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RESEARCH ARTICLE

The Influence of Number Magnitude on Vocal Responses
L. Vainio1, T. Mustonen1, M. Vainio 2

1Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland. 2Phonetics and Speech
Synthesis Research Group, Department of Modern Languages, University of Helsinki, Finland.

ABSTRACT. The study investigated whether number magnitude
can influence vocal responses. Participants produced either short
or long version of the vowel [ɑ] (Experiment 1), or high or low-
pitched version of that vowel (Experiment 2), according to the par-
ity of a visually presented number. In addition to measuring reac-
tion times (RT) of vocal responses, we measured the intensity, the
fundamental frequency (f0) and the first and second formants of
the vocalization. The RTs showed that the long and high-pitched
vocal responses were associated with large numbers, while short
and low-pitched vocal responses were associated with small num-
bers. It was also found that high-pitched vocalizations were
mapped with the odd numbers, while the low-pitched vocaliza-
tions were mapped with the even numbers. Finally, large numbers
increased the f0 values. The study shows systematic interactions
between the processes that represent number magnitude and pro-
duce vocal responses.

Keywords: number magnitude, motor response, vocalization,
reaction time

Introduction

Ability for abstraction is a basic cognitive human skill

that allows the semantic representation of relative

attributes such as short-long, small-large, and light-heavy,

and the utilization of these types of representations in a

flexible manner for representing different concepts (e.g.,

short time/person, small stone/number, light load/feeling).

Indeed, people show a functional overlap between the rep-

resentations of, for example, length and duration (e.g.,

Lourenco & Longo, 2010; Srinivasan & Carey, 2010). A

Theory of Magnitude (ATOM) (Bueti & Walsh, 2009;

Walsh, 2003) correspondingly assumes that a common sys-

tem in the parietal cortex is responsible for processing mag-

nitude information related to space, time and quantity (e.g.,

numbers, the brightness of a light, or the loudness of a

sound).

One central assumption of the ATOM hypothesis is that

this common magnitude system ultimately serves action

planning; it overlaps with the processes that transform the

physical magnitude information of external objects into the

corresponding motor responses. For instance, the processes

that transform the size of an object into the corresponding

motor programs of grasp action—defining which grip type

(i.e., precision or whole hand) has to be selected and how

wide grip opening is required—are also employed when

one has to, for example, estimate the relative magnitudes of

viewed numbers. Indeed, it has been shown that grasp per-

formance is similarly facilitated by the magnitude informa-

tion of the stimulus when participants are required to

perform either a precision pinch or whole hand grasp

response according to the shape of the graspable object

(Ellis, Tucker, Symes, & Vainio, 2007), or the parity

of the number (Lindemann, Abolafia, Girardi, &

Bekkering, 2007; Moretto & Di Pellegrino, 2008). Small

objects and numbers facilitate precision pinch responses,

whereas large objects and numbers facilitate whole hand

grasp responses. Correspondingly, Andres, Davare, Pesenti,

Olivier, and Seron (2004) found that participants produce a

grip opening response rapidly when they have to judge the

parity of a number whose size is relatively large (e.g., 8 or

9). In contrast, small numbers (e.g., 1 and 2) facilitated grip

closure responses. More recently, it has been found that this

phenomenon can be also observed in the kinematics of

grasp movements (Andres, Ostry, Nicol, & Paus, 2008).

When participants are required to reach and grasp a wooden

block with a number (1, 2, 8, or 9) printed on the face of it,

the grip aperture increases as a function of the number

magnitude.

In another research tradition, it has been shown that pro-

cesses related to controlling different grasp properties are

connected to processes that program mouth movements in

general and articulatory gestures in parti-cular. Originally,

Gentilucci, Benuzzi, Gangitano, and Grimaldi (2001)

showed that when participants have to perform a grasp

action and simultaneously open their mouth, the more the

manual task required grip opening, the more the lip aperture

is increased. Correspondingly, the vocalization of an open

vowel [ɑ] results in increased grip opening in comparison

to vocalizing a closed vowel [i] when the vowel production

and grasping are performed simultaneously (Gentilucci &

Campione, 2011). In addition, it has been shown that when

participants are required to perform either the precision or

whole hand grasp response and simultaneously pronounce

the vowel as a meaningless speech unit (e.g., [ɑ] or [i]), the
grasp and vocal responses are performed relatively rapidly

when there is (hypothesized) congruency between the man-

ual and vocal responses (e.g., precision pinch – the close
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vowel [i]) (Tiainen et al., 2016; Vainio, Schulman, Tiip-

pana, & Vainio, 2013). These findings are in line with the

views assuming close neural, functional, developmental

and evolutionary connections between manual grasping and

articulatory processes (Arbib, 2005; Gentilucci & Corballis,

2006; Rizzolatti & Arbib, 1998).

Importantly for the present purpose, vocal production can

be also influenced by visually presented grasp-related infor-

mation. It has been shown that vowel production is modu-

lated by viewing a graspable object or a hand that is

grasping an object. For example, lip opening along with the

spectral components of intensity, fundamental frequency (f0)

and the first formant (F1) are increased by viewing an object

whose size is compatible with the whole hand grasp in com-

parison to a precision pinch compatible objects (Gentilucci,

Campione, Dalla Volta, & Bernardis, 2009). Similarly,

Vainio et al., 2017 have shown that participants produce the

vowel [i] relatively rapidly when they are presented with an

image of a precision pinch whereas the vowel [ɑ] is pro-

duced relatively rapidly when they are presented with an

image of the whole hand grasp. These findings that associate

an increased F1 and the vowel [ɑ] with the whole hand

grasp-compatible stimuli are comprehensible if one accepts

the link between F1 and vowel openness. In phonetics, vowel

openness (height) refers to the aperture of the jaw and the

vertical position of the tongue relative to the roof of the

mouth. In turn, the height of the tongue is associated with

the F1. In close vowels, such as [i], the F1 is consistent with

the tongue being positioned relatively high in the mouth

(i.e., relatively close to the palate). In contrast, in open vow-

els, such as [ɑ], F1 is consistent with the jaw being relatively

open and the tongue being positioned low in the mouth. It

follows from this that the higher the frequency of the first

formant is, the more open is the vowel (Ladefoged, 2006).

The findings showing association between open vowels, the

increased frequency of F1, and whole hand grasp-compatible

stimuli suggest that processing visually presented whole

hand grasp-compatible stimuli is partially grounded in the

articulatory motor mechanisms that automatically increase

the opening of the vocal tract when vowel production is

required during stimulus processing.

Although number magnitude has been shown to influence

grasp responses (Andres et al., 2004), and grasping is

tightly linked to processes that program articulation

(Gentilucci et al., 2009; Vainio et al., 2013), no previous

research, to our knowledge, has explored whether the mag-

nitude of a viewed number can influence the vocal pro-

cesses. In addition, the ATOM theory makes no clear

predictions for the articulatory processes used in speech

production and, to date, has focused only on studies using

manual responses generated using one’s hands or eye gaze

(Bueti & Walsh, 2009). In this study, we test the applicabil-

ity of ATOM to the production of fine motor skills beyond

those that are intrinsically spatial, and thereby examine

how number magnitude might interact with the processes

tied to speech production. Hence, we conducted two

experiments to investigate whether the vowel production

could be systematically influenced by the magnitude of

numbers presented to participants.

The Research Questions and their Rationale

Most of the studies exploring how the magnitude of

viewed numbers influence motor responses have used a par-

ity judgement task in which participants are required to

judge whether the number is odd or even by pressing

response keys, for example, with their left and right hand.

These kinds of studies have shown that right-sided

responses are made relatively rapidly when the number is

large, whereas left-sided responses are facilitated when the

number is small (Dehaene, Bossini, & Giraux, 1993). The

effect is observed, for example, when participants are asked

to respond using two fingers of the same hand (Kim &

Zaidel, 2003) or when a single hand is moved to the right

or left side of the initial position of the hand (Fischer,

2003). This effect that was labelled as SNARC (Spatial-

Numerical Association of Response Codes) has been taken

as an evidence for that the representations of numerical

magnitude are coded spatially in a “mental number line.”

In this study, we also use a parity judgement task. How-

ever, in contrast to the previous investigations, our partici-

pants were required to select a specific utterance for the

response according to the parity of the number. Similar to

some experiments that have explored whether number mag-

nitude influences grasp actions (e.g., Andres et al., 2008),

our participants were visually presented with the numbers

1, 2, 8, and 9. The participants were required to judge

whether the number is odd or even by producing the vowel

[ɑ] in one or another form (e.g., in a short or long form). As

already mentioned, the spectral components of intensity, f0
and F1 have been observed to increase when participants

are presented with an object whose size is compatible with

the whole hand grasp in comparison to a precision pinch-

compatible objects (Gentilucci et al., 2009). Similarly, we

predicted that these vocal components can be systemati-

cally influenced by the size of the number.

Regarding the intensity, the ATOM hypothesis (Walsh,

2003) assumes that overlapping sensory-motor processes

are responsible for representing magnitude-related dimen-

sions of loudness and number. Indeed, research has revealed

that large numbers and increasing number sequences are

automatically associated with relatively loud sounds,

whereas small numbers and decreasing number sequences

are associated with quieter sounds (Alards-Tomalin,Walker,

Nepon, & Leboe-McGowan, 2017; Alards-Tomalin,

Walker, Shaw, & Leboe-McGowan, 2015). Also, given that

large objects in comparison to small objects have been

linked to increased intensity of vocal responses (Gentilucci

et al., 2009), we assume that the intensity of a vocalization

would be lower when categorizing the numbers 1 and 2 in

comparison to the numbers 8 and 9.

L. Vainio et al.
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Regarding the f0, there are in fact two potential outcomes.

On the one hand, it has been shown that small objects are

associated with high-pitched sounds while large objects are

associated with low-pitched sounds (e.g., Gallace & Spence,

2006; Parise & Spence, 2009). This effect might reflect

learned associations between certain auditory and visual fea-

tures that typically occur together in nature—the larger the

object, the lower the frequency (see Coward & Stevens,

2004). On the other hand, Gentilucci et al., 2009 have found

that viewing large objects increases the pitch of the vocaliza-

tion in comparison to small objects. This effect can be

assumed to reflect common sensory-motor processes underly-

ing the vowel production and representing magnitude infor-

mation. This latter observation is in line with previous

investigations that associate high-pitched tones with large

numbers and low-pitched tones with small numbers. Firstly,

Oriet, Tombu, and Jolicoeur (2005) found that participants

categorized the magnitude of large numbers (8, 9) faster

when the decision was preceded by a high pitch tone, and the

magnitude of small numbers (1, 2) faster when the decision

was preceded by a low pitch tone. Secondly, in the study

reported by Campbell and Scheepers (2015), the participants

were required to categorize whether the second number of a

pair of sequential auditory numbers was lower or higher in

numerical value than the first number. The vocal pitches of

the two numbers either ascended or descended. The partici-

pants made more errors when the pitch was ascending and

the second number was smaller (in magnitude) than the first

number, and when the pitch was descending and the second

number was larger than the first number. Consequently, it is

interesting to observe whether number magnitude can influ-

ence f0 values of vocalization, and if it does, whether the

results comply with the findings associating small objects

with high tones and large objects with low tones (e.g.,

Coward & Stevens, 2004; Gallace & Spence, 2006; Parise &

Spence, 2009), or whether we observe an opposite effect as

predicted by the other research tradition (Campbell &

Scheepers, 2015; Gentilucci et al., 2009; Oriet et al., 2005).

It is known that F1 component of vocal spectra mostly

reflects openness of a vocal tract during vocalization. In

general, it has been observed that F1 values are higher for

vocalizations that utilize a wider vocal tract (Fant, 1960).

Hence, it can be proposed that increase in F1 as a function

of an increase in the size of the viewed object, as observed

by Gentilucci et al., 2009, is the consequence of automatic

modulation of motor planning processes that are triggered

by the size of the object. That is, larger objects lead to an

increase in the opening of a vocal tract during vocalization,

which in turn is observed in higher F1 values. As such, the

F1 modulation can be assumed to correspond to the effect

of increased finger opening triggered by the viewed num-

bers of relatively large magnitudes (Andres et al., 2004). In

other words, based on the mouth-hand hypothesis discussed

above, we predict that viewing large numbers not only

increases the grip opening but also the opening of the vocal

tract, which in turn results in relatively high F1 values.

In addition to potential modulation of the spectral com-

ponents, we predicted that the magnitude of a number can

influence the latency of vocalization onsets (i.e., vocal reac-

tion times) if there is some congruency between the size of

the number and the type of the vocal response. In Experi-

ment 1, the participants were required to produce either

short or long version of the vowel [ɑ] according to the par-

ity information of the number, whereas in Experiment 2

they were asked to produce the vowel [ɑ] in low or high

pitch according to the parity information. In line with the

ATOM hypothesis (Walsh, 2003), a previous study has

shown that when participants are asked to press a response

key for a short or long duration according to the parity of

the number, short responses are produced more rapidly

when the number was small, whereas long responses are

produced more rapidly when the number was large (Kiesel

& Vierck, 2009). Experiment 1 studied whether this effect

can be generalized to vocal responses so that short [ɑ]s
would be pronounced faster with small rather than large

numbers and vice versa for the long [ɑ]s. In addition, we

predicted that in Experiment 2 the responses would be pro-

duced particularly rapidly when the required response (i.e.,

low versus high-pitched vocalization) was congruent with

the size of the number. Given that previous studies have

associated high pitch tones with relatively large numbers

and low pitch tones with small numbers (Campbell &

Scheepers, 2015; Oriet et al., 2005), it could be expected

that participants’ responses emphasize high-pitched vocal-

izations when the number is large and low-pitched vocali-

zation when the number is small.

Finally, it has been found that in the parity judgement

tasks, the participants often show longer reaction times for

odd rather than even numbers (Hines, 1990). This phenom-

enon was explained by the so-called markedness theory,

which proposes that most of the spatial and magnitude-

related adjectives (e.g., long-short, far-near, high-low, etc.)

are divided into pairs, one member being non-marked (e.g.,

long, far, high) and the other being marked (e.g., short,

near, low). This proposal has been supported by the so-

called MARC (Markedness Association of Response

Codes) effect (Willmes & Iversen, 1995), in which the left-

hand responses are associated with the odd numbers and

the right-hand responses with the even numbers. Given that

the left-hand can be considered as being linguistically

marked concept, at least in right-handers (Huber et al.,

2015), the MARC effect can be explained in terms of a con-

gruity effect between the markedness of the number parity

and the markedness of the label of the responding hand

(Nuerk, Iversen, & Willmes, 2004). However, although the

MARC hypothesis can be assumed to be generalizable to

numerous spatial and magnitude-related concepts, to our

knowledge, it has not been explored in relation to concepts

other than the left and right hand. Consequently, given that

long and high vocalizations have been proposed to be non-

marked items of vocalization (Pulleyblank, 1983), we pre-

dicted that, in Experiment 1, long [ɑ]s would be produced

Numbers and Vocalization
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faster in relation to even numbers, whereas short [ɑ]s are

produced faster in relation to odd numbers. Similarly, in

Experiment 2, we predicted that high-pitched [ɑ]s are pro-

duced faster in relation to even numbers, whereas low-

pitched [ɑ]s are produced faster in relation to odd numbers

as a result of linguistic markedness.

Experiment 1

In this experiment, the participants were presented with

the number 1, 2, 8, and 9. They were asked to judge the par-

ity of the number by pronouncing the vowel [ɑ] in a short

form or a long form. We measured reaction times of the

onset of the vocalizations as well as their spectral compo-

nents of intensity, f0, F1 and F2. Predictions about how

reaction times and the spectral components of intensity, f0,

and F1 could be influenced by the object size are discussed

above. Regarding the F2, we did not have any strong pre-

assumptions. However, given that F2 values largely comply

with tongue fronting so that the more the tongue is pushed

forward during vocalization, the higher is the F2 value

(Fant, 1960), it is possible that the number size also some-

how modulates these values. For example, given that large

numbers have been associated with up-forward responses

whereas small numbers are associated with down-backward

responses (Hartmann, Gashaj, Stahnke, & Mast, 2014; Ito

& Hatta, 2004), it is possible that large numbers similarly

increase tongue fronting, which in turn could be observed

in increased F2 values.

Methods

Participants

Twenty na€ıve volunteers participated in Experiment 1

(24–50 years of age; mean age D 29 years; 5 males). All

participants were non-musicians, native speakers of Finnish

and had normal or corrected-to-normal vision and were

right-handed. We obtained written informed consent from

all participants. The study was approved by the Ethical

Review Board in Humanities and Social and Behavioural

Sciences at the University of Helsinki.

Apparatus, Stimuli, and Procedure

Each participant sat in a dimly lit room with his or her

head 70 cm in front of a 19 in. CRT monitor (screen refresh

rate 100 Hz; screen resolution 1280 £ 1024). The head-

mounted microphone was adjusted close to the participant

mouth. The target stimuli consisted of four different cen-

trally displayed numbers (1, 2, 8, and 9) that were written

in Consolas font (black color; bold; font size: 100).

Each trial started with the presentation of a fixation cross

(1� £ 1�) for 800 ms. Then, the cross was replaced by an

empty white screen, displayed for 700 ms. Next, the target

stimulus appeared on the screen for 1000 ms. The

participants were required to perform as fast and accurate

vocal response as possible to the target. Reaction times

were measured from the onset of the target object to the

onset of the vocalization. The target stimuli were presented

in random order with equal probability. Then, the target

was replaced by an empty white screen for 1000 ms. All

stimuli were presented on white background.

The participant was instructed to pronounce either short

or long version of the vowel [ɑ] according to parity of the

number. They were asked to use the level of intensity of

their normal talking voice. They were not given any explicit

instructions concerning the pitch of the voice. Half of the

participants produced short [ɑ] if the number was odd and

long [ɑ] if it was even (Mapping 1). The other half of the

participants produced long [ɑ] if the number was odd and

short [ɑ] if it was even (Mapping 2). Each participant was

given as much practice as it took to perform the task flu-

ently. In addition, the participant was allowed to have a

break in the middle of the experiment. In total, the experi-

ment consisted of 120 trials [30 £ 4 (stimulus)].

The vocal responses were recorded for 2000 ms starting

from the onset of the target object. At the beginning of the

experiment, the recording levels were calibrated individu-

ally using the voice calibration function of the Presentation

16.1 software, so that the recording levels would match

with the natural intensity of the participant’s voice. In the

calibration, the participants were required to pronounce the

vowel [ɑ] approximately once every second. The calibra-

tion took around 1 min. Stimulus presentation and sound

recording were done with the Presentation 16.1 software.

Results

The vocal data were analyzed using Praat v. 5.3.49.

Onsets and offsets of the vocalizations were first located

individually for each trial. The intensity value was calcu-

lated as a peak value of the voiced section. The spectral

components (F1 and F2) as well as f0 were calculated as

median values of the middle 1/3 of the voiced section.

Reaction Times

Reaction times were measured from the onset of the

target object to the onset of the vocalization. Errors and

RTs more or less than two standard deviations from

each participant’s condition means were excluded from

the reaction time analysis. Of the trials, 1.7% were

removed as errors and 4.8% were removed as outliers.

The combined removal of errors and outliers had left

93.5% of the raw data as correct responses. The condi-

tion means of these remaining data were computed for

each participant and subjected to a repeated-measures

analysis of variance (ANOVA) with the within-subjects

variables of Number size (small [1&2] or large [8&9])

and Response (short [ɑ] or long [ɑ]), and the between-

subjects variable of Mapping (Mapping 1 [short [ɑ]-odd/

4 Journal of Motor Behavior
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long [ɑ]-even] or Mapping 2 [short [ɑ]-even/long [ɑ]-
odd]). Although the same number of participants per-

formed the experiment in both Mapping conditions, and

hence that variable was counterbalanced, the Mapping

was included to the design as the between-subjects

because –as speculated in the Introduction– it is possible

that we will observe a version of the MARC effect

(Willmes & Iversen, 1995) in which the long [ɑ] is pro-

duced faster with even number and the short [ɑ] is pro-

duced faster with odd numbers. Post hoc comparisons

were performed by means of t tests applying a Bonfer-

roni correction when appropriate. A partial-eta-squared

statistic served as an effect size estimate. Finally, for

analyzing errors, all incorrect responses were converted

to percentages and submitted to the ANOVA, similarly

to the reaction time data.

The analysis of percentage of errors did not reveal

any significant effects. This may be subject to ceiling

effect given that the participants performed the task

with high accuracy (98.3% correct responses). The anal-

ysis of reaction times revealed a main effect of Number

size, F(1,18) D 8.67, MSE D 1787.13, p D 0.009, hp
2 D

0.325. Responses were faster when the number was

small (M D 584 ms; SEM D 21.4) rather than large

(M D 594 ms; SEM D 21.8). More importantly, the

analysis revealed a significant interaction between Num-

ber size and Response, F(1,18) D 31.19, MSE D
12730.67, p < 0.001, hp

2 D 0.634. The short [ɑ] was

produced faster when the number was small (M D
565 ms; SEM D 21.2) rather than large (M D 600 ms;

SEM D 22.0) (p < .001). In contrast, the long [ɑ] was

produced faster when the number was large (M D
588 ms; SEM D 22.1) rather than small (M D 604 ms;

SEM D 22.4) (p D .010). This interaction is presented

in Figure 1. The main effect of Mapping (p D .557) or

the three-way interaction between Number size,

Response and Mapping (p D .223) were not significant.

Finally, when reaction times were analyzed including

only the factor of Parity (odd or even), the main effect

of Parity was not significant (p D .194). No other signif-

icant main effects or interactions were found.

Voice Characteristics

After removing the errors (1.7%) from the analysis of

voice characteristics, the values over two standard devia-

tions above or below each participant’s condition means of

vocalization length (2.1%), intensity (4.3%), f0 (3.7%), F1

(5.5%), and F2 (4.9%) were also excluded from the voice

characteristic analysis.

The analysis of vocalization length revealed a main

effect of Response, F(1,18) D 234.04, MSE D 1233465.07,

p < 0.001, hp
2 D 0.929. As expected, the long vocalizations

were longer (M D 378 ms; SEM D 18.6) than short vocal-

izations (M D 129 ms; SEM D 7.1). In addition, the analy-

sis of intensity revealed a main effect of Response, F(1,18)

D 11.28, MSE D 6.15, p D 0.003, hp
2 D 0.385. Intensity

was higher for short responses (M D 79.3 dB; SEM D 0.8)

than for long responses (M D 78.8 dB; SEM D 0.8). The

analysis of f0 revealed a main effect of Response [F(1,18)

D 11.59, MSE D 3179.77, p D 0.003, hp
2 D 0.392] and

Number size, F(1,18) D 12.02, MSE D 13.97, p D 0.003,

hp
2 D 0.400. F0 was higher for short responses (M D

176.8 Hz; SEM D 11.4) than for long responses (M D
164.1 Hz; SEM D 9.6). In addition, f0 was higher when

Number size was large (M D 170.9 Hz; SEM D 10.4) than

when it was small (M D 170.0 Hz; SEM D 10.3). Finally,

regarding voice characteristics of F1 and F2, the only sig-

nificant effect was a main effect of Response. Both values

were higher in relation to short responses (F1: M D 605.3

Hz; SEM D 36.0; F2: M D 1132.0 Hz; SEM D 27.5) rather

than long responses (F1: M D 561.4 Hz; SEM D 34.1;

F2: M D 1080.6 Hz; SEM D 17.6) [F1: F(1,18) D 18.33,

MSE D 38160.15, p < 0.001, hp
2 D 0.505], [F2: F(1,18) D

11.46, MSE D 52471.09, p D 0.003, hp
2 D 0.389]. No other

significant main effects or interactions were found.

Discussion

The results of Experiment 1 showed that participants pro-

duce the long [ɑ] faster when the number is large (8 and 9)

rather than small (1 and 2), while the short [ɑ] is produced
faster when the number is small rather than large. This find-

ing can be assumed to replicate the effect reported by

Kiesel and Vierck (2009), who found that short keypress

responses are produced relatively rapidly when the viewed

number is small, and long keypress responses are produced

relatively rapidly when the number is large. As such, this

study shows that magnitude information of a viewed

FIGURE 1. The mean vocal reaction times for Experi-
ments 1 and 2 as a function of the number size (1 & 2 D
small; 8 & 9 D large) and the type of the vocal response
[Experiment 1: short vowel vs. long vowel; Experiment 2
(Mappings 1 and 2): Low pitch vowel vs. high pitch
vowel]. Error bars depict the standard error of the mean.
Asterisks indicate statistically significant differences (***p
<. 001; **p < .01; *p < .05).
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number primes the processes responsible for selecting a

vowel length for articulation.

The other significant effect (relevant for the current pur-

poses) that was found in Experiment 1 was that f0 of the vocal-

ization was modulated by the size of the number. The vocal

characteristic of f0 was increased when the number was large

in comparison to small. Although the effect was statistically

significant (pD .003), the difference of f0 related to small and

large numbers was very small (0.9 Hz). A difference this

small is hardly even perceptually noticeable, and therefore it

is unlikely to reflect intentional attempts to produce high-

low-pitched vocalizations according to the magnitude of the

seen number. Instead, it rather reflects some involuntary and

implicit articulatory modulations that are triggered by the

number magnitude. The potential source of these modulations

is discussed in detail in General Discussion.

Gentilucci et al., 2009 have similarly shown that

when participants are presented with a graspable object

while they have to pronounce a vowel [ɑ], f0 component

of the vocalization significantly increases by 1.4 Hz

when the object is large in comparison to small. As

such, the results of this study suggest that similar slight

modulation in f0 can be triggered not only by a size of

the graspable object but also by magnitude information

of a viewed number. However, given that the effect is

very small, it has to be replicated in order to validate

the results. In response to this requirement, Experiment

2 explores the effect further. In addition to replicating

the f0 effect, Experiment 2 aims at exploring whether

the association between the number size and the pitch

can be observed in reaction times when participants are

required to pronounce the vowel [ɑ] in a low or high

pitch according to the parity of the number. We assume

that if it is indeed the case that large numbers are linked

to high-pitched vocalization, this should be observed in

heightened f0 values and rapid high-pitched vocaliza-

tions (in comparison to low-pitched vocalizations)

when the number is large. In contrast, small numbers

should be linked to lower f0 values and low-pitched

vocalizations.

Experiment 2

Methods

Participants

Twenty na€ıve volunteers participated in Experiment 2

(22–42 years of age; mean age D 29 years; 6 males). All

participants were non-musicians, native speakers of Finnish

and had normal or corrected-to-normal vision. Two partici-

pants were left-handed. We obtained written informed con-

sent from all participants. The study was approved by the

Ethical Review Board in Humanities and Social and Behav-

ioural Sciences at the University of Helsinki.

Apparatus, Stimuli, and Procedure

The apparatus, stimuli, and voice calibration were the

same as those in Experiment 1. The procedure was mostly

similar to the one used in Experiment 1 with an exception

that instead of pronouncing the vowel [ɑ] in the short and

long forms, the participants were asked to pronounce the

short [ɑ] in the low or high pitch according to the parity of

the number. The participants were not given any specific

instructions about how short the vocalization should be.

They were only asked to refrain from producing long ver-

sion of the vowel [ɑ]. The experiment was divided into two

separate blocks, and there was a short break (approximately

5 minutes) between the blocks. In one block, the partici-

pants were required to pronounce low pitched [ɑ] if the

number was even and high pitched [ɑ] if it was odd (Map-

ping 1). In another block, the participants were required to

pronounce high pitched [ɑ] if the number was even and low

pitched [ɑ] if it was odd (Mapping 2). In contrast to Experi-

ment 1, the mapping condition was included to the design

as a within-subjects variable in order to increase the statisti-

cal power of that variable. Indeed, it is possible that we did

not observe any MARC effect between vowel length and

the oddness/evenness of the number in Experiment 1

because the mapping condition was a between-subjects var-

iable in the design. The order of the blocks was counterbal-

anced between the participants. Each participant was given

as much practice, as it took to perform the task fluently. In

total, the experiment consisted of 240 trials [30 £ 4 (stimu-

lus) x 2 (mapping)].

Results

The vocal data were analyzed in the same way as in

Experiment 1. Of the trials, 2.3% were removed as errors

and 4.3% were removed as outliers. The combined removal

of errors and outliers had left 93.5% of the raw data as cor-

rect responses. The condition means of these remaining

data were computed for each participant and subjected to a

repeated-measures analysis of variance (ANOVA) with the

within-subjects variables of Mapping (Mapping 1: low-

even/high-odd; Mapping 2: low-odd/high-even), Number

size (small [1&2] or large [8&9]) and Response (low or

high). Post hoc comparisons were performed by means of t

tests applying a Bonferroni correction when appropriate. A

partial-eta-squared statistic served as an effect size esti-

mate. Finally, for analyzing errors, all incorrect responses

were converted to percentages and submitted to the same

ANOVA as the reaction time data.

Reaction Times

The analysis of percentage of errors did not reveal any

significant effects. This may be subject to ceiling effect

given that the participants performed the task with high

accuracy (97.7% correct responses). The analysis of
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reaction times revealed a main effect of Mapping [F(1,19)

D 11.05, MSE D 28277.39, p D 0.004, hp
2 D 0.368] and

Response, F(1,19) D 5.85, MSE D 11102.26, p D 0.026,

hp
2 D 0.235. Responses were faster in Mapping 1 (M D

586 ms; SEM D 18.2) than in Mapping 2 (M D 612 ms;

SEM D 17.7). In addition, responses were faster when the

vowel was pronounced in low pitch (M D 591 ms; SEM D
16.0) rather than in high pitch (M D 608 ms; SEM D 19.5).

Furthermore, the two-way interaction between Number size

and Response was significant, F(1,19) D 9.02, MSE D
7203.23, p D 0.007, hp

2 D 0.322. Responses were produced

faster in high pitch when the number was large (M D
601 ms; SEM D 18.4) rather than small (M D 614 ms;

SEM D 20.8) (p D .040). In contrast, responses were pro-

duced faster in low pitch when the number was small (M D
583 ms; SEM D 15.6) rather than large (M D 598 ms;

SEM D 16.9) (p D .026). In addition, the three-way interac-

tion between Mapping, Number size and Response was

also significant, F(1,19) D 5.26, MSE D 2416.66, p D
0.033, hp

2 D 0.217. As seen in Figure 1, the interaction

between Number size and Response was only observed in

Mapping 2. Finally, when reaction times were analyzed

including only the factor of Parity (odd or even), the main

effect of Parity was not significant (p D .244). The rest of

the main effects and interaction were not significant.

Voice Characteristics

After removing the errors (1.8%) from the analysis of

voice characteristics, the values more or less than two stan-

dard deviations from each participant’s condition means of

vocalization length (1.8%), intensity (4.3%), f0 (3.7%), F1

(5.5%), and F2 (4.9%) were also excluded from the voice

characteristic analysis.

The analysis of vocalization length did not provide any

significant main effects or interactions. The analysis of

intensity revealed a main effect of response, F(1,19) D
19.62, MSE D 72.66, p < 0.001, hp

2 D 0.508. Intensity was

higher for high-pitched responses (M D 78.5 dB; SEM D
0.7) than for low-pitched responses (M D 77.1 dB; SEM D
0.8). The analysis of f0 revealed a main effect of Response

[F(1,19) D 96.71, MSE D 272861.99, p < 0.001, hp
2 D

0.836]. F0 was higher for high-pitched responses (M D
248.3 Hz; SEM D 16.4) than for low-pitched responses (M

D 165.7 Hz; SEM D 10.3). More importantly, the analysis

of f0 also revealed a main effect of Number size [F(1,19) D
12.35, MSE D 14.17, p D 0.002, hp

2 D 0.394]. However,

the two-way interaction between Number size and

Response [F(1,19) D 4.53, MSE D 13.16, p D 0.047, hp
2 D

0.192] showed that the size of the number modulated

responses only in relation to high-pitched responses (p D
.003). In that condition, f0 was higher when the number was

large (M D 248.9 Hz; SEM D 16.4) rather than small (M D
247.7 Hz; SEM D 16.2). When the participants produced

low-pitched responses, the effect was missing (p D .943).

Regarding voice characteristics of F1 and F2, the only

significant effect was a main effect of Response. Both val-

ues were higher in relation to high-pitched responses (F1:

M D 460.0 Hz; SEM D 27.8; F2: M D 1136.5 Hz; SEM D
30.3) rather than low-pitched responses (F1: M D
378.9 Hz; SEM D 25.8; F2: M D 1104.7 Hz; SEM D 29.5)

[F1: F(1,19) D 40.98, MSE D 263101.04, p < 0.001, hp
2 D

0.683], [F2: F(1,19) D 4.66, MSE D 40293.41, p D 0.044,

hp
2 D 0.197]. No other significant main effects or interac-

tions were found.

It can be seen in the Figure that the cases in which the

participants are required to produce low-pitch responses to

the number nine (i.e., Experiment 2, Mapping 2, Large

stimulus, Low pitch) are produced relatively slowly, sug-

gesting a strong mismatch between the number nine and the

low pitch responses. This incongruency between the num-

ber nine and the low pitch responses can overemphasize the

mapping effect (i.e., overall responses are produced signifi-

cantly faster in Mapping 1 than in Mapping 2). Conse-

quently, we reanalyzed the data by first removing all the

reaction times that were associated with these conditions

(number nine – low pitch), and then running ANOVA for

the rest of the reaction times over all conditions including

only the mapping as a factor. This analysis still showed a

significant main effect for mapping, F(1,19) D 7,48, MSE

D 5452.75, p D .013, hp
2 D .283. The responses were still

significantly faster in Mapping 1 (M D 586 ms; SEM D
18.1) than in Mapping 2 (M D 609 ms; SEM D 18.0). Con-

sequently, is seems that although there appear to be empha-

sized incongruency between the low pitch responses and

the number nine, which in turn emphasizes the mapping

effect, this incongruency however is not the only compo-

nent that produces the effect. The effect can be observed

even when this component is entirely removed.

Discussion

Experiment 2 replicated the f0 effect that was observed in

Experiment 1. However, the effect was only observed in

high-pitched responses. When the participant performed

high-pitched vocalizations, the f0 of the vocalization was

increased when the number was large in comparison to

small. This f0 effect was supported by the reaction time

data showing that high-pitched vocalizations were pro-

duced relatively rapidly when the number was large and

low-pitched vocalizations were produced relatively rapidly

when the number was small. However, it is noteworthy that

this reaction time effect was only observed in Mapping 2 in

which high-pitched responses were performed to even num-

bers and low-pitched responses to the odd numbers. Below

we further discuss these effects.

General Discussion

This study provides the first investigation concerning

interaction between vowel production and processes that

represent the magnitude information of numbers. The study
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presents several novel findings related to processes underly-

ing number cognition. Firstly, in Experiment 1, the partici-

pants displayed a tendency to associate the vocalization of

the short vowel with small numbers and the vocalization of

the long vowel with large number. This effect occurred

even though the participants responded to the parity of the

number and hence the magnitude information of the num-

ber was irrelevant to the task. As such, this finding is simi-

lar to the previously reported finding in which participants

showed faster reaction times when they had to perform a

keypress response for a short duration and the number was

small, or when the keypress was performed for a long dura-

tion and the number was large (Kiesel, & Vierck, 2009).

This study suggests that similar congruency effect between

the number magnitude and response duration can be also

observed in relation to vocal responses when the short and

long responses have to be performed in the context of short

and long vowels. If our finding is considered in the context

of the ATOM hypothesis (Walsh, 2003), it can be proposed

that this study supports the view according to which there is

some level of overlap in sensory-motor processes that

encode magnitude information for numbers and duration.

Consequently, the processes involved in planning the time

dimension on articulatory planning processes are automati-

cally influenced by the concurrently processed information

about number magnitude, which in turn biases response

selection processes related to producing a short or long

vowel. Due to these associations between representing

duration information for vocalization and magnitude, it is

not surprising that people tend to vocally emphasize the

magnitude of a given attribute by stretching a vowel (e.g.,

“the weather was sooo cold”).

The results of Experiment 2 revealed that participants

prefer to produce high-pitched vocalizations to odd num-

bers and low-pitched vocalizations to even numbers rather

than the other way around. This effect can be assumed to be

a parallel cognitive phenomenon to the MARC effect

(Willmes & Iversen, 1995), in which the left hand

responses are performed faster to odd numbers and the right

hand responses are performed faster to even numbers.

These effects have been generally explained by linguistic

markedness account (Zimmer, 1964). As mentioned in

Introduction, this account deals with conceptual pairs of

complementary adjectives such as high-low, good-bad and

odd-even. The non-marked adjective is referred to be the

more natural or basic form of the concept pair. For exam-

ple, even numbers are assumed to be non-marked items of

the concept pair “odd-even,” because when learning basic

multiplication, the correct answer is an even number at

0.75 probability—thus making even numbers more familiar

than odd numbers (Lochy, Seron, Delazer, & Butterworth,

2000). Correspondingly, at least for the right-handers

(Huber et al., 2015), the right hand is more commonly used

than the left hand, which makes the right hand the non-

marked basic item of the left-right concept pair. It is

commonly assumed that the MARC effect is caused by the

congruency between the markedness of the number parity

and the markedness of the label of the responding

hand (Nuerk et al., 2004). From this perspective, it can

be proposed that the participants preferred to produce

high-pitched vocalization with odd numbers and low-

pitched vocalization with even numbers because there is

decreased congruency in markedness dimensions between

the stimulus and response when responses are performed in

a reversed mapping condition. However, it has to be noticed

that the odd effect (Hines, 1990), in which participants typi-

cally respond slower to odd number than to even numbers,

was not observed in this study. This notion might be consid-

ered to dilute the validity of our proposed explanation to the

mapping effect observed in Experiment 2. However, cogni-

tive mechanisms underlying the odd effect and the MARC

effect are not understood that clearly that one could

undoubtedly state that observing the odd effect is obligatory

condition for observing the MARC effect. Therefore, it is

possible that the processes responsible for mapping

marked/unmarked responses to the odd/even numbers can

produce the MARC effect even when the processing of odd

and even numbers would not be biased enough to produce a

noticeable odd effect.

Contrary to the current finding, research in phonetics has

proposed that high tone is in fact non-marked with respect to

low tone (e.g., Pulleyblank, 1983). According to this view,

the high-pitched vocalization in our data should have been

associated with the even numbers, and the low-pitched

vocalization with the odd numbers. However, it has to be

highlighted that markedness of the opposing items of the

concept pair is relative rather than absolute issue. Given

that, in phonetics, the marked phonetic structures are less

natural, more effortful (i.e., harder to articulate), less com-

mon, less expected and perceptually more salient (De Lacy,

2007), it would be plausible to assume that at least in the

present experimental set up, the high-pitched vocalization

was more likely to be marked than the low-pitched vocaliza-

tion. That is, because the vocalizations were produced sig-

nificantly faster in low pitch than in high pitch, thus

supporting the view that the low-pitched vocalization

required less articulatory effort than producing the high-

pitched vocalization. In addition, it has been noticed that

pitch accents in intonation are usually high on “new” infor-

mation on the discourse (Bolinger, 1986) underlying unex-

pectedness of this information. In addition, raising a pitch is

commonly used prosodic cue when one is, for example, indi-

cating a question or when one wants to underline a specific

word in a sentence (Ohala, 1983). In this sense, by raising

the pitch in relation to the average pitch of a given sentence

one is able to mark a specific component of the sentence so

that it stands out from the stream of speech and directs atten-

tion of another person to that component. As such, we pro-

pose that in the context of vowel production in general, and

in this study in particular, the high-pitched vocalizations

were marked with respect to low-pitched vocalizations. Con-

sequently, the participants showed tendency to pair low-
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pitched vocalizations with even numbers and high-pitched

vocalizations with odd numbers. This effect suggesting con-

gruency between high-odd and low-even pairs appears to be

particularly emphasized by a strong incongruency between

the number nine and low pitched vocalizations that can be

seen in particularly slow reaction times in Figure 1 (Experi-

ment 2; Mapping 2) when the number is large and the vocali-

zation response is low.

Interestingly, in addition to the linguistic markedness

explanation, the odd effect and the MARC effect have been

also explained by the polarity correspondence account

(Proctor & Cho, 2006). According to that account, these

parity effects reflect associating “even” and “right-hand”

with positive polarity and “odd” and “left-hand” with nega-

tive polarity. This view assumes that congruency in polarity

between the stimulus and response should lead to facilitated

responses. Because concepts such as long and high simi-

larly associate with positive polarity, they should also asso-

ciate with even numbers. However, in Experiment 1, the

participants’ short-long responses were not significantly

influenced by the number parity, while in Experiment 2, the

results showed a pattern that is better in line with the mark-

edness account than with the polarity correspondence

account. Therefore, we propose that the polarity correspon-

dence account of the parity effects was not supported by

the results of this study. However, this argument should be

treated with caution because one possible reason for the

observed MARC effect in Experiment 2 but not in Experi-

ment 1 is that in Experiment 2 the mapping condition was

included to the design as a within-subjects variable, while

in Experiment 1 it was included as a between-subjects vari-

able that can be assumed to decrease its statistical power.

This study also showed that high-pitched vocalizations

were performed faster when the number was large rather

than small, whereas low-pitched vocalizations were per-

formed faster when the number was small rather than large.

However, this effect was only evident in Mapping 2 when

the participants produced a high-pitched vocalization to

odd numbers and a low-pitched vocalization to even num-

bers. Hence, it seems that the previously mentioned mark-

edness congruency effect between the required pitch of the

response and the parity of the number confounds with the

congruency effect between the required pitch of the

response and the size of the number. One potential reason

for this is that congruency effects between the size of the

number and the type of response such as the SNARC effect

is likely to become larger with slower responses (Gevers,

Verguts, Reynvoet, Caessens, & Fias, 2006). The magni-

tude information of the number presented to the participant

has no time to modulate response planning processes when

responses are performed too rapidly. Therefore, it is possi-

ble that in Mapping 1, in which there was a strong congru-

ency between the required pitch of the response and the

parity of the number, the responses were performed particu-

larly smoothly and rapidly. Hence, there was no sufficient

time for the effect between the required pitch of the

response and the size of the number to build up under the

influence of number magnitude information.

The study also showed that the number size can automat-

ically modulate f0 component of the voice. F0 was higher

with large numbers in comparison to small numbers, thus

complying with the previous findings that people associate

high pitch sounds with large numbers and low pitch sounds

with small numbers (Oriet et al., 2005). This outcome was

also predicted based on the previously found effect showing

increase in f0 when the participants are presented with large

objects in comparison to small objects (Gentilucci et al.,

2009). This study shows that not only are large graspable

objects associated with relatively high-pitched vocaliza-

tions, but large numbers are also associated with relatively

high-pitched vocalizations. In addition, this finding is in

line with the above mentioned congruency effect between

the required pitch of the response and the size of the num-

ber. That is, it appears that large numbers do not only speed

up producing high-pitched vocalizations in comparison to

low-pitched vocalizations, but they also slightly increase

the values directly linked to the heightening of vocal pitch.

Although this f0 effect was observed in both experiments of

the study, in Experiment 2 the effect was only observed in

relation to the high-pitched vocalizations. This suggests

that large numbers increase the f0 values when participants

are required to perform the vowel in their normal pitch

(Experiment 1) or when they have to perform atypically

high-pitched vocalization (Experiment 2). Perhaps the f0
effect reflects the influence of relatively large numbers on

processes that are responsible for heightening a pitch rather

than the influence of relatively small numbers on processes

responsible for lowering a pitch. Consequently, when the

participants are required to produce atypically low-pitched

vocalizations, the number magnitude does not influence the

vocal processes related to pitch production.

Why then are large numbers associated with heightened

pitch of a voice? It has previously been shown that when par-

ticipants are required to perform vertically aligned manual

responses to auditory sounds, upper responses are performed

relatively rapidly when the pitch of the sound is high,

whereas lower responses are performed relatively rapidly

when the pitch is low (Rusconi, Kwan, Giordano, Umilta, &

Butterworth, 2006). In addition, vertically aligned manual

responses are also performed faster with upper responses

when the number is large and with the lower responses when

the number is small (Hartmann et al., 2014; Ito & Hatta,

2004). These findings have been explained, for example, by

the polarity correspondence account (Cho & Proctor, 2007).

According to this account, the high response, large number

and high sound are all positive polarity concepts, whereas

the low response, small number and low sound are all nega-

tive polarity concepts. Responses are facilitated when polar-

ity dimensions of the stimulus and response are congruent.

Similarly, the present findings can be explained by this

polarity account so that the high-pitched vocalizations are

preferably mapped with large numbers and the low-pitched
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vocalizations with small numbers because of the congruency

in the polarity dimensions.

The polarity account explains the reaction time effect

between the required pitch of response and the number size

in relatively comprehensive manner. The polarity account

is theoretically suitable for dealing with spatial stimulus-

response compatibility effects and occur when the stimulus

and response alternatives are coded categorically in relation

to positive and negative polarities (Cho, Bae, & Proctor,

2012). However, it is more difficultly employed explaining

the effect showing an automatic heightening of f0 triggered

by the large numbers. This effect is more likely to be based

on some basic sensory-motor processes that implicitly

anchor conceptual magnitude information to motor repre-

sentations. However, in order to clarify our view concern-

ing why and how the number magnitude is associated with

pitch in the way proposed by the current findings, it is

important to understand why and how high and low pitch

sounds could be grounded on vertical body movements.

Relevantly for our view, Bolinger (1983; 1986) has sug-

gested that pitch changes in intonation are processed in

integration with bodily gestures: pitch and body parts move

up and down together providing audible and visible pros-

ody, respectively. Indeed, it has been shown that spontane-

ous head lowering is associated with intonationally falling

pitch and head rising with rising pitch (McClave, 1991).

Similar phenomenon has been also recognized in singing.

The head extension is a commonly used method of singers

(Miller, 2000) that might assist laryngeal positioning to

ease the production of high notes (see Knight, 2013).

Indeed, people have a tendency to raise their head in rela-

tion to high-pitched sounds and lower their head in relation

to low-pitched sounds (Horstmann & Ansorge, 2011).

Moreover, it has been also shown that the f0 component of

vocal spectra increases when the head is raised in compari-

son to lowering the head (Knight, 2013). Taken together,

people show a tendency to associate head raise with high

sounds and head lowering with low sounds. Ultimately, this

tendency might arise from speech production mechanisms

so that these vertical head movements assist laryngeal posi-

tioning for producing high and low-pitched vocalizations.

Finally, in evolution of speech, this tendency might have

been adapted to provide visual boosting for intonational

auditory cues.

Why then would the sensory-motor processes map a high

pitch with large magnitudes and a low pitch with small

magnitudes? Firstly, our view assumes that when a partici-

pant is representing the magnitude of a number at the con-

ceptual level, the sensory-motor system maps large

numbers onto a mental representation of the upper space

because the ground represents the natural zero-point for

vertically increasing magnitude (Clark, 1973; Fischer, &

Brugger, 2011). Because this magnitude information is

automatically encoded in relation to corresponding motor

processes (Bueti, & Walsh, 2009; Walsh, 2003), viewing

large numbers excite upward-directed body movements of

the eyes (Schwarz, & Keus, 2004) and hands (Hartmann

et al., 2014; Ito, & Hatta, 2004), for example. The same

phenomena might also occur in relation to head move-

ments. It is possible that the f0 was influenced by the num-

ber magnitude in this study because large numbers

implicitly triggered a slight head raise that modulated the

laryngeal positioning, which in turn heightened the f0
values of the vocalization. Consequently, rather than

explaining the interaction between the number size and the

pitch-related aspects of the response by the polarity

account, concordantly to the ATOM hypothesis (Walsh,

2003), we prefer the number embodiment account in our

explanation. According to this view, large numbers are con-

nected to high-pitched sounds in the shared representational

medium that processes magnitude information and pitch

highness in relation to the processes that are responsible for

planning vertical body movements.

In conclusion, this study shows for the first time that

number magnitude is partially represented in integration

with vocalization processes. The production of relatively

long and high-pitched vowel was associated with large

numbers and short and low-pitched vowel was associated

with small numbers. In addition, it was found that high-

pitched vocalizations are preferably mapped with the odd

numbers, while the low-pitched vocalizations are mapped

with the even numbers. These findings support the view

that motor processes contribute to representing magnitude

information in general and number magnitude in particular

(Walsh, 2003). In addition to emphasizing involvement of

manual motor processes in representing magnitude infor-

mation (e.g., Andres et al., 2004), this study suggests that

relevance of articulatory motor processes should be also

emphasized when investigating processes underlying the

representation of magnitude information.
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