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Abstract 

In this study, three semi-synthetic betulonic acid-based compounds, 20(29)-dihydrolup-2-en[2,3-d]isoxazol-

28-oic acid, 1-betulonoylpyrrolidine and lupa-2,20(29)-dieno[2,3-b]pyrazin-28-oic acid were studied in 

biotransformation experiments using Nicotiana tabacum L. and Catharanthus roseus (L.) G.Don cell 

suspension cultures. Biotransformation was performed using cyclodextrin to aid dissolving poorly water 

soluble substrates. Several new derivatives were found, consisting oxidized and glycosylated (-pentose and -

hexose conjugated) products.  

Key words: Nicotiana tabacum, Catharanthus roseus, biotransformation, betulinic acid, Solanaceae, 

Apocynaceae 

Introduction 

Triterpenes are a group secondary compounds synthesized by plants via cyclization of squalene [1]. Today, 

more than 20 000 different triterpenes have been identified in nature, and they are either present as free 

forms or as glycosides. The pentacyclic triterpenoids, secondary plant metabolites abundantly found in fruit 

peel, leaves and stem bark, have attracted great interest as therapeutic agents and dietary supplements [1,2]. 

New functional properties have been obtained by modifying betulin structure, resulting in higher activity and 

selectivity [3]. In addition, semisynthetic derivatives of the naturally occurring triterpenoids have been 

studied in search for new anticancer agents, with specific focus on anti-invasiveness properties [4]. Betulin 

and betulinic acid, lupane-type pentacyclic triterpenes present in e.g. birch bark, have shown to possess 

various bioactivities including antiviral, antimalarial, anti-inflammatory and anti-cancer properties [4,5,6]. A 

recent review gives a thorough description of pharmacology of various betulinic acid -derived compounds 

[7]. Previously, Härmä and co-workers (2015) [4] screened altogether 78 different betulin derivatives for their 

anti-invasive and anti-proliferative effects against castration resistant prostate cancer. The compound library 

was chemically synthesized by subjecting betulin to Jones oxidation and further by using resulting betulonic 

acid as a key intermediate for the synthesis of several A-ring fused betulin heterocyclic adducts. Also, position 

C-28 and C-20 of these compounds were modified. Several betulin derivatives displayed dose-dependent and 

potent anti-invasive activity at nanomolar concentrations with minimal cytotoxicity.  

Biotransformations are chemical reactions catalyzed by cells, organs or enzymes. Plant cell cultures exhibit 

an enormous biochemical potential with the power to transform cheap and plentiful substances, such as 

industrial by-products, into rare and expensive products. The biotransformation opens up the possibilities to 

find improved modifications of already utilized natural compounds and also offers a platform to upgrade the 

efficacies of known molecules with broader applications through novel of analogs [8]. When it comes to 

phytochemicals, such procedures carried out by plant cell cultures generate libraries of analog compounds 

with unique structural modifications and also ensure sustainability of the usage of resources. Also, plant cell-

based biotransformations are a potent source of chirality when generation of specific enantiomers is 

required. Analogous with other platforms exploiting plant cell cultures, several advantages are seen, e.g. by 

utilizing defined culture conditions independent of seasonal fluctuations and pathological constraints [9]. In 

addition, biotransformation products can acquire improved selectivity, safety, physico-chemical properties 

and lower toxicity profiles which can be more suitable for some new therapeutic functions. 

Biotechnological processes involve enzyme-catalysed transformations of substrates in aqueous conditions. 

As a result, if the substrate is very hydrophobic, such as betulin, the biotransformation process is primarily 

limited by the substrate solubility. On the other hand, cyclodextrins are cyclic, nonreducing oligosaccharides, 
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which can form solid inclusion complexes with a range of solid, liquid and gaseous substances by molecular 

complexation [10]. The lipophilic cavity of cyclodextrins is occupied by enthalpy-rich water molecules, which 

can be readily substituted by appropriate non-polar “guest” molecules. As a result, a lipophilic substance can 

be administered in an aqueous solution. Cyclodextrins have been used in various  applications such as drug 

delivery, bioconversion, enzyme mimics and analytical applications [9,10, 11]. 

As plant cells have earlier shown to respond to xenobiotics by modifying them to less toxic forms e.g. by 

increasing the compound hydrophilicity, the aim of the current study was to investigate whether different 

forms of betulonic acid derivatives would be obtained by the activity of plant intracellular enzymes. By this 

way the compounds could possibly offer a broader spectrum for utilization e.g. as hit or lead compounds 

[12]. The selected compounds were two  betulin derivatives which were earlier subjected to studies of  

invasion-specific effects against prostate cancer cells in 2D and 3D  cell models [4]. The compounds were 

selected based on their differential structures deriving from parent compound betulinic acid thus 

hypothetically resulting in variability in biotransformation products formed. Biotransformation was 

performed with two cell cultures, Nicotiana tabacum L. (Solanaceae) (tobacco) and Catharanthus roseus (L.) 

G.Don (Apocynaceae) (Madagascar periwinkle). Besides tobacco, which is a commonly used model plant in 

biochemical studies, C. roseus was selected for its wide array of biosynthetically active enzymes, especially 

cytochrome P450s [13]. Both cultures were assayed for their  capacity to take up semi-synthetic betulonic 

acid derivatives and their ability to convert the fed compounds in aqueous environment. 

Results and discussion  

The biotransformation of betulin-derived compounds 4, 5 and 6 (Fig. 1) was accomplished with two plant cell 

cultures, i.e. N. tabacum and C. roseus.  Three semi-synthetic betulonic acid derivatives were fed to these cell 

cultures using cyclodextrin as carrier. Without cyclodextrin complexation the highly hydrophobic substrates 

could not be administered to plant cells cultivated in aqueous medium. Often when poorly water soluble 

substrates are studied, solvents such as dimethyl sulfoxide (DMSO) are considered. However, it is well known 

that DMSO affects plant cell membrane fluidity already at low concentrations (around 3 % solution) [14] and 

DMSO is commonly used for this purpose to protect the cell membranes during cryopreservation of plant 

cells [15]. For this reason, DMSO was not considered. Also, a biphasic system is not promising for 

biotransformation systems where intracellular enzymes are utilized. The accessibility of the compounds in 

the intracellular space is crucial and in addition this needs to proceed in aqueous environment. Cyclodextrins 

are currently extensively used as solubilizers for hydrophobic substances, especially for many steroid 

compounds [11,, 16, 17]. They are divided in three categories depending whether 6, 7 or 8 glucopyranoses 

units are linked through α-1,4-D-glucopyranosic bonds in α-, β- or -cyclodextrin, respectively [18]. In this 

study, three novel betulin derivatives generated via chemical synthesis were fed to cell cultures of tobacco 

and Madagascar periwinkle in the form of HP--cyclodextrin i.e. 2-(hydroxypropyl)--cyclodextrin complexes.  

All the tested compounds were taken up from the medium and modified by the cells; however, the majority 

of fed substrate remained in the extracellular space. Even though trace amounts of oxidation products of 

compounds 5 and 6 were observed already in the start of the feeding, none of the studied compounds formed 

derivatives when incubated in cell-free culture medium, i.e. spontaneously during 10 days. The uptake of fed 

compounds varied depending on the compound and cell culture (Table 1). Uptake was better in C. roseus 

than in N. tabacum cell cultures. The highest intracellular level, 67 %, was observed for compound 5, while 

total conversion rates of the fed compounds remained low, between 0.3 % to 1.8 %, during the study period 

of 10 days.  
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Biotransformation of compound 6 by tobacco cell cultures resulted in five derivatives (hydroxyl conjugate, 

pentose conjugate, hexose conjugate, di-hexose conjugate and one unidentified derivative) (Fig. 2A-B). The 

standard deviation represents the biological variation, which is in some instances rather high. However, it 

should not be considered exceptionally high, as 50 % biological variation has been reported being rather 

typical for plant systems [19]. The characteristic accumulation of the derivatives within a period of 10 days 

in culture medium is shown in Fig. 3. Chromatograms and mass spectra of the derivatives resulting from the 

biotransformation of compound 6 are presented in  Fig. 1S.  

The MS2 spectra of the precursor ion at m/z 623.41 [M + H]+ show a product ion at m/z 491.3 [(M + H)-132]+, 

corresponding to the loss of a pentose group, Further MS3 fragmentation of the product ion at m/z 491.3 

produced a spectra equal to the parent compound ([M + H]+).  Similarly, the MS2 spectra of the precursor ion 

at m/z 653.42 [M + H]+ reveal a product ion at m/z 491.3 [(M + H)-162]+, corresponding to the loss of a 

hexose group from the parent compound (Fig. 4). Based on the mass fragmentation pattern, the pentose 

derivative (m/z = 623) releases the 132 unit fragment from compound 6, while hexose derivative (m/z = 653) 

releases a 162 unit fragment. In mass fragmentation pattern of the di-hexose derivative, a 324 unit moiety is 

released from the precursor ion at m/z 815.47. Additionally, an unknown biotransformation product at m/z 

901.45 producing the same product ion at m/z 491.3 was detected in N. tabacum (Fig. 2A-B). The position of 

the mono-pentose or mono-hexose in 6 cannot be deduced from MS spectra but most probably, the moiety 

is bound to the carboxyl group. It seems that glycosylation is rather a plant specific process, while 

hydroxylations are commonly achieved by fungal metabolism, too [20]. 

In C. roseus cells compound 6 was transformed to three derivatives (pentose, hexose and di-hexose 

conjugate) (Fig. 2C-D). While the accumulation of the hexose conjugate occurred similarly in both species, di-

hexose was more abundant in N. tabacum. In addition, the unidentified derivative detected in the tobacco 

system was not present in C. roseus.  

Biotransformation of compound 5 resulted in minor amounts of several oxidation products in both N. 

tabacum and C. roseus, however further conjugates were not detected. Unlike compounds 6 and 4, 

compound 5 does not possess a carboxyl moiety which is the typical position for glycosylation. Uptake of 

compound 5 was high in C. roseus cells (Table 1).  

Compound 4 showed interesting differences in modification patterns between tobacco and C. roseus cells 

(Fig. 5A-D). Five derivates (mono-hydroxy, pentose conjugate, hexose conjugate, di-hexose conjugate and 

one unidentified derivative) appeared in tobacco cells while in C. roseus cells only one derivate was found 

(Fig 5A-B). Interestingly, intracellular levels of compound 4 in C. roseus cells were remarkably high (Fig. 5C). 

Compound 4 has a structurally interesting heterocycle attached to the A ring, which might act as a substrate 

for endogenous terpene indole alkaloid modifying enzymes, or abundant cytochrome P450 responsible in 

various oxidative reactions in plants.  

Plant species respond to the exposure of xenobiotics by differential substrate conversion [21] and 

conjugation of a glucose moiety is a typical detoxification reaction mediated by the abundant 

glycosyltransferases in plants. Glycosylation takes place in –OH, -SH, -NH or carboxyl groups [22]. Among the 

studied compounds, compounds 6 and 4 were glycosylated, but compound 5 formed only hydroxy-

derivatives. This is expected since the former two possess carbonyl moieties, while the latter does not. 

Compound 6 displays only one –OH group for glycosylation and therefore the di-hexose is probably bound to 

this position of the molecule. MS/MS analysis, however cannot distinguish between 1 2 or 1 6 linkage. 

Interestingly, in their studies with betulinic acid derivatives, Baratto and co-workers [23] showed variability 
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of biotransformation products resulting from fungal and plant-based metabolism. While fungal conversion 

products consisted of oxidation and esterification products, Daucus carota cell suspension resulted in 

aldehyde product. Glycosylated products were not reported in this case.  

In conclusion, using biotransformation, we could produce new, more hydrophilic betulin-derivatives which 

would be difficult to obtain via chemical synthesis. Due to their efficient metabolic machinery, e.g. related to 

xenobiotic detoxification processes, plant cells have proven to be an interesting system for 

biotransformation. Possiblities to produce high-value chemicals from natural sources has become in recent 

years an exciting research topic. During the past decades, more than half of all new drug entities were 

originally found in nature [24]. Vast amounts of bark raw material is obtained as by-products from the forest 

industry. Birch bark contains betulin up to 35% of its dry weight. Many of the betulinic acid derivatives are 

known for their bioactive properties, however the poor water solubility limits their use in various 

applications. As an example, recently, Haavikko and co-workers [25] reported anti-leishmanial activities of 

various synthetic heterocyclic betulin derivatives. Leishmaniasis is a spectrum of diseases which affect 12 

million people, with 1-2 million new cases annually and new treatments are searched to treat this disease. 

Earlier, betulin glycosides which were introduced into lecithin liposomes were shown to possess  cholesterol 

lowering effects in blood in experimental hypercholesterolemia [26]. The glycosylated biotransformation 

products observed in this study constitute promising, more hydrophilic candidates for bioactivity testing due 

to their increased water solubility.  

 

Materials and Methods  

Plant cell cultures 

N. tabacum SR1 ‘Petit Havana’ cell suspension (VTTCC P-120003) was a gift from Fraunhofer Institute for 

Molecular Biology and Applied Ecology, IME (Aachen, Germany) and it was maintained in modified Gamborg 

B5 medium (G0210, Duchefa) according to [27], with 1.0 ppm naphthaleneacetic acid, 0.1 ppm kinetin and 

20 g/L sucrose. Culture was subcultured once a week with 30% (v/v) inoculum. C. roseus PC-1140 (DSMZ, PC-

1140) cell suspension culture was cultured in a similar manner as described for N. tabacum SR1.  All cells 

were cultivated at +26 C under a light 16 h /dark 8 h regime on a rotary shaker at 120 rpm. 

Synthetic modifications of betulin  

Compounds 4 (20(29)-dihydrolup-2-en[2,3-d]isoxazol-28-oic acid), 5 (1-betulonoylpyrrolidine) and 6 (lupa-

2,20(29)-dieno[2,3-b]pyrazin-28-oic acid) (Fig. 1) were synthesized as described [4,21].  

Biotransformation procedure  

Cyclodextrin was used to facilitate dissolving the poorly water soluble substrates. Biotransformation was 

performed with both suspensions in late exponential growth phase. Approximately 5 g (FW) of 7 day-old-cell 

suspension was weighed in crystallising dishes and 5 mL of fresh modified Gamborg B5 growth medium was 

added. After 3 days adaptation timesubstrate was added by first dissolving it  in methanol and then mixing 

with aqueous cyclodextrin i.e. (2-hydroxypropyl)-γ-cyclodextrin (Sigma-Aldrich 779229) solution. Final 

concentrations in the feeding were 88 mg (0.05 mmol) for cyclodextrin and 1.56 mg (0.003 mmol) for the 

substrate per sample. Sampling was performed after incubating 0 h, 6 d and 10 d. Comparable amount of 

methanol without the substrate diluted in cyclodextrin solution was used as control. Studied compounds 
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were also incubated 10 d in sole culture medium without cells. The samples were vacuum-filtered to separate 

the cells and medium and frozen in liquid nitrogen. All the samples were freeze-dried prior to the extraction 

and analysis by UPLC-PDA/MS-MS.  

Extraction  

Samples were extracted according to a previously described method [28]. Briefly, lyophilized samples were 

weighed (50 mg dry weight) and 1 mL chloroform:methanol (2:1) was added together with 200 µL ultrapure 

water. Samples were grinded with a Retsch mill (5 min, 20 Hz), samples were extracted for 30 min and then 

centrifuged (10 620 g, 10 min). Sample aliquots were concentrated under nitrogen flow and the dried residue 

was dissolved in 200 µL methanol before analysis.  

UPLC-PDA/MS-MS analyses 

The extracts were analyzed with a Waters Q-Tof Premier mass spectrometer (Waters) and a photodiode array 

(PDA) detector (Waters Inc.) combined with an Acquity UPLC (Waters, Inc.). Chromatography was performed 

using a Waters Acquity BEH C18 (2.1 x 100 mm, 1.7 μm) column, kept at 30 C. Injection volume was 2 µL. 

Separation was achieved using gradient elution with 0.1 % formic acid in water (v/v) (A) and acetonitrile (B) 

at a flow rate of 0.43 mL/min. Gradient program was 0 min 50 % B, 0.1 min 50 %, 10  - 13 min 90 % B. PDA 

detector was scanning from 210 – 600  nm (1.2 nm resolution, 20 points/second). Mass spectrometry was 

performed in positive polarity using the capillary voltage of 3.0 kV. Data were collected at a mass range of 

m/z 100-1000 with a scan duration of 0.2 s. Desolvation temperature was 350 C, and source temperature 

was 125 C. The desolvation gas flow was 1100 L/h. Calibration curves of the studied compounds were 

prepared from 2.5 to 1000 ppm. Analytes were quantified using external calibration curves and the 

biotransformation products were quantified by using the calibration curve of the parent compound.  

For further identification of the biotransformation products, fractions collected from UPLC run were infused 

to a LTQ-Orbitrap (Thermo Scientific) mass spectrometer by a TriVersa Nanomate (Advion Biosciences) using 

chip-based nanoelectrospray in positive ionisation mode. Identifications were based on the exact mass and 

MSn spectra. MS2 and MS3 were acquired using either low resolution (LTQ) or high resolution up to target 

mass resolution R = 60 000 at m/z 400. Alternatively, the higher resolution MS and MS/MS spectra were run 

using Synapt G2-S (Waters). The UPLC and the chromatographic conditions were same as described above. 

Supporting information 

Data of the chromatograms and mass spectra of the derivatives resulting from the biotransformation of 

compound 6 are available as Supporting information.  
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Figure legends 

Fig. 1. Betulin (1),betulinic acid (2), betulonic acid (3), 20(29)-dihydrolup-2-en[2,3-d]isoxazol-28-oic acid (4), 

1-betulonoylpyrrolidine (5) and lupa-2,20(29)-dieno[2,3-b]pyrazin-28-oic acid (6).  

Fig. 2. Accumulation of biotransformation products of compound 6. Accumulation in N. tabacum cell cultures, 

intracellular (A) and extracellular (B) levels, and in C. roseus cell cultures, intracellular (C) and extracellular 

(D) levels. Error bars present standard deviations of two biological replicates. White bar: 0 h; grey bar: 6 days; 

black bar: 10 days after incubation start. Due to high standard deviations in Fig 2A, the individual sample 

points are indicated with dots. 

Fig. 3. Time-course accumulation of compound 6 derivatives in culture medium. Met1 = di-hexose conjugate; 

Met2 = unidentified derivative; Met3 = hexose conjugate; Met4 = hydroxyl conjugate; Met5 = pentose 

conjugate; 6 = compound 6.  

Fig. 4. Detected biotransformation products were characterized with a LTQ-Orbitrap mass spectrometer and 

the assignments were based on the exact mass and MSn spectra as presented here for hexose conjugate 

derived from compound 6. MS2 fragmentation of [M + H]+ precursor ion at m/z 653.42 (A) showed the neutral 

loss of a hexose moiety, 162 u. Further MS3 fragmentation of the product ion [(M + H)-162]+ at m/z 491.3 

produced a spectrum identical with the parent compound spectrum (B). Spectra were obtained with 

nanospray using normalized collision energy of 35 % and 30%. 

Fig. 5. Accumulation of biotransformation products of compound 4. Accumulation in N. tabacum cell culture, 

intracellular (A) and extracellular (B) levels, and in C. roseus cell culture, intracellular (C) and extracellular (D) 

levels. Error bars present standard deviations of two biological replicates. White bar: 0 h; grey bar: 6 days; 

black bar: 10 days after incubation start. 

 

 

 

 

 

 

 

 


