spectrum, but additionally requires the linear power spectrum,
calculated from CLASS or CAMB.

The emulator itself depends on a set of numerical parameters
that need to be configured properly. To perform this configuration,
we predict the emulator performance for a given set of emulation
parameters (such as the size of the ED, the number of principal com-
ponents taken into account, the truncation of the polynomial chaos
series) using HALOFIT input data. We LH sample EDs of different
sizes and compute mock emulators based on HALOFIT/CLASS
nonlinear correction spectra. Doing so we identify the optimal
emulator configuration leading to a maximal emulation-only error
of 0.27 per cent within the 0.83� region of the parameter space.
EuclidEmulator, constructed from 200 N-body simulations
with this optimal configuration, almost perfectly reproduces the
results of N-body simulated power spectra at the 0.3 per cent level
within 50 ms. Due to possible numerical systematics in the N-
body simulations themselves, the absolute accuracy of nonlinear
power spectra generated with EuclidEmulator is bounded by
±1 per cent up to k ∼ 6 h Mpc−1 at z = 0 while at z ∼ 1 this
only holds up to k ∼ 1 h Mpc−1 (Schneider et al. 2016). In order to
reduce uncertainties due to DM physics that potentially contaminate
studies of baryonic effects that are dominant at these scales, it is
hence vital in the future to further improve our confidence in the
N-body simulations in the interval 1 h Mpc−1 ≤ k ≤ 10 h Mpc−1

for redshifts up to z ∼ 3 or higher. Once this can be achieved,
thanks to the emulator strategy presented in this paper, the same
accuracy will be reflected by the emulated power spectra. For Euclid
these scales are important to assess the constraining power of the
mission.

Our modelling approach will allow us to optimize the config-
uration of future emulators for further observables such as the
bispectrum and the halo mass function, projecting their end-to-end
accuracy, prior to running any simulations. We will also optimize
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emulation over a widened parameter space, adding neutrino mass,
dark energy EoS evolution, and primordial non-Gaussianity. These
shall be included self-consistently within a future set of N-body
simulations, with a mass resolution comparable to the Euclid
Flagship simulation (2.5 × 109 h−1 M�).

We have shown in Section 4.3 that the run time of an emulation
of a fully nonlinear power spectrum with EuclidEmulator is
highly dominated by the evaluation of the linear part with the
Boltzmann solver. This motivates the need for a future, separate
emulator of the linear power spectrum in order to speed up the
entire process. Two separate emulators for the linear power spectrum
and its nonlinear correction are expected to perform better than
one emulator for the nonlinear power spectrum, as the separation
approach allows a denser sampling of the parameter space in the
construction of the ED leading to more accurate results.
EuclidEmulator can be downloaded from GitHub (https:

//github.com/miknab/EuclidEmulator). The repository contains the
main C source code together with a python wrapper, CMAKE

files, scripts, and parameter files. Executing these scripts, the user
can create a fully nonlinear power spectrum using CLASS8 and
EuclidEmulator.

GL OSSARY

Codes:

CAMB Code for anisotropies in the microwave
background 3, 5, 6, 14, 15

CLASS Cosmological linear anisotropy solving system
3, 5–7, 9, 12–16

CosmicEmu Cosmic emulator based on the Mira-Titan
cosmological simulation suite (successor of
FrankenEmu based on the Coyote simulation
suite). 1, 2, 7, 10, 13, 14, 18

EuclidEmulator Emulator code to emulate nonlinear corrections
to DM power spectra

1–4, 6–15, 17–23
HACC Hardware/Hybrid Accelerated Cosmology

Code 13
HALOFIT Analytical code to produce nonlinear

power spectra 1, 9, 11–15
NGenHalofit Code to produce nonlinear power spectra

using a semi-analytical approach for large
and a smoothing-spline-t model for small
scales 1, 13, 14

PKDGRAV3 Parallel k-D tree gravity code (version 3);
Cosmological N-body tree code 1, 3–5, 7,
12, 14, 15, 20, 23

UQLab Matlab-based uncertainty quantification
framework 1, 3, 6–8
classy Python wrapper for CLASS 12

e2py Python wrapper for EuclidEmulator 12

Acronyms:

BAO Baryon acoustic oscillations 3, 4, 11, 13
CMB Cosmic microwave background 2, 7

8The CLASS code has to be installed separately. It can be downloaded from
http://class-code.net.

DE Dark energy 3, 7
DM Dark matter 13
ED Experimental design 3, 4, 6, 7, 9, 10, 18, 21, 23
EE EuclidEmulator 12
EFHR Euclid Flagship High Resolution 20, 21
EOE Emulation-only error 6, 8–11, 17
EoS Equation of state 3, 7
GR General theory of relativity 13, 14
HOD Halo occupation distribution 2
LARS Least-angle regression-based selection 8, 18
LH Latin hypercube 6, 15
LHS Latin hypercube sampling 6
LV Large volume 20–22
PC Principal component 8, 9, 17
PCA Principal component analysis 6, 7, 9
PCE Polynomial chaos expansion 6, 8, 12, 18, 20
PCS Piece-wise cubic spline 3, 5
SPCE Sparse polynomial chaos expansion 3, 6
ZA Zel’dovich approximation 5, 14
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APPENDI X A : PRI NCI PA L C OMPONENTS O F
THE EXPERI MENTA L D ESI GN

In contrast to Heitmann et al. (2010b), we find that 11 principal
components should be taken into account in order to bring the
EOE to a sub-per cent level (see the discussion in Section 3.4.5). In
Fig. A1 we plot the mean and the first 11 principal components (at
z = 0) of the nonlinear correction spectra used for the construction
of the EuclidEmulator. Notice that the emulation is performed
using the logarithm of the nonlinear correction. This is why we
report the mean and the corrections to the mean of ln (B). Recall
further that the data presented are normalized.

For each principal component, a Sobol’ index analysis (see
Section 4.2) can be performed. The results for the first and the
fifth PC are shown in Fig. 7, which tells us that PC1 is sensitive to
all cosmological parameters but ωb, while PC5 mostly depends on
ωm and h.
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Figure A1. The mean and the first five principal components of the ED response data (logarithm of the nonlinear correction spectra) used to construct the
EuclidEmulator. Each of these curves is multiplied with its eigenvalue λ, which is the actual output of the SPCE emulator. The sum of these then produces
the final nonlinear correction spectrum. Principal components PC6 to PC11 of the ED response data (logarithm of the nonlinear correction spectra) used to
construct the EuclidEmulator. PC11 is the highest order principal component used in the EuclidEmulator.
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A P P E N D I X B: SU R RO G AT E M O D E L L I N G V I A
SPCE

B1 Introduction to surrogate modelling

The ability to make predictions and to properly propagate the input
uncertainties to the output response vector in cases of complex sys-
tems is of prime interest in numerous situations. Yet, it is infeasible
to perform expensive large-scale experiments or simulations for
many input parameter sets to study the system’s behaviour in detail.
In such cases a surrogate model (or ‘emulator’) can be computed
that establishes a (model) relation between input and output. This
means that the surrogate is not the ‘true’ relation but, depending
on the computational resources available, it is able to capture the
main features of this ‘true’ relation up to a required accuracy. The
uncertainties can be kept under control using well-known techniques
from statistical uncertainty quantification.

Mathematically we can formulate the problem of emulating a
black-box model as follows: consider a set of input parameters as a
random vector X ∈ Rd

X := {Xi |i ∈ 1, ..., d; d ∈ N} ,

where d parametrizes the dimensionality of the parameter space
under consideration. The probability distributions of each of the
independent components of X are given by: Xi ∼ FXi

(xi). These
parameters are mapped by a black-box relation M (the computa-
tional model) to a quantity of interest Y:

Y := M(X)

with Y ∈ R. Due to the uncertainty in the input vector X, Y is also
a random variable.

The goal is to find a surrogate model S relating X to Y
based on a small set of model evaluations known as the ED
X = {

x(1), · · · , x(nED)
}

and the corresponding model responses
Y = {

y(1) = M
(
x(1)

)
, · · · , y(nED) = M

(
x(nED)

)}
.

In realistic scenarios, the computational budget to create an ED
is limited and this limitation puts a constraint on the amount of
information one can use to construct the surrogate model. Further
we add the requirement that the surrogate model S must be as
accurate as possible throughout the entire parameter space spanned
by X.

In this section we will focus on a specific type of surrogate
model, polynomial chaos expansions (Wiener 1938), in contrast to
Heitmann et al. (2010b) and Lawrence et al. (2017) where they
use Kriging for both the FRANKENEMU and the CosmicEmu. We
have chosen the PCE approach to construct EUCLIDEMULATOR (see
glossary) because globally the errors are expected to be smaller
than in the case of Kriging. Further, a PCE approach allows us to
relax assumptions about the noise properties of the input model:
Kriging can indeed deal with noise, but a very severe assumption
on the noise distribution is to be made; the noise is assumed to
be Gaussian. In a linear regression setting such as PCE, the only
assumption is that the noise is unbiased (see e.g. Vapnik 1998).

B2 Theory of PCEs

The concept of PCE based on LARS shall quickly be reviewed here.
For a deeper discussion of this topic, we refer to Blatman (2009),
Blatman & Sudret (2009, 2010, 2011), and references therein.

Let us take X = {X1, . . . , Xd} ∈ Rd to be a random input vector
with a joint probability density function (pdf) fX(x) and a finite
variance model M mapping X to the response Y via Y := M(X),

i.e.

E[Y 2] =
∫
DX

M2(x)fx(x)dx < ∞ , (B1)

where Dx is the domain of the random input vector. Then M(X)
is an element of the stochastic Hilbert space H of finite variance
functions endowed with the inner product

〈g, h〉 := E [g(X) · h(X)] =
∫
DX

g(X)h(X)fX(x)dx. (B2)

Then the following spectral representation, known as PCE, holds:

Y = M(X) =
∑
α∈Nd

ηα�α(X) , (B3)

where α = {α1, · · · , αd} is a multi-index, �α is an element of a
multivariate orthonormal polynomial basis of H, and ηα is the cor-
responding coefficient (coordinate). The multivariate polynomials
�α are constructed by tensor products of univariate orthonormal
polynomials w.r.t. the input random variables:

�α(X) =
d∏

i=1

φ(i)
αi

(xi) , (B4)

where φ(i)
αi

(xi) is a polynomial of degree αi in xi and orthonormal
w.r.t. the pdf of fXi

(xi). In other words:〈
φα, φβ

〉 = δαβ . (B5)

From equation (B4), it follows that the total degree of the basis

element �α(X) is p = ||α||1 =
d∑

i=1
αi , while from equation (B5)

it follows that for an input random vector with independent
components X:〈
�α,�β

〉 = δαβ . (B6)

In the present case,EuclidEmulator is built to be consistently
accurate across predefined parameter intervals. Therefore, their in-
put distributions are considered uniform between the given bounds.
Prior to the expansion, each parameter is linearly rescaled to the
interval [−1, 1], so that the polynomials φ(i)

αi
used in the expansions

belong to the Legendre family (Ghanem & Spanos 2003; Xiu &
Karniadakis 2006).

B2.1 Truncation of the polynomial basis

For practical computational purposes, the expansion in equa-
tion (B3) needs to be truncated to a finite number of terms:

Y = M(X) ≈
∑
α∈A

ηα�α(X) , (B7)

where A is a truncation with cardinality P := card(A) < ∞.
Several strategies are available to define a suitable truncation set

A in the literature. The scheme applied in the construction of the
EuclidEmulator is a combination of the so-called maximum
interaction and hyperbolic truncation introduced in Blatman &
Sudret (2011) and Marelli & Sudret (2017).

The standard truncation scheme is given by retaining only basis
functions up to a specific total degree p such that

Ad,p = {α ∈ Nd , ||α||1 ≤ p} . (B8)

The cardinality of such a set is:

card(Ad,p) =
(

d + p

p

)
, (B9)
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which is a polynomially increasing quantity. A significant reduc-
tion of the number of basis elements is to impose bounds on
the maximum number of non-zero elements in αi to a desired
r ≤ d:

Ad,p,r = {α ∈ Ad,p, ||α||0 < r} , (B10)

where

||α||0 :=
d∑

i=1

1αi>0 (B11)

is the rank of the multi-index. The effect of this is that in each mul-
tivariate polynomial chaos basis function only r or less univariate
factors are not constant and hence r or less input parameters interact
with each other (a ‘maximum interaction’ is defined).

We reduce the number of terms taken into account once more
by applying hyperbolic truncation. This is closely related to the
standard truncation scheme with the difference that instead of the
1-norm a more general q-norm is used with q ∈ (0, 1]:

Ad,p,q = {α ∈ Ad,p, ||α||q ≤ p} , (B12)

where

||α||q :=
(

d∑
i=1

α
q

i

)1/q

. (B13)

Hence, for a hyperbolic and maximum interaction limited trun-
cation we get:

Ad,p,q,r = {α ∈ Ad,p, ||α||q ≤ p and ||α||0 < r} . (B14)

Notice that only d is specified as it is the dimension of the input
random vector X. The maximal polynomial order p can be found
automatically following the iterative approach described in detail in
Blatman & Sudret (2011). Finding the optimal values for q and r,
on the other hand, requires a dedicated parametric study, discussed
in Section 3.4.

B2.2 Calculating the PCE coefficients with sparse regression

Once the polynomial basis has been constructed, the expansion
coefficients ηα need to be calculated. Given the high compu-
tational costs of the computational model, EuclidEmulator
employs the sparse-regression approach in Blatman & Sudret
(2011), based on the well-known least-angle regression technique
first introduced in Efron et al. (2004). This approach has been
widely demonstrated to be highly efficient even in the presence
of high dimensional or highly nonlinear models, as it favours
highly sparse models so as to avoid overfitting in the presence of
small EDs.

B2.3 A note on the extrapolation properties of PCE

As mentioned already above, PCE is not an interpolant but a
regression technique. This means that a PCE-based surrogate model
is able to accurately estimate the response of the input model not
just near the positions of the ED points but also further away
from them (on a global scale). However, due to the fact that
the cosmological parameters have to be mapped to the interval
[−1, 1] in order to be evaluated by the Legendre polynomials
(see the explanations in Section 3.3), the regression only works
within the predefined parameter bounds. If one wants to predict the

response for a cosmology outside the input bounds, a new emulator
has to be trained. This will result in different basis functions
and coefficients.

A P P E N D I X C : SI M U L AT I O N S A N D
C O N V E R G E N C E T E S T S

Since there is no analytical way to compute a ‘true’ nonlinear power
spectrum, a convergence test for the power spectrum is necessary. In
Table C1 we list all simulations we have used in this work together
with their specifications and the required runtime �T in node hours.
We assign a unique label to each simulation that we use for reference
in the text below. We define L to be the length of a simulation box
edge in units of h−1 Mpc, N denotes the number of particles per
dimension used in a simulation to create the initial conditions, and
Rgrid = Nma/N is the ratio between the number of cells Nma used for
the mass assignment and the number of particles N.

C1 Simulation parameters

The goal in this work is to find the minimal volume, the number of
particles, and mass assignment grid size that allows us to achieve the
required 1 per cent accuracy over the k-range of interest. A number
of further parameters like softening and time-stepping have already
been assessed in Schneider et al. (2016). They report that varying
the time-stepping and softening parameters has a sub-per cent effect
over all k-scales of interest. We use the PKDGRAV3-default values
that have been shown to be reasonable choices: the softening is given
by ε = 0.02 �mean with �mean being the mean inter-particle distance.
The time-stepping parameter η = 0.2 controls each individual
particle’s time-step via �T = η

√
ε/a, with a being the gravitational

acceleration of the particle.
In what follows we focus on the box volume and mass resolution

(i.e. particle number) as well as the size of the mass assignment
grid. We perform the convergence test in three steps: first, we
determine the minimal simulation box volume by comparing to
a paired-and-fixed simulation in LV of (4000 h−1 Mpc)3 with
40963 particles. Secondly, we find the minimal mass resolution
by converging towards an extreme high resolution run (EFHR)
with 80003 particles in a (1920 h−1 Mpc)3 box (NEFHR

ma = 8000),
and thirdly, the minimal size of the mass assignment grid
is assessed.

For the minimal volume measurement, we compare five paired-
and-fixed runs

(i) L = 256 h−1 Mpc and N = 262 (CT1),
(ii) L = 512 h−1 Mpc and N = 524 (CT2),
(iii) L = 640 h−1 Mpc and N = 655 (CT3),
(iv) L = 960 h−1 Mpc and N = 983 (CT4), and
(v) L = 1250 h−1 Mpc and N = 1280 (CT5)

against the LV-simulation (notice that the mass resolution is the
same for all these simulations). According to Fig. C1, we find
that a minimal simulation box volume of L3 = (1250 h−1 Mpc)3

is necessary for the power spectrum to converge to the LV-power
spectrum to within 1 per cent at large scales. This result is consistent
with the very recent paper Klypin & Prada (2018) and updates
the conclusion drawn in Schneider et al. (2016) where they claim
a lower bound for cosmological simulation box sizes of only
500 h−1 Mpc. A potential reason for this underestimation is that
their reference simulation volume is only 1024 h−1 Mpc and hence
most likely too small.
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Table C1. List of simulations used in this paper. For each simulation, its unique ID, as well as its specifications, are listed.
The specifications consist of the box size (L), the number of particles per side length (N), whether it is a paired-and-fixed
run (PF yes/no), and the runtime in node hours. The simulation 000 is a EuclidEmulator-like simulation but run based
on the Euclid reference cosmology, which is not part of the ED. Simulations 001 to 100 are the runs that form the actual
EuclidEmulator-ED while 101 to 136 were used for the end-to-end test reported in Section 4.1. Euclid Flagship High
Resolution (EFHR) and Large Volume (LV) denote the two reference simulations for the convergence tests against which the
simulations CT1 to CT20 were compared. For all CT-runs with N = 1024, the power spectra were measured with three different
mass assignment grids (see Fig. C3), indicated by the three labels a, b, and c (this did not require separate simulations). Note
that the EFHR simulation was run with GPUs. The total run time for all simulations sums up to over 380 000 node hours.

Simulation identifier L ( h−1 Mpc) N PF The number Total runtime
of runs (node hours)

000 1250 2048 yes 2 1904
001–100 1250 2048 yes 200 190 200
101–136 1250 2048 yes 72 68 472

Euclid Flagship High Resolution (EFHR) 1920 8000 no 1 93 600�

Large Volume (LV) 4000 4096 yes 2 14 696

Convergence Test 1 (CT1) 256 262 yes 2 23
CT2 512 524 yes 2 50
CT3 640 655 yes 2 80
CT4 960 983 yes 2 236
CT5 1250 1280 yes 2 508
CT6abc (a: Rgrid = 1, b: Rgrid = 2, c: Rgrid = 7) 480 1024 yes 2 378
CT7 480 1536 yes 2 1402
CT8abc 640 1024 yes 2 308
CT9 640 1536 yes 2 1204
CT10abc 960 1024 yes 2 240
CT11 960 1536 yes 2 896
CT12 960 2048 yes 2 2274
CT13abc 1440 1024 yes 2 209
CT14 1440 1536 yes 2 752
CT15 1440 1920 yes 2 1953
CT16abc 1920 1024 yes 2 184
CT17 1920 1536 yes 2 633
CT18 1920 1920 yes 2 1529

Note. � with GPUs

Figure C1. Comparison of three different runs with different box sizes but equal mass resolution �−1 = 1.024 h Mpc−1 against an LV reference simulation
with a box of L = 4000 h−1 Mpc side length and N = 4096 particles per dimension. Only simulation volumes of at least L3 = (1250 h−1 Mpc)3 (right-hand
panel) allow a power spectrum measurement that agrees with the one in a large volume at the 1 per cent level. Smaller simulation volumes lead to a power
deficit on large scales (left-hand and middle panel) and increasingly larger deviations from the reference on mildly nonlinear scales.

In the second step, we determine the minimal mass resolution,
which we measure in terms of �−1 := N/L corresponding to the
inverse of the mean inter-particle separation. We define a discrete
parameter space by

L ∈ {480, 640, 960, 1440, 1920} h−1 Mpc ,

N ∈ {1024, 1536, 2048} ,

Rgrid ∈ {1, 2, 4}

and run N-body simulations for three selected planes in this space:

(i) the L–N plane with Rgrid = 1,
(ii) the L–Rgrid plane with N = 1024, and
(iii) the N–Rgrid plane with L = 960 h−1 Mpc.

We perform this convergence test against the EFHR simulation
(L = 1920 h−1 Mpc and N = 8000, �−1

EFHR = 4.167). Increasing
the number of particles N used in a simulation of a given volume,
we reduce aliasing that comes from discreteness. This is expected
because in the limit N → ∞ we approximate the real fluid case we
are actually interested in. We observe that a resolution parameter of
�−1 = 2048/960 = 2.13 h Mpc−1 (Fig. C2, right-hand panel) yields
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Figure C2. Effect of measuring the power spectrum with different mass resolutions and with different number of particles (Rgrid = 1). Shown is a subset of the
L–N plane with a fixed L: all the panels belong to the same box size L = 960 h−1 Mpc. From left to right, N = 1024, 1536, and 2048 particles per dimension
were used. We thus span an inverse mean inter-particle distance range of 1.07 h Mpc−1 ≤ �−1 ≤ 2.13 h Mpc−1. The turn-up of the error curve at high k-modes
indicates the location of the Nyquist frequency (dash–dotted line) of the mass assignment grid.

Figure C3. Effect of measuring the power spectrum using different grid sizes, i.e. in the L–Rgrid plane. From left to right, the columns refer the number of
sampling grid points being equal to once, twice, and four times the number of points in the particle grid per dimension, respectively. The number of particles is
N = 1024 in all subplots. The dashed vertical lines indicate kmax (the frequency at which the relative error becomes larger than 1 per cent) while the dash–dotted
lines again show the Nyquist frequency of the mass assignment grid.

almost perfect results on highly nonlinear scales (up to the point
where the Nyquist effect from the mass assignment grid kicks in)
while a resolution of only �−1 = 1536/960 = 1.6 h Mpc−1 (Fig. C2,
middle panel) leads to an aliasing artefact that only just stays within
the 1 per cent region. From this we conclude that in order to meet
the 1 per cent accuracy level required by Euclid over all scales of
interest we need a resolution parameter �−1 ≥ 1.6 h Mpc−1.

We are then left with assessing how small the mass assignment
cells have to be in order to reach the desired precision. We performed
another set of simulations for the five different box sizes where
the mass assignment cells are either 1, 1/8, or 1/64 times the
volume of the particle grid cells, respectively (cf. Fig. C3). The
Nyquist frequency fNy of the mass assignment grid itself is linearly
proportional to Nma (and thus also to Rgrid for a given N) according
to the Shannon–Nyquist theorem (Nyquist 1928)

fNy = 1

2
Nma

2π

L
= 1

2
RgridN

2π

L
, (C1)

where 2π /L corresponds to the canonical inter-particle scale �k
used by the fast Fourier transform (FFT) such that Nma�k equals
the maximal Fourier mode for the power spectrum measurement. It
is not a priori clear, though, by what factor an increasing value of
Rgrid increases the k-interval within which the error curve remains
bounded by 1 per cent. Let us define kmax to be the maximal k-value
such that

100

(
PCTi

(k, z = 0)

PEFHR(k, z = 0)
− 1

)
> 1, ∀k > kmax. (C2)

We find that the proportionality given in equation (C1) translates
rather well to a proportionality between kmax and Rgrid for low-
resolution parameters and small values of Rgrid while for high �−1

and larger values of Rgrid it breaks down as the slope of the Nyquist
turn-up becomes more and more shallow for larger values of Rgrid.
For instance, while we can essentially double kmax in an L640N1024
simulation by going from kmax(Rgrid = 1) = 4.4 h Mpc−1 (Fig. C3,
left-hand panel) to kmax(Rgrid = 2) = 8.39 h Mpc−1 (Fig. C3, centre
panel), we cannot do so again by increasing Rgrid from 2 to 4
(Fig. C3, right-hand panel). In this figure, data from the L640N1024
simulation is shown, which fulfils the resolution condition of �−1 =
1.6 h Mpc−1 found above. One can see that the error stays within
1 per cent up to kmax(Rgrid = 1) = 4.44 h Mpc−1, kmax(Rgrid = 2) =
8.39 h Mpc−1, and kmax(Rgrid = 4) = 9.12 h Mpc−1. Taking into
account that increasing Rgrid leads to a non-negligible increase in
required computational resources, we conclude that Rgrid = 2 is a
reasonable choice.

We thus end up with the following lower bounds:

�−1 ≥ 1.6 h Mpc−1 ,

Rgrid ≥ 2 . (C3)

Summarizing the results of our convergence tests, we decide
to use the following specifications for the construction of the
EuclidEmulator ED:

L = 1250 h−1 Mpc ,

N = 2048 ,

Rgrid = 2 . (C4)

Notice that this choice obeys the constraint put on �−1 as here �−1 =
1.638 h Mpc−1. This choice of simulation volume and particle num-
ber corresponds to a mass resolution of roughly 2 × 1010 h−1 M�
per particle.
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C2 Redshift dependence of kmax

The chosen configuration for the ED simulations suggests that at
z = 0 the simulated nonlinear power spectrum can be trusted up
to kmax ≈ 8 h Mpc−1. Of course, in order to be able to produce a
reliable nonlinear correction prediction using the EuclidEmula-
tor at a certain redshift, it is of utmost importance to know how
kmax changes with redshift. We have found that the initial power
spectrum at z = 200 measured by PKDGRAV3 has converged to
linear theory (as computed by CLASS) up to kmax = 5.48 h Mpc−1.
The convergence test in the previous section suggests that the
nonlinear power spectrum at lower z converges up to larger kmax (for
z = 0, we find kmax ≈ 8 h Mpc−1). The division by the initial power
spectrum in the computation of the nonlinear correction renders the
latter to be converged up to kmax = 5.48 h Mpc−1 for all redshifts
up to z = 5. Based on this, the allowed redshift and k range for
emulation with the EuclidEmulator is set to 0 ≤ z ≤ 5 and
0.01 h Mpc−1 ≤ k ≤ 5 h Mpc−1, respectively. For z > 5, we found
a non-trivial dependence of kmax on the redshift. However, it is
not clear yet to what extent this functional relation is influenced
by numerical artefacts (like e.g. aliasing or transients) and to what
extent it is physical.

APPENDIX D : PAIRING-AND-FIXING VERSUS
GAUSSIAN INITIAL C ONDITION-BA SED
SIMULATIONS

In this appendix, we address potential issues of pairing-and-fixing
(introduced in Pontzen et al. 2016) and compare emulated nonlinear
corrections to nonlinear corrections coming from a traditional,
Gaussian initial condition sample. In Angulo & Pontzen (2016) it
is explained that fixing the power spectrum amplitude in the initial
conditions allows us to approximate the ensemble mean of a set
of power spectra with Gaussian initial conditions with no variance
at the cost of introducing some non-Gaussianity into the initial
conditions. As is shown in the lower panel of fig. 2 in Angulo &
Pontzen (2016), a deviation of the PF mean from the ensemble mean
of power spectra can be observed at high k but it stays inside the
0.1 per cent region up to k � 1 h Mpc−1.

Fig. D1 is a plot similar to Fig. 6 with the difference that
here we compare to the nonlinear correction of a single run with
Gaussian random field initial conditions (for the ‘+5σ ’ and ‘−5σ ’
cases; we use the same notation as was used in Fig. 6). We find
that on large scales the computational cosmic variance does not
play a big role. This is due to the fact that in order to compute
the nonlinear correction, one divides the power spectrum at a
given redshift z by the initial condition of the simulation and this
cancels out most of the variance. However, the biggest deviations
are observed on mildly nonlinear scales. On these intermediate
scales, the variation is initially small but is amplified nonlinearly
during the evolution. Hence, division by initial condition is not
enough to efficiently cancel it. Pairing-and-fixing does decrease
the cosmic variance on these scales to some degree. Villaescusa-
Navarro et al. (2018) have studied the k-dependence on how much
paired-and-fixed simulations feature less computational cosmic

Figure D1. A similar comparison as in Fig. 6. Shown is the relative
difference between the emulated nonlinear corrections and those computed
from Gaussian random field initial condition-based simulations (for the two
extreme cases ‘+5σ ’ and ‘−5σ ’). The high-frequency errors are due to
computational cosmic variance that (in our case) mainly has an effect on
intermediate scales.

variance compared to usual Gaussian random field simulations.
They find that towards smaller scales, the improvement brought
by pairing-and-fixing degrades to the point where the pairing-and-
fixing approach performs equally well as the classical Gaussian
random field approach. In the context of our work, however, this is
not a problem as on smaller scales cosmic variance does not play
an important role in the first place.
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